xref: /openbmc/linux/arch/x86/kernel/e820.c (revision fcc8487d)
1 /*
2  * Low level x86 E820 memory map handling functions.
3  *
4  * The firmware and bootloader passes us the "E820 table", which is the primary
5  * physical memory layout description available about x86 systems.
6  *
7  * The kernel takes the E820 memory layout and optionally modifies it with
8  * quirks and other tweaks, and feeds that into the generic Linux memory
9  * allocation code routines via a platform independent interface (memblock, etc.).
10  */
11 #include <linux/crash_dump.h>
12 #include <linux/bootmem.h>
13 #include <linux/suspend.h>
14 #include <linux/acpi.h>
15 #include <linux/firmware-map.h>
16 #include <linux/memblock.h>
17 #include <linux/sort.h>
18 
19 #include <asm/e820/api.h>
20 #include <asm/setup.h>
21 
22 /*
23  * We organize the E820 table into two main data structures:
24  *
25  * - 'e820_table_firmware': the original firmware version passed to us by the
26  *   bootloader - not modified by the kernel. We use this to:
27  *
28  *       - inform the user about the firmware's notion of memory layout
29  *         via /sys/firmware/memmap
30  *
31  *       - the hibernation code uses it to generate a kernel-independent MD5
32  *         fingerprint of the physical memory layout of a system.
33  *
34  *       - kexec, which is a bootloader in disguise, uses the original E820
35  *         layout to pass to the kexec-ed kernel. This way the original kernel
36  *         can have a restricted E820 map while the kexec()-ed kexec-kernel
37  *         can have access to full memory - etc.
38  *
39  * - 'e820_table': this is the main E820 table that is massaged by the
40  *   low level x86 platform code, or modified by boot parameters, before
41  *   passed on to higher level MM layers.
42  *
43  * Once the E820 map has been converted to the standard Linux memory layout
44  * information its role stops - modifying it has no effect and does not get
45  * re-propagated. So itsmain role is a temporary bootstrap storage of firmware
46  * specific memory layout data during early bootup.
47  */
48 static struct e820_table e820_table_init		__initdata;
49 static struct e820_table e820_table_firmware_init	__initdata;
50 
51 struct e820_table *e820_table __refdata			= &e820_table_init;
52 struct e820_table *e820_table_firmware __refdata	= &e820_table_firmware_init;
53 
54 /* For PCI or other memory-mapped resources */
55 unsigned long pci_mem_start = 0xaeedbabe;
56 #ifdef CONFIG_PCI
57 EXPORT_SYMBOL(pci_mem_start);
58 #endif
59 
60 /*
61  * This function checks if any part of the range <start,end> is mapped
62  * with type.
63  */
64 bool e820__mapped_any(u64 start, u64 end, enum e820_type type)
65 {
66 	int i;
67 
68 	for (i = 0; i < e820_table->nr_entries; i++) {
69 		struct e820_entry *entry = &e820_table->entries[i];
70 
71 		if (type && entry->type != type)
72 			continue;
73 		if (entry->addr >= end || entry->addr + entry->size <= start)
74 			continue;
75 		return 1;
76 	}
77 	return 0;
78 }
79 EXPORT_SYMBOL_GPL(e820__mapped_any);
80 
81 /*
82  * This function checks if the entire <start,end> range is mapped with 'type'.
83  *
84  * Note: this function only works correctly once the E820 table is sorted and
85  * not-overlapping (at least for the range specified), which is the case normally.
86  */
87 bool __init e820__mapped_all(u64 start, u64 end, enum e820_type type)
88 {
89 	int i;
90 
91 	for (i = 0; i < e820_table->nr_entries; i++) {
92 		struct e820_entry *entry = &e820_table->entries[i];
93 
94 		if (type && entry->type != type)
95 			continue;
96 
97 		/* Is the region (part) in overlap with the current region? */
98 		if (entry->addr >= end || entry->addr + entry->size <= start)
99 			continue;
100 
101 		/*
102 		 * If the region is at the beginning of <start,end> we move
103 		 * 'start' to the end of the region since it's ok until there
104 		 */
105 		if (entry->addr <= start)
106 			start = entry->addr + entry->size;
107 
108 		/*
109 		 * If 'start' is now at or beyond 'end', we're done, full
110 		 * coverage of the desired range exists:
111 		 */
112 		if (start >= end)
113 			return 1;
114 	}
115 	return 0;
116 }
117 
118 /*
119  * Add a memory region to the kernel E820 map.
120  */
121 static void __init __e820__range_add(struct e820_table *table, u64 start, u64 size, enum e820_type type)
122 {
123 	int x = table->nr_entries;
124 
125 	if (x >= ARRAY_SIZE(table->entries)) {
126 		pr_err("e820: too many entries; ignoring [mem %#010llx-%#010llx]\n", start, start + size - 1);
127 		return;
128 	}
129 
130 	table->entries[x].addr = start;
131 	table->entries[x].size = size;
132 	table->entries[x].type = type;
133 	table->nr_entries++;
134 }
135 
136 void __init e820__range_add(u64 start, u64 size, enum e820_type type)
137 {
138 	__e820__range_add(e820_table, start, size, type);
139 }
140 
141 static void __init e820_print_type(enum e820_type type)
142 {
143 	switch (type) {
144 	case E820_TYPE_RAM:		/* Fall through: */
145 	case E820_TYPE_RESERVED_KERN:	pr_cont("usable");			break;
146 	case E820_TYPE_RESERVED:	pr_cont("reserved");			break;
147 	case E820_TYPE_ACPI:		pr_cont("ACPI data");			break;
148 	case E820_TYPE_NVS:		pr_cont("ACPI NVS");			break;
149 	case E820_TYPE_UNUSABLE:	pr_cont("unusable");			break;
150 	case E820_TYPE_PMEM:		/* Fall through: */
151 	case E820_TYPE_PRAM:		pr_cont("persistent (type %u)", type);	break;
152 	default:			pr_cont("type %u", type);		break;
153 	}
154 }
155 
156 void __init e820__print_table(char *who)
157 {
158 	int i;
159 
160 	for (i = 0; i < e820_table->nr_entries; i++) {
161 		pr_info("%s: [mem %#018Lx-%#018Lx] ", who,
162 		       e820_table->entries[i].addr,
163 		       e820_table->entries[i].addr + e820_table->entries[i].size - 1);
164 
165 		e820_print_type(e820_table->entries[i].type);
166 		pr_cont("\n");
167 	}
168 }
169 
170 /*
171  * Sanitize an E820 map.
172  *
173  * Some E820 layouts include overlapping entries. The following
174  * replaces the original E820 map with a new one, removing overlaps,
175  * and resolving conflicting memory types in favor of highest
176  * numbered type.
177  *
178  * The input parameter 'entries' points to an array of 'struct
179  * e820_entry' which on entry has elements in the range [0, *nr_entries)
180  * valid, and which has space for up to max_nr_entries entries.
181  * On return, the resulting sanitized E820 map entries will be in
182  * overwritten in the same location, starting at 'entries'.
183  *
184  * The integer pointed to by nr_entries must be valid on entry (the
185  * current number of valid entries located at 'entries'). If the
186  * sanitizing succeeds the *nr_entries will be updated with the new
187  * number of valid entries (something no more than max_nr_entries).
188  *
189  * The return value from e820__update_table() is zero if it
190  * successfully 'sanitized' the map entries passed in, and is -1
191  * if it did nothing, which can happen if either of (1) it was
192  * only passed one map entry, or (2) any of the input map entries
193  * were invalid (start + size < start, meaning that the size was
194  * so big the described memory range wrapped around through zero.)
195  *
196  *	Visually we're performing the following
197  *	(1,2,3,4 = memory types)...
198  *
199  *	Sample memory map (w/overlaps):
200  *	   ____22__________________
201  *	   ______________________4_
202  *	   ____1111________________
203  *	   _44_____________________
204  *	   11111111________________
205  *	   ____________________33__
206  *	   ___________44___________
207  *	   __________33333_________
208  *	   ______________22________
209  *	   ___________________2222_
210  *	   _________111111111______
211  *	   _____________________11_
212  *	   _________________4______
213  *
214  *	Sanitized equivalent (no overlap):
215  *	   1_______________________
216  *	   _44_____________________
217  *	   ___1____________________
218  *	   ____22__________________
219  *	   ______11________________
220  *	   _________1______________
221  *	   __________3_____________
222  *	   ___________44___________
223  *	   _____________33_________
224  *	   _______________2________
225  *	   ________________1_______
226  *	   _________________4______
227  *	   ___________________2____
228  *	   ____________________33__
229  *	   ______________________4_
230  */
231 struct change_member {
232 	/* Pointer to the original entry: */
233 	struct e820_entry	*entry;
234 	/* Address for this change point: */
235 	unsigned long long	addr;
236 };
237 
238 static struct change_member	change_point_list[2*E820_MAX_ENTRIES]	__initdata;
239 static struct change_member	*change_point[2*E820_MAX_ENTRIES]	__initdata;
240 static struct e820_entry	*overlap_list[E820_MAX_ENTRIES]		__initdata;
241 static struct e820_entry	new_entries[E820_MAX_ENTRIES]		__initdata;
242 
243 static int __init cpcompare(const void *a, const void *b)
244 {
245 	struct change_member * const *app = a, * const *bpp = b;
246 	const struct change_member *ap = *app, *bp = *bpp;
247 
248 	/*
249 	 * Inputs are pointers to two elements of change_point[].  If their
250 	 * addresses are not equal, their difference dominates.  If the addresses
251 	 * are equal, then consider one that represents the end of its region
252 	 * to be greater than one that does not.
253 	 */
254 	if (ap->addr != bp->addr)
255 		return ap->addr > bp->addr ? 1 : -1;
256 
257 	return (ap->addr != ap->entry->addr) - (bp->addr != bp->entry->addr);
258 }
259 
260 int __init e820__update_table(struct e820_table *table)
261 {
262 	struct e820_entry *entries = table->entries;
263 	u32 max_nr_entries = ARRAY_SIZE(table->entries);
264 	enum e820_type current_type, last_type;
265 	unsigned long long last_addr;
266 	u32 new_nr_entries, overlap_entries;
267 	u32 i, chg_idx, chg_nr;
268 
269 	/* If there's only one memory region, don't bother: */
270 	if (table->nr_entries < 2)
271 		return -1;
272 
273 	BUG_ON(table->nr_entries > max_nr_entries);
274 
275 	/* Bail out if we find any unreasonable addresses in the map: */
276 	for (i = 0; i < table->nr_entries; i++) {
277 		if (entries[i].addr + entries[i].size < entries[i].addr)
278 			return -1;
279 	}
280 
281 	/* Create pointers for initial change-point information (for sorting): */
282 	for (i = 0; i < 2 * table->nr_entries; i++)
283 		change_point[i] = &change_point_list[i];
284 
285 	/*
286 	 * Record all known change-points (starting and ending addresses),
287 	 * omitting empty memory regions:
288 	 */
289 	chg_idx = 0;
290 	for (i = 0; i < table->nr_entries; i++)	{
291 		if (entries[i].size != 0) {
292 			change_point[chg_idx]->addr	= entries[i].addr;
293 			change_point[chg_idx++]->entry	= &entries[i];
294 			change_point[chg_idx]->addr	= entries[i].addr + entries[i].size;
295 			change_point[chg_idx++]->entry	= &entries[i];
296 		}
297 	}
298 	chg_nr = chg_idx;
299 
300 	/* Sort change-point list by memory addresses (low -> high): */
301 	sort(change_point, chg_nr, sizeof(*change_point), cpcompare, NULL);
302 
303 	/* Create a new memory map, removing overlaps: */
304 	overlap_entries = 0;	 /* Number of entries in the overlap table */
305 	new_nr_entries = 0;	 /* Index for creating new map entries */
306 	last_type = 0;		 /* Start with undefined memory type */
307 	last_addr = 0;		 /* Start with 0 as last starting address */
308 
309 	/* Loop through change-points, determining effect on the new map: */
310 	for (chg_idx = 0; chg_idx < chg_nr; chg_idx++) {
311 		/* Keep track of all overlapping entries */
312 		if (change_point[chg_idx]->addr == change_point[chg_idx]->entry->addr) {
313 			/* Add map entry to overlap list (> 1 entry implies an overlap) */
314 			overlap_list[overlap_entries++] = change_point[chg_idx]->entry;
315 		} else {
316 			/* Remove entry from list (order independent, so swap with last): */
317 			for (i = 0; i < overlap_entries; i++) {
318 				if (overlap_list[i] == change_point[chg_idx]->entry)
319 					overlap_list[i] = overlap_list[overlap_entries-1];
320 			}
321 			overlap_entries--;
322 		}
323 		/*
324 		 * If there are overlapping entries, decide which
325 		 * "type" to use (larger value takes precedence --
326 		 * 1=usable, 2,3,4,4+=unusable)
327 		 */
328 		current_type = 0;
329 		for (i = 0; i < overlap_entries; i++) {
330 			if (overlap_list[i]->type > current_type)
331 				current_type = overlap_list[i]->type;
332 		}
333 
334 		/* Continue building up new map based on this information: */
335 		if (current_type != last_type || current_type == E820_TYPE_PRAM) {
336 			if (last_type != 0)	 {
337 				new_entries[new_nr_entries].size = change_point[chg_idx]->addr - last_addr;
338 				/* Move forward only if the new size was non-zero: */
339 				if (new_entries[new_nr_entries].size != 0)
340 					/* No more space left for new entries? */
341 					if (++new_nr_entries >= max_nr_entries)
342 						break;
343 			}
344 			if (current_type != 0)	{
345 				new_entries[new_nr_entries].addr = change_point[chg_idx]->addr;
346 				new_entries[new_nr_entries].type = current_type;
347 				last_addr = change_point[chg_idx]->addr;
348 			}
349 			last_type = current_type;
350 		}
351 	}
352 
353 	/* Copy the new entries into the original location: */
354 	memcpy(entries, new_entries, new_nr_entries*sizeof(*entries));
355 	table->nr_entries = new_nr_entries;
356 
357 	return 0;
358 }
359 
360 static int __init __append_e820_table(struct boot_e820_entry *entries, u32 nr_entries)
361 {
362 	struct boot_e820_entry *entry = entries;
363 
364 	while (nr_entries) {
365 		u64 start = entry->addr;
366 		u64 size = entry->size;
367 		u64 end = start + size - 1;
368 		u32 type = entry->type;
369 
370 		/* Ignore the entry on 64-bit overflow: */
371 		if (start > end && likely(size))
372 			return -1;
373 
374 		e820__range_add(start, size, type);
375 
376 		entry++;
377 		nr_entries--;
378 	}
379 	return 0;
380 }
381 
382 /*
383  * Copy the BIOS E820 map into a safe place.
384  *
385  * Sanity-check it while we're at it..
386  *
387  * If we're lucky and live on a modern system, the setup code
388  * will have given us a memory map that we can use to properly
389  * set up memory.  If we aren't, we'll fake a memory map.
390  */
391 static int __init append_e820_table(struct boot_e820_entry *entries, u32 nr_entries)
392 {
393 	/* Only one memory region (or negative)? Ignore it */
394 	if (nr_entries < 2)
395 		return -1;
396 
397 	return __append_e820_table(entries, nr_entries);
398 }
399 
400 static u64 __init
401 __e820__range_update(struct e820_table *table, u64 start, u64 size, enum e820_type old_type, enum e820_type new_type)
402 {
403 	u64 end;
404 	unsigned int i;
405 	u64 real_updated_size = 0;
406 
407 	BUG_ON(old_type == new_type);
408 
409 	if (size > (ULLONG_MAX - start))
410 		size = ULLONG_MAX - start;
411 
412 	end = start + size;
413 	printk(KERN_DEBUG "e820: update [mem %#010Lx-%#010Lx] ", start, end - 1);
414 	e820_print_type(old_type);
415 	pr_cont(" ==> ");
416 	e820_print_type(new_type);
417 	pr_cont("\n");
418 
419 	for (i = 0; i < table->nr_entries; i++) {
420 		struct e820_entry *entry = &table->entries[i];
421 		u64 final_start, final_end;
422 		u64 entry_end;
423 
424 		if (entry->type != old_type)
425 			continue;
426 
427 		entry_end = entry->addr + entry->size;
428 
429 		/* Completely covered by new range? */
430 		if (entry->addr >= start && entry_end <= end) {
431 			entry->type = new_type;
432 			real_updated_size += entry->size;
433 			continue;
434 		}
435 
436 		/* New range is completely covered? */
437 		if (entry->addr < start && entry_end > end) {
438 			__e820__range_add(table, start, size, new_type);
439 			__e820__range_add(table, end, entry_end - end, entry->type);
440 			entry->size = start - entry->addr;
441 			real_updated_size += size;
442 			continue;
443 		}
444 
445 		/* Partially covered: */
446 		final_start = max(start, entry->addr);
447 		final_end = min(end, entry_end);
448 		if (final_start >= final_end)
449 			continue;
450 
451 		__e820__range_add(table, final_start, final_end - final_start, new_type);
452 
453 		real_updated_size += final_end - final_start;
454 
455 		/*
456 		 * Left range could be head or tail, so need to update
457 		 * its size first:
458 		 */
459 		entry->size -= final_end - final_start;
460 		if (entry->addr < final_start)
461 			continue;
462 
463 		entry->addr = final_end;
464 	}
465 	return real_updated_size;
466 }
467 
468 u64 __init e820__range_update(u64 start, u64 size, enum e820_type old_type, enum e820_type new_type)
469 {
470 	return __e820__range_update(e820_table, start, size, old_type, new_type);
471 }
472 
473 static u64 __init e820__range_update_firmware(u64 start, u64 size, enum e820_type old_type, enum e820_type  new_type)
474 {
475 	return __e820__range_update(e820_table_firmware, start, size, old_type, new_type);
476 }
477 
478 /* Remove a range of memory from the E820 table: */
479 u64 __init e820__range_remove(u64 start, u64 size, enum e820_type old_type, bool check_type)
480 {
481 	int i;
482 	u64 end;
483 	u64 real_removed_size = 0;
484 
485 	if (size > (ULLONG_MAX - start))
486 		size = ULLONG_MAX - start;
487 
488 	end = start + size;
489 	printk(KERN_DEBUG "e820: remove [mem %#010Lx-%#010Lx] ", start, end - 1);
490 	if (check_type)
491 		e820_print_type(old_type);
492 	pr_cont("\n");
493 
494 	for (i = 0; i < e820_table->nr_entries; i++) {
495 		struct e820_entry *entry = &e820_table->entries[i];
496 		u64 final_start, final_end;
497 		u64 entry_end;
498 
499 		if (check_type && entry->type != old_type)
500 			continue;
501 
502 		entry_end = entry->addr + entry->size;
503 
504 		/* Completely covered? */
505 		if (entry->addr >= start && entry_end <= end) {
506 			real_removed_size += entry->size;
507 			memset(entry, 0, sizeof(*entry));
508 			continue;
509 		}
510 
511 		/* Is the new range completely covered? */
512 		if (entry->addr < start && entry_end > end) {
513 			e820__range_add(end, entry_end - end, entry->type);
514 			entry->size = start - entry->addr;
515 			real_removed_size += size;
516 			continue;
517 		}
518 
519 		/* Partially covered: */
520 		final_start = max(start, entry->addr);
521 		final_end = min(end, entry_end);
522 		if (final_start >= final_end)
523 			continue;
524 
525 		real_removed_size += final_end - final_start;
526 
527 		/*
528 		 * Left range could be head or tail, so need to update
529 		 * the size first:
530 		 */
531 		entry->size -= final_end - final_start;
532 		if (entry->addr < final_start)
533 			continue;
534 
535 		entry->addr = final_end;
536 	}
537 	return real_removed_size;
538 }
539 
540 void __init e820__update_table_print(void)
541 {
542 	if (e820__update_table(e820_table))
543 		return;
544 
545 	pr_info("e820: modified physical RAM map:\n");
546 	e820__print_table("modified");
547 }
548 
549 static void __init e820__update_table_firmware(void)
550 {
551 	e820__update_table(e820_table_firmware);
552 }
553 
554 #define MAX_GAP_END 0x100000000ull
555 
556 /*
557  * Search for a gap in the E820 memory space from 0 to MAX_GAP_END (4GB).
558  */
559 static int __init e820_search_gap(unsigned long *gapstart, unsigned long *gapsize)
560 {
561 	unsigned long long last = MAX_GAP_END;
562 	int i = e820_table->nr_entries;
563 	int found = 0;
564 
565 	while (--i >= 0) {
566 		unsigned long long start = e820_table->entries[i].addr;
567 		unsigned long long end = start + e820_table->entries[i].size;
568 
569 		/*
570 		 * Since "last" is at most 4GB, we know we'll
571 		 * fit in 32 bits if this condition is true:
572 		 */
573 		if (last > end) {
574 			unsigned long gap = last - end;
575 
576 			if (gap >= *gapsize) {
577 				*gapsize = gap;
578 				*gapstart = end;
579 				found = 1;
580 			}
581 		}
582 		if (start < last)
583 			last = start;
584 	}
585 	return found;
586 }
587 
588 /*
589  * Search for the biggest gap in the low 32 bits of the E820
590  * memory space. We pass this space to the PCI subsystem, so
591  * that it can assign MMIO resources for hotplug or
592  * unconfigured devices in.
593  *
594  * Hopefully the BIOS let enough space left.
595  */
596 __init void e820__setup_pci_gap(void)
597 {
598 	unsigned long gapstart, gapsize;
599 	int found;
600 
601 	gapsize = 0x400000;
602 	found  = e820_search_gap(&gapstart, &gapsize);
603 
604 	if (!found) {
605 #ifdef CONFIG_X86_64
606 		gapstart = (max_pfn << PAGE_SHIFT) + 1024*1024;
607 		pr_err(
608 			"e820: Cannot find an available gap in the 32-bit address range\n"
609 			"e820: PCI devices with unassigned 32-bit BARs may not work!\n");
610 #else
611 		gapstart = 0x10000000;
612 #endif
613 	}
614 
615 	/*
616 	 * e820__reserve_resources_late() protects stolen RAM already:
617 	 */
618 	pci_mem_start = gapstart;
619 
620 	pr_info("e820: [mem %#010lx-%#010lx] available for PCI devices\n", gapstart, gapstart + gapsize - 1);
621 }
622 
623 /*
624  * Called late during init, in free_initmem().
625  *
626  * Initial e820_table and e820_table_firmware are largish __initdata arrays.
627  *
628  * Copy them to a (usually much smaller) dynamically allocated area that is
629  * sized precisely after the number of e820 entries.
630  *
631  * This is done after we've performed all the fixes and tweaks to the tables.
632  * All functions which modify them are __init functions, which won't exist
633  * after free_initmem().
634  */
635 __init void e820__reallocate_tables(void)
636 {
637 	struct e820_table *n;
638 	int size;
639 
640 	size = offsetof(struct e820_table, entries) + sizeof(struct e820_entry)*e820_table->nr_entries;
641 	n = kmalloc(size, GFP_KERNEL);
642 	BUG_ON(!n);
643 	memcpy(n, e820_table, size);
644 	e820_table = n;
645 
646 	size = offsetof(struct e820_table, entries) + sizeof(struct e820_entry)*e820_table_firmware->nr_entries;
647 	n = kmalloc(size, GFP_KERNEL);
648 	BUG_ON(!n);
649 	memcpy(n, e820_table_firmware, size);
650 	e820_table_firmware = n;
651 }
652 
653 /*
654  * Because of the small fixed size of struct boot_params, only the first
655  * 128 E820 memory entries are passed to the kernel via boot_params.e820_table,
656  * the remaining (if any) entries are passed via the SETUP_E820_EXT node of
657  * struct setup_data, which is parsed here.
658  */
659 void __init e820__memory_setup_extended(u64 phys_addr, u32 data_len)
660 {
661 	int entries;
662 	struct boot_e820_entry *extmap;
663 	struct setup_data *sdata;
664 
665 	sdata = early_memremap(phys_addr, data_len);
666 	entries = sdata->len / sizeof(*extmap);
667 	extmap = (struct boot_e820_entry *)(sdata->data);
668 
669 	__append_e820_table(extmap, entries);
670 	e820__update_table(e820_table);
671 
672 	early_memunmap(sdata, data_len);
673 	pr_info("e820: extended physical RAM map:\n");
674 	e820__print_table("extended");
675 }
676 
677 /*
678  * Find the ranges of physical addresses that do not correspond to
679  * E820 RAM areas and register the corresponding pages as 'nosave' for
680  * hibernation (32-bit) or software suspend and suspend to RAM (64-bit).
681  *
682  * This function requires the E820 map to be sorted and without any
683  * overlapping entries.
684  */
685 void __init e820__register_nosave_regions(unsigned long limit_pfn)
686 {
687 	int i;
688 	unsigned long pfn = 0;
689 
690 	for (i = 0; i < e820_table->nr_entries; i++) {
691 		struct e820_entry *entry = &e820_table->entries[i];
692 
693 		if (pfn < PFN_UP(entry->addr))
694 			register_nosave_region(pfn, PFN_UP(entry->addr));
695 
696 		pfn = PFN_DOWN(entry->addr + entry->size);
697 
698 		if (entry->type != E820_TYPE_RAM && entry->type != E820_TYPE_RESERVED_KERN)
699 			register_nosave_region(PFN_UP(entry->addr), pfn);
700 
701 		if (pfn >= limit_pfn)
702 			break;
703 	}
704 }
705 
706 #ifdef CONFIG_ACPI
707 /*
708  * Register ACPI NVS memory regions, so that we can save/restore them during
709  * hibernation and the subsequent resume:
710  */
711 static int __init e820__register_nvs_regions(void)
712 {
713 	int i;
714 
715 	for (i = 0; i < e820_table->nr_entries; i++) {
716 		struct e820_entry *entry = &e820_table->entries[i];
717 
718 		if (entry->type == E820_TYPE_NVS)
719 			acpi_nvs_register(entry->addr, entry->size);
720 	}
721 
722 	return 0;
723 }
724 core_initcall(e820__register_nvs_regions);
725 #endif
726 
727 /*
728  * Allocate the requested number of bytes with the requsted alignment
729  * and return (the physical address) to the caller. Also register this
730  * range in the 'firmware' E820 table as a reserved range.
731  *
732  * This allows kexec to fake a new mptable, as if it came from the real
733  * system.
734  */
735 u64 __init e820__memblock_alloc_reserved(u64 size, u64 align)
736 {
737 	u64 addr;
738 
739 	addr = __memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE);
740 	if (addr) {
741 		e820__range_update_firmware(addr, size, E820_TYPE_RAM, E820_TYPE_RESERVED);
742 		pr_info("e820: update e820_table_firmware for e820__memblock_alloc_reserved()\n");
743 		e820__update_table_firmware();
744 	}
745 
746 	return addr;
747 }
748 
749 #ifdef CONFIG_X86_32
750 # ifdef CONFIG_X86_PAE
751 #  define MAX_ARCH_PFN		(1ULL<<(36-PAGE_SHIFT))
752 # else
753 #  define MAX_ARCH_PFN		(1ULL<<(32-PAGE_SHIFT))
754 # endif
755 #else /* CONFIG_X86_32 */
756 # define MAX_ARCH_PFN MAXMEM>>PAGE_SHIFT
757 #endif
758 
759 /*
760  * Find the highest page frame number we have available
761  */
762 static unsigned long __init e820_end_pfn(unsigned long limit_pfn, enum e820_type type)
763 {
764 	int i;
765 	unsigned long last_pfn = 0;
766 	unsigned long max_arch_pfn = MAX_ARCH_PFN;
767 
768 	for (i = 0; i < e820_table->nr_entries; i++) {
769 		struct e820_entry *entry = &e820_table->entries[i];
770 		unsigned long start_pfn;
771 		unsigned long end_pfn;
772 
773 		if (entry->type != type)
774 			continue;
775 
776 		start_pfn = entry->addr >> PAGE_SHIFT;
777 		end_pfn = (entry->addr + entry->size) >> PAGE_SHIFT;
778 
779 		if (start_pfn >= limit_pfn)
780 			continue;
781 		if (end_pfn > limit_pfn) {
782 			last_pfn = limit_pfn;
783 			break;
784 		}
785 		if (end_pfn > last_pfn)
786 			last_pfn = end_pfn;
787 	}
788 
789 	if (last_pfn > max_arch_pfn)
790 		last_pfn = max_arch_pfn;
791 
792 	pr_info("e820: last_pfn = %#lx max_arch_pfn = %#lx\n",
793 			 last_pfn, max_arch_pfn);
794 	return last_pfn;
795 }
796 
797 unsigned long __init e820__end_of_ram_pfn(void)
798 {
799 	return e820_end_pfn(MAX_ARCH_PFN, E820_TYPE_RAM);
800 }
801 
802 unsigned long __init e820__end_of_low_ram_pfn(void)
803 {
804 	return e820_end_pfn(1UL << (32 - PAGE_SHIFT), E820_TYPE_RAM);
805 }
806 
807 static void __init early_panic(char *msg)
808 {
809 	early_printk(msg);
810 	panic(msg);
811 }
812 
813 static int userdef __initdata;
814 
815 /* The "mem=nopentium" boot option disables 4MB page tables on 32-bit kernels: */
816 static int __init parse_memopt(char *p)
817 {
818 	u64 mem_size;
819 
820 	if (!p)
821 		return -EINVAL;
822 
823 	if (!strcmp(p, "nopentium")) {
824 #ifdef CONFIG_X86_32
825 		setup_clear_cpu_cap(X86_FEATURE_PSE);
826 		return 0;
827 #else
828 		pr_warn("mem=nopentium ignored! (only supported on x86_32)\n");
829 		return -EINVAL;
830 #endif
831 	}
832 
833 	userdef = 1;
834 	mem_size = memparse(p, &p);
835 
836 	/* Don't remove all memory when getting "mem={invalid}" parameter: */
837 	if (mem_size == 0)
838 		return -EINVAL;
839 
840 	e820__range_remove(mem_size, ULLONG_MAX - mem_size, E820_TYPE_RAM, 1);
841 
842 	return 0;
843 }
844 early_param("mem", parse_memopt);
845 
846 static int __init parse_memmap_one(char *p)
847 {
848 	char *oldp;
849 	u64 start_at, mem_size;
850 
851 	if (!p)
852 		return -EINVAL;
853 
854 	if (!strncmp(p, "exactmap", 8)) {
855 #ifdef CONFIG_CRASH_DUMP
856 		/*
857 		 * If we are doing a crash dump, we still need to know
858 		 * the real memory size before the original memory map is
859 		 * reset.
860 		 */
861 		saved_max_pfn = e820__end_of_ram_pfn();
862 #endif
863 		e820_table->nr_entries = 0;
864 		userdef = 1;
865 		return 0;
866 	}
867 
868 	oldp = p;
869 	mem_size = memparse(p, &p);
870 	if (p == oldp)
871 		return -EINVAL;
872 
873 	userdef = 1;
874 	if (*p == '@') {
875 		start_at = memparse(p+1, &p);
876 		e820__range_add(start_at, mem_size, E820_TYPE_RAM);
877 	} else if (*p == '#') {
878 		start_at = memparse(p+1, &p);
879 		e820__range_add(start_at, mem_size, E820_TYPE_ACPI);
880 	} else if (*p == '$') {
881 		start_at = memparse(p+1, &p);
882 		e820__range_add(start_at, mem_size, E820_TYPE_RESERVED);
883 	} else if (*p == '!') {
884 		start_at = memparse(p+1, &p);
885 		e820__range_add(start_at, mem_size, E820_TYPE_PRAM);
886 	} else {
887 		e820__range_remove(mem_size, ULLONG_MAX - mem_size, E820_TYPE_RAM, 1);
888 	}
889 
890 	return *p == '\0' ? 0 : -EINVAL;
891 }
892 
893 static int __init parse_memmap_opt(char *str)
894 {
895 	while (str) {
896 		char *k = strchr(str, ',');
897 
898 		if (k)
899 			*k++ = 0;
900 
901 		parse_memmap_one(str);
902 		str = k;
903 	}
904 
905 	return 0;
906 }
907 early_param("memmap", parse_memmap_opt);
908 
909 /*
910  * Reserve all entries from the bootloader's extensible data nodes list,
911  * because if present we are going to use it later on to fetch e820
912  * entries from it:
913  */
914 void __init e820__reserve_setup_data(void)
915 {
916 	struct setup_data *data;
917 	u64 pa_data;
918 
919 	pa_data = boot_params.hdr.setup_data;
920 	if (!pa_data)
921 		return;
922 
923 	while (pa_data) {
924 		data = early_memremap(pa_data, sizeof(*data));
925 		e820__range_update(pa_data, sizeof(*data)+data->len, E820_TYPE_RAM, E820_TYPE_RESERVED_KERN);
926 		pa_data = data->next;
927 		early_memunmap(data, sizeof(*data));
928 	}
929 
930 	e820__update_table(e820_table);
931 
932 	memcpy(e820_table_firmware, e820_table, sizeof(*e820_table_firmware));
933 
934 	pr_info("extended physical RAM map:\n");
935 	e820__print_table("reserve setup_data");
936 }
937 
938 /*
939  * Called after parse_early_param(), after early parameters (such as mem=)
940  * have been processed, in which case we already have an E820 table filled in
941  * via the parameter callback function(s), but it's not sorted and printed yet:
942  */
943 void __init e820__finish_early_params(void)
944 {
945 	if (userdef) {
946 		if (e820__update_table(e820_table) < 0)
947 			early_panic("Invalid user supplied memory map");
948 
949 		pr_info("e820: user-defined physical RAM map:\n");
950 		e820__print_table("user");
951 	}
952 }
953 
954 static const char *__init e820_type_to_string(struct e820_entry *entry)
955 {
956 	switch (entry->type) {
957 	case E820_TYPE_RESERVED_KERN:	/* Fall-through: */
958 	case E820_TYPE_RAM:		return "System RAM";
959 	case E820_TYPE_ACPI:		return "ACPI Tables";
960 	case E820_TYPE_NVS:		return "ACPI Non-volatile Storage";
961 	case E820_TYPE_UNUSABLE:	return "Unusable memory";
962 	case E820_TYPE_PRAM:		return "Persistent Memory (legacy)";
963 	case E820_TYPE_PMEM:		return "Persistent Memory";
964 	case E820_TYPE_RESERVED:	return "Reserved";
965 	default:			return "Unknown E820 type";
966 	}
967 }
968 
969 static unsigned long __init e820_type_to_iomem_type(struct e820_entry *entry)
970 {
971 	switch (entry->type) {
972 	case E820_TYPE_RESERVED_KERN:	/* Fall-through: */
973 	case E820_TYPE_RAM:		return IORESOURCE_SYSTEM_RAM;
974 	case E820_TYPE_ACPI:		/* Fall-through: */
975 	case E820_TYPE_NVS:		/* Fall-through: */
976 	case E820_TYPE_UNUSABLE:	/* Fall-through: */
977 	case E820_TYPE_PRAM:		/* Fall-through: */
978 	case E820_TYPE_PMEM:		/* Fall-through: */
979 	case E820_TYPE_RESERVED:	/* Fall-through: */
980 	default:			return IORESOURCE_MEM;
981 	}
982 }
983 
984 static unsigned long __init e820_type_to_iores_desc(struct e820_entry *entry)
985 {
986 	switch (entry->type) {
987 	case E820_TYPE_ACPI:		return IORES_DESC_ACPI_TABLES;
988 	case E820_TYPE_NVS:		return IORES_DESC_ACPI_NV_STORAGE;
989 	case E820_TYPE_PMEM:		return IORES_DESC_PERSISTENT_MEMORY;
990 	case E820_TYPE_PRAM:		return IORES_DESC_PERSISTENT_MEMORY_LEGACY;
991 	case E820_TYPE_RESERVED_KERN:	/* Fall-through: */
992 	case E820_TYPE_RAM:		/* Fall-through: */
993 	case E820_TYPE_UNUSABLE:	/* Fall-through: */
994 	case E820_TYPE_RESERVED:	/* Fall-through: */
995 	default:			return IORES_DESC_NONE;
996 	}
997 }
998 
999 static bool __init do_mark_busy(enum e820_type type, struct resource *res)
1000 {
1001 	/* this is the legacy bios/dos rom-shadow + mmio region */
1002 	if (res->start < (1ULL<<20))
1003 		return true;
1004 
1005 	/*
1006 	 * Treat persistent memory like device memory, i.e. reserve it
1007 	 * for exclusive use of a driver
1008 	 */
1009 	switch (type) {
1010 	case E820_TYPE_RESERVED:
1011 	case E820_TYPE_PRAM:
1012 	case E820_TYPE_PMEM:
1013 		return false;
1014 	case E820_TYPE_RESERVED_KERN:
1015 	case E820_TYPE_RAM:
1016 	case E820_TYPE_ACPI:
1017 	case E820_TYPE_NVS:
1018 	case E820_TYPE_UNUSABLE:
1019 	default:
1020 		return true;
1021 	}
1022 }
1023 
1024 /*
1025  * Mark E820 reserved areas as busy for the resource manager:
1026  */
1027 
1028 static struct resource __initdata *e820_res;
1029 
1030 void __init e820__reserve_resources(void)
1031 {
1032 	int i;
1033 	struct resource *res;
1034 	u64 end;
1035 
1036 	res = alloc_bootmem(sizeof(*res) * e820_table->nr_entries);
1037 	e820_res = res;
1038 
1039 	for (i = 0; i < e820_table->nr_entries; i++) {
1040 		struct e820_entry *entry = e820_table->entries + i;
1041 
1042 		end = entry->addr + entry->size - 1;
1043 		if (end != (resource_size_t)end) {
1044 			res++;
1045 			continue;
1046 		}
1047 		res->start = entry->addr;
1048 		res->end   = end;
1049 		res->name  = e820_type_to_string(entry);
1050 		res->flags = e820_type_to_iomem_type(entry);
1051 		res->desc  = e820_type_to_iores_desc(entry);
1052 
1053 		/*
1054 		 * Don't register the region that could be conflicted with
1055 		 * PCI device BAR resources and insert them later in
1056 		 * pcibios_resource_survey():
1057 		 */
1058 		if (do_mark_busy(entry->type, res)) {
1059 			res->flags |= IORESOURCE_BUSY;
1060 			insert_resource(&iomem_resource, res);
1061 		}
1062 		res++;
1063 	}
1064 
1065 	for (i = 0; i < e820_table_firmware->nr_entries; i++) {
1066 		struct e820_entry *entry = e820_table_firmware->entries + i;
1067 
1068 		firmware_map_add_early(entry->addr, entry->addr + entry->size, e820_type_to_string(entry));
1069 	}
1070 }
1071 
1072 /*
1073  * How much should we pad the end of RAM, depending on where it is?
1074  */
1075 static unsigned long __init ram_alignment(resource_size_t pos)
1076 {
1077 	unsigned long mb = pos >> 20;
1078 
1079 	/* To 64kB in the first megabyte */
1080 	if (!mb)
1081 		return 64*1024;
1082 
1083 	/* To 1MB in the first 16MB */
1084 	if (mb < 16)
1085 		return 1024*1024;
1086 
1087 	/* To 64MB for anything above that */
1088 	return 64*1024*1024;
1089 }
1090 
1091 #define MAX_RESOURCE_SIZE ((resource_size_t)-1)
1092 
1093 void __init e820__reserve_resources_late(void)
1094 {
1095 	int i;
1096 	struct resource *res;
1097 
1098 	res = e820_res;
1099 	for (i = 0; i < e820_table->nr_entries; i++) {
1100 		if (!res->parent && res->end)
1101 			insert_resource_expand_to_fit(&iomem_resource, res);
1102 		res++;
1103 	}
1104 
1105 	/*
1106 	 * Try to bump up RAM regions to reasonable boundaries, to
1107 	 * avoid stolen RAM:
1108 	 */
1109 	for (i = 0; i < e820_table->nr_entries; i++) {
1110 		struct e820_entry *entry = &e820_table->entries[i];
1111 		u64 start, end;
1112 
1113 		if (entry->type != E820_TYPE_RAM)
1114 			continue;
1115 
1116 		start = entry->addr + entry->size;
1117 		end = round_up(start, ram_alignment(start)) - 1;
1118 		if (end > MAX_RESOURCE_SIZE)
1119 			end = MAX_RESOURCE_SIZE;
1120 		if (start >= end)
1121 			continue;
1122 
1123 		printk(KERN_DEBUG "e820: reserve RAM buffer [mem %#010llx-%#010llx]\n", start, end);
1124 		reserve_region_with_split(&iomem_resource, start, end, "RAM buffer");
1125 	}
1126 }
1127 
1128 /*
1129  * Pass the firmware (bootloader) E820 map to the kernel and process it:
1130  */
1131 char *__init e820__memory_setup_default(void)
1132 {
1133 	char *who = "BIOS-e820";
1134 
1135 	/*
1136 	 * Try to copy the BIOS-supplied E820-map.
1137 	 *
1138 	 * Otherwise fake a memory map; one section from 0k->640k,
1139 	 * the next section from 1mb->appropriate_mem_k
1140 	 */
1141 	if (append_e820_table(boot_params.e820_table, boot_params.e820_entries) < 0) {
1142 		u64 mem_size;
1143 
1144 		/* Compare results from other methods and take the one that gives more RAM: */
1145 		if (boot_params.alt_mem_k < boot_params.screen_info.ext_mem_k) {
1146 			mem_size = boot_params.screen_info.ext_mem_k;
1147 			who = "BIOS-88";
1148 		} else {
1149 			mem_size = boot_params.alt_mem_k;
1150 			who = "BIOS-e801";
1151 		}
1152 
1153 		e820_table->nr_entries = 0;
1154 		e820__range_add(0, LOWMEMSIZE(), E820_TYPE_RAM);
1155 		e820__range_add(HIGH_MEMORY, mem_size << 10, E820_TYPE_RAM);
1156 	}
1157 
1158 	/* We just appended a lot of ranges, sanitize the table: */
1159 	e820__update_table(e820_table);
1160 
1161 	return who;
1162 }
1163 
1164 /*
1165  * Calls e820__memory_setup_default() in essence to pick up the firmware/bootloader
1166  * E820 map - with an optional platform quirk available for virtual platforms
1167  * to override this method of boot environment processing:
1168  */
1169 void __init e820__memory_setup(void)
1170 {
1171 	char *who;
1172 
1173 	/* This is a firmware interface ABI - make sure we don't break it: */
1174 	BUILD_BUG_ON(sizeof(struct boot_e820_entry) != 20);
1175 
1176 	who = x86_init.resources.memory_setup();
1177 
1178 	memcpy(e820_table_firmware, e820_table, sizeof(*e820_table_firmware));
1179 
1180 	pr_info("e820: BIOS-provided physical RAM map:\n");
1181 	e820__print_table(who);
1182 }
1183 
1184 void __init e820__memblock_setup(void)
1185 {
1186 	int i;
1187 	u64 end;
1188 
1189 	/*
1190 	 * The bootstrap memblock region count maximum is 128 entries
1191 	 * (INIT_MEMBLOCK_REGIONS), but EFI might pass us more E820 entries
1192 	 * than that - so allow memblock resizing.
1193 	 *
1194 	 * This is safe, because this call happens pretty late during x86 setup,
1195 	 * so we know about reserved memory regions already. (This is important
1196 	 * so that memblock resizing does no stomp over reserved areas.)
1197 	 */
1198 	memblock_allow_resize();
1199 
1200 	for (i = 0; i < e820_table->nr_entries; i++) {
1201 		struct e820_entry *entry = &e820_table->entries[i];
1202 
1203 		end = entry->addr + entry->size;
1204 		if (end != (resource_size_t)end)
1205 			continue;
1206 
1207 		if (entry->type != E820_TYPE_RAM && entry->type != E820_TYPE_RESERVED_KERN)
1208 			continue;
1209 
1210 		memblock_add(entry->addr, entry->size);
1211 	}
1212 
1213 	/* Throw away partial pages: */
1214 	memblock_trim_memory(PAGE_SIZE);
1215 
1216 	memblock_dump_all();
1217 }
1218