1 /* 2 * Copyright (C) 1994 Linus Torvalds 3 * 4 * Pentium III FXSR, SSE support 5 * General FPU state handling cleanups 6 * Gareth Hughes <gareth@valinux.com>, May 2000 7 */ 8 #include <asm/fpu/internal.h> 9 #include <asm/fpu/regset.h> 10 #include <asm/fpu/signal.h> 11 #include <asm/fpu/types.h> 12 #include <asm/traps.h> 13 #include <asm/irq_regs.h> 14 15 #include <linux/hardirq.h> 16 #include <linux/pkeys.h> 17 18 #define CREATE_TRACE_POINTS 19 #include <asm/trace/fpu.h> 20 21 /* 22 * Represents the initial FPU state. It's mostly (but not completely) zeroes, 23 * depending on the FPU hardware format: 24 */ 25 union fpregs_state init_fpstate __read_mostly; 26 27 /* 28 * Track whether the kernel is using the FPU state 29 * currently. 30 * 31 * This flag is used: 32 * 33 * - by IRQ context code to potentially use the FPU 34 * if it's unused. 35 * 36 * - to debug kernel_fpu_begin()/end() correctness 37 */ 38 static DEFINE_PER_CPU(bool, in_kernel_fpu); 39 40 /* 41 * Track which context is using the FPU on the CPU: 42 */ 43 DEFINE_PER_CPU(struct fpu *, fpu_fpregs_owner_ctx); 44 45 static void kernel_fpu_disable(void) 46 { 47 WARN_ON_FPU(this_cpu_read(in_kernel_fpu)); 48 this_cpu_write(in_kernel_fpu, true); 49 } 50 51 static void kernel_fpu_enable(void) 52 { 53 WARN_ON_FPU(!this_cpu_read(in_kernel_fpu)); 54 this_cpu_write(in_kernel_fpu, false); 55 } 56 57 static bool kernel_fpu_disabled(void) 58 { 59 return this_cpu_read(in_kernel_fpu); 60 } 61 62 static bool interrupted_kernel_fpu_idle(void) 63 { 64 return !kernel_fpu_disabled(); 65 } 66 67 /* 68 * Were we in user mode (or vm86 mode) when we were 69 * interrupted? 70 * 71 * Doing kernel_fpu_begin/end() is ok if we are running 72 * in an interrupt context from user mode - we'll just 73 * save the FPU state as required. 74 */ 75 static bool interrupted_user_mode(void) 76 { 77 struct pt_regs *regs = get_irq_regs(); 78 return regs && user_mode(regs); 79 } 80 81 /* 82 * Can we use the FPU in kernel mode with the 83 * whole "kernel_fpu_begin/end()" sequence? 84 * 85 * It's always ok in process context (ie "not interrupt") 86 * but it is sometimes ok even from an irq. 87 */ 88 bool irq_fpu_usable(void) 89 { 90 return !in_interrupt() || 91 interrupted_user_mode() || 92 interrupted_kernel_fpu_idle(); 93 } 94 EXPORT_SYMBOL(irq_fpu_usable); 95 96 static void __kernel_fpu_begin(void) 97 { 98 struct fpu *fpu = ¤t->thread.fpu; 99 100 WARN_ON_FPU(!irq_fpu_usable()); 101 102 kernel_fpu_disable(); 103 104 if (current->mm) { 105 if (!test_thread_flag(TIF_NEED_FPU_LOAD)) { 106 set_thread_flag(TIF_NEED_FPU_LOAD); 107 /* 108 * Ignore return value -- we don't care if reg state 109 * is clobbered. 110 */ 111 copy_fpregs_to_fpstate(fpu); 112 } 113 } 114 __cpu_invalidate_fpregs_state(); 115 } 116 117 static void __kernel_fpu_end(void) 118 { 119 kernel_fpu_enable(); 120 } 121 122 void kernel_fpu_begin(void) 123 { 124 preempt_disable(); 125 __kernel_fpu_begin(); 126 } 127 EXPORT_SYMBOL_GPL(kernel_fpu_begin); 128 129 void kernel_fpu_end(void) 130 { 131 __kernel_fpu_end(); 132 preempt_enable(); 133 } 134 EXPORT_SYMBOL_GPL(kernel_fpu_end); 135 136 /* 137 * Save the FPU state (mark it for reload if necessary): 138 * 139 * This only ever gets called for the current task. 140 */ 141 void fpu__save(struct fpu *fpu) 142 { 143 WARN_ON_FPU(fpu != ¤t->thread.fpu); 144 145 fpregs_lock(); 146 trace_x86_fpu_before_save(fpu); 147 148 if (!test_thread_flag(TIF_NEED_FPU_LOAD)) { 149 if (!copy_fpregs_to_fpstate(fpu)) { 150 copy_kernel_to_fpregs(&fpu->state); 151 } 152 } 153 154 trace_x86_fpu_after_save(fpu); 155 fpregs_unlock(); 156 } 157 EXPORT_SYMBOL_GPL(fpu__save); 158 159 /* 160 * Legacy x87 fpstate state init: 161 */ 162 static inline void fpstate_init_fstate(struct fregs_state *fp) 163 { 164 fp->cwd = 0xffff037fu; 165 fp->swd = 0xffff0000u; 166 fp->twd = 0xffffffffu; 167 fp->fos = 0xffff0000u; 168 } 169 170 void fpstate_init(union fpregs_state *state) 171 { 172 if (!static_cpu_has(X86_FEATURE_FPU)) { 173 fpstate_init_soft(&state->soft); 174 return; 175 } 176 177 memset(state, 0, fpu_kernel_xstate_size); 178 179 if (static_cpu_has(X86_FEATURE_XSAVES)) 180 fpstate_init_xstate(&state->xsave); 181 if (static_cpu_has(X86_FEATURE_FXSR)) 182 fpstate_init_fxstate(&state->fxsave); 183 else 184 fpstate_init_fstate(&state->fsave); 185 } 186 EXPORT_SYMBOL_GPL(fpstate_init); 187 188 int fpu__copy(struct task_struct *dst, struct task_struct *src) 189 { 190 struct fpu *dst_fpu = &dst->thread.fpu; 191 struct fpu *src_fpu = &src->thread.fpu; 192 193 dst_fpu->last_cpu = -1; 194 195 if (!static_cpu_has(X86_FEATURE_FPU)) 196 return 0; 197 198 WARN_ON_FPU(src_fpu != ¤t->thread.fpu); 199 200 /* 201 * Don't let 'init optimized' areas of the XSAVE area 202 * leak into the child task: 203 */ 204 memset(&dst_fpu->state.xsave, 0, fpu_kernel_xstate_size); 205 206 /* 207 * If the FPU registers are not current just memcpy() the state. 208 * Otherwise save current FPU registers directly into the child's FPU 209 * context, without any memory-to-memory copying. 210 * 211 * ( The function 'fails' in the FNSAVE case, which destroys 212 * register contents so we have to load them back. ) 213 */ 214 fpregs_lock(); 215 if (test_thread_flag(TIF_NEED_FPU_LOAD)) 216 memcpy(&dst_fpu->state, &src_fpu->state, fpu_kernel_xstate_size); 217 218 else if (!copy_fpregs_to_fpstate(dst_fpu)) 219 copy_kernel_to_fpregs(&dst_fpu->state); 220 221 fpregs_unlock(); 222 223 set_tsk_thread_flag(dst, TIF_NEED_FPU_LOAD); 224 225 trace_x86_fpu_copy_src(src_fpu); 226 trace_x86_fpu_copy_dst(dst_fpu); 227 228 return 0; 229 } 230 231 /* 232 * Activate the current task's in-memory FPU context, 233 * if it has not been used before: 234 */ 235 static void fpu__initialize(struct fpu *fpu) 236 { 237 WARN_ON_FPU(fpu != ¤t->thread.fpu); 238 239 set_thread_flag(TIF_NEED_FPU_LOAD); 240 fpstate_init(&fpu->state); 241 trace_x86_fpu_init_state(fpu); 242 } 243 244 /* 245 * This function must be called before we read a task's fpstate. 246 * 247 * There's two cases where this gets called: 248 * 249 * - for the current task (when coredumping), in which case we have 250 * to save the latest FPU registers into the fpstate, 251 * 252 * - or it's called for stopped tasks (ptrace), in which case the 253 * registers were already saved by the context-switch code when 254 * the task scheduled out. 255 * 256 * If the task has used the FPU before then save it. 257 */ 258 void fpu__prepare_read(struct fpu *fpu) 259 { 260 if (fpu == ¤t->thread.fpu) 261 fpu__save(fpu); 262 } 263 264 /* 265 * This function must be called before we write a task's fpstate. 266 * 267 * Invalidate any cached FPU registers. 268 * 269 * After this function call, after registers in the fpstate are 270 * modified and the child task has woken up, the child task will 271 * restore the modified FPU state from the modified context. If we 272 * didn't clear its cached status here then the cached in-registers 273 * state pending on its former CPU could be restored, corrupting 274 * the modifications. 275 */ 276 void fpu__prepare_write(struct fpu *fpu) 277 { 278 /* 279 * Only stopped child tasks can be used to modify the FPU 280 * state in the fpstate buffer: 281 */ 282 WARN_ON_FPU(fpu == ¤t->thread.fpu); 283 284 /* Invalidate any cached state: */ 285 __fpu_invalidate_fpregs_state(fpu); 286 } 287 288 /* 289 * Drops current FPU state: deactivates the fpregs and 290 * the fpstate. NOTE: it still leaves previous contents 291 * in the fpregs in the eager-FPU case. 292 * 293 * This function can be used in cases where we know that 294 * a state-restore is coming: either an explicit one, 295 * or a reschedule. 296 */ 297 void fpu__drop(struct fpu *fpu) 298 { 299 preempt_disable(); 300 301 if (fpu == ¤t->thread.fpu) { 302 /* Ignore delayed exceptions from user space */ 303 asm volatile("1: fwait\n" 304 "2:\n" 305 _ASM_EXTABLE(1b, 2b)); 306 fpregs_deactivate(fpu); 307 } 308 309 trace_x86_fpu_dropped(fpu); 310 311 preempt_enable(); 312 } 313 314 /* 315 * Clear FPU registers by setting them up from 316 * the init fpstate: 317 */ 318 static inline void copy_init_fpstate_to_fpregs(void) 319 { 320 fpregs_lock(); 321 322 if (use_xsave()) 323 copy_kernel_to_xregs(&init_fpstate.xsave, -1); 324 else if (static_cpu_has(X86_FEATURE_FXSR)) 325 copy_kernel_to_fxregs(&init_fpstate.fxsave); 326 else 327 copy_kernel_to_fregs(&init_fpstate.fsave); 328 329 if (boot_cpu_has(X86_FEATURE_OSPKE)) 330 copy_init_pkru_to_fpregs(); 331 332 fpregs_mark_activate(); 333 fpregs_unlock(); 334 } 335 336 /* 337 * Clear the FPU state back to init state. 338 * 339 * Called by sys_execve(), by the signal handler code and by various 340 * error paths. 341 */ 342 void fpu__clear(struct fpu *fpu) 343 { 344 WARN_ON_FPU(fpu != ¤t->thread.fpu); /* Almost certainly an anomaly */ 345 346 fpu__drop(fpu); 347 348 /* 349 * Make sure fpstate is cleared and initialized. 350 */ 351 fpu__initialize(fpu); 352 if (static_cpu_has(X86_FEATURE_FPU)) 353 copy_init_fpstate_to_fpregs(); 354 } 355 356 /* 357 * Load FPU context before returning to userspace. 358 */ 359 void switch_fpu_return(void) 360 { 361 if (!static_cpu_has(X86_FEATURE_FPU)) 362 return; 363 364 __fpregs_load_activate(); 365 } 366 EXPORT_SYMBOL_GPL(switch_fpu_return); 367 368 #ifdef CONFIG_X86_DEBUG_FPU 369 /* 370 * If current FPU state according to its tracking (loaded FPU context on this 371 * CPU) is not valid then we must have TIF_NEED_FPU_LOAD set so the context is 372 * loaded on return to userland. 373 */ 374 void fpregs_assert_state_consistent(void) 375 { 376 struct fpu *fpu = ¤t->thread.fpu; 377 378 if (test_thread_flag(TIF_NEED_FPU_LOAD)) 379 return; 380 381 WARN_ON_FPU(!fpregs_state_valid(fpu, smp_processor_id())); 382 } 383 EXPORT_SYMBOL_GPL(fpregs_assert_state_consistent); 384 #endif 385 386 void fpregs_mark_activate(void) 387 { 388 struct fpu *fpu = ¤t->thread.fpu; 389 390 fpregs_activate(fpu); 391 fpu->last_cpu = smp_processor_id(); 392 clear_thread_flag(TIF_NEED_FPU_LOAD); 393 } 394 EXPORT_SYMBOL_GPL(fpregs_mark_activate); 395 396 /* 397 * x87 math exception handling: 398 */ 399 400 int fpu__exception_code(struct fpu *fpu, int trap_nr) 401 { 402 int err; 403 404 if (trap_nr == X86_TRAP_MF) { 405 unsigned short cwd, swd; 406 /* 407 * (~cwd & swd) will mask out exceptions that are not set to unmasked 408 * status. 0x3f is the exception bits in these regs, 0x200 is the 409 * C1 reg you need in case of a stack fault, 0x040 is the stack 410 * fault bit. We should only be taking one exception at a time, 411 * so if this combination doesn't produce any single exception, 412 * then we have a bad program that isn't synchronizing its FPU usage 413 * and it will suffer the consequences since we won't be able to 414 * fully reproduce the context of the exception. 415 */ 416 if (boot_cpu_has(X86_FEATURE_FXSR)) { 417 cwd = fpu->state.fxsave.cwd; 418 swd = fpu->state.fxsave.swd; 419 } else { 420 cwd = (unsigned short)fpu->state.fsave.cwd; 421 swd = (unsigned short)fpu->state.fsave.swd; 422 } 423 424 err = swd & ~cwd; 425 } else { 426 /* 427 * The SIMD FPU exceptions are handled a little differently, as there 428 * is only a single status/control register. Thus, to determine which 429 * unmasked exception was caught we must mask the exception mask bits 430 * at 0x1f80, and then use these to mask the exception bits at 0x3f. 431 */ 432 unsigned short mxcsr = MXCSR_DEFAULT; 433 434 if (boot_cpu_has(X86_FEATURE_XMM)) 435 mxcsr = fpu->state.fxsave.mxcsr; 436 437 err = ~(mxcsr >> 7) & mxcsr; 438 } 439 440 if (err & 0x001) { /* Invalid op */ 441 /* 442 * swd & 0x240 == 0x040: Stack Underflow 443 * swd & 0x240 == 0x240: Stack Overflow 444 * User must clear the SF bit (0x40) if set 445 */ 446 return FPE_FLTINV; 447 } else if (err & 0x004) { /* Divide by Zero */ 448 return FPE_FLTDIV; 449 } else if (err & 0x008) { /* Overflow */ 450 return FPE_FLTOVF; 451 } else if (err & 0x012) { /* Denormal, Underflow */ 452 return FPE_FLTUND; 453 } else if (err & 0x020) { /* Precision */ 454 return FPE_FLTRES; 455 } 456 457 /* 458 * If we're using IRQ 13, or supposedly even some trap 459 * X86_TRAP_MF implementations, it's possible 460 * we get a spurious trap, which is not an error. 461 */ 462 return 0; 463 } 464