xref: /openbmc/linux/arch/x86/kernel/fpu/core.c (revision 2359ccdd)
1 /*
2  *  Copyright (C) 1994 Linus Torvalds
3  *
4  *  Pentium III FXSR, SSE support
5  *  General FPU state handling cleanups
6  *	Gareth Hughes <gareth@valinux.com>, May 2000
7  */
8 #include <asm/fpu/internal.h>
9 #include <asm/fpu/regset.h>
10 #include <asm/fpu/signal.h>
11 #include <asm/fpu/types.h>
12 #include <asm/traps.h>
13 
14 #include <linux/hardirq.h>
15 #include <linux/pkeys.h>
16 
17 #define CREATE_TRACE_POINTS
18 #include <asm/trace/fpu.h>
19 
20 /*
21  * Represents the initial FPU state. It's mostly (but not completely) zeroes,
22  * depending on the FPU hardware format:
23  */
24 union fpregs_state init_fpstate __read_mostly;
25 
26 /*
27  * Track whether the kernel is using the FPU state
28  * currently.
29  *
30  * This flag is used:
31  *
32  *   - by IRQ context code to potentially use the FPU
33  *     if it's unused.
34  *
35  *   - to debug kernel_fpu_begin()/end() correctness
36  */
37 static DEFINE_PER_CPU(bool, in_kernel_fpu);
38 
39 /*
40  * Track which context is using the FPU on the CPU:
41  */
42 DEFINE_PER_CPU(struct fpu *, fpu_fpregs_owner_ctx);
43 
44 static void kernel_fpu_disable(void)
45 {
46 	WARN_ON_FPU(this_cpu_read(in_kernel_fpu));
47 	this_cpu_write(in_kernel_fpu, true);
48 }
49 
50 static void kernel_fpu_enable(void)
51 {
52 	WARN_ON_FPU(!this_cpu_read(in_kernel_fpu));
53 	this_cpu_write(in_kernel_fpu, false);
54 }
55 
56 static bool kernel_fpu_disabled(void)
57 {
58 	return this_cpu_read(in_kernel_fpu);
59 }
60 
61 static bool interrupted_kernel_fpu_idle(void)
62 {
63 	return !kernel_fpu_disabled();
64 }
65 
66 /*
67  * Were we in user mode (or vm86 mode) when we were
68  * interrupted?
69  *
70  * Doing kernel_fpu_begin/end() is ok if we are running
71  * in an interrupt context from user mode - we'll just
72  * save the FPU state as required.
73  */
74 static bool interrupted_user_mode(void)
75 {
76 	struct pt_regs *regs = get_irq_regs();
77 	return regs && user_mode(regs);
78 }
79 
80 /*
81  * Can we use the FPU in kernel mode with the
82  * whole "kernel_fpu_begin/end()" sequence?
83  *
84  * It's always ok in process context (ie "not interrupt")
85  * but it is sometimes ok even from an irq.
86  */
87 bool irq_fpu_usable(void)
88 {
89 	return !in_interrupt() ||
90 		interrupted_user_mode() ||
91 		interrupted_kernel_fpu_idle();
92 }
93 EXPORT_SYMBOL(irq_fpu_usable);
94 
95 void __kernel_fpu_begin(void)
96 {
97 	struct fpu *fpu = &current->thread.fpu;
98 
99 	WARN_ON_FPU(!irq_fpu_usable());
100 
101 	kernel_fpu_disable();
102 
103 	if (fpu->initialized) {
104 		/*
105 		 * Ignore return value -- we don't care if reg state
106 		 * is clobbered.
107 		 */
108 		copy_fpregs_to_fpstate(fpu);
109 	} else {
110 		__cpu_invalidate_fpregs_state();
111 	}
112 }
113 EXPORT_SYMBOL(__kernel_fpu_begin);
114 
115 void __kernel_fpu_end(void)
116 {
117 	struct fpu *fpu = &current->thread.fpu;
118 
119 	if (fpu->initialized)
120 		copy_kernel_to_fpregs(&fpu->state);
121 
122 	kernel_fpu_enable();
123 }
124 EXPORT_SYMBOL(__kernel_fpu_end);
125 
126 void kernel_fpu_begin(void)
127 {
128 	preempt_disable();
129 	__kernel_fpu_begin();
130 }
131 EXPORT_SYMBOL_GPL(kernel_fpu_begin);
132 
133 void kernel_fpu_end(void)
134 {
135 	__kernel_fpu_end();
136 	preempt_enable();
137 }
138 EXPORT_SYMBOL_GPL(kernel_fpu_end);
139 
140 /*
141  * Save the FPU state (mark it for reload if necessary):
142  *
143  * This only ever gets called for the current task.
144  */
145 void fpu__save(struct fpu *fpu)
146 {
147 	WARN_ON_FPU(fpu != &current->thread.fpu);
148 
149 	preempt_disable();
150 	trace_x86_fpu_before_save(fpu);
151 	if (fpu->initialized) {
152 		if (!copy_fpregs_to_fpstate(fpu)) {
153 			copy_kernel_to_fpregs(&fpu->state);
154 		}
155 	}
156 	trace_x86_fpu_after_save(fpu);
157 	preempt_enable();
158 }
159 EXPORT_SYMBOL_GPL(fpu__save);
160 
161 /*
162  * Legacy x87 fpstate state init:
163  */
164 static inline void fpstate_init_fstate(struct fregs_state *fp)
165 {
166 	fp->cwd = 0xffff037fu;
167 	fp->swd = 0xffff0000u;
168 	fp->twd = 0xffffffffu;
169 	fp->fos = 0xffff0000u;
170 }
171 
172 void fpstate_init(union fpregs_state *state)
173 {
174 	if (!static_cpu_has(X86_FEATURE_FPU)) {
175 		fpstate_init_soft(&state->soft);
176 		return;
177 	}
178 
179 	memset(state, 0, fpu_kernel_xstate_size);
180 
181 	if (static_cpu_has(X86_FEATURE_XSAVES))
182 		fpstate_init_xstate(&state->xsave);
183 	if (static_cpu_has(X86_FEATURE_FXSR))
184 		fpstate_init_fxstate(&state->fxsave);
185 	else
186 		fpstate_init_fstate(&state->fsave);
187 }
188 EXPORT_SYMBOL_GPL(fpstate_init);
189 
190 int fpu__copy(struct fpu *dst_fpu, struct fpu *src_fpu)
191 {
192 	dst_fpu->last_cpu = -1;
193 
194 	if (!src_fpu->initialized || !static_cpu_has(X86_FEATURE_FPU))
195 		return 0;
196 
197 	WARN_ON_FPU(src_fpu != &current->thread.fpu);
198 
199 	/*
200 	 * Don't let 'init optimized' areas of the XSAVE area
201 	 * leak into the child task:
202 	 */
203 	memset(&dst_fpu->state.xsave, 0, fpu_kernel_xstate_size);
204 
205 	/*
206 	 * Save current FPU registers directly into the child
207 	 * FPU context, without any memory-to-memory copying.
208 	 *
209 	 * ( The function 'fails' in the FNSAVE case, which destroys
210 	 *   register contents so we have to copy them back. )
211 	 */
212 	if (!copy_fpregs_to_fpstate(dst_fpu)) {
213 		memcpy(&src_fpu->state, &dst_fpu->state, fpu_kernel_xstate_size);
214 		copy_kernel_to_fpregs(&src_fpu->state);
215 	}
216 
217 	trace_x86_fpu_copy_src(src_fpu);
218 	trace_x86_fpu_copy_dst(dst_fpu);
219 
220 	return 0;
221 }
222 
223 /*
224  * Activate the current task's in-memory FPU context,
225  * if it has not been used before:
226  */
227 void fpu__initialize(struct fpu *fpu)
228 {
229 	WARN_ON_FPU(fpu != &current->thread.fpu);
230 
231 	if (!fpu->initialized) {
232 		fpstate_init(&fpu->state);
233 		trace_x86_fpu_init_state(fpu);
234 
235 		trace_x86_fpu_activate_state(fpu);
236 		/* Safe to do for the current task: */
237 		fpu->initialized = 1;
238 	}
239 }
240 EXPORT_SYMBOL_GPL(fpu__initialize);
241 
242 /*
243  * This function must be called before we read a task's fpstate.
244  *
245  * There's two cases where this gets called:
246  *
247  * - for the current task (when coredumping), in which case we have
248  *   to save the latest FPU registers into the fpstate,
249  *
250  * - or it's called for stopped tasks (ptrace), in which case the
251  *   registers were already saved by the context-switch code when
252  *   the task scheduled out - we only have to initialize the registers
253  *   if they've never been initialized.
254  *
255  * If the task has used the FPU before then save it.
256  */
257 void fpu__prepare_read(struct fpu *fpu)
258 {
259 	if (fpu == &current->thread.fpu) {
260 		fpu__save(fpu);
261 	} else {
262 		if (!fpu->initialized) {
263 			fpstate_init(&fpu->state);
264 			trace_x86_fpu_init_state(fpu);
265 
266 			trace_x86_fpu_activate_state(fpu);
267 			/* Safe to do for current and for stopped child tasks: */
268 			fpu->initialized = 1;
269 		}
270 	}
271 }
272 
273 /*
274  * This function must be called before we write a task's fpstate.
275  *
276  * If the task has used the FPU before then invalidate any cached FPU registers.
277  * If the task has not used the FPU before then initialize its fpstate.
278  *
279  * After this function call, after registers in the fpstate are
280  * modified and the child task has woken up, the child task will
281  * restore the modified FPU state from the modified context. If we
282  * didn't clear its cached status here then the cached in-registers
283  * state pending on its former CPU could be restored, corrupting
284  * the modifications.
285  */
286 void fpu__prepare_write(struct fpu *fpu)
287 {
288 	/*
289 	 * Only stopped child tasks can be used to modify the FPU
290 	 * state in the fpstate buffer:
291 	 */
292 	WARN_ON_FPU(fpu == &current->thread.fpu);
293 
294 	if (fpu->initialized) {
295 		/* Invalidate any cached state: */
296 		__fpu_invalidate_fpregs_state(fpu);
297 	} else {
298 		fpstate_init(&fpu->state);
299 		trace_x86_fpu_init_state(fpu);
300 
301 		trace_x86_fpu_activate_state(fpu);
302 		/* Safe to do for stopped child tasks: */
303 		fpu->initialized = 1;
304 	}
305 }
306 
307 /*
308  * 'fpu__restore()' is called to copy FPU registers from
309  * the FPU fpstate to the live hw registers and to activate
310  * access to the hardware registers, so that FPU instructions
311  * can be used afterwards.
312  *
313  * Must be called with kernel preemption disabled (for example
314  * with local interrupts disabled, as it is in the case of
315  * do_device_not_available()).
316  */
317 void fpu__restore(struct fpu *fpu)
318 {
319 	fpu__initialize(fpu);
320 
321 	/* Avoid __kernel_fpu_begin() right after fpregs_activate() */
322 	kernel_fpu_disable();
323 	trace_x86_fpu_before_restore(fpu);
324 	fpregs_activate(fpu);
325 	copy_kernel_to_fpregs(&fpu->state);
326 	trace_x86_fpu_after_restore(fpu);
327 	kernel_fpu_enable();
328 }
329 EXPORT_SYMBOL_GPL(fpu__restore);
330 
331 /*
332  * Drops current FPU state: deactivates the fpregs and
333  * the fpstate. NOTE: it still leaves previous contents
334  * in the fpregs in the eager-FPU case.
335  *
336  * This function can be used in cases where we know that
337  * a state-restore is coming: either an explicit one,
338  * or a reschedule.
339  */
340 void fpu__drop(struct fpu *fpu)
341 {
342 	preempt_disable();
343 
344 	if (fpu == &current->thread.fpu) {
345 		if (fpu->initialized) {
346 			/* Ignore delayed exceptions from user space */
347 			asm volatile("1: fwait\n"
348 				     "2:\n"
349 				     _ASM_EXTABLE(1b, 2b));
350 			fpregs_deactivate(fpu);
351 		}
352 	}
353 
354 	fpu->initialized = 0;
355 
356 	trace_x86_fpu_dropped(fpu);
357 
358 	preempt_enable();
359 }
360 
361 /*
362  * Clear FPU registers by setting them up from
363  * the init fpstate:
364  */
365 static inline void copy_init_fpstate_to_fpregs(void)
366 {
367 	if (use_xsave())
368 		copy_kernel_to_xregs(&init_fpstate.xsave, -1);
369 	else if (static_cpu_has(X86_FEATURE_FXSR))
370 		copy_kernel_to_fxregs(&init_fpstate.fxsave);
371 	else
372 		copy_kernel_to_fregs(&init_fpstate.fsave);
373 
374 	if (boot_cpu_has(X86_FEATURE_OSPKE))
375 		copy_init_pkru_to_fpregs();
376 }
377 
378 /*
379  * Clear the FPU state back to init state.
380  *
381  * Called by sys_execve(), by the signal handler code and by various
382  * error paths.
383  */
384 void fpu__clear(struct fpu *fpu)
385 {
386 	WARN_ON_FPU(fpu != &current->thread.fpu); /* Almost certainly an anomaly */
387 
388 	fpu__drop(fpu);
389 
390 	/*
391 	 * Make sure fpstate is cleared and initialized.
392 	 */
393 	if (static_cpu_has(X86_FEATURE_FPU)) {
394 		preempt_disable();
395 		fpu__initialize(fpu);
396 		user_fpu_begin();
397 		copy_init_fpstate_to_fpregs();
398 		preempt_enable();
399 	}
400 }
401 
402 /*
403  * x87 math exception handling:
404  */
405 
406 int fpu__exception_code(struct fpu *fpu, int trap_nr)
407 {
408 	int err;
409 
410 	if (trap_nr == X86_TRAP_MF) {
411 		unsigned short cwd, swd;
412 		/*
413 		 * (~cwd & swd) will mask out exceptions that are not set to unmasked
414 		 * status.  0x3f is the exception bits in these regs, 0x200 is the
415 		 * C1 reg you need in case of a stack fault, 0x040 is the stack
416 		 * fault bit.  We should only be taking one exception at a time,
417 		 * so if this combination doesn't produce any single exception,
418 		 * then we have a bad program that isn't synchronizing its FPU usage
419 		 * and it will suffer the consequences since we won't be able to
420 		 * fully reproduce the context of the exception.
421 		 */
422 		if (boot_cpu_has(X86_FEATURE_FXSR)) {
423 			cwd = fpu->state.fxsave.cwd;
424 			swd = fpu->state.fxsave.swd;
425 		} else {
426 			cwd = (unsigned short)fpu->state.fsave.cwd;
427 			swd = (unsigned short)fpu->state.fsave.swd;
428 		}
429 
430 		err = swd & ~cwd;
431 	} else {
432 		/*
433 		 * The SIMD FPU exceptions are handled a little differently, as there
434 		 * is only a single status/control register.  Thus, to determine which
435 		 * unmasked exception was caught we must mask the exception mask bits
436 		 * at 0x1f80, and then use these to mask the exception bits at 0x3f.
437 		 */
438 		unsigned short mxcsr = MXCSR_DEFAULT;
439 
440 		if (boot_cpu_has(X86_FEATURE_XMM))
441 			mxcsr = fpu->state.fxsave.mxcsr;
442 
443 		err = ~(mxcsr >> 7) & mxcsr;
444 	}
445 
446 	if (err & 0x001) {	/* Invalid op */
447 		/*
448 		 * swd & 0x240 == 0x040: Stack Underflow
449 		 * swd & 0x240 == 0x240: Stack Overflow
450 		 * User must clear the SF bit (0x40) if set
451 		 */
452 		return FPE_FLTINV;
453 	} else if (err & 0x004) { /* Divide by Zero */
454 		return FPE_FLTDIV;
455 	} else if (err & 0x008) { /* Overflow */
456 		return FPE_FLTOVF;
457 	} else if (err & 0x012) { /* Denormal, Underflow */
458 		return FPE_FLTUND;
459 	} else if (err & 0x020) { /* Precision */
460 		return FPE_FLTRES;
461 	}
462 
463 	/*
464 	 * If we're using IRQ 13, or supposedly even some trap
465 	 * X86_TRAP_MF implementations, it's possible
466 	 * we get a spurious trap, which is not an error.
467 	 */
468 	return 0;
469 }
470