xref: /openbmc/linux/arch/x86/kernel/fpu/core.c (revision 6dfcd296)
1 /*
2  *  Copyright (C) 1994 Linus Torvalds
3  *
4  *  Pentium III FXSR, SSE support
5  *  General FPU state handling cleanups
6  *	Gareth Hughes <gareth@valinux.com>, May 2000
7  */
8 #include <asm/fpu/internal.h>
9 #include <asm/fpu/regset.h>
10 #include <asm/fpu/signal.h>
11 #include <asm/fpu/types.h>
12 #include <asm/traps.h>
13 
14 #include <linux/hardirq.h>
15 #include <linux/pkeys.h>
16 
17 #define CREATE_TRACE_POINTS
18 #include <asm/trace/fpu.h>
19 
20 /*
21  * Represents the initial FPU state. It's mostly (but not completely) zeroes,
22  * depending on the FPU hardware format:
23  */
24 union fpregs_state init_fpstate __read_mostly;
25 
26 /*
27  * Track whether the kernel is using the FPU state
28  * currently.
29  *
30  * This flag is used:
31  *
32  *   - by IRQ context code to potentially use the FPU
33  *     if it's unused.
34  *
35  *   - to debug kernel_fpu_begin()/end() correctness
36  */
37 static DEFINE_PER_CPU(bool, in_kernel_fpu);
38 
39 /*
40  * Track which context is using the FPU on the CPU:
41  */
42 DEFINE_PER_CPU(struct fpu *, fpu_fpregs_owner_ctx);
43 
44 static void kernel_fpu_disable(void)
45 {
46 	WARN_ON_FPU(this_cpu_read(in_kernel_fpu));
47 	this_cpu_write(in_kernel_fpu, true);
48 }
49 
50 static void kernel_fpu_enable(void)
51 {
52 	WARN_ON_FPU(!this_cpu_read(in_kernel_fpu));
53 	this_cpu_write(in_kernel_fpu, false);
54 }
55 
56 static bool kernel_fpu_disabled(void)
57 {
58 	return this_cpu_read(in_kernel_fpu);
59 }
60 
61 /*
62  * Were we in an interrupt that interrupted kernel mode?
63  *
64  * On others, we can do a kernel_fpu_begin/end() pair *ONLY* if that
65  * pair does nothing at all: the thread must not have fpu (so
66  * that we don't try to save the FPU state), and TS must
67  * be set (so that the clts/stts pair does nothing that is
68  * visible in the interrupted kernel thread).
69  *
70  * Except for the eagerfpu case when we return true; in the likely case
71  * the thread has FPU but we are not going to set/clear TS.
72  */
73 static bool interrupted_kernel_fpu_idle(void)
74 {
75 	if (kernel_fpu_disabled())
76 		return false;
77 
78 	if (use_eager_fpu())
79 		return true;
80 
81 	return !current->thread.fpu.fpregs_active && (read_cr0() & X86_CR0_TS);
82 }
83 
84 /*
85  * Were we in user mode (or vm86 mode) when we were
86  * interrupted?
87  *
88  * Doing kernel_fpu_begin/end() is ok if we are running
89  * in an interrupt context from user mode - we'll just
90  * save the FPU state as required.
91  */
92 static bool interrupted_user_mode(void)
93 {
94 	struct pt_regs *regs = get_irq_regs();
95 	return regs && user_mode(regs);
96 }
97 
98 /*
99  * Can we use the FPU in kernel mode with the
100  * whole "kernel_fpu_begin/end()" sequence?
101  *
102  * It's always ok in process context (ie "not interrupt")
103  * but it is sometimes ok even from an irq.
104  */
105 bool irq_fpu_usable(void)
106 {
107 	return !in_interrupt() ||
108 		interrupted_user_mode() ||
109 		interrupted_kernel_fpu_idle();
110 }
111 EXPORT_SYMBOL(irq_fpu_usable);
112 
113 void __kernel_fpu_begin(void)
114 {
115 	struct fpu *fpu = &current->thread.fpu;
116 
117 	WARN_ON_FPU(!irq_fpu_usable());
118 
119 	kernel_fpu_disable();
120 
121 	if (fpu->fpregs_active) {
122 		/*
123 		 * Ignore return value -- we don't care if reg state
124 		 * is clobbered.
125 		 */
126 		copy_fpregs_to_fpstate(fpu);
127 	} else {
128 		this_cpu_write(fpu_fpregs_owner_ctx, NULL);
129 		__fpregs_activate_hw();
130 	}
131 }
132 EXPORT_SYMBOL(__kernel_fpu_begin);
133 
134 void __kernel_fpu_end(void)
135 {
136 	struct fpu *fpu = &current->thread.fpu;
137 
138 	if (fpu->fpregs_active)
139 		copy_kernel_to_fpregs(&fpu->state);
140 	else
141 		__fpregs_deactivate_hw();
142 
143 	kernel_fpu_enable();
144 }
145 EXPORT_SYMBOL(__kernel_fpu_end);
146 
147 void kernel_fpu_begin(void)
148 {
149 	preempt_disable();
150 	__kernel_fpu_begin();
151 }
152 EXPORT_SYMBOL_GPL(kernel_fpu_begin);
153 
154 void kernel_fpu_end(void)
155 {
156 	__kernel_fpu_end();
157 	preempt_enable();
158 }
159 EXPORT_SYMBOL_GPL(kernel_fpu_end);
160 
161 /*
162  * CR0::TS save/restore functions:
163  */
164 int irq_ts_save(void)
165 {
166 	/*
167 	 * If in process context and not atomic, we can take a spurious DNA fault.
168 	 * Otherwise, doing clts() in process context requires disabling preemption
169 	 * or some heavy lifting like kernel_fpu_begin()
170 	 */
171 	if (!in_atomic())
172 		return 0;
173 
174 	if (read_cr0() & X86_CR0_TS) {
175 		clts();
176 		return 1;
177 	}
178 
179 	return 0;
180 }
181 EXPORT_SYMBOL_GPL(irq_ts_save);
182 
183 void irq_ts_restore(int TS_state)
184 {
185 	if (TS_state)
186 		stts();
187 }
188 EXPORT_SYMBOL_GPL(irq_ts_restore);
189 
190 /*
191  * Save the FPU state (mark it for reload if necessary):
192  *
193  * This only ever gets called for the current task.
194  */
195 void fpu__save(struct fpu *fpu)
196 {
197 	WARN_ON_FPU(fpu != &current->thread.fpu);
198 
199 	preempt_disable();
200 	trace_x86_fpu_before_save(fpu);
201 	if (fpu->fpregs_active) {
202 		if (!copy_fpregs_to_fpstate(fpu)) {
203 			if (use_eager_fpu())
204 				copy_kernel_to_fpregs(&fpu->state);
205 			else
206 				fpregs_deactivate(fpu);
207 		}
208 	}
209 	trace_x86_fpu_after_save(fpu);
210 	preempt_enable();
211 }
212 EXPORT_SYMBOL_GPL(fpu__save);
213 
214 /*
215  * Legacy x87 fpstate state init:
216  */
217 static inline void fpstate_init_fstate(struct fregs_state *fp)
218 {
219 	fp->cwd = 0xffff037fu;
220 	fp->swd = 0xffff0000u;
221 	fp->twd = 0xffffffffu;
222 	fp->fos = 0xffff0000u;
223 }
224 
225 void fpstate_init(union fpregs_state *state)
226 {
227 	if (!static_cpu_has(X86_FEATURE_FPU)) {
228 		fpstate_init_soft(&state->soft);
229 		return;
230 	}
231 
232 	memset(state, 0, fpu_kernel_xstate_size);
233 
234 	/*
235 	 * XRSTORS requires that this bit is set in xcomp_bv, or
236 	 * it will #GP. Make sure it is replaced after the memset().
237 	 */
238 	if (static_cpu_has(X86_FEATURE_XSAVES))
239 		state->xsave.header.xcomp_bv = XCOMP_BV_COMPACTED_FORMAT;
240 
241 	if (static_cpu_has(X86_FEATURE_FXSR))
242 		fpstate_init_fxstate(&state->fxsave);
243 	else
244 		fpstate_init_fstate(&state->fsave);
245 }
246 EXPORT_SYMBOL_GPL(fpstate_init);
247 
248 int fpu__copy(struct fpu *dst_fpu, struct fpu *src_fpu)
249 {
250 	dst_fpu->counter = 0;
251 	dst_fpu->fpregs_active = 0;
252 	dst_fpu->last_cpu = -1;
253 
254 	if (!src_fpu->fpstate_active || !static_cpu_has(X86_FEATURE_FPU))
255 		return 0;
256 
257 	WARN_ON_FPU(src_fpu != &current->thread.fpu);
258 
259 	/*
260 	 * Don't let 'init optimized' areas of the XSAVE area
261 	 * leak into the child task:
262 	 */
263 	if (use_eager_fpu())
264 		memset(&dst_fpu->state.xsave, 0, fpu_kernel_xstate_size);
265 
266 	/*
267 	 * Save current FPU registers directly into the child
268 	 * FPU context, without any memory-to-memory copying.
269 	 * In lazy mode, if the FPU context isn't loaded into
270 	 * fpregs, CR0.TS will be set and do_device_not_available
271 	 * will load the FPU context.
272 	 *
273 	 * We have to do all this with preemption disabled,
274 	 * mostly because of the FNSAVE case, because in that
275 	 * case we must not allow preemption in the window
276 	 * between the FNSAVE and us marking the context lazy.
277 	 *
278 	 * It shouldn't be an issue as even FNSAVE is plenty
279 	 * fast in terms of critical section length.
280 	 */
281 	preempt_disable();
282 	if (!copy_fpregs_to_fpstate(dst_fpu)) {
283 		memcpy(&src_fpu->state, &dst_fpu->state,
284 		       fpu_kernel_xstate_size);
285 
286 		if (use_eager_fpu())
287 			copy_kernel_to_fpregs(&src_fpu->state);
288 		else
289 			fpregs_deactivate(src_fpu);
290 	}
291 	preempt_enable();
292 
293 	trace_x86_fpu_copy_src(src_fpu);
294 	trace_x86_fpu_copy_dst(dst_fpu);
295 
296 	return 0;
297 }
298 
299 /*
300  * Activate the current task's in-memory FPU context,
301  * if it has not been used before:
302  */
303 void fpu__activate_curr(struct fpu *fpu)
304 {
305 	WARN_ON_FPU(fpu != &current->thread.fpu);
306 
307 	if (!fpu->fpstate_active) {
308 		fpstate_init(&fpu->state);
309 		trace_x86_fpu_init_state(fpu);
310 
311 		trace_x86_fpu_activate_state(fpu);
312 		/* Safe to do for the current task: */
313 		fpu->fpstate_active = 1;
314 	}
315 }
316 EXPORT_SYMBOL_GPL(fpu__activate_curr);
317 
318 /*
319  * This function must be called before we read a task's fpstate.
320  *
321  * If the task has not used the FPU before then initialize its
322  * fpstate.
323  *
324  * If the task has used the FPU before then save it.
325  */
326 void fpu__activate_fpstate_read(struct fpu *fpu)
327 {
328 	/*
329 	 * If fpregs are active (in the current CPU), then
330 	 * copy them to the fpstate:
331 	 */
332 	if (fpu->fpregs_active) {
333 		fpu__save(fpu);
334 	} else {
335 		if (!fpu->fpstate_active) {
336 			fpstate_init(&fpu->state);
337 			trace_x86_fpu_init_state(fpu);
338 
339 			trace_x86_fpu_activate_state(fpu);
340 			/* Safe to do for current and for stopped child tasks: */
341 			fpu->fpstate_active = 1;
342 		}
343 	}
344 }
345 
346 /*
347  * This function must be called before we write a task's fpstate.
348  *
349  * If the task has used the FPU before then unlazy it.
350  * If the task has not used the FPU before then initialize its fpstate.
351  *
352  * After this function call, after registers in the fpstate are
353  * modified and the child task has woken up, the child task will
354  * restore the modified FPU state from the modified context. If we
355  * didn't clear its lazy status here then the lazy in-registers
356  * state pending on its former CPU could be restored, corrupting
357  * the modifications.
358  */
359 void fpu__activate_fpstate_write(struct fpu *fpu)
360 {
361 	/*
362 	 * Only stopped child tasks can be used to modify the FPU
363 	 * state in the fpstate buffer:
364 	 */
365 	WARN_ON_FPU(fpu == &current->thread.fpu);
366 
367 	if (fpu->fpstate_active) {
368 		/* Invalidate any lazy state: */
369 		fpu->last_cpu = -1;
370 	} else {
371 		fpstate_init(&fpu->state);
372 		trace_x86_fpu_init_state(fpu);
373 
374 		trace_x86_fpu_activate_state(fpu);
375 		/* Safe to do for stopped child tasks: */
376 		fpu->fpstate_active = 1;
377 	}
378 }
379 
380 /*
381  * This function must be called before we write the current
382  * task's fpstate.
383  *
384  * This call gets the current FPU register state and moves
385  * it in to the 'fpstate'.  Preemption is disabled so that
386  * no writes to the 'fpstate' can occur from context
387  * swiches.
388  *
389  * Must be followed by a fpu__current_fpstate_write_end().
390  */
391 void fpu__current_fpstate_write_begin(void)
392 {
393 	struct fpu *fpu = &current->thread.fpu;
394 
395 	/*
396 	 * Ensure that the context-switching code does not write
397 	 * over the fpstate while we are doing our update.
398 	 */
399 	preempt_disable();
400 
401 	/*
402 	 * Move the fpregs in to the fpu's 'fpstate'.
403 	 */
404 	fpu__activate_fpstate_read(fpu);
405 
406 	/*
407 	 * The caller is about to write to 'fpu'.  Ensure that no
408 	 * CPU thinks that its fpregs match the fpstate.  This
409 	 * ensures we will not be lazy and skip a XRSTOR in the
410 	 * future.
411 	 */
412 	fpu->last_cpu = -1;
413 }
414 
415 /*
416  * This function must be paired with fpu__current_fpstate_write_begin()
417  *
418  * This will ensure that the modified fpstate gets placed back in
419  * the fpregs if necessary.
420  *
421  * Note: This function may be called whether or not an _actual_
422  * write to the fpstate occurred.
423  */
424 void fpu__current_fpstate_write_end(void)
425 {
426 	struct fpu *fpu = &current->thread.fpu;
427 
428 	/*
429 	 * 'fpu' now has an updated copy of the state, but the
430 	 * registers may still be out of date.  Update them with
431 	 * an XRSTOR if they are active.
432 	 */
433 	if (fpregs_active())
434 		copy_kernel_to_fpregs(&fpu->state);
435 
436 	/*
437 	 * Our update is done and the fpregs/fpstate are in sync
438 	 * if necessary.  Context switches can happen again.
439 	 */
440 	preempt_enable();
441 }
442 
443 /*
444  * 'fpu__restore()' is called to copy FPU registers from
445  * the FPU fpstate to the live hw registers and to activate
446  * access to the hardware registers, so that FPU instructions
447  * can be used afterwards.
448  *
449  * Must be called with kernel preemption disabled (for example
450  * with local interrupts disabled, as it is in the case of
451  * do_device_not_available()).
452  */
453 void fpu__restore(struct fpu *fpu)
454 {
455 	fpu__activate_curr(fpu);
456 
457 	/* Avoid __kernel_fpu_begin() right after fpregs_activate() */
458 	kernel_fpu_disable();
459 	trace_x86_fpu_before_restore(fpu);
460 	fpregs_activate(fpu);
461 	copy_kernel_to_fpregs(&fpu->state);
462 	fpu->counter++;
463 	trace_x86_fpu_after_restore(fpu);
464 	kernel_fpu_enable();
465 }
466 EXPORT_SYMBOL_GPL(fpu__restore);
467 
468 /*
469  * Drops current FPU state: deactivates the fpregs and
470  * the fpstate. NOTE: it still leaves previous contents
471  * in the fpregs in the eager-FPU case.
472  *
473  * This function can be used in cases where we know that
474  * a state-restore is coming: either an explicit one,
475  * or a reschedule.
476  */
477 void fpu__drop(struct fpu *fpu)
478 {
479 	preempt_disable();
480 	fpu->counter = 0;
481 
482 	if (fpu->fpregs_active) {
483 		/* Ignore delayed exceptions from user space */
484 		asm volatile("1: fwait\n"
485 			     "2:\n"
486 			     _ASM_EXTABLE(1b, 2b));
487 		fpregs_deactivate(fpu);
488 	}
489 
490 	fpu->fpstate_active = 0;
491 
492 	trace_x86_fpu_dropped(fpu);
493 
494 	preempt_enable();
495 }
496 
497 /*
498  * Clear FPU registers by setting them up from
499  * the init fpstate:
500  */
501 static inline void copy_init_fpstate_to_fpregs(void)
502 {
503 	if (use_xsave())
504 		copy_kernel_to_xregs(&init_fpstate.xsave, -1);
505 	else if (static_cpu_has(X86_FEATURE_FXSR))
506 		copy_kernel_to_fxregs(&init_fpstate.fxsave);
507 	else
508 		copy_kernel_to_fregs(&init_fpstate.fsave);
509 
510 	if (boot_cpu_has(X86_FEATURE_OSPKE))
511 		copy_init_pkru_to_fpregs();
512 }
513 
514 /*
515  * Clear the FPU state back to init state.
516  *
517  * Called by sys_execve(), by the signal handler code and by various
518  * error paths.
519  */
520 void fpu__clear(struct fpu *fpu)
521 {
522 	WARN_ON_FPU(fpu != &current->thread.fpu); /* Almost certainly an anomaly */
523 
524 	if (!use_eager_fpu() || !static_cpu_has(X86_FEATURE_FPU)) {
525 		/* FPU state will be reallocated lazily at the first use. */
526 		fpu__drop(fpu);
527 	} else {
528 		if (!fpu->fpstate_active) {
529 			fpu__activate_curr(fpu);
530 			user_fpu_begin();
531 		}
532 		copy_init_fpstate_to_fpregs();
533 	}
534 }
535 
536 /*
537  * x87 math exception handling:
538  */
539 
540 int fpu__exception_code(struct fpu *fpu, int trap_nr)
541 {
542 	int err;
543 
544 	if (trap_nr == X86_TRAP_MF) {
545 		unsigned short cwd, swd;
546 		/*
547 		 * (~cwd & swd) will mask out exceptions that are not set to unmasked
548 		 * status.  0x3f is the exception bits in these regs, 0x200 is the
549 		 * C1 reg you need in case of a stack fault, 0x040 is the stack
550 		 * fault bit.  We should only be taking one exception at a time,
551 		 * so if this combination doesn't produce any single exception,
552 		 * then we have a bad program that isn't synchronizing its FPU usage
553 		 * and it will suffer the consequences since we won't be able to
554 		 * fully reproduce the context of the exception.
555 		 */
556 		if (boot_cpu_has(X86_FEATURE_FXSR)) {
557 			cwd = fpu->state.fxsave.cwd;
558 			swd = fpu->state.fxsave.swd;
559 		} else {
560 			cwd = (unsigned short)fpu->state.fsave.cwd;
561 			swd = (unsigned short)fpu->state.fsave.swd;
562 		}
563 
564 		err = swd & ~cwd;
565 	} else {
566 		/*
567 		 * The SIMD FPU exceptions are handled a little differently, as there
568 		 * is only a single status/control register.  Thus, to determine which
569 		 * unmasked exception was caught we must mask the exception mask bits
570 		 * at 0x1f80, and then use these to mask the exception bits at 0x3f.
571 		 */
572 		unsigned short mxcsr = MXCSR_DEFAULT;
573 
574 		if (boot_cpu_has(X86_FEATURE_XMM))
575 			mxcsr = fpu->state.fxsave.mxcsr;
576 
577 		err = ~(mxcsr >> 7) & mxcsr;
578 	}
579 
580 	if (err & 0x001) {	/* Invalid op */
581 		/*
582 		 * swd & 0x240 == 0x040: Stack Underflow
583 		 * swd & 0x240 == 0x240: Stack Overflow
584 		 * User must clear the SF bit (0x40) if set
585 		 */
586 		return FPE_FLTINV;
587 	} else if (err & 0x004) { /* Divide by Zero */
588 		return FPE_FLTDIV;
589 	} else if (err & 0x008) { /* Overflow */
590 		return FPE_FLTOVF;
591 	} else if (err & 0x012) { /* Denormal, Underflow */
592 		return FPE_FLTUND;
593 	} else if (err & 0x020) { /* Precision */
594 		return FPE_FLTRES;
595 	}
596 
597 	/*
598 	 * If we're using IRQ 13, or supposedly even some trap
599 	 * X86_TRAP_MF implementations, it's possible
600 	 * we get a spurious trap, which is not an error.
601 	 */
602 	return 0;
603 }
604