xref: /openbmc/linux/arch/x86/kernel/fpu/core.c (revision 4a075bd4)
1 /*
2  *  Copyright (C) 1994 Linus Torvalds
3  *
4  *  Pentium III FXSR, SSE support
5  *  General FPU state handling cleanups
6  *	Gareth Hughes <gareth@valinux.com>, May 2000
7  */
8 #include <asm/fpu/internal.h>
9 #include <asm/fpu/regset.h>
10 #include <asm/fpu/signal.h>
11 #include <asm/fpu/types.h>
12 #include <asm/traps.h>
13 #include <asm/irq_regs.h>
14 
15 #include <linux/hardirq.h>
16 #include <linux/pkeys.h>
17 
18 #define CREATE_TRACE_POINTS
19 #include <asm/trace/fpu.h>
20 
21 /*
22  * Represents the initial FPU state. It's mostly (but not completely) zeroes,
23  * depending on the FPU hardware format:
24  */
25 union fpregs_state init_fpstate __read_mostly;
26 
27 /*
28  * Track whether the kernel is using the FPU state
29  * currently.
30  *
31  * This flag is used:
32  *
33  *   - by IRQ context code to potentially use the FPU
34  *     if it's unused.
35  *
36  *   - to debug kernel_fpu_begin()/end() correctness
37  */
38 static DEFINE_PER_CPU(bool, in_kernel_fpu);
39 
40 /*
41  * Track which context is using the FPU on the CPU:
42  */
43 DEFINE_PER_CPU(struct fpu *, fpu_fpregs_owner_ctx);
44 
45 static void kernel_fpu_disable(void)
46 {
47 	WARN_ON_FPU(this_cpu_read(in_kernel_fpu));
48 	this_cpu_write(in_kernel_fpu, true);
49 }
50 
51 static void kernel_fpu_enable(void)
52 {
53 	WARN_ON_FPU(!this_cpu_read(in_kernel_fpu));
54 	this_cpu_write(in_kernel_fpu, false);
55 }
56 
57 static bool kernel_fpu_disabled(void)
58 {
59 	return this_cpu_read(in_kernel_fpu);
60 }
61 
62 static bool interrupted_kernel_fpu_idle(void)
63 {
64 	return !kernel_fpu_disabled();
65 }
66 
67 /*
68  * Were we in user mode (or vm86 mode) when we were
69  * interrupted?
70  *
71  * Doing kernel_fpu_begin/end() is ok if we are running
72  * in an interrupt context from user mode - we'll just
73  * save the FPU state as required.
74  */
75 static bool interrupted_user_mode(void)
76 {
77 	struct pt_regs *regs = get_irq_regs();
78 	return regs && user_mode(regs);
79 }
80 
81 /*
82  * Can we use the FPU in kernel mode with the
83  * whole "kernel_fpu_begin/end()" sequence?
84  *
85  * It's always ok in process context (ie "not interrupt")
86  * but it is sometimes ok even from an irq.
87  */
88 bool irq_fpu_usable(void)
89 {
90 	return !in_interrupt() ||
91 		interrupted_user_mode() ||
92 		interrupted_kernel_fpu_idle();
93 }
94 EXPORT_SYMBOL(irq_fpu_usable);
95 
96 static void __kernel_fpu_begin(void)
97 {
98 	struct fpu *fpu = &current->thread.fpu;
99 
100 	WARN_ON_FPU(!irq_fpu_usable());
101 
102 	kernel_fpu_disable();
103 
104 	if (current->mm) {
105 		if (!test_thread_flag(TIF_NEED_FPU_LOAD)) {
106 			set_thread_flag(TIF_NEED_FPU_LOAD);
107 			/*
108 			 * Ignore return value -- we don't care if reg state
109 			 * is clobbered.
110 			 */
111 			copy_fpregs_to_fpstate(fpu);
112 		}
113 	}
114 	__cpu_invalidate_fpregs_state();
115 }
116 
117 static void __kernel_fpu_end(void)
118 {
119 	kernel_fpu_enable();
120 }
121 
122 void kernel_fpu_begin(void)
123 {
124 	preempt_disable();
125 	__kernel_fpu_begin();
126 }
127 EXPORT_SYMBOL_GPL(kernel_fpu_begin);
128 
129 void kernel_fpu_end(void)
130 {
131 	__kernel_fpu_end();
132 	preempt_enable();
133 }
134 EXPORT_SYMBOL_GPL(kernel_fpu_end);
135 
136 /*
137  * Save the FPU state (mark it for reload if necessary):
138  *
139  * This only ever gets called for the current task.
140  */
141 void fpu__save(struct fpu *fpu)
142 {
143 	WARN_ON_FPU(fpu != &current->thread.fpu);
144 
145 	fpregs_lock();
146 	trace_x86_fpu_before_save(fpu);
147 
148 	if (!test_thread_flag(TIF_NEED_FPU_LOAD)) {
149 		if (!copy_fpregs_to_fpstate(fpu)) {
150 			copy_kernel_to_fpregs(&fpu->state);
151 		}
152 	}
153 
154 	trace_x86_fpu_after_save(fpu);
155 	fpregs_unlock();
156 }
157 EXPORT_SYMBOL_GPL(fpu__save);
158 
159 /*
160  * Legacy x87 fpstate state init:
161  */
162 static inline void fpstate_init_fstate(struct fregs_state *fp)
163 {
164 	fp->cwd = 0xffff037fu;
165 	fp->swd = 0xffff0000u;
166 	fp->twd = 0xffffffffu;
167 	fp->fos = 0xffff0000u;
168 }
169 
170 void fpstate_init(union fpregs_state *state)
171 {
172 	if (!static_cpu_has(X86_FEATURE_FPU)) {
173 		fpstate_init_soft(&state->soft);
174 		return;
175 	}
176 
177 	memset(state, 0, fpu_kernel_xstate_size);
178 
179 	if (static_cpu_has(X86_FEATURE_XSAVES))
180 		fpstate_init_xstate(&state->xsave);
181 	if (static_cpu_has(X86_FEATURE_FXSR))
182 		fpstate_init_fxstate(&state->fxsave);
183 	else
184 		fpstate_init_fstate(&state->fsave);
185 }
186 EXPORT_SYMBOL_GPL(fpstate_init);
187 
188 int fpu__copy(struct task_struct *dst, struct task_struct *src)
189 {
190 	struct fpu *dst_fpu = &dst->thread.fpu;
191 	struct fpu *src_fpu = &src->thread.fpu;
192 
193 	dst_fpu->last_cpu = -1;
194 
195 	if (!static_cpu_has(X86_FEATURE_FPU))
196 		return 0;
197 
198 	WARN_ON_FPU(src_fpu != &current->thread.fpu);
199 
200 	/*
201 	 * Don't let 'init optimized' areas of the XSAVE area
202 	 * leak into the child task:
203 	 */
204 	memset(&dst_fpu->state.xsave, 0, fpu_kernel_xstate_size);
205 
206 	/*
207 	 * If the FPU registers are not current just memcpy() the state.
208 	 * Otherwise save current FPU registers directly into the child's FPU
209 	 * context, without any memory-to-memory copying.
210 	 *
211 	 * ( The function 'fails' in the FNSAVE case, which destroys
212 	 *   register contents so we have to load them back. )
213 	 */
214 	fpregs_lock();
215 	if (test_thread_flag(TIF_NEED_FPU_LOAD))
216 		memcpy(&dst_fpu->state, &src_fpu->state, fpu_kernel_xstate_size);
217 
218 	else if (!copy_fpregs_to_fpstate(dst_fpu))
219 		copy_kernel_to_fpregs(&dst_fpu->state);
220 
221 	fpregs_unlock();
222 
223 	set_tsk_thread_flag(dst, TIF_NEED_FPU_LOAD);
224 
225 	trace_x86_fpu_copy_src(src_fpu);
226 	trace_x86_fpu_copy_dst(dst_fpu);
227 
228 	return 0;
229 }
230 
231 /*
232  * Activate the current task's in-memory FPU context,
233  * if it has not been used before:
234  */
235 static void fpu__initialize(struct fpu *fpu)
236 {
237 	WARN_ON_FPU(fpu != &current->thread.fpu);
238 
239 	set_thread_flag(TIF_NEED_FPU_LOAD);
240 	fpstate_init(&fpu->state);
241 	trace_x86_fpu_init_state(fpu);
242 }
243 
244 /*
245  * This function must be called before we read a task's fpstate.
246  *
247  * There's two cases where this gets called:
248  *
249  * - for the current task (when coredumping), in which case we have
250  *   to save the latest FPU registers into the fpstate,
251  *
252  * - or it's called for stopped tasks (ptrace), in which case the
253  *   registers were already saved by the context-switch code when
254  *   the task scheduled out.
255  *
256  * If the task has used the FPU before then save it.
257  */
258 void fpu__prepare_read(struct fpu *fpu)
259 {
260 	if (fpu == &current->thread.fpu)
261 		fpu__save(fpu);
262 }
263 
264 /*
265  * This function must be called before we write a task's fpstate.
266  *
267  * Invalidate any cached FPU registers.
268  *
269  * After this function call, after registers in the fpstate are
270  * modified and the child task has woken up, the child task will
271  * restore the modified FPU state from the modified context. If we
272  * didn't clear its cached status here then the cached in-registers
273  * state pending on its former CPU could be restored, corrupting
274  * the modifications.
275  */
276 void fpu__prepare_write(struct fpu *fpu)
277 {
278 	/*
279 	 * Only stopped child tasks can be used to modify the FPU
280 	 * state in the fpstate buffer:
281 	 */
282 	WARN_ON_FPU(fpu == &current->thread.fpu);
283 
284 	/* Invalidate any cached state: */
285 	__fpu_invalidate_fpregs_state(fpu);
286 }
287 
288 /*
289  * Drops current FPU state: deactivates the fpregs and
290  * the fpstate. NOTE: it still leaves previous contents
291  * in the fpregs in the eager-FPU case.
292  *
293  * This function can be used in cases where we know that
294  * a state-restore is coming: either an explicit one,
295  * or a reschedule.
296  */
297 void fpu__drop(struct fpu *fpu)
298 {
299 	preempt_disable();
300 
301 	if (fpu == &current->thread.fpu) {
302 		/* Ignore delayed exceptions from user space */
303 		asm volatile("1: fwait\n"
304 			     "2:\n"
305 			     _ASM_EXTABLE(1b, 2b));
306 		fpregs_deactivate(fpu);
307 	}
308 
309 	trace_x86_fpu_dropped(fpu);
310 
311 	preempt_enable();
312 }
313 
314 /*
315  * Clear FPU registers by setting them up from
316  * the init fpstate:
317  */
318 static inline void copy_init_fpstate_to_fpregs(void)
319 {
320 	fpregs_lock();
321 
322 	if (use_xsave())
323 		copy_kernel_to_xregs(&init_fpstate.xsave, -1);
324 	else if (static_cpu_has(X86_FEATURE_FXSR))
325 		copy_kernel_to_fxregs(&init_fpstate.fxsave);
326 	else
327 		copy_kernel_to_fregs(&init_fpstate.fsave);
328 
329 	if (boot_cpu_has(X86_FEATURE_OSPKE))
330 		copy_init_pkru_to_fpregs();
331 
332 	fpregs_mark_activate();
333 	fpregs_unlock();
334 }
335 
336 /*
337  * Clear the FPU state back to init state.
338  *
339  * Called by sys_execve(), by the signal handler code and by various
340  * error paths.
341  */
342 void fpu__clear(struct fpu *fpu)
343 {
344 	WARN_ON_FPU(fpu != &current->thread.fpu); /* Almost certainly an anomaly */
345 
346 	fpu__drop(fpu);
347 
348 	/*
349 	 * Make sure fpstate is cleared and initialized.
350 	 */
351 	fpu__initialize(fpu);
352 	if (static_cpu_has(X86_FEATURE_FPU))
353 		copy_init_fpstate_to_fpregs();
354 }
355 
356 /*
357  * Load FPU context before returning to userspace.
358  */
359 void switch_fpu_return(void)
360 {
361 	if (!static_cpu_has(X86_FEATURE_FPU))
362 		return;
363 
364 	__fpregs_load_activate();
365 }
366 EXPORT_SYMBOL_GPL(switch_fpu_return);
367 
368 #ifdef CONFIG_X86_DEBUG_FPU
369 /*
370  * If current FPU state according to its tracking (loaded FPU context on this
371  * CPU) is not valid then we must have TIF_NEED_FPU_LOAD set so the context is
372  * loaded on return to userland.
373  */
374 void fpregs_assert_state_consistent(void)
375 {
376 	struct fpu *fpu = &current->thread.fpu;
377 
378 	if (test_thread_flag(TIF_NEED_FPU_LOAD))
379 		return;
380 
381 	WARN_ON_FPU(!fpregs_state_valid(fpu, smp_processor_id()));
382 }
383 EXPORT_SYMBOL_GPL(fpregs_assert_state_consistent);
384 #endif
385 
386 void fpregs_mark_activate(void)
387 {
388 	struct fpu *fpu = &current->thread.fpu;
389 
390 	fpregs_activate(fpu);
391 	fpu->last_cpu = smp_processor_id();
392 	clear_thread_flag(TIF_NEED_FPU_LOAD);
393 }
394 EXPORT_SYMBOL_GPL(fpregs_mark_activate);
395 
396 /*
397  * x87 math exception handling:
398  */
399 
400 int fpu__exception_code(struct fpu *fpu, int trap_nr)
401 {
402 	int err;
403 
404 	if (trap_nr == X86_TRAP_MF) {
405 		unsigned short cwd, swd;
406 		/*
407 		 * (~cwd & swd) will mask out exceptions that are not set to unmasked
408 		 * status.  0x3f is the exception bits in these regs, 0x200 is the
409 		 * C1 reg you need in case of a stack fault, 0x040 is the stack
410 		 * fault bit.  We should only be taking one exception at a time,
411 		 * so if this combination doesn't produce any single exception,
412 		 * then we have a bad program that isn't synchronizing its FPU usage
413 		 * and it will suffer the consequences since we won't be able to
414 		 * fully reproduce the context of the exception.
415 		 */
416 		if (boot_cpu_has(X86_FEATURE_FXSR)) {
417 			cwd = fpu->state.fxsave.cwd;
418 			swd = fpu->state.fxsave.swd;
419 		} else {
420 			cwd = (unsigned short)fpu->state.fsave.cwd;
421 			swd = (unsigned short)fpu->state.fsave.swd;
422 		}
423 
424 		err = swd & ~cwd;
425 	} else {
426 		/*
427 		 * The SIMD FPU exceptions are handled a little differently, as there
428 		 * is only a single status/control register.  Thus, to determine which
429 		 * unmasked exception was caught we must mask the exception mask bits
430 		 * at 0x1f80, and then use these to mask the exception bits at 0x3f.
431 		 */
432 		unsigned short mxcsr = MXCSR_DEFAULT;
433 
434 		if (boot_cpu_has(X86_FEATURE_XMM))
435 			mxcsr = fpu->state.fxsave.mxcsr;
436 
437 		err = ~(mxcsr >> 7) & mxcsr;
438 	}
439 
440 	if (err & 0x001) {	/* Invalid op */
441 		/*
442 		 * swd & 0x240 == 0x040: Stack Underflow
443 		 * swd & 0x240 == 0x240: Stack Overflow
444 		 * User must clear the SF bit (0x40) if set
445 		 */
446 		return FPE_FLTINV;
447 	} else if (err & 0x004) { /* Divide by Zero */
448 		return FPE_FLTDIV;
449 	} else if (err & 0x008) { /* Overflow */
450 		return FPE_FLTOVF;
451 	} else if (err & 0x012) { /* Denormal, Underflow */
452 		return FPE_FLTUND;
453 	} else if (err & 0x020) { /* Precision */
454 		return FPE_FLTRES;
455 	}
456 
457 	/*
458 	 * If we're using IRQ 13, or supposedly even some trap
459 	 * X86_TRAP_MF implementations, it's possible
460 	 * we get a spurious trap, which is not an error.
461 	 */
462 	return 0;
463 }
464