1 /* 2 * Copyright (C) 1994 Linus Torvalds 3 * 4 * Pentium III FXSR, SSE support 5 * General FPU state handling cleanups 6 * Gareth Hughes <gareth@valinux.com>, May 2000 7 */ 8 #include <asm/fpu/internal.h> 9 #include <asm/fpu/regset.h> 10 #include <asm/fpu/signal.h> 11 #include <asm/fpu/types.h> 12 #include <asm/traps.h> 13 #include <asm/irq_regs.h> 14 15 #include <linux/hardirq.h> 16 #include <linux/pkeys.h> 17 18 #define CREATE_TRACE_POINTS 19 #include <asm/trace/fpu.h> 20 21 /* 22 * Represents the initial FPU state. It's mostly (but not completely) zeroes, 23 * depending on the FPU hardware format: 24 */ 25 union fpregs_state init_fpstate __read_mostly; 26 27 /* 28 * Track whether the kernel is using the FPU state 29 * currently. 30 * 31 * This flag is used: 32 * 33 * - by IRQ context code to potentially use the FPU 34 * if it's unused. 35 * 36 * - to debug kernel_fpu_begin()/end() correctness 37 */ 38 static DEFINE_PER_CPU(bool, in_kernel_fpu); 39 40 /* 41 * Track which context is using the FPU on the CPU: 42 */ 43 DEFINE_PER_CPU(struct fpu *, fpu_fpregs_owner_ctx); 44 45 static void kernel_fpu_disable(void) 46 { 47 WARN_ON_FPU(this_cpu_read(in_kernel_fpu)); 48 this_cpu_write(in_kernel_fpu, true); 49 } 50 51 static void kernel_fpu_enable(void) 52 { 53 WARN_ON_FPU(!this_cpu_read(in_kernel_fpu)); 54 this_cpu_write(in_kernel_fpu, false); 55 } 56 57 static bool kernel_fpu_disabled(void) 58 { 59 return this_cpu_read(in_kernel_fpu); 60 } 61 62 static bool interrupted_kernel_fpu_idle(void) 63 { 64 return !kernel_fpu_disabled(); 65 } 66 67 /* 68 * Were we in user mode (or vm86 mode) when we were 69 * interrupted? 70 * 71 * Doing kernel_fpu_begin/end() is ok if we are running 72 * in an interrupt context from user mode - we'll just 73 * save the FPU state as required. 74 */ 75 static bool interrupted_user_mode(void) 76 { 77 struct pt_regs *regs = get_irq_regs(); 78 return regs && user_mode(regs); 79 } 80 81 /* 82 * Can we use the FPU in kernel mode with the 83 * whole "kernel_fpu_begin/end()" sequence? 84 * 85 * It's always ok in process context (ie "not interrupt") 86 * but it is sometimes ok even from an irq. 87 */ 88 bool irq_fpu_usable(void) 89 { 90 return !in_interrupt() || 91 interrupted_user_mode() || 92 interrupted_kernel_fpu_idle(); 93 } 94 EXPORT_SYMBOL(irq_fpu_usable); 95 96 static void __kernel_fpu_begin(void) 97 { 98 struct fpu *fpu = ¤t->thread.fpu; 99 100 WARN_ON_FPU(!irq_fpu_usable()); 101 102 kernel_fpu_disable(); 103 104 if (fpu->initialized) { 105 /* 106 * Ignore return value -- we don't care if reg state 107 * is clobbered. 108 */ 109 copy_fpregs_to_fpstate(fpu); 110 } else { 111 __cpu_invalidate_fpregs_state(); 112 } 113 } 114 115 static void __kernel_fpu_end(void) 116 { 117 struct fpu *fpu = ¤t->thread.fpu; 118 119 if (fpu->initialized) 120 copy_kernel_to_fpregs(&fpu->state); 121 122 kernel_fpu_enable(); 123 } 124 125 void kernel_fpu_begin(void) 126 { 127 preempt_disable(); 128 __kernel_fpu_begin(); 129 } 130 EXPORT_SYMBOL_GPL(kernel_fpu_begin); 131 132 void kernel_fpu_end(void) 133 { 134 __kernel_fpu_end(); 135 preempt_enable(); 136 } 137 EXPORT_SYMBOL_GPL(kernel_fpu_end); 138 139 /* 140 * Save the FPU state (mark it for reload if necessary): 141 * 142 * This only ever gets called for the current task. 143 */ 144 void fpu__save(struct fpu *fpu) 145 { 146 WARN_ON_FPU(fpu != ¤t->thread.fpu); 147 148 preempt_disable(); 149 trace_x86_fpu_before_save(fpu); 150 if (fpu->initialized) { 151 if (!copy_fpregs_to_fpstate(fpu)) { 152 copy_kernel_to_fpregs(&fpu->state); 153 } 154 } 155 trace_x86_fpu_after_save(fpu); 156 preempt_enable(); 157 } 158 EXPORT_SYMBOL_GPL(fpu__save); 159 160 /* 161 * Legacy x87 fpstate state init: 162 */ 163 static inline void fpstate_init_fstate(struct fregs_state *fp) 164 { 165 fp->cwd = 0xffff037fu; 166 fp->swd = 0xffff0000u; 167 fp->twd = 0xffffffffu; 168 fp->fos = 0xffff0000u; 169 } 170 171 void fpstate_init(union fpregs_state *state) 172 { 173 if (!static_cpu_has(X86_FEATURE_FPU)) { 174 fpstate_init_soft(&state->soft); 175 return; 176 } 177 178 memset(state, 0, fpu_kernel_xstate_size); 179 180 if (static_cpu_has(X86_FEATURE_XSAVES)) 181 fpstate_init_xstate(&state->xsave); 182 if (static_cpu_has(X86_FEATURE_FXSR)) 183 fpstate_init_fxstate(&state->fxsave); 184 else 185 fpstate_init_fstate(&state->fsave); 186 } 187 EXPORT_SYMBOL_GPL(fpstate_init); 188 189 int fpu__copy(struct fpu *dst_fpu, struct fpu *src_fpu) 190 { 191 dst_fpu->last_cpu = -1; 192 193 if (!src_fpu->initialized || !static_cpu_has(X86_FEATURE_FPU)) 194 return 0; 195 196 WARN_ON_FPU(src_fpu != ¤t->thread.fpu); 197 198 /* 199 * Don't let 'init optimized' areas of the XSAVE area 200 * leak into the child task: 201 */ 202 memset(&dst_fpu->state.xsave, 0, fpu_kernel_xstate_size); 203 204 /* 205 * Save current FPU registers directly into the child 206 * FPU context, without any memory-to-memory copying. 207 * 208 * ( The function 'fails' in the FNSAVE case, which destroys 209 * register contents so we have to copy them back. ) 210 */ 211 if (!copy_fpregs_to_fpstate(dst_fpu)) { 212 memcpy(&src_fpu->state, &dst_fpu->state, fpu_kernel_xstate_size); 213 copy_kernel_to_fpregs(&src_fpu->state); 214 } 215 216 trace_x86_fpu_copy_src(src_fpu); 217 trace_x86_fpu_copy_dst(dst_fpu); 218 219 return 0; 220 } 221 222 /* 223 * Activate the current task's in-memory FPU context, 224 * if it has not been used before: 225 */ 226 void fpu__initialize(struct fpu *fpu) 227 { 228 WARN_ON_FPU(fpu != ¤t->thread.fpu); 229 230 if (!fpu->initialized) { 231 fpstate_init(&fpu->state); 232 trace_x86_fpu_init_state(fpu); 233 234 trace_x86_fpu_activate_state(fpu); 235 /* Safe to do for the current task: */ 236 fpu->initialized = 1; 237 } 238 } 239 EXPORT_SYMBOL_GPL(fpu__initialize); 240 241 /* 242 * This function must be called before we read a task's fpstate. 243 * 244 * There's two cases where this gets called: 245 * 246 * - for the current task (when coredumping), in which case we have 247 * to save the latest FPU registers into the fpstate, 248 * 249 * - or it's called for stopped tasks (ptrace), in which case the 250 * registers were already saved by the context-switch code when 251 * the task scheduled out - we only have to initialize the registers 252 * if they've never been initialized. 253 * 254 * If the task has used the FPU before then save it. 255 */ 256 void fpu__prepare_read(struct fpu *fpu) 257 { 258 if (fpu == ¤t->thread.fpu) { 259 fpu__save(fpu); 260 } else { 261 if (!fpu->initialized) { 262 fpstate_init(&fpu->state); 263 trace_x86_fpu_init_state(fpu); 264 265 trace_x86_fpu_activate_state(fpu); 266 /* Safe to do for current and for stopped child tasks: */ 267 fpu->initialized = 1; 268 } 269 } 270 } 271 272 /* 273 * This function must be called before we write a task's fpstate. 274 * 275 * If the task has used the FPU before then invalidate any cached FPU registers. 276 * If the task has not used the FPU before then initialize its fpstate. 277 * 278 * After this function call, after registers in the fpstate are 279 * modified and the child task has woken up, the child task will 280 * restore the modified FPU state from the modified context. If we 281 * didn't clear its cached status here then the cached in-registers 282 * state pending on its former CPU could be restored, corrupting 283 * the modifications. 284 */ 285 void fpu__prepare_write(struct fpu *fpu) 286 { 287 /* 288 * Only stopped child tasks can be used to modify the FPU 289 * state in the fpstate buffer: 290 */ 291 WARN_ON_FPU(fpu == ¤t->thread.fpu); 292 293 if (fpu->initialized) { 294 /* Invalidate any cached state: */ 295 __fpu_invalidate_fpregs_state(fpu); 296 } else { 297 fpstate_init(&fpu->state); 298 trace_x86_fpu_init_state(fpu); 299 300 trace_x86_fpu_activate_state(fpu); 301 /* Safe to do for stopped child tasks: */ 302 fpu->initialized = 1; 303 } 304 } 305 306 /* 307 * 'fpu__restore()' is called to copy FPU registers from 308 * the FPU fpstate to the live hw registers and to activate 309 * access to the hardware registers, so that FPU instructions 310 * can be used afterwards. 311 * 312 * Must be called with kernel preemption disabled (for example 313 * with local interrupts disabled, as it is in the case of 314 * do_device_not_available()). 315 */ 316 void fpu__restore(struct fpu *fpu) 317 { 318 fpu__initialize(fpu); 319 320 /* Avoid __kernel_fpu_begin() right after fpregs_activate() */ 321 kernel_fpu_disable(); 322 trace_x86_fpu_before_restore(fpu); 323 fpregs_activate(fpu); 324 copy_kernel_to_fpregs(&fpu->state); 325 trace_x86_fpu_after_restore(fpu); 326 kernel_fpu_enable(); 327 } 328 EXPORT_SYMBOL_GPL(fpu__restore); 329 330 /* 331 * Drops current FPU state: deactivates the fpregs and 332 * the fpstate. NOTE: it still leaves previous contents 333 * in the fpregs in the eager-FPU case. 334 * 335 * This function can be used in cases where we know that 336 * a state-restore is coming: either an explicit one, 337 * or a reschedule. 338 */ 339 void fpu__drop(struct fpu *fpu) 340 { 341 preempt_disable(); 342 343 if (fpu == ¤t->thread.fpu) { 344 if (fpu->initialized) { 345 /* Ignore delayed exceptions from user space */ 346 asm volatile("1: fwait\n" 347 "2:\n" 348 _ASM_EXTABLE(1b, 2b)); 349 fpregs_deactivate(fpu); 350 } 351 } 352 353 fpu->initialized = 0; 354 355 trace_x86_fpu_dropped(fpu); 356 357 preempt_enable(); 358 } 359 360 /* 361 * Clear FPU registers by setting them up from 362 * the init fpstate: 363 */ 364 static inline void copy_init_fpstate_to_fpregs(void) 365 { 366 if (use_xsave()) 367 copy_kernel_to_xregs(&init_fpstate.xsave, -1); 368 else if (static_cpu_has(X86_FEATURE_FXSR)) 369 copy_kernel_to_fxregs(&init_fpstate.fxsave); 370 else 371 copy_kernel_to_fregs(&init_fpstate.fsave); 372 373 if (boot_cpu_has(X86_FEATURE_OSPKE)) 374 copy_init_pkru_to_fpregs(); 375 } 376 377 /* 378 * Clear the FPU state back to init state. 379 * 380 * Called by sys_execve(), by the signal handler code and by various 381 * error paths. 382 */ 383 void fpu__clear(struct fpu *fpu) 384 { 385 WARN_ON_FPU(fpu != ¤t->thread.fpu); /* Almost certainly an anomaly */ 386 387 fpu__drop(fpu); 388 389 /* 390 * Make sure fpstate is cleared and initialized. 391 */ 392 if (static_cpu_has(X86_FEATURE_FPU)) { 393 preempt_disable(); 394 fpu__initialize(fpu); 395 user_fpu_begin(); 396 copy_init_fpstate_to_fpregs(); 397 preempt_enable(); 398 } 399 } 400 401 /* 402 * x87 math exception handling: 403 */ 404 405 int fpu__exception_code(struct fpu *fpu, int trap_nr) 406 { 407 int err; 408 409 if (trap_nr == X86_TRAP_MF) { 410 unsigned short cwd, swd; 411 /* 412 * (~cwd & swd) will mask out exceptions that are not set to unmasked 413 * status. 0x3f is the exception bits in these regs, 0x200 is the 414 * C1 reg you need in case of a stack fault, 0x040 is the stack 415 * fault bit. We should only be taking one exception at a time, 416 * so if this combination doesn't produce any single exception, 417 * then we have a bad program that isn't synchronizing its FPU usage 418 * and it will suffer the consequences since we won't be able to 419 * fully reproduce the context of the exception. 420 */ 421 if (boot_cpu_has(X86_FEATURE_FXSR)) { 422 cwd = fpu->state.fxsave.cwd; 423 swd = fpu->state.fxsave.swd; 424 } else { 425 cwd = (unsigned short)fpu->state.fsave.cwd; 426 swd = (unsigned short)fpu->state.fsave.swd; 427 } 428 429 err = swd & ~cwd; 430 } else { 431 /* 432 * The SIMD FPU exceptions are handled a little differently, as there 433 * is only a single status/control register. Thus, to determine which 434 * unmasked exception was caught we must mask the exception mask bits 435 * at 0x1f80, and then use these to mask the exception bits at 0x3f. 436 */ 437 unsigned short mxcsr = MXCSR_DEFAULT; 438 439 if (boot_cpu_has(X86_FEATURE_XMM)) 440 mxcsr = fpu->state.fxsave.mxcsr; 441 442 err = ~(mxcsr >> 7) & mxcsr; 443 } 444 445 if (err & 0x001) { /* Invalid op */ 446 /* 447 * swd & 0x240 == 0x040: Stack Underflow 448 * swd & 0x240 == 0x240: Stack Overflow 449 * User must clear the SF bit (0x40) if set 450 */ 451 return FPE_FLTINV; 452 } else if (err & 0x004) { /* Divide by Zero */ 453 return FPE_FLTDIV; 454 } else if (err & 0x008) { /* Overflow */ 455 return FPE_FLTOVF; 456 } else if (err & 0x012) { /* Denormal, Underflow */ 457 return FPE_FLTUND; 458 } else if (err & 0x020) { /* Precision */ 459 return FPE_FLTRES; 460 } 461 462 /* 463 * If we're using IRQ 13, or supposedly even some trap 464 * X86_TRAP_MF implementations, it's possible 465 * we get a spurious trap, which is not an error. 466 */ 467 return 0; 468 } 469