xref: /openbmc/linux/arch/x86/kernel/e820.c (revision fd589a8f)
1 /*
2  * Handle the memory map.
3  * The functions here do the job until bootmem takes over.
4  *
5  *  Getting sanitize_e820_map() in sync with i386 version by applying change:
6  *  -  Provisions for empty E820 memory regions (reported by certain BIOSes).
7  *     Alex Achenbach <xela@slit.de>, December 2002.
8  *  Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
9  *
10  */
11 #include <linux/kernel.h>
12 #include <linux/types.h>
13 #include <linux/init.h>
14 #include <linux/bootmem.h>
15 #include <linux/ioport.h>
16 #include <linux/string.h>
17 #include <linux/kexec.h>
18 #include <linux/module.h>
19 #include <linux/mm.h>
20 #include <linux/pfn.h>
21 #include <linux/suspend.h>
22 #include <linux/firmware-map.h>
23 
24 #include <asm/pgtable.h>
25 #include <asm/page.h>
26 #include <asm/e820.h>
27 #include <asm/proto.h>
28 #include <asm/setup.h>
29 #include <asm/trampoline.h>
30 
31 /*
32  * The e820 map is the map that gets modified e.g. with command line parameters
33  * and that is also registered with modifications in the kernel resource tree
34  * with the iomem_resource as parent.
35  *
36  * The e820_saved is directly saved after the BIOS-provided memory map is
37  * copied. It doesn't get modified afterwards. It's registered for the
38  * /sys/firmware/memmap interface.
39  *
40  * That memory map is not modified and is used as base for kexec. The kexec'd
41  * kernel should get the same memory map as the firmware provides. Then the
42  * user can e.g. boot the original kernel with mem=1G while still booting the
43  * next kernel with full memory.
44  */
45 struct e820map e820;
46 struct e820map e820_saved;
47 
48 /* For PCI or other memory-mapped resources */
49 unsigned long pci_mem_start = 0xaeedbabe;
50 #ifdef CONFIG_PCI
51 EXPORT_SYMBOL(pci_mem_start);
52 #endif
53 
54 /*
55  * This function checks if any part of the range <start,end> is mapped
56  * with type.
57  */
58 int
59 e820_any_mapped(u64 start, u64 end, unsigned type)
60 {
61 	int i;
62 
63 	for (i = 0; i < e820.nr_map; i++) {
64 		struct e820entry *ei = &e820.map[i];
65 
66 		if (type && ei->type != type)
67 			continue;
68 		if (ei->addr >= end || ei->addr + ei->size <= start)
69 			continue;
70 		return 1;
71 	}
72 	return 0;
73 }
74 EXPORT_SYMBOL_GPL(e820_any_mapped);
75 
76 /*
77  * This function checks if the entire range <start,end> is mapped with type.
78  *
79  * Note: this function only works correct if the e820 table is sorted and
80  * not-overlapping, which is the case
81  */
82 int __init e820_all_mapped(u64 start, u64 end, unsigned type)
83 {
84 	int i;
85 
86 	for (i = 0; i < e820.nr_map; i++) {
87 		struct e820entry *ei = &e820.map[i];
88 
89 		if (type && ei->type != type)
90 			continue;
91 		/* is the region (part) in overlap with the current region ?*/
92 		if (ei->addr >= end || ei->addr + ei->size <= start)
93 			continue;
94 
95 		/* if the region is at the beginning of <start,end> we move
96 		 * start to the end of the region since it's ok until there
97 		 */
98 		if (ei->addr <= start)
99 			start = ei->addr + ei->size;
100 		/*
101 		 * if start is now at or beyond end, we're done, full
102 		 * coverage
103 		 */
104 		if (start >= end)
105 			return 1;
106 	}
107 	return 0;
108 }
109 
110 /*
111  * Add a memory region to the kernel e820 map.
112  */
113 static void __init __e820_add_region(struct e820map *e820x, u64 start, u64 size,
114 					 int type)
115 {
116 	int x = e820x->nr_map;
117 
118 	if (x >= ARRAY_SIZE(e820x->map)) {
119 		printk(KERN_ERR "Ooops! Too many entries in the memory map!\n");
120 		return;
121 	}
122 
123 	e820x->map[x].addr = start;
124 	e820x->map[x].size = size;
125 	e820x->map[x].type = type;
126 	e820x->nr_map++;
127 }
128 
129 void __init e820_add_region(u64 start, u64 size, int type)
130 {
131 	__e820_add_region(&e820, start, size, type);
132 }
133 
134 static void __init e820_print_type(u32 type)
135 {
136 	switch (type) {
137 	case E820_RAM:
138 	case E820_RESERVED_KERN:
139 		printk(KERN_CONT "(usable)");
140 		break;
141 	case E820_RESERVED:
142 		printk(KERN_CONT "(reserved)");
143 		break;
144 	case E820_ACPI:
145 		printk(KERN_CONT "(ACPI data)");
146 		break;
147 	case E820_NVS:
148 		printk(KERN_CONT "(ACPI NVS)");
149 		break;
150 	case E820_UNUSABLE:
151 		printk(KERN_CONT "(unusable)");
152 		break;
153 	default:
154 		printk(KERN_CONT "type %u", type);
155 		break;
156 	}
157 }
158 
159 void __init e820_print_map(char *who)
160 {
161 	int i;
162 
163 	for (i = 0; i < e820.nr_map; i++) {
164 		printk(KERN_INFO " %s: %016Lx - %016Lx ", who,
165 		       (unsigned long long) e820.map[i].addr,
166 		       (unsigned long long)
167 		       (e820.map[i].addr + e820.map[i].size));
168 		e820_print_type(e820.map[i].type);
169 		printk(KERN_CONT "\n");
170 	}
171 }
172 
173 /*
174  * Sanitize the BIOS e820 map.
175  *
176  * Some e820 responses include overlapping entries. The following
177  * replaces the original e820 map with a new one, removing overlaps,
178  * and resolving conflicting memory types in favor of highest
179  * numbered type.
180  *
181  * The input parameter biosmap points to an array of 'struct
182  * e820entry' which on entry has elements in the range [0, *pnr_map)
183  * valid, and which has space for up to max_nr_map entries.
184  * On return, the resulting sanitized e820 map entries will be in
185  * overwritten in the same location, starting at biosmap.
186  *
187  * The integer pointed to by pnr_map must be valid on entry (the
188  * current number of valid entries located at biosmap) and will
189  * be updated on return, with the new number of valid entries
190  * (something no more than max_nr_map.)
191  *
192  * The return value from sanitize_e820_map() is zero if it
193  * successfully 'sanitized' the map entries passed in, and is -1
194  * if it did nothing, which can happen if either of (1) it was
195  * only passed one map entry, or (2) any of the input map entries
196  * were invalid (start + size < start, meaning that the size was
197  * so big the described memory range wrapped around through zero.)
198  *
199  *	Visually we're performing the following
200  *	(1,2,3,4 = memory types)...
201  *
202  *	Sample memory map (w/overlaps):
203  *	   ____22__________________
204  *	   ______________________4_
205  *	   ____1111________________
206  *	   _44_____________________
207  *	   11111111________________
208  *	   ____________________33__
209  *	   ___________44___________
210  *	   __________33333_________
211  *	   ______________22________
212  *	   ___________________2222_
213  *	   _________111111111______
214  *	   _____________________11_
215  *	   _________________4______
216  *
217  *	Sanitized equivalent (no overlap):
218  *	   1_______________________
219  *	   _44_____________________
220  *	   ___1____________________
221  *	   ____22__________________
222  *	   ______11________________
223  *	   _________1______________
224  *	   __________3_____________
225  *	   ___________44___________
226  *	   _____________33_________
227  *	   _______________2________
228  *	   ________________1_______
229  *	   _________________4______
230  *	   ___________________2____
231  *	   ____________________33__
232  *	   ______________________4_
233  */
234 
235 int __init sanitize_e820_map(struct e820entry *biosmap, int max_nr_map,
236 			     u32 *pnr_map)
237 {
238 	struct change_member {
239 		struct e820entry *pbios; /* pointer to original bios entry */
240 		unsigned long long addr; /* address for this change point */
241 	};
242 	static struct change_member change_point_list[2*E820_X_MAX] __initdata;
243 	static struct change_member *change_point[2*E820_X_MAX] __initdata;
244 	static struct e820entry *overlap_list[E820_X_MAX] __initdata;
245 	static struct e820entry new_bios[E820_X_MAX] __initdata;
246 	struct change_member *change_tmp;
247 	unsigned long current_type, last_type;
248 	unsigned long long last_addr;
249 	int chgidx, still_changing;
250 	int overlap_entries;
251 	int new_bios_entry;
252 	int old_nr, new_nr, chg_nr;
253 	int i;
254 
255 	/* if there's only one memory region, don't bother */
256 	if (*pnr_map < 2)
257 		return -1;
258 
259 	old_nr = *pnr_map;
260 	BUG_ON(old_nr > max_nr_map);
261 
262 	/* bail out if we find any unreasonable addresses in bios map */
263 	for (i = 0; i < old_nr; i++)
264 		if (biosmap[i].addr + biosmap[i].size < biosmap[i].addr)
265 			return -1;
266 
267 	/* create pointers for initial change-point information (for sorting) */
268 	for (i = 0; i < 2 * old_nr; i++)
269 		change_point[i] = &change_point_list[i];
270 
271 	/* record all known change-points (starting and ending addresses),
272 	   omitting those that are for empty memory regions */
273 	chgidx = 0;
274 	for (i = 0; i < old_nr; i++)	{
275 		if (biosmap[i].size != 0) {
276 			change_point[chgidx]->addr = biosmap[i].addr;
277 			change_point[chgidx++]->pbios = &biosmap[i];
278 			change_point[chgidx]->addr = biosmap[i].addr +
279 				biosmap[i].size;
280 			change_point[chgidx++]->pbios = &biosmap[i];
281 		}
282 	}
283 	chg_nr = chgidx;
284 
285 	/* sort change-point list by memory addresses (low -> high) */
286 	still_changing = 1;
287 	while (still_changing)	{
288 		still_changing = 0;
289 		for (i = 1; i < chg_nr; i++)  {
290 			unsigned long long curaddr, lastaddr;
291 			unsigned long long curpbaddr, lastpbaddr;
292 
293 			curaddr = change_point[i]->addr;
294 			lastaddr = change_point[i - 1]->addr;
295 			curpbaddr = change_point[i]->pbios->addr;
296 			lastpbaddr = change_point[i - 1]->pbios->addr;
297 
298 			/*
299 			 * swap entries, when:
300 			 *
301 			 * curaddr > lastaddr or
302 			 * curaddr == lastaddr and curaddr == curpbaddr and
303 			 * lastaddr != lastpbaddr
304 			 */
305 			if (curaddr < lastaddr ||
306 			    (curaddr == lastaddr && curaddr == curpbaddr &&
307 			     lastaddr != lastpbaddr)) {
308 				change_tmp = change_point[i];
309 				change_point[i] = change_point[i-1];
310 				change_point[i-1] = change_tmp;
311 				still_changing = 1;
312 			}
313 		}
314 	}
315 
316 	/* create a new bios memory map, removing overlaps */
317 	overlap_entries = 0;	 /* number of entries in the overlap table */
318 	new_bios_entry = 0;	 /* index for creating new bios map entries */
319 	last_type = 0;		 /* start with undefined memory type */
320 	last_addr = 0;		 /* start with 0 as last starting address */
321 
322 	/* loop through change-points, determining affect on the new bios map */
323 	for (chgidx = 0; chgidx < chg_nr; chgidx++) {
324 		/* keep track of all overlapping bios entries */
325 		if (change_point[chgidx]->addr ==
326 		    change_point[chgidx]->pbios->addr) {
327 			/*
328 			 * add map entry to overlap list (> 1 entry
329 			 * implies an overlap)
330 			 */
331 			overlap_list[overlap_entries++] =
332 				change_point[chgidx]->pbios;
333 		} else {
334 			/*
335 			 * remove entry from list (order independent,
336 			 * so swap with last)
337 			 */
338 			for (i = 0; i < overlap_entries; i++) {
339 				if (overlap_list[i] ==
340 				    change_point[chgidx]->pbios)
341 					overlap_list[i] =
342 						overlap_list[overlap_entries-1];
343 			}
344 			overlap_entries--;
345 		}
346 		/*
347 		 * if there are overlapping entries, decide which
348 		 * "type" to use (larger value takes precedence --
349 		 * 1=usable, 2,3,4,4+=unusable)
350 		 */
351 		current_type = 0;
352 		for (i = 0; i < overlap_entries; i++)
353 			if (overlap_list[i]->type > current_type)
354 				current_type = overlap_list[i]->type;
355 		/*
356 		 * continue building up new bios map based on this
357 		 * information
358 		 */
359 		if (current_type != last_type)	{
360 			if (last_type != 0)	 {
361 				new_bios[new_bios_entry].size =
362 					change_point[chgidx]->addr - last_addr;
363 				/*
364 				 * move forward only if the new size
365 				 * was non-zero
366 				 */
367 				if (new_bios[new_bios_entry].size != 0)
368 					/*
369 					 * no more space left for new
370 					 * bios entries ?
371 					 */
372 					if (++new_bios_entry >= max_nr_map)
373 						break;
374 			}
375 			if (current_type != 0)	{
376 				new_bios[new_bios_entry].addr =
377 					change_point[chgidx]->addr;
378 				new_bios[new_bios_entry].type = current_type;
379 				last_addr = change_point[chgidx]->addr;
380 			}
381 			last_type = current_type;
382 		}
383 	}
384 	/* retain count for new bios entries */
385 	new_nr = new_bios_entry;
386 
387 	/* copy new bios mapping into original location */
388 	memcpy(biosmap, new_bios, new_nr * sizeof(struct e820entry));
389 	*pnr_map = new_nr;
390 
391 	return 0;
392 }
393 
394 static int __init __append_e820_map(struct e820entry *biosmap, int nr_map)
395 {
396 	while (nr_map) {
397 		u64 start = biosmap->addr;
398 		u64 size = biosmap->size;
399 		u64 end = start + size;
400 		u32 type = biosmap->type;
401 
402 		/* Overflow in 64 bits? Ignore the memory map. */
403 		if (start > end)
404 			return -1;
405 
406 		e820_add_region(start, size, type);
407 
408 		biosmap++;
409 		nr_map--;
410 	}
411 	return 0;
412 }
413 
414 /*
415  * Copy the BIOS e820 map into a safe place.
416  *
417  * Sanity-check it while we're at it..
418  *
419  * If we're lucky and live on a modern system, the setup code
420  * will have given us a memory map that we can use to properly
421  * set up memory.  If we aren't, we'll fake a memory map.
422  */
423 static int __init append_e820_map(struct e820entry *biosmap, int nr_map)
424 {
425 	/* Only one memory region (or negative)? Ignore it */
426 	if (nr_map < 2)
427 		return -1;
428 
429 	return __append_e820_map(biosmap, nr_map);
430 }
431 
432 static u64 __init __e820_update_range(struct e820map *e820x, u64 start,
433 					u64 size, unsigned old_type,
434 					unsigned new_type)
435 {
436 	u64 end;
437 	unsigned int i;
438 	u64 real_updated_size = 0;
439 
440 	BUG_ON(old_type == new_type);
441 
442 	if (size > (ULLONG_MAX - start))
443 		size = ULLONG_MAX - start;
444 
445 	end = start + size;
446 	printk(KERN_DEBUG "e820 update range: %016Lx - %016Lx ",
447 		       (unsigned long long) start,
448 		       (unsigned long long) end);
449 	e820_print_type(old_type);
450 	printk(KERN_CONT " ==> ");
451 	e820_print_type(new_type);
452 	printk(KERN_CONT "\n");
453 
454 	for (i = 0; i < e820x->nr_map; i++) {
455 		struct e820entry *ei = &e820x->map[i];
456 		u64 final_start, final_end;
457 		u64 ei_end;
458 
459 		if (ei->type != old_type)
460 			continue;
461 
462 		ei_end = ei->addr + ei->size;
463 		/* totally covered by new range? */
464 		if (ei->addr >= start && ei_end <= end) {
465 			ei->type = new_type;
466 			real_updated_size += ei->size;
467 			continue;
468 		}
469 
470 		/* new range is totally covered? */
471 		if (ei->addr < start && ei_end > end) {
472 			__e820_add_region(e820x, start, size, new_type);
473 			__e820_add_region(e820x, end, ei_end - end, ei->type);
474 			ei->size = start - ei->addr;
475 			real_updated_size += size;
476 			continue;
477 		}
478 
479 		/* partially covered */
480 		final_start = max(start, ei->addr);
481 		final_end = min(end, ei_end);
482 		if (final_start >= final_end)
483 			continue;
484 
485 		__e820_add_region(e820x, final_start, final_end - final_start,
486 				  new_type);
487 
488 		real_updated_size += final_end - final_start;
489 
490 		/*
491 		 * left range could be head or tail, so need to update
492 		 * size at first.
493 		 */
494 		ei->size -= final_end - final_start;
495 		if (ei->addr < final_start)
496 			continue;
497 		ei->addr = final_end;
498 	}
499 	return real_updated_size;
500 }
501 
502 u64 __init e820_update_range(u64 start, u64 size, unsigned old_type,
503 			     unsigned new_type)
504 {
505 	return __e820_update_range(&e820, start, size, old_type, new_type);
506 }
507 
508 static u64 __init e820_update_range_saved(u64 start, u64 size,
509 					  unsigned old_type, unsigned new_type)
510 {
511 	return __e820_update_range(&e820_saved, start, size, old_type,
512 				     new_type);
513 }
514 
515 /* make e820 not cover the range */
516 u64 __init e820_remove_range(u64 start, u64 size, unsigned old_type,
517 			     int checktype)
518 {
519 	int i;
520 	u64 real_removed_size = 0;
521 
522 	if (size > (ULLONG_MAX - start))
523 		size = ULLONG_MAX - start;
524 
525 	for (i = 0; i < e820.nr_map; i++) {
526 		struct e820entry *ei = &e820.map[i];
527 		u64 final_start, final_end;
528 
529 		if (checktype && ei->type != old_type)
530 			continue;
531 		/* totally covered? */
532 		if (ei->addr >= start &&
533 		    (ei->addr + ei->size) <= (start + size)) {
534 			real_removed_size += ei->size;
535 			memset(ei, 0, sizeof(struct e820entry));
536 			continue;
537 		}
538 		/* partially covered */
539 		final_start = max(start, ei->addr);
540 		final_end = min(start + size, ei->addr + ei->size);
541 		if (final_start >= final_end)
542 			continue;
543 		real_removed_size += final_end - final_start;
544 
545 		ei->size -= final_end - final_start;
546 		if (ei->addr < final_start)
547 			continue;
548 		ei->addr = final_end;
549 	}
550 	return real_removed_size;
551 }
552 
553 void __init update_e820(void)
554 {
555 	u32 nr_map;
556 
557 	nr_map = e820.nr_map;
558 	if (sanitize_e820_map(e820.map, ARRAY_SIZE(e820.map), &nr_map))
559 		return;
560 	e820.nr_map = nr_map;
561 	printk(KERN_INFO "modified physical RAM map:\n");
562 	e820_print_map("modified");
563 }
564 static void __init update_e820_saved(void)
565 {
566 	u32 nr_map;
567 
568 	nr_map = e820_saved.nr_map;
569 	if (sanitize_e820_map(e820_saved.map, ARRAY_SIZE(e820_saved.map), &nr_map))
570 		return;
571 	e820_saved.nr_map = nr_map;
572 }
573 #define MAX_GAP_END 0x100000000ull
574 /*
575  * Search for a gap in the e820 memory space from start_addr to end_addr.
576  */
577 __init int e820_search_gap(unsigned long *gapstart, unsigned long *gapsize,
578 		unsigned long start_addr, unsigned long long end_addr)
579 {
580 	unsigned long long last;
581 	int i = e820.nr_map;
582 	int found = 0;
583 
584 	last = (end_addr && end_addr < MAX_GAP_END) ? end_addr : MAX_GAP_END;
585 
586 	while (--i >= 0) {
587 		unsigned long long start = e820.map[i].addr;
588 		unsigned long long end = start + e820.map[i].size;
589 
590 		if (end < start_addr)
591 			continue;
592 
593 		/*
594 		 * Since "last" is at most 4GB, we know we'll
595 		 * fit in 32 bits if this condition is true
596 		 */
597 		if (last > end) {
598 			unsigned long gap = last - end;
599 
600 			if (gap >= *gapsize) {
601 				*gapsize = gap;
602 				*gapstart = end;
603 				found = 1;
604 			}
605 		}
606 		if (start < last)
607 			last = start;
608 	}
609 	return found;
610 }
611 
612 /*
613  * Search for the biggest gap in the low 32 bits of the e820
614  * memory space.  We pass this space to PCI to assign MMIO resources
615  * for hotplug or unconfigured devices in.
616  * Hopefully the BIOS let enough space left.
617  */
618 __init void e820_setup_gap(void)
619 {
620 	unsigned long gapstart, gapsize;
621 	int found;
622 
623 	gapstart = 0x10000000;
624 	gapsize = 0x400000;
625 	found  = e820_search_gap(&gapstart, &gapsize, 0, MAX_GAP_END);
626 
627 #ifdef CONFIG_X86_64
628 	if (!found) {
629 		gapstart = (max_pfn << PAGE_SHIFT) + 1024*1024;
630 		printk(KERN_ERR
631 	"PCI: Warning: Cannot find a gap in the 32bit address range\n"
632 	"PCI: Unassigned devices with 32bit resource registers may break!\n");
633 	}
634 #endif
635 
636 	/*
637 	 * e820_reserve_resources_late protect stolen RAM already
638 	 */
639 	pci_mem_start = gapstart;
640 
641 	printk(KERN_INFO
642 	       "Allocating PCI resources starting at %lx (gap: %lx:%lx)\n",
643 	       pci_mem_start, gapstart, gapsize);
644 }
645 
646 /**
647  * Because of the size limitation of struct boot_params, only first
648  * 128 E820 memory entries are passed to kernel via
649  * boot_params.e820_map, others are passed via SETUP_E820_EXT node of
650  * linked list of struct setup_data, which is parsed here.
651  */
652 void __init parse_e820_ext(struct setup_data *sdata, unsigned long pa_data)
653 {
654 	u32 map_len;
655 	int entries;
656 	struct e820entry *extmap;
657 
658 	entries = sdata->len / sizeof(struct e820entry);
659 	map_len = sdata->len + sizeof(struct setup_data);
660 	if (map_len > PAGE_SIZE)
661 		sdata = early_ioremap(pa_data, map_len);
662 	extmap = (struct e820entry *)(sdata->data);
663 	__append_e820_map(extmap, entries);
664 	sanitize_e820_map(e820.map, ARRAY_SIZE(e820.map), &e820.nr_map);
665 	if (map_len > PAGE_SIZE)
666 		early_iounmap(sdata, map_len);
667 	printk(KERN_INFO "extended physical RAM map:\n");
668 	e820_print_map("extended");
669 }
670 
671 #if defined(CONFIG_X86_64) || \
672 	(defined(CONFIG_X86_32) && defined(CONFIG_HIBERNATION))
673 /**
674  * Find the ranges of physical addresses that do not correspond to
675  * e820 RAM areas and mark the corresponding pages as nosave for
676  * hibernation (32 bit) or software suspend and suspend to RAM (64 bit).
677  *
678  * This function requires the e820 map to be sorted and without any
679  * overlapping entries and assumes the first e820 area to be RAM.
680  */
681 void __init e820_mark_nosave_regions(unsigned long limit_pfn)
682 {
683 	int i;
684 	unsigned long pfn;
685 
686 	pfn = PFN_DOWN(e820.map[0].addr + e820.map[0].size);
687 	for (i = 1; i < e820.nr_map; i++) {
688 		struct e820entry *ei = &e820.map[i];
689 
690 		if (pfn < PFN_UP(ei->addr))
691 			register_nosave_region(pfn, PFN_UP(ei->addr));
692 
693 		pfn = PFN_DOWN(ei->addr + ei->size);
694 		if (ei->type != E820_RAM && ei->type != E820_RESERVED_KERN)
695 			register_nosave_region(PFN_UP(ei->addr), pfn);
696 
697 		if (pfn >= limit_pfn)
698 			break;
699 	}
700 }
701 #endif
702 
703 #ifdef CONFIG_HIBERNATION
704 /**
705  * Mark ACPI NVS memory region, so that we can save/restore it during
706  * hibernation and the subsequent resume.
707  */
708 static int __init e820_mark_nvs_memory(void)
709 {
710 	int i;
711 
712 	for (i = 0; i < e820.nr_map; i++) {
713 		struct e820entry *ei = &e820.map[i];
714 
715 		if (ei->type == E820_NVS)
716 			hibernate_nvs_register(ei->addr, ei->size);
717 	}
718 
719 	return 0;
720 }
721 core_initcall(e820_mark_nvs_memory);
722 #endif
723 
724 /*
725  * Early reserved memory areas.
726  */
727 #define MAX_EARLY_RES 20
728 
729 struct early_res {
730 	u64 start, end;
731 	char name[16];
732 	char overlap_ok;
733 };
734 static struct early_res early_res[MAX_EARLY_RES] __initdata = {
735 	{ 0, PAGE_SIZE, "BIOS data page" },	/* BIOS data page */
736 	{}
737 };
738 
739 static int __init find_overlapped_early(u64 start, u64 end)
740 {
741 	int i;
742 	struct early_res *r;
743 
744 	for (i = 0; i < MAX_EARLY_RES && early_res[i].end; i++) {
745 		r = &early_res[i];
746 		if (end > r->start && start < r->end)
747 			break;
748 	}
749 
750 	return i;
751 }
752 
753 /*
754  * Drop the i-th range from the early reservation map,
755  * by copying any higher ranges down one over it, and
756  * clearing what had been the last slot.
757  */
758 static void __init drop_range(int i)
759 {
760 	int j;
761 
762 	for (j = i + 1; j < MAX_EARLY_RES && early_res[j].end; j++)
763 		;
764 
765 	memmove(&early_res[i], &early_res[i + 1],
766 	       (j - 1 - i) * sizeof(struct early_res));
767 
768 	early_res[j - 1].end = 0;
769 }
770 
771 /*
772  * Split any existing ranges that:
773  *  1) are marked 'overlap_ok', and
774  *  2) overlap with the stated range [start, end)
775  * into whatever portion (if any) of the existing range is entirely
776  * below or entirely above the stated range.  Drop the portion
777  * of the existing range that overlaps with the stated range,
778  * which will allow the caller of this routine to then add that
779  * stated range without conflicting with any existing range.
780  */
781 static void __init drop_overlaps_that_are_ok(u64 start, u64 end)
782 {
783 	int i;
784 	struct early_res *r;
785 	u64 lower_start, lower_end;
786 	u64 upper_start, upper_end;
787 	char name[16];
788 
789 	for (i = 0; i < MAX_EARLY_RES && early_res[i].end; i++) {
790 		r = &early_res[i];
791 
792 		/* Continue past non-overlapping ranges */
793 		if (end <= r->start || start >= r->end)
794 			continue;
795 
796 		/*
797 		 * Leave non-ok overlaps as is; let caller
798 		 * panic "Overlapping early reservations"
799 		 * when it hits this overlap.
800 		 */
801 		if (!r->overlap_ok)
802 			return;
803 
804 		/*
805 		 * We have an ok overlap.  We will drop it from the early
806 		 * reservation map, and add back in any non-overlapping
807 		 * portions (lower or upper) as separate, overlap_ok,
808 		 * non-overlapping ranges.
809 		 */
810 
811 		/* 1. Note any non-overlapping (lower or upper) ranges. */
812 		strncpy(name, r->name, sizeof(name) - 1);
813 
814 		lower_start = lower_end = 0;
815 		upper_start = upper_end = 0;
816 		if (r->start < start) {
817 		 	lower_start = r->start;
818 			lower_end = start;
819 		}
820 		if (r->end > end) {
821 			upper_start = end;
822 			upper_end = r->end;
823 		}
824 
825 		/* 2. Drop the original ok overlapping range */
826 		drop_range(i);
827 
828 		i--;		/* resume for-loop on copied down entry */
829 
830 		/* 3. Add back in any non-overlapping ranges. */
831 		if (lower_end)
832 			reserve_early_overlap_ok(lower_start, lower_end, name);
833 		if (upper_end)
834 			reserve_early_overlap_ok(upper_start, upper_end, name);
835 	}
836 }
837 
838 static void __init __reserve_early(u64 start, u64 end, char *name,
839 						int overlap_ok)
840 {
841 	int i;
842 	struct early_res *r;
843 
844 	i = find_overlapped_early(start, end);
845 	if (i >= MAX_EARLY_RES)
846 		panic("Too many early reservations");
847 	r = &early_res[i];
848 	if (r->end)
849 		panic("Overlapping early reservations "
850 		      "%llx-%llx %s to %llx-%llx %s\n",
851 		      start, end - 1, name?name:"", r->start,
852 		      r->end - 1, r->name);
853 	r->start = start;
854 	r->end = end;
855 	r->overlap_ok = overlap_ok;
856 	if (name)
857 		strncpy(r->name, name, sizeof(r->name) - 1);
858 }
859 
860 /*
861  * A few early reservtations come here.
862  *
863  * The 'overlap_ok' in the name of this routine does -not- mean it
864  * is ok for these reservations to overlap an earlier reservation.
865  * Rather it means that it is ok for subsequent reservations to
866  * overlap this one.
867  *
868  * Use this entry point to reserve early ranges when you are doing
869  * so out of "Paranoia", reserving perhaps more memory than you need,
870  * just in case, and don't mind a subsequent overlapping reservation
871  * that is known to be needed.
872  *
873  * The drop_overlaps_that_are_ok() call here isn't really needed.
874  * It would be needed if we had two colliding 'overlap_ok'
875  * reservations, so that the second such would not panic on the
876  * overlap with the first.  We don't have any such as of this
877  * writing, but might as well tolerate such if it happens in
878  * the future.
879  */
880 void __init reserve_early_overlap_ok(u64 start, u64 end, char *name)
881 {
882 	drop_overlaps_that_are_ok(start, end);
883 	__reserve_early(start, end, name, 1);
884 }
885 
886 /*
887  * Most early reservations come here.
888  *
889  * We first have drop_overlaps_that_are_ok() drop any pre-existing
890  * 'overlap_ok' ranges, so that we can then reserve this memory
891  * range without risk of panic'ing on an overlapping overlap_ok
892  * early reservation.
893  */
894 void __init reserve_early(u64 start, u64 end, char *name)
895 {
896 	if (start >= end)
897 		return;
898 
899 	drop_overlaps_that_are_ok(start, end);
900 	__reserve_early(start, end, name, 0);
901 }
902 
903 void __init free_early(u64 start, u64 end)
904 {
905 	struct early_res *r;
906 	int i;
907 
908 	i = find_overlapped_early(start, end);
909 	r = &early_res[i];
910 	if (i >= MAX_EARLY_RES || r->end != end || r->start != start)
911 		panic("free_early on not reserved area: %llx-%llx!",
912 			 start, end - 1);
913 
914 	drop_range(i);
915 }
916 
917 void __init early_res_to_bootmem(u64 start, u64 end)
918 {
919 	int i, count;
920 	u64 final_start, final_end;
921 
922 	count  = 0;
923 	for (i = 0; i < MAX_EARLY_RES && early_res[i].end; i++)
924 		count++;
925 
926 	printk(KERN_INFO "(%d early reservations) ==> bootmem [%010llx - %010llx]\n",
927 			 count, start, end);
928 	for (i = 0; i < count; i++) {
929 		struct early_res *r = &early_res[i];
930 		printk(KERN_INFO "  #%d [%010llx - %010llx] %16s", i,
931 			r->start, r->end, r->name);
932 		final_start = max(start, r->start);
933 		final_end = min(end, r->end);
934 		if (final_start >= final_end) {
935 			printk(KERN_CONT "\n");
936 			continue;
937 		}
938 		printk(KERN_CONT " ==> [%010llx - %010llx]\n",
939 			final_start, final_end);
940 		reserve_bootmem_generic(final_start, final_end - final_start,
941 				BOOTMEM_DEFAULT);
942 	}
943 }
944 
945 /* Check for already reserved areas */
946 static inline int __init bad_addr(u64 *addrp, u64 size, u64 align)
947 {
948 	int i;
949 	u64 addr = *addrp;
950 	int changed = 0;
951 	struct early_res *r;
952 again:
953 	i = find_overlapped_early(addr, addr + size);
954 	r = &early_res[i];
955 	if (i < MAX_EARLY_RES && r->end) {
956 		*addrp = addr = round_up(r->end, align);
957 		changed = 1;
958 		goto again;
959 	}
960 	return changed;
961 }
962 
963 /* Check for already reserved areas */
964 static inline int __init bad_addr_size(u64 *addrp, u64 *sizep, u64 align)
965 {
966 	int i;
967 	u64 addr = *addrp, last;
968 	u64 size = *sizep;
969 	int changed = 0;
970 again:
971 	last = addr + size;
972 	for (i = 0; i < MAX_EARLY_RES && early_res[i].end; i++) {
973 		struct early_res *r = &early_res[i];
974 		if (last > r->start && addr < r->start) {
975 			size = r->start - addr;
976 			changed = 1;
977 			goto again;
978 		}
979 		if (last > r->end && addr < r->end) {
980 			addr = round_up(r->end, align);
981 			size = last - addr;
982 			changed = 1;
983 			goto again;
984 		}
985 		if (last <= r->end && addr >= r->start) {
986 			(*sizep)++;
987 			return 0;
988 		}
989 	}
990 	if (changed) {
991 		*addrp = addr;
992 		*sizep = size;
993 	}
994 	return changed;
995 }
996 
997 /*
998  * Find a free area with specified alignment in a specific range.
999  */
1000 u64 __init find_e820_area(u64 start, u64 end, u64 size, u64 align)
1001 {
1002 	int i;
1003 
1004 	for (i = 0; i < e820.nr_map; i++) {
1005 		struct e820entry *ei = &e820.map[i];
1006 		u64 addr, last;
1007 		u64 ei_last;
1008 
1009 		if (ei->type != E820_RAM)
1010 			continue;
1011 		addr = round_up(ei->addr, align);
1012 		ei_last = ei->addr + ei->size;
1013 		if (addr < start)
1014 			addr = round_up(start, align);
1015 		if (addr >= ei_last)
1016 			continue;
1017 		while (bad_addr(&addr, size, align) && addr+size <= ei_last)
1018 			;
1019 		last = addr + size;
1020 		if (last > ei_last)
1021 			continue;
1022 		if (last > end)
1023 			continue;
1024 		return addr;
1025 	}
1026 	return -1ULL;
1027 }
1028 
1029 /*
1030  * Find next free range after *start
1031  */
1032 u64 __init find_e820_area_size(u64 start, u64 *sizep, u64 align)
1033 {
1034 	int i;
1035 
1036 	for (i = 0; i < e820.nr_map; i++) {
1037 		struct e820entry *ei = &e820.map[i];
1038 		u64 addr, last;
1039 		u64 ei_last;
1040 
1041 		if (ei->type != E820_RAM)
1042 			continue;
1043 		addr = round_up(ei->addr, align);
1044 		ei_last = ei->addr + ei->size;
1045 		if (addr < start)
1046 			addr = round_up(start, align);
1047 		if (addr >= ei_last)
1048 			continue;
1049 		*sizep = ei_last - addr;
1050 		while (bad_addr_size(&addr, sizep, align) &&
1051 			addr + *sizep <= ei_last)
1052 			;
1053 		last = addr + *sizep;
1054 		if (last > ei_last)
1055 			continue;
1056 		return addr;
1057 	}
1058 
1059 	return -1ULL;
1060 }
1061 
1062 /*
1063  * pre allocated 4k and reserved it in e820
1064  */
1065 u64 __init early_reserve_e820(u64 startt, u64 sizet, u64 align)
1066 {
1067 	u64 size = 0;
1068 	u64 addr;
1069 	u64 start;
1070 
1071 	for (start = startt; ; start += size) {
1072 		start = find_e820_area_size(start, &size, align);
1073 		if (!(start + 1))
1074 			return 0;
1075 		if (size >= sizet)
1076 			break;
1077 	}
1078 
1079 #ifdef CONFIG_X86_32
1080 	if (start >= MAXMEM)
1081 		return 0;
1082 	if (start + size > MAXMEM)
1083 		size = MAXMEM - start;
1084 #endif
1085 
1086 	addr = round_down(start + size - sizet, align);
1087 	if (addr < start)
1088 		return 0;
1089 	e820_update_range(addr, sizet, E820_RAM, E820_RESERVED);
1090 	e820_update_range_saved(addr, sizet, E820_RAM, E820_RESERVED);
1091 	printk(KERN_INFO "update e820 for early_reserve_e820\n");
1092 	update_e820();
1093 	update_e820_saved();
1094 
1095 	return addr;
1096 }
1097 
1098 #ifdef CONFIG_X86_32
1099 # ifdef CONFIG_X86_PAE
1100 #  define MAX_ARCH_PFN		(1ULL<<(36-PAGE_SHIFT))
1101 # else
1102 #  define MAX_ARCH_PFN		(1ULL<<(32-PAGE_SHIFT))
1103 # endif
1104 #else /* CONFIG_X86_32 */
1105 # define MAX_ARCH_PFN MAXMEM>>PAGE_SHIFT
1106 #endif
1107 
1108 /*
1109  * Find the highest page frame number we have available
1110  */
1111 static unsigned long __init e820_end_pfn(unsigned long limit_pfn, unsigned type)
1112 {
1113 	int i;
1114 	unsigned long last_pfn = 0;
1115 	unsigned long max_arch_pfn = MAX_ARCH_PFN;
1116 
1117 	for (i = 0; i < e820.nr_map; i++) {
1118 		struct e820entry *ei = &e820.map[i];
1119 		unsigned long start_pfn;
1120 		unsigned long end_pfn;
1121 
1122 		if (ei->type != type)
1123 			continue;
1124 
1125 		start_pfn = ei->addr >> PAGE_SHIFT;
1126 		end_pfn = (ei->addr + ei->size) >> PAGE_SHIFT;
1127 
1128 		if (start_pfn >= limit_pfn)
1129 			continue;
1130 		if (end_pfn > limit_pfn) {
1131 			last_pfn = limit_pfn;
1132 			break;
1133 		}
1134 		if (end_pfn > last_pfn)
1135 			last_pfn = end_pfn;
1136 	}
1137 
1138 	if (last_pfn > max_arch_pfn)
1139 		last_pfn = max_arch_pfn;
1140 
1141 	printk(KERN_INFO "last_pfn = %#lx max_arch_pfn = %#lx\n",
1142 			 last_pfn, max_arch_pfn);
1143 	return last_pfn;
1144 }
1145 unsigned long __init e820_end_of_ram_pfn(void)
1146 {
1147 	return e820_end_pfn(MAX_ARCH_PFN, E820_RAM);
1148 }
1149 
1150 unsigned long __init e820_end_of_low_ram_pfn(void)
1151 {
1152 	return e820_end_pfn(1UL<<(32 - PAGE_SHIFT), E820_RAM);
1153 }
1154 /*
1155  * Finds an active region in the address range from start_pfn to last_pfn and
1156  * returns its range in ei_startpfn and ei_endpfn for the e820 entry.
1157  */
1158 int __init e820_find_active_region(const struct e820entry *ei,
1159 				  unsigned long start_pfn,
1160 				  unsigned long last_pfn,
1161 				  unsigned long *ei_startpfn,
1162 				  unsigned long *ei_endpfn)
1163 {
1164 	u64 align = PAGE_SIZE;
1165 
1166 	*ei_startpfn = round_up(ei->addr, align) >> PAGE_SHIFT;
1167 	*ei_endpfn = round_down(ei->addr + ei->size, align) >> PAGE_SHIFT;
1168 
1169 	/* Skip map entries smaller than a page */
1170 	if (*ei_startpfn >= *ei_endpfn)
1171 		return 0;
1172 
1173 	/* Skip if map is outside the node */
1174 	if (ei->type != E820_RAM || *ei_endpfn <= start_pfn ||
1175 				    *ei_startpfn >= last_pfn)
1176 		return 0;
1177 
1178 	/* Check for overlaps */
1179 	if (*ei_startpfn < start_pfn)
1180 		*ei_startpfn = start_pfn;
1181 	if (*ei_endpfn > last_pfn)
1182 		*ei_endpfn = last_pfn;
1183 
1184 	return 1;
1185 }
1186 
1187 /* Walk the e820 map and register active regions within a node */
1188 void __init e820_register_active_regions(int nid, unsigned long start_pfn,
1189 					 unsigned long last_pfn)
1190 {
1191 	unsigned long ei_startpfn;
1192 	unsigned long ei_endpfn;
1193 	int i;
1194 
1195 	for (i = 0; i < e820.nr_map; i++)
1196 		if (e820_find_active_region(&e820.map[i],
1197 					    start_pfn, last_pfn,
1198 					    &ei_startpfn, &ei_endpfn))
1199 			add_active_range(nid, ei_startpfn, ei_endpfn);
1200 }
1201 
1202 /*
1203  * Find the hole size (in bytes) in the memory range.
1204  * @start: starting address of the memory range to scan
1205  * @end: ending address of the memory range to scan
1206  */
1207 u64 __init e820_hole_size(u64 start, u64 end)
1208 {
1209 	unsigned long start_pfn = start >> PAGE_SHIFT;
1210 	unsigned long last_pfn = end >> PAGE_SHIFT;
1211 	unsigned long ei_startpfn, ei_endpfn, ram = 0;
1212 	int i;
1213 
1214 	for (i = 0; i < e820.nr_map; i++) {
1215 		if (e820_find_active_region(&e820.map[i],
1216 					    start_pfn, last_pfn,
1217 					    &ei_startpfn, &ei_endpfn))
1218 			ram += ei_endpfn - ei_startpfn;
1219 	}
1220 	return end - start - ((u64)ram << PAGE_SHIFT);
1221 }
1222 
1223 static void early_panic(char *msg)
1224 {
1225 	early_printk(msg);
1226 	panic(msg);
1227 }
1228 
1229 static int userdef __initdata;
1230 
1231 /* "mem=nopentium" disables the 4MB page tables. */
1232 static int __init parse_memopt(char *p)
1233 {
1234 	u64 mem_size;
1235 
1236 	if (!p)
1237 		return -EINVAL;
1238 
1239 #ifdef CONFIG_X86_32
1240 	if (!strcmp(p, "nopentium")) {
1241 		setup_clear_cpu_cap(X86_FEATURE_PSE);
1242 		return 0;
1243 	}
1244 #endif
1245 
1246 	userdef = 1;
1247 	mem_size = memparse(p, &p);
1248 	e820_remove_range(mem_size, ULLONG_MAX - mem_size, E820_RAM, 1);
1249 
1250 	return 0;
1251 }
1252 early_param("mem", parse_memopt);
1253 
1254 static int __init parse_memmap_opt(char *p)
1255 {
1256 	char *oldp;
1257 	u64 start_at, mem_size;
1258 
1259 	if (!p)
1260 		return -EINVAL;
1261 
1262 	if (!strncmp(p, "exactmap", 8)) {
1263 #ifdef CONFIG_CRASH_DUMP
1264 		/*
1265 		 * If we are doing a crash dump, we still need to know
1266 		 * the real mem size before original memory map is
1267 		 * reset.
1268 		 */
1269 		saved_max_pfn = e820_end_of_ram_pfn();
1270 #endif
1271 		e820.nr_map = 0;
1272 		userdef = 1;
1273 		return 0;
1274 	}
1275 
1276 	oldp = p;
1277 	mem_size = memparse(p, &p);
1278 	if (p == oldp)
1279 		return -EINVAL;
1280 
1281 	userdef = 1;
1282 	if (*p == '@') {
1283 		start_at = memparse(p+1, &p);
1284 		e820_add_region(start_at, mem_size, E820_RAM);
1285 	} else if (*p == '#') {
1286 		start_at = memparse(p+1, &p);
1287 		e820_add_region(start_at, mem_size, E820_ACPI);
1288 	} else if (*p == '$') {
1289 		start_at = memparse(p+1, &p);
1290 		e820_add_region(start_at, mem_size, E820_RESERVED);
1291 	} else
1292 		e820_remove_range(mem_size, ULLONG_MAX - mem_size, E820_RAM, 1);
1293 
1294 	return *p == '\0' ? 0 : -EINVAL;
1295 }
1296 early_param("memmap", parse_memmap_opt);
1297 
1298 void __init finish_e820_parsing(void)
1299 {
1300 	if (userdef) {
1301 		u32 nr = e820.nr_map;
1302 
1303 		if (sanitize_e820_map(e820.map, ARRAY_SIZE(e820.map), &nr) < 0)
1304 			early_panic("Invalid user supplied memory map");
1305 		e820.nr_map = nr;
1306 
1307 		printk(KERN_INFO "user-defined physical RAM map:\n");
1308 		e820_print_map("user");
1309 	}
1310 }
1311 
1312 static inline const char *e820_type_to_string(int e820_type)
1313 {
1314 	switch (e820_type) {
1315 	case E820_RESERVED_KERN:
1316 	case E820_RAM:	return "System RAM";
1317 	case E820_ACPI:	return "ACPI Tables";
1318 	case E820_NVS:	return "ACPI Non-volatile Storage";
1319 	case E820_UNUSABLE:	return "Unusable memory";
1320 	default:	return "reserved";
1321 	}
1322 }
1323 
1324 /*
1325  * Mark e820 reserved areas as busy for the resource manager.
1326  */
1327 static struct resource __initdata *e820_res;
1328 void __init e820_reserve_resources(void)
1329 {
1330 	int i;
1331 	struct resource *res;
1332 	u64 end;
1333 
1334 	res = alloc_bootmem_low(sizeof(struct resource) * e820.nr_map);
1335 	e820_res = res;
1336 	for (i = 0; i < e820.nr_map; i++) {
1337 		end = e820.map[i].addr + e820.map[i].size - 1;
1338 		if (end != (resource_size_t)end) {
1339 			res++;
1340 			continue;
1341 		}
1342 		res->name = e820_type_to_string(e820.map[i].type);
1343 		res->start = e820.map[i].addr;
1344 		res->end = end;
1345 
1346 		res->flags = IORESOURCE_MEM;
1347 
1348 		/*
1349 		 * don't register the region that could be conflicted with
1350 		 * pci device BAR resource and insert them later in
1351 		 * pcibios_resource_survey()
1352 		 */
1353 		if (e820.map[i].type != E820_RESERVED || res->start < (1ULL<<20)) {
1354 			res->flags |= IORESOURCE_BUSY;
1355 			insert_resource(&iomem_resource, res);
1356 		}
1357 		res++;
1358 	}
1359 
1360 	for (i = 0; i < e820_saved.nr_map; i++) {
1361 		struct e820entry *entry = &e820_saved.map[i];
1362 		firmware_map_add_early(entry->addr,
1363 			entry->addr + entry->size - 1,
1364 			e820_type_to_string(entry->type));
1365 	}
1366 }
1367 
1368 /* How much should we pad RAM ending depending on where it is? */
1369 static unsigned long ram_alignment(resource_size_t pos)
1370 {
1371 	unsigned long mb = pos >> 20;
1372 
1373 	/* To 64kB in the first megabyte */
1374 	if (!mb)
1375 		return 64*1024;
1376 
1377 	/* To 1MB in the first 16MB */
1378 	if (mb < 16)
1379 		return 1024*1024;
1380 
1381 	/* To 32MB for anything above that */
1382 	return 32*1024*1024;
1383 }
1384 
1385 #define MAX_RESOURCE_SIZE ((resource_size_t)-1)
1386 
1387 void __init e820_reserve_resources_late(void)
1388 {
1389 	int i;
1390 	struct resource *res;
1391 
1392 	res = e820_res;
1393 	for (i = 0; i < e820.nr_map; i++) {
1394 		if (!res->parent && res->end)
1395 			insert_resource_expand_to_fit(&iomem_resource, res);
1396 		res++;
1397 	}
1398 
1399 	/*
1400 	 * Try to bump up RAM regions to reasonable boundaries to
1401 	 * avoid stolen RAM:
1402 	 */
1403 	for (i = 0; i < e820.nr_map; i++) {
1404 		struct e820entry *entry = &e820.map[i];
1405 		u64 start, end;
1406 
1407 		if (entry->type != E820_RAM)
1408 			continue;
1409 		start = entry->addr + entry->size;
1410 		end = round_up(start, ram_alignment(start)) - 1;
1411 		if (end > MAX_RESOURCE_SIZE)
1412 			end = MAX_RESOURCE_SIZE;
1413 		if (start >= end)
1414 			continue;
1415 		reserve_region_with_split(&iomem_resource, start, end,
1416 					  "RAM buffer");
1417 	}
1418 }
1419 
1420 char *__init default_machine_specific_memory_setup(void)
1421 {
1422 	char *who = "BIOS-e820";
1423 	u32 new_nr;
1424 	/*
1425 	 * Try to copy the BIOS-supplied E820-map.
1426 	 *
1427 	 * Otherwise fake a memory map; one section from 0k->640k,
1428 	 * the next section from 1mb->appropriate_mem_k
1429 	 */
1430 	new_nr = boot_params.e820_entries;
1431 	sanitize_e820_map(boot_params.e820_map,
1432 			ARRAY_SIZE(boot_params.e820_map),
1433 			&new_nr);
1434 	boot_params.e820_entries = new_nr;
1435 	if (append_e820_map(boot_params.e820_map, boot_params.e820_entries)
1436 	  < 0) {
1437 		u64 mem_size;
1438 
1439 		/* compare results from other methods and take the greater */
1440 		if (boot_params.alt_mem_k
1441 		    < boot_params.screen_info.ext_mem_k) {
1442 			mem_size = boot_params.screen_info.ext_mem_k;
1443 			who = "BIOS-88";
1444 		} else {
1445 			mem_size = boot_params.alt_mem_k;
1446 			who = "BIOS-e801";
1447 		}
1448 
1449 		e820.nr_map = 0;
1450 		e820_add_region(0, LOWMEMSIZE(), E820_RAM);
1451 		e820_add_region(HIGH_MEMORY, mem_size << 10, E820_RAM);
1452 	}
1453 
1454 	/* In case someone cares... */
1455 	return who;
1456 }
1457 
1458 void __init setup_memory_map(void)
1459 {
1460 	char *who;
1461 
1462 	who = x86_init.resources.memory_setup();
1463 	memcpy(&e820_saved, &e820, sizeof(struct e820map));
1464 	printk(KERN_INFO "BIOS-provided physical RAM map:\n");
1465 	e820_print_map(who);
1466 }
1467