1 /* 2 * Copyright (C) 1994 Linus Torvalds 3 * 4 * Pentium III FXSR, SSE support 5 * General FPU state handling cleanups 6 * Gareth Hughes <gareth@valinux.com>, May 2000 7 */ 8 #include <asm/fpu/internal.h> 9 #include <asm/fpu/regset.h> 10 #include <asm/fpu/signal.h> 11 #include <asm/fpu/types.h> 12 #include <asm/traps.h> 13 14 #include <linux/hardirq.h> 15 #include <linux/pkeys.h> 16 17 #define CREATE_TRACE_POINTS 18 #include <asm/trace/fpu.h> 19 20 /* 21 * Represents the initial FPU state. It's mostly (but not completely) zeroes, 22 * depending on the FPU hardware format: 23 */ 24 union fpregs_state init_fpstate __read_mostly; 25 26 /* 27 * Track whether the kernel is using the FPU state 28 * currently. 29 * 30 * This flag is used: 31 * 32 * - by IRQ context code to potentially use the FPU 33 * if it's unused. 34 * 35 * - to debug kernel_fpu_begin()/end() correctness 36 */ 37 static DEFINE_PER_CPU(bool, in_kernel_fpu); 38 39 /* 40 * Track which context is using the FPU on the CPU: 41 */ 42 DEFINE_PER_CPU(struct fpu *, fpu_fpregs_owner_ctx); 43 44 static void kernel_fpu_disable(void) 45 { 46 WARN_ON_FPU(this_cpu_read(in_kernel_fpu)); 47 this_cpu_write(in_kernel_fpu, true); 48 } 49 50 static void kernel_fpu_enable(void) 51 { 52 WARN_ON_FPU(!this_cpu_read(in_kernel_fpu)); 53 this_cpu_write(in_kernel_fpu, false); 54 } 55 56 static bool kernel_fpu_disabled(void) 57 { 58 return this_cpu_read(in_kernel_fpu); 59 } 60 61 static bool interrupted_kernel_fpu_idle(void) 62 { 63 return !kernel_fpu_disabled(); 64 } 65 66 /* 67 * Were we in user mode (or vm86 mode) when we were 68 * interrupted? 69 * 70 * Doing kernel_fpu_begin/end() is ok if we are running 71 * in an interrupt context from user mode - we'll just 72 * save the FPU state as required. 73 */ 74 static bool interrupted_user_mode(void) 75 { 76 struct pt_regs *regs = get_irq_regs(); 77 return regs && user_mode(regs); 78 } 79 80 /* 81 * Can we use the FPU in kernel mode with the 82 * whole "kernel_fpu_begin/end()" sequence? 83 * 84 * It's always ok in process context (ie "not interrupt") 85 * but it is sometimes ok even from an irq. 86 */ 87 bool irq_fpu_usable(void) 88 { 89 return !in_interrupt() || 90 interrupted_user_mode() || 91 interrupted_kernel_fpu_idle(); 92 } 93 EXPORT_SYMBOL(irq_fpu_usable); 94 95 void __kernel_fpu_begin(void) 96 { 97 struct fpu *fpu = ¤t->thread.fpu; 98 99 WARN_ON_FPU(!irq_fpu_usable()); 100 101 kernel_fpu_disable(); 102 103 if (fpu->fpregs_active) { 104 /* 105 * Ignore return value -- we don't care if reg state 106 * is clobbered. 107 */ 108 copy_fpregs_to_fpstate(fpu); 109 } else { 110 __cpu_invalidate_fpregs_state(); 111 } 112 } 113 EXPORT_SYMBOL(__kernel_fpu_begin); 114 115 void __kernel_fpu_end(void) 116 { 117 struct fpu *fpu = ¤t->thread.fpu; 118 119 if (fpu->fpregs_active) 120 copy_kernel_to_fpregs(&fpu->state); 121 122 kernel_fpu_enable(); 123 } 124 EXPORT_SYMBOL(__kernel_fpu_end); 125 126 void kernel_fpu_begin(void) 127 { 128 preempt_disable(); 129 __kernel_fpu_begin(); 130 } 131 EXPORT_SYMBOL_GPL(kernel_fpu_begin); 132 133 void kernel_fpu_end(void) 134 { 135 __kernel_fpu_end(); 136 preempt_enable(); 137 } 138 EXPORT_SYMBOL_GPL(kernel_fpu_end); 139 140 /* 141 * Save the FPU state (mark it for reload if necessary): 142 * 143 * This only ever gets called for the current task. 144 */ 145 void fpu__save(struct fpu *fpu) 146 { 147 WARN_ON_FPU(fpu != ¤t->thread.fpu); 148 149 preempt_disable(); 150 trace_x86_fpu_before_save(fpu); 151 if (fpu->fpregs_active) { 152 if (!copy_fpregs_to_fpstate(fpu)) { 153 copy_kernel_to_fpregs(&fpu->state); 154 } 155 } 156 trace_x86_fpu_after_save(fpu); 157 preempt_enable(); 158 } 159 EXPORT_SYMBOL_GPL(fpu__save); 160 161 /* 162 * Legacy x87 fpstate state init: 163 */ 164 static inline void fpstate_init_fstate(struct fregs_state *fp) 165 { 166 fp->cwd = 0xffff037fu; 167 fp->swd = 0xffff0000u; 168 fp->twd = 0xffffffffu; 169 fp->fos = 0xffff0000u; 170 } 171 172 void fpstate_init(union fpregs_state *state) 173 { 174 if (!static_cpu_has(X86_FEATURE_FPU)) { 175 fpstate_init_soft(&state->soft); 176 return; 177 } 178 179 memset(state, 0, fpu_kernel_xstate_size); 180 181 if (static_cpu_has(X86_FEATURE_XSAVES)) 182 fpstate_init_xstate(&state->xsave); 183 if (static_cpu_has(X86_FEATURE_FXSR)) 184 fpstate_init_fxstate(&state->fxsave); 185 else 186 fpstate_init_fstate(&state->fsave); 187 } 188 EXPORT_SYMBOL_GPL(fpstate_init); 189 190 int fpu__copy(struct fpu *dst_fpu, struct fpu *src_fpu) 191 { 192 dst_fpu->fpregs_active = 0; 193 dst_fpu->last_cpu = -1; 194 195 if (!src_fpu->fpstate_active || !static_cpu_has(X86_FEATURE_FPU)) 196 return 0; 197 198 WARN_ON_FPU(src_fpu != ¤t->thread.fpu); 199 200 /* 201 * Don't let 'init optimized' areas of the XSAVE area 202 * leak into the child task: 203 */ 204 memset(&dst_fpu->state.xsave, 0, fpu_kernel_xstate_size); 205 206 /* 207 * Save current FPU registers directly into the child 208 * FPU context, without any memory-to-memory copying. 209 * In lazy mode, if the FPU context isn't loaded into 210 * fpregs, CR0.TS will be set and do_device_not_available 211 * will load the FPU context. 212 * 213 * We have to do all this with preemption disabled, 214 * mostly because of the FNSAVE case, because in that 215 * case we must not allow preemption in the window 216 * between the FNSAVE and us marking the context lazy. 217 * 218 * It shouldn't be an issue as even FNSAVE is plenty 219 * fast in terms of critical section length. 220 */ 221 preempt_disable(); 222 if (!copy_fpregs_to_fpstate(dst_fpu)) { 223 memcpy(&src_fpu->state, &dst_fpu->state, 224 fpu_kernel_xstate_size); 225 226 copy_kernel_to_fpregs(&src_fpu->state); 227 } 228 preempt_enable(); 229 230 trace_x86_fpu_copy_src(src_fpu); 231 trace_x86_fpu_copy_dst(dst_fpu); 232 233 return 0; 234 } 235 236 /* 237 * Activate the current task's in-memory FPU context, 238 * if it has not been used before: 239 */ 240 void fpu__activate_curr(struct fpu *fpu) 241 { 242 WARN_ON_FPU(fpu != ¤t->thread.fpu); 243 244 if (!fpu->fpstate_active) { 245 fpstate_init(&fpu->state); 246 trace_x86_fpu_init_state(fpu); 247 248 trace_x86_fpu_activate_state(fpu); 249 /* Safe to do for the current task: */ 250 fpu->fpstate_active = 1; 251 } 252 } 253 EXPORT_SYMBOL_GPL(fpu__activate_curr); 254 255 /* 256 * This function must be called before we read a task's fpstate. 257 * 258 * If the task has not used the FPU before then initialize its 259 * fpstate. 260 * 261 * If the task has used the FPU before then save it. 262 */ 263 void fpu__activate_fpstate_read(struct fpu *fpu) 264 { 265 /* 266 * If fpregs are active (in the current CPU), then 267 * copy them to the fpstate: 268 */ 269 if (fpu->fpregs_active) { 270 fpu__save(fpu); 271 } else { 272 if (!fpu->fpstate_active) { 273 fpstate_init(&fpu->state); 274 trace_x86_fpu_init_state(fpu); 275 276 trace_x86_fpu_activate_state(fpu); 277 /* Safe to do for current and for stopped child tasks: */ 278 fpu->fpstate_active = 1; 279 } 280 } 281 } 282 283 /* 284 * This function must be called before we write a task's fpstate. 285 * 286 * If the task has used the FPU before then unlazy it. 287 * If the task has not used the FPU before then initialize its fpstate. 288 * 289 * After this function call, after registers in the fpstate are 290 * modified and the child task has woken up, the child task will 291 * restore the modified FPU state from the modified context. If we 292 * didn't clear its lazy status here then the lazy in-registers 293 * state pending on its former CPU could be restored, corrupting 294 * the modifications. 295 */ 296 void fpu__activate_fpstate_write(struct fpu *fpu) 297 { 298 /* 299 * Only stopped child tasks can be used to modify the FPU 300 * state in the fpstate buffer: 301 */ 302 WARN_ON_FPU(fpu == ¤t->thread.fpu); 303 304 if (fpu->fpstate_active) { 305 /* Invalidate any lazy state: */ 306 __fpu_invalidate_fpregs_state(fpu); 307 } else { 308 fpstate_init(&fpu->state); 309 trace_x86_fpu_init_state(fpu); 310 311 trace_x86_fpu_activate_state(fpu); 312 /* Safe to do for stopped child tasks: */ 313 fpu->fpstate_active = 1; 314 } 315 } 316 317 /* 318 * This function must be called before we write the current 319 * task's fpstate. 320 * 321 * This call gets the current FPU register state and moves 322 * it in to the 'fpstate'. Preemption is disabled so that 323 * no writes to the 'fpstate' can occur from context 324 * swiches. 325 * 326 * Must be followed by a fpu__current_fpstate_write_end(). 327 */ 328 void fpu__current_fpstate_write_begin(void) 329 { 330 struct fpu *fpu = ¤t->thread.fpu; 331 332 /* 333 * Ensure that the context-switching code does not write 334 * over the fpstate while we are doing our update. 335 */ 336 preempt_disable(); 337 338 /* 339 * Move the fpregs in to the fpu's 'fpstate'. 340 */ 341 fpu__activate_fpstate_read(fpu); 342 343 /* 344 * The caller is about to write to 'fpu'. Ensure that no 345 * CPU thinks that its fpregs match the fpstate. This 346 * ensures we will not be lazy and skip a XRSTOR in the 347 * future. 348 */ 349 __fpu_invalidate_fpregs_state(fpu); 350 } 351 352 /* 353 * This function must be paired with fpu__current_fpstate_write_begin() 354 * 355 * This will ensure that the modified fpstate gets placed back in 356 * the fpregs if necessary. 357 * 358 * Note: This function may be called whether or not an _actual_ 359 * write to the fpstate occurred. 360 */ 361 void fpu__current_fpstate_write_end(void) 362 { 363 struct fpu *fpu = ¤t->thread.fpu; 364 365 /* 366 * 'fpu' now has an updated copy of the state, but the 367 * registers may still be out of date. Update them with 368 * an XRSTOR if they are active. 369 */ 370 if (fpregs_active()) 371 copy_kernel_to_fpregs(&fpu->state); 372 373 /* 374 * Our update is done and the fpregs/fpstate are in sync 375 * if necessary. Context switches can happen again. 376 */ 377 preempt_enable(); 378 } 379 380 /* 381 * 'fpu__restore()' is called to copy FPU registers from 382 * the FPU fpstate to the live hw registers and to activate 383 * access to the hardware registers, so that FPU instructions 384 * can be used afterwards. 385 * 386 * Must be called with kernel preemption disabled (for example 387 * with local interrupts disabled, as it is in the case of 388 * do_device_not_available()). 389 */ 390 void fpu__restore(struct fpu *fpu) 391 { 392 fpu__activate_curr(fpu); 393 394 /* Avoid __kernel_fpu_begin() right after fpregs_activate() */ 395 kernel_fpu_disable(); 396 trace_x86_fpu_before_restore(fpu); 397 fpregs_activate(fpu); 398 copy_kernel_to_fpregs(&fpu->state); 399 trace_x86_fpu_after_restore(fpu); 400 kernel_fpu_enable(); 401 } 402 EXPORT_SYMBOL_GPL(fpu__restore); 403 404 /* 405 * Drops current FPU state: deactivates the fpregs and 406 * the fpstate. NOTE: it still leaves previous contents 407 * in the fpregs in the eager-FPU case. 408 * 409 * This function can be used in cases where we know that 410 * a state-restore is coming: either an explicit one, 411 * or a reschedule. 412 */ 413 void fpu__drop(struct fpu *fpu) 414 { 415 preempt_disable(); 416 417 if (fpu->fpregs_active) { 418 /* Ignore delayed exceptions from user space */ 419 asm volatile("1: fwait\n" 420 "2:\n" 421 _ASM_EXTABLE(1b, 2b)); 422 fpregs_deactivate(fpu); 423 } 424 425 fpu->fpstate_active = 0; 426 427 trace_x86_fpu_dropped(fpu); 428 429 preempt_enable(); 430 } 431 432 /* 433 * Clear FPU registers by setting them up from 434 * the init fpstate: 435 */ 436 static inline void copy_init_fpstate_to_fpregs(void) 437 { 438 if (use_xsave()) 439 copy_kernel_to_xregs(&init_fpstate.xsave, -1); 440 else if (static_cpu_has(X86_FEATURE_FXSR)) 441 copy_kernel_to_fxregs(&init_fpstate.fxsave); 442 else 443 copy_kernel_to_fregs(&init_fpstate.fsave); 444 445 if (boot_cpu_has(X86_FEATURE_OSPKE)) 446 copy_init_pkru_to_fpregs(); 447 } 448 449 /* 450 * Clear the FPU state back to init state. 451 * 452 * Called by sys_execve(), by the signal handler code and by various 453 * error paths. 454 */ 455 void fpu__clear(struct fpu *fpu) 456 { 457 WARN_ON_FPU(fpu != ¤t->thread.fpu); /* Almost certainly an anomaly */ 458 459 fpu__drop(fpu); 460 461 /* 462 * Make sure fpstate is cleared and initialized. 463 */ 464 if (static_cpu_has(X86_FEATURE_FPU)) { 465 fpu__activate_curr(fpu); 466 user_fpu_begin(); 467 copy_init_fpstate_to_fpregs(); 468 } 469 } 470 471 /* 472 * x87 math exception handling: 473 */ 474 475 int fpu__exception_code(struct fpu *fpu, int trap_nr) 476 { 477 int err; 478 479 if (trap_nr == X86_TRAP_MF) { 480 unsigned short cwd, swd; 481 /* 482 * (~cwd & swd) will mask out exceptions that are not set to unmasked 483 * status. 0x3f is the exception bits in these regs, 0x200 is the 484 * C1 reg you need in case of a stack fault, 0x040 is the stack 485 * fault bit. We should only be taking one exception at a time, 486 * so if this combination doesn't produce any single exception, 487 * then we have a bad program that isn't synchronizing its FPU usage 488 * and it will suffer the consequences since we won't be able to 489 * fully reproduce the context of the exception. 490 */ 491 if (boot_cpu_has(X86_FEATURE_FXSR)) { 492 cwd = fpu->state.fxsave.cwd; 493 swd = fpu->state.fxsave.swd; 494 } else { 495 cwd = (unsigned short)fpu->state.fsave.cwd; 496 swd = (unsigned short)fpu->state.fsave.swd; 497 } 498 499 err = swd & ~cwd; 500 } else { 501 /* 502 * The SIMD FPU exceptions are handled a little differently, as there 503 * is only a single status/control register. Thus, to determine which 504 * unmasked exception was caught we must mask the exception mask bits 505 * at 0x1f80, and then use these to mask the exception bits at 0x3f. 506 */ 507 unsigned short mxcsr = MXCSR_DEFAULT; 508 509 if (boot_cpu_has(X86_FEATURE_XMM)) 510 mxcsr = fpu->state.fxsave.mxcsr; 511 512 err = ~(mxcsr >> 7) & mxcsr; 513 } 514 515 if (err & 0x001) { /* Invalid op */ 516 /* 517 * swd & 0x240 == 0x040: Stack Underflow 518 * swd & 0x240 == 0x240: Stack Overflow 519 * User must clear the SF bit (0x40) if set 520 */ 521 return FPE_FLTINV; 522 } else if (err & 0x004) { /* Divide by Zero */ 523 return FPE_FLTDIV; 524 } else if (err & 0x008) { /* Overflow */ 525 return FPE_FLTOVF; 526 } else if (err & 0x012) { /* Denormal, Underflow */ 527 return FPE_FLTUND; 528 } else if (err & 0x020) { /* Precision */ 529 return FPE_FLTRES; 530 } 531 532 /* 533 * If we're using IRQ 13, or supposedly even some trap 534 * X86_TRAP_MF implementations, it's possible 535 * we get a spurious trap, which is not an error. 536 */ 537 return 0; 538 } 539