xref: /openbmc/linux/arch/x86/kernel/fpu/core.c (revision 4e95bc26)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  Copyright (C) 1994 Linus Torvalds
4  *
5  *  Pentium III FXSR, SSE support
6  *  General FPU state handling cleanups
7  *	Gareth Hughes <gareth@valinux.com>, May 2000
8  */
9 #include <asm/fpu/internal.h>
10 #include <asm/fpu/regset.h>
11 #include <asm/fpu/signal.h>
12 #include <asm/fpu/types.h>
13 #include <asm/traps.h>
14 #include <asm/irq_regs.h>
15 
16 #include <linux/hardirq.h>
17 #include <linux/pkeys.h>
18 
19 #define CREATE_TRACE_POINTS
20 #include <asm/trace/fpu.h>
21 
22 /*
23  * Represents the initial FPU state. It's mostly (but not completely) zeroes,
24  * depending on the FPU hardware format:
25  */
26 union fpregs_state init_fpstate __read_mostly;
27 
28 /*
29  * Track whether the kernel is using the FPU state
30  * currently.
31  *
32  * This flag is used:
33  *
34  *   - by IRQ context code to potentially use the FPU
35  *     if it's unused.
36  *
37  *   - to debug kernel_fpu_begin()/end() correctness
38  */
39 static DEFINE_PER_CPU(bool, in_kernel_fpu);
40 
41 /*
42  * Track which context is using the FPU on the CPU:
43  */
44 DEFINE_PER_CPU(struct fpu *, fpu_fpregs_owner_ctx);
45 
46 static void kernel_fpu_disable(void)
47 {
48 	WARN_ON_FPU(this_cpu_read(in_kernel_fpu));
49 	this_cpu_write(in_kernel_fpu, true);
50 }
51 
52 static void kernel_fpu_enable(void)
53 {
54 	WARN_ON_FPU(!this_cpu_read(in_kernel_fpu));
55 	this_cpu_write(in_kernel_fpu, false);
56 }
57 
58 static bool kernel_fpu_disabled(void)
59 {
60 	return this_cpu_read(in_kernel_fpu);
61 }
62 
63 static bool interrupted_kernel_fpu_idle(void)
64 {
65 	return !kernel_fpu_disabled();
66 }
67 
68 /*
69  * Were we in user mode (or vm86 mode) when we were
70  * interrupted?
71  *
72  * Doing kernel_fpu_begin/end() is ok if we are running
73  * in an interrupt context from user mode - we'll just
74  * save the FPU state as required.
75  */
76 static bool interrupted_user_mode(void)
77 {
78 	struct pt_regs *regs = get_irq_regs();
79 	return regs && user_mode(regs);
80 }
81 
82 /*
83  * Can we use the FPU in kernel mode with the
84  * whole "kernel_fpu_begin/end()" sequence?
85  *
86  * It's always ok in process context (ie "not interrupt")
87  * but it is sometimes ok even from an irq.
88  */
89 bool irq_fpu_usable(void)
90 {
91 	return !in_interrupt() ||
92 		interrupted_user_mode() ||
93 		interrupted_kernel_fpu_idle();
94 }
95 EXPORT_SYMBOL(irq_fpu_usable);
96 
97 static void __kernel_fpu_begin(void)
98 {
99 	struct fpu *fpu = &current->thread.fpu;
100 
101 	WARN_ON_FPU(!irq_fpu_usable());
102 
103 	kernel_fpu_disable();
104 
105 	if (!(current->flags & PF_KTHREAD)) {
106 		if (!test_thread_flag(TIF_NEED_FPU_LOAD)) {
107 			set_thread_flag(TIF_NEED_FPU_LOAD);
108 			/*
109 			 * Ignore return value -- we don't care if reg state
110 			 * is clobbered.
111 			 */
112 			copy_fpregs_to_fpstate(fpu);
113 		}
114 	}
115 	__cpu_invalidate_fpregs_state();
116 }
117 
118 static void __kernel_fpu_end(void)
119 {
120 	kernel_fpu_enable();
121 }
122 
123 void kernel_fpu_begin(void)
124 {
125 	preempt_disable();
126 	__kernel_fpu_begin();
127 }
128 EXPORT_SYMBOL_GPL(kernel_fpu_begin);
129 
130 void kernel_fpu_end(void)
131 {
132 	__kernel_fpu_end();
133 	preempt_enable();
134 }
135 EXPORT_SYMBOL_GPL(kernel_fpu_end);
136 
137 /*
138  * Save the FPU state (mark it for reload if necessary):
139  *
140  * This only ever gets called for the current task.
141  */
142 void fpu__save(struct fpu *fpu)
143 {
144 	WARN_ON_FPU(fpu != &current->thread.fpu);
145 
146 	fpregs_lock();
147 	trace_x86_fpu_before_save(fpu);
148 
149 	if (!test_thread_flag(TIF_NEED_FPU_LOAD)) {
150 		if (!copy_fpregs_to_fpstate(fpu)) {
151 			copy_kernel_to_fpregs(&fpu->state);
152 		}
153 	}
154 
155 	trace_x86_fpu_after_save(fpu);
156 	fpregs_unlock();
157 }
158 EXPORT_SYMBOL_GPL(fpu__save);
159 
160 /*
161  * Legacy x87 fpstate state init:
162  */
163 static inline void fpstate_init_fstate(struct fregs_state *fp)
164 {
165 	fp->cwd = 0xffff037fu;
166 	fp->swd = 0xffff0000u;
167 	fp->twd = 0xffffffffu;
168 	fp->fos = 0xffff0000u;
169 }
170 
171 void fpstate_init(union fpregs_state *state)
172 {
173 	if (!static_cpu_has(X86_FEATURE_FPU)) {
174 		fpstate_init_soft(&state->soft);
175 		return;
176 	}
177 
178 	memset(state, 0, fpu_kernel_xstate_size);
179 
180 	if (static_cpu_has(X86_FEATURE_XSAVES))
181 		fpstate_init_xstate(&state->xsave);
182 	if (static_cpu_has(X86_FEATURE_FXSR))
183 		fpstate_init_fxstate(&state->fxsave);
184 	else
185 		fpstate_init_fstate(&state->fsave);
186 }
187 EXPORT_SYMBOL_GPL(fpstate_init);
188 
189 int fpu__copy(struct task_struct *dst, struct task_struct *src)
190 {
191 	struct fpu *dst_fpu = &dst->thread.fpu;
192 	struct fpu *src_fpu = &src->thread.fpu;
193 
194 	dst_fpu->last_cpu = -1;
195 
196 	if (!static_cpu_has(X86_FEATURE_FPU))
197 		return 0;
198 
199 	WARN_ON_FPU(src_fpu != &current->thread.fpu);
200 
201 	/*
202 	 * Don't let 'init optimized' areas of the XSAVE area
203 	 * leak into the child task:
204 	 */
205 	memset(&dst_fpu->state.xsave, 0, fpu_kernel_xstate_size);
206 
207 	/*
208 	 * If the FPU registers are not current just memcpy() the state.
209 	 * Otherwise save current FPU registers directly into the child's FPU
210 	 * context, without any memory-to-memory copying.
211 	 *
212 	 * ( The function 'fails' in the FNSAVE case, which destroys
213 	 *   register contents so we have to load them back. )
214 	 */
215 	fpregs_lock();
216 	if (test_thread_flag(TIF_NEED_FPU_LOAD))
217 		memcpy(&dst_fpu->state, &src_fpu->state, fpu_kernel_xstate_size);
218 
219 	else if (!copy_fpregs_to_fpstate(dst_fpu))
220 		copy_kernel_to_fpregs(&dst_fpu->state);
221 
222 	fpregs_unlock();
223 
224 	set_tsk_thread_flag(dst, TIF_NEED_FPU_LOAD);
225 
226 	trace_x86_fpu_copy_src(src_fpu);
227 	trace_x86_fpu_copy_dst(dst_fpu);
228 
229 	return 0;
230 }
231 
232 /*
233  * Activate the current task's in-memory FPU context,
234  * if it has not been used before:
235  */
236 static void fpu__initialize(struct fpu *fpu)
237 {
238 	WARN_ON_FPU(fpu != &current->thread.fpu);
239 
240 	set_thread_flag(TIF_NEED_FPU_LOAD);
241 	fpstate_init(&fpu->state);
242 	trace_x86_fpu_init_state(fpu);
243 }
244 
245 /*
246  * This function must be called before we read a task's fpstate.
247  *
248  * There's two cases where this gets called:
249  *
250  * - for the current task (when coredumping), in which case we have
251  *   to save the latest FPU registers into the fpstate,
252  *
253  * - or it's called for stopped tasks (ptrace), in which case the
254  *   registers were already saved by the context-switch code when
255  *   the task scheduled out.
256  *
257  * If the task has used the FPU before then save it.
258  */
259 void fpu__prepare_read(struct fpu *fpu)
260 {
261 	if (fpu == &current->thread.fpu)
262 		fpu__save(fpu);
263 }
264 
265 /*
266  * This function must be called before we write a task's fpstate.
267  *
268  * Invalidate any cached FPU registers.
269  *
270  * After this function call, after registers in the fpstate are
271  * modified and the child task has woken up, the child task will
272  * restore the modified FPU state from the modified context. If we
273  * didn't clear its cached status here then the cached in-registers
274  * state pending on its former CPU could be restored, corrupting
275  * the modifications.
276  */
277 void fpu__prepare_write(struct fpu *fpu)
278 {
279 	/*
280 	 * Only stopped child tasks can be used to modify the FPU
281 	 * state in the fpstate buffer:
282 	 */
283 	WARN_ON_FPU(fpu == &current->thread.fpu);
284 
285 	/* Invalidate any cached state: */
286 	__fpu_invalidate_fpregs_state(fpu);
287 }
288 
289 /*
290  * Drops current FPU state: deactivates the fpregs and
291  * the fpstate. NOTE: it still leaves previous contents
292  * in the fpregs in the eager-FPU case.
293  *
294  * This function can be used in cases where we know that
295  * a state-restore is coming: either an explicit one,
296  * or a reschedule.
297  */
298 void fpu__drop(struct fpu *fpu)
299 {
300 	preempt_disable();
301 
302 	if (fpu == &current->thread.fpu) {
303 		/* Ignore delayed exceptions from user space */
304 		asm volatile("1: fwait\n"
305 			     "2:\n"
306 			     _ASM_EXTABLE(1b, 2b));
307 		fpregs_deactivate(fpu);
308 	}
309 
310 	trace_x86_fpu_dropped(fpu);
311 
312 	preempt_enable();
313 }
314 
315 /*
316  * Clear FPU registers by setting them up from
317  * the init fpstate:
318  */
319 static inline void copy_init_fpstate_to_fpregs(void)
320 {
321 	fpregs_lock();
322 
323 	if (use_xsave())
324 		copy_kernel_to_xregs(&init_fpstate.xsave, -1);
325 	else if (static_cpu_has(X86_FEATURE_FXSR))
326 		copy_kernel_to_fxregs(&init_fpstate.fxsave);
327 	else
328 		copy_kernel_to_fregs(&init_fpstate.fsave);
329 
330 	if (boot_cpu_has(X86_FEATURE_OSPKE))
331 		copy_init_pkru_to_fpregs();
332 
333 	fpregs_mark_activate();
334 	fpregs_unlock();
335 }
336 
337 /*
338  * Clear the FPU state back to init state.
339  *
340  * Called by sys_execve(), by the signal handler code and by various
341  * error paths.
342  */
343 void fpu__clear(struct fpu *fpu)
344 {
345 	WARN_ON_FPU(fpu != &current->thread.fpu); /* Almost certainly an anomaly */
346 
347 	fpu__drop(fpu);
348 
349 	/*
350 	 * Make sure fpstate is cleared and initialized.
351 	 */
352 	fpu__initialize(fpu);
353 	if (static_cpu_has(X86_FEATURE_FPU))
354 		copy_init_fpstate_to_fpregs();
355 }
356 
357 /*
358  * Load FPU context before returning to userspace.
359  */
360 void switch_fpu_return(void)
361 {
362 	if (!static_cpu_has(X86_FEATURE_FPU))
363 		return;
364 
365 	__fpregs_load_activate();
366 }
367 EXPORT_SYMBOL_GPL(switch_fpu_return);
368 
369 #ifdef CONFIG_X86_DEBUG_FPU
370 /*
371  * If current FPU state according to its tracking (loaded FPU context on this
372  * CPU) is not valid then we must have TIF_NEED_FPU_LOAD set so the context is
373  * loaded on return to userland.
374  */
375 void fpregs_assert_state_consistent(void)
376 {
377 	struct fpu *fpu = &current->thread.fpu;
378 
379 	if (test_thread_flag(TIF_NEED_FPU_LOAD))
380 		return;
381 
382 	WARN_ON_FPU(!fpregs_state_valid(fpu, smp_processor_id()));
383 }
384 EXPORT_SYMBOL_GPL(fpregs_assert_state_consistent);
385 #endif
386 
387 void fpregs_mark_activate(void)
388 {
389 	struct fpu *fpu = &current->thread.fpu;
390 
391 	fpregs_activate(fpu);
392 	fpu->last_cpu = smp_processor_id();
393 	clear_thread_flag(TIF_NEED_FPU_LOAD);
394 }
395 EXPORT_SYMBOL_GPL(fpregs_mark_activate);
396 
397 /*
398  * x87 math exception handling:
399  */
400 
401 int fpu__exception_code(struct fpu *fpu, int trap_nr)
402 {
403 	int err;
404 
405 	if (trap_nr == X86_TRAP_MF) {
406 		unsigned short cwd, swd;
407 		/*
408 		 * (~cwd & swd) will mask out exceptions that are not set to unmasked
409 		 * status.  0x3f is the exception bits in these regs, 0x200 is the
410 		 * C1 reg you need in case of a stack fault, 0x040 is the stack
411 		 * fault bit.  We should only be taking one exception at a time,
412 		 * so if this combination doesn't produce any single exception,
413 		 * then we have a bad program that isn't synchronizing its FPU usage
414 		 * and it will suffer the consequences since we won't be able to
415 		 * fully reproduce the context of the exception.
416 		 */
417 		if (boot_cpu_has(X86_FEATURE_FXSR)) {
418 			cwd = fpu->state.fxsave.cwd;
419 			swd = fpu->state.fxsave.swd;
420 		} else {
421 			cwd = (unsigned short)fpu->state.fsave.cwd;
422 			swd = (unsigned short)fpu->state.fsave.swd;
423 		}
424 
425 		err = swd & ~cwd;
426 	} else {
427 		/*
428 		 * The SIMD FPU exceptions are handled a little differently, as there
429 		 * is only a single status/control register.  Thus, to determine which
430 		 * unmasked exception was caught we must mask the exception mask bits
431 		 * at 0x1f80, and then use these to mask the exception bits at 0x3f.
432 		 */
433 		unsigned short mxcsr = MXCSR_DEFAULT;
434 
435 		if (boot_cpu_has(X86_FEATURE_XMM))
436 			mxcsr = fpu->state.fxsave.mxcsr;
437 
438 		err = ~(mxcsr >> 7) & mxcsr;
439 	}
440 
441 	if (err & 0x001) {	/* Invalid op */
442 		/*
443 		 * swd & 0x240 == 0x040: Stack Underflow
444 		 * swd & 0x240 == 0x240: Stack Overflow
445 		 * User must clear the SF bit (0x40) if set
446 		 */
447 		return FPE_FLTINV;
448 	} else if (err & 0x004) { /* Divide by Zero */
449 		return FPE_FLTDIV;
450 	} else if (err & 0x008) { /* Overflow */
451 		return FPE_FLTOVF;
452 	} else if (err & 0x012) { /* Denormal, Underflow */
453 		return FPE_FLTUND;
454 	} else if (err & 0x020) { /* Precision */
455 		return FPE_FLTRES;
456 	}
457 
458 	/*
459 	 * If we're using IRQ 13, or supposedly even some trap
460 	 * X86_TRAP_MF implementations, it's possible
461 	 * we get a spurious trap, which is not an error.
462 	 */
463 	return 0;
464 }
465