1 /* 2 * Low level x86 E820 memory map handling functions. 3 * 4 * The firmware and bootloader passes us the "E820 table", which is the primary 5 * physical memory layout description available about x86 systems. 6 * 7 * The kernel takes the E820 memory layout and optionally modifies it with 8 * quirks and other tweaks, and feeds that into the generic Linux memory 9 * allocation code routines via a platform independent interface (memblock, etc.). 10 */ 11 #include <linux/crash_dump.h> 12 #include <linux/memblock.h> 13 #include <linux/suspend.h> 14 #include <linux/acpi.h> 15 #include <linux/firmware-map.h> 16 #include <linux/sort.h> 17 #include <linux/memory_hotplug.h> 18 19 #include <asm/e820/api.h> 20 #include <asm/setup.h> 21 22 /* 23 * We organize the E820 table into three main data structures: 24 * 25 * - 'e820_table_firmware': the original firmware version passed to us by the 26 * bootloader - not modified by the kernel. It is composed of two parts: 27 * the first 128 E820 memory entries in boot_params.e820_table and the remaining 28 * (if any) entries of the SETUP_E820_EXT nodes. We use this to: 29 * 30 * - inform the user about the firmware's notion of memory layout 31 * via /sys/firmware/memmap 32 * 33 * - the hibernation code uses it to generate a kernel-independent MD5 34 * fingerprint of the physical memory layout of a system. 35 * 36 * - 'e820_table_kexec': a slightly modified (by the kernel) firmware version 37 * passed to us by the bootloader - the major difference between 38 * e820_table_firmware[] and this one is that, the latter marks the setup_data 39 * list created by the EFI boot stub as reserved, so that kexec can reuse the 40 * setup_data information in the second kernel. Besides, e820_table_kexec[] 41 * might also be modified by the kexec itself to fake a mptable. 42 * We use this to: 43 * 44 * - kexec, which is a bootloader in disguise, uses the original E820 45 * layout to pass to the kexec-ed kernel. This way the original kernel 46 * can have a restricted E820 map while the kexec()-ed kexec-kernel 47 * can have access to full memory - etc. 48 * 49 * - 'e820_table': this is the main E820 table that is massaged by the 50 * low level x86 platform code, or modified by boot parameters, before 51 * passed on to higher level MM layers. 52 * 53 * Once the E820 map has been converted to the standard Linux memory layout 54 * information its role stops - modifying it has no effect and does not get 55 * re-propagated. So itsmain role is a temporary bootstrap storage of firmware 56 * specific memory layout data during early bootup. 57 */ 58 static struct e820_table e820_table_init __initdata; 59 static struct e820_table e820_table_kexec_init __initdata; 60 static struct e820_table e820_table_firmware_init __initdata; 61 62 struct e820_table *e820_table __refdata = &e820_table_init; 63 struct e820_table *e820_table_kexec __refdata = &e820_table_kexec_init; 64 struct e820_table *e820_table_firmware __refdata = &e820_table_firmware_init; 65 66 /* For PCI or other memory-mapped resources */ 67 unsigned long pci_mem_start = 0xaeedbabe; 68 #ifdef CONFIG_PCI 69 EXPORT_SYMBOL(pci_mem_start); 70 #endif 71 72 /* 73 * This function checks if any part of the range <start,end> is mapped 74 * with type. 75 */ 76 bool e820__mapped_any(u64 start, u64 end, enum e820_type type) 77 { 78 int i; 79 80 for (i = 0; i < e820_table->nr_entries; i++) { 81 struct e820_entry *entry = &e820_table->entries[i]; 82 83 if (type && entry->type != type) 84 continue; 85 if (entry->addr >= end || entry->addr + entry->size <= start) 86 continue; 87 return 1; 88 } 89 return 0; 90 } 91 EXPORT_SYMBOL_GPL(e820__mapped_any); 92 93 /* 94 * This function checks if the entire <start,end> range is mapped with 'type'. 95 * 96 * Note: this function only works correctly once the E820 table is sorted and 97 * not-overlapping (at least for the range specified), which is the case normally. 98 */ 99 static struct e820_entry *__e820__mapped_all(u64 start, u64 end, 100 enum e820_type type) 101 { 102 int i; 103 104 for (i = 0; i < e820_table->nr_entries; i++) { 105 struct e820_entry *entry = &e820_table->entries[i]; 106 107 if (type && entry->type != type) 108 continue; 109 110 /* Is the region (part) in overlap with the current region? */ 111 if (entry->addr >= end || entry->addr + entry->size <= start) 112 continue; 113 114 /* 115 * If the region is at the beginning of <start,end> we move 116 * 'start' to the end of the region since it's ok until there 117 */ 118 if (entry->addr <= start) 119 start = entry->addr + entry->size; 120 121 /* 122 * If 'start' is now at or beyond 'end', we're done, full 123 * coverage of the desired range exists: 124 */ 125 if (start >= end) 126 return entry; 127 } 128 129 return NULL; 130 } 131 132 /* 133 * This function checks if the entire range <start,end> is mapped with type. 134 */ 135 bool __init e820__mapped_all(u64 start, u64 end, enum e820_type type) 136 { 137 return __e820__mapped_all(start, end, type); 138 } 139 140 /* 141 * This function returns the type associated with the range <start,end>. 142 */ 143 int e820__get_entry_type(u64 start, u64 end) 144 { 145 struct e820_entry *entry = __e820__mapped_all(start, end, 0); 146 147 return entry ? entry->type : -EINVAL; 148 } 149 150 /* 151 * Add a memory region to the kernel E820 map. 152 */ 153 static void __init __e820__range_add(struct e820_table *table, u64 start, u64 size, enum e820_type type) 154 { 155 int x = table->nr_entries; 156 157 if (x >= ARRAY_SIZE(table->entries)) { 158 pr_err("too many entries; ignoring [mem %#010llx-%#010llx]\n", 159 start, start + size - 1); 160 return; 161 } 162 163 table->entries[x].addr = start; 164 table->entries[x].size = size; 165 table->entries[x].type = type; 166 table->nr_entries++; 167 } 168 169 void __init e820__range_add(u64 start, u64 size, enum e820_type type) 170 { 171 __e820__range_add(e820_table, start, size, type); 172 } 173 174 static void __init e820_print_type(enum e820_type type) 175 { 176 switch (type) { 177 case E820_TYPE_RAM: /* Fall through: */ 178 case E820_TYPE_RESERVED_KERN: pr_cont("usable"); break; 179 case E820_TYPE_RESERVED: pr_cont("reserved"); break; 180 case E820_TYPE_ACPI: pr_cont("ACPI data"); break; 181 case E820_TYPE_NVS: pr_cont("ACPI NVS"); break; 182 case E820_TYPE_UNUSABLE: pr_cont("unusable"); break; 183 case E820_TYPE_PMEM: /* Fall through: */ 184 case E820_TYPE_PRAM: pr_cont("persistent (type %u)", type); break; 185 default: pr_cont("type %u", type); break; 186 } 187 } 188 189 void __init e820__print_table(char *who) 190 { 191 int i; 192 193 for (i = 0; i < e820_table->nr_entries; i++) { 194 pr_info("%s: [mem %#018Lx-%#018Lx] ", 195 who, 196 e820_table->entries[i].addr, 197 e820_table->entries[i].addr + e820_table->entries[i].size - 1); 198 199 e820_print_type(e820_table->entries[i].type); 200 pr_cont("\n"); 201 } 202 } 203 204 /* 205 * Sanitize an E820 map. 206 * 207 * Some E820 layouts include overlapping entries. The following 208 * replaces the original E820 map with a new one, removing overlaps, 209 * and resolving conflicting memory types in favor of highest 210 * numbered type. 211 * 212 * The input parameter 'entries' points to an array of 'struct 213 * e820_entry' which on entry has elements in the range [0, *nr_entries) 214 * valid, and which has space for up to max_nr_entries entries. 215 * On return, the resulting sanitized E820 map entries will be in 216 * overwritten in the same location, starting at 'entries'. 217 * 218 * The integer pointed to by nr_entries must be valid on entry (the 219 * current number of valid entries located at 'entries'). If the 220 * sanitizing succeeds the *nr_entries will be updated with the new 221 * number of valid entries (something no more than max_nr_entries). 222 * 223 * The return value from e820__update_table() is zero if it 224 * successfully 'sanitized' the map entries passed in, and is -1 225 * if it did nothing, which can happen if either of (1) it was 226 * only passed one map entry, or (2) any of the input map entries 227 * were invalid (start + size < start, meaning that the size was 228 * so big the described memory range wrapped around through zero.) 229 * 230 * Visually we're performing the following 231 * (1,2,3,4 = memory types)... 232 * 233 * Sample memory map (w/overlaps): 234 * ____22__________________ 235 * ______________________4_ 236 * ____1111________________ 237 * _44_____________________ 238 * 11111111________________ 239 * ____________________33__ 240 * ___________44___________ 241 * __________33333_________ 242 * ______________22________ 243 * ___________________2222_ 244 * _________111111111______ 245 * _____________________11_ 246 * _________________4______ 247 * 248 * Sanitized equivalent (no overlap): 249 * 1_______________________ 250 * _44_____________________ 251 * ___1____________________ 252 * ____22__________________ 253 * ______11________________ 254 * _________1______________ 255 * __________3_____________ 256 * ___________44___________ 257 * _____________33_________ 258 * _______________2________ 259 * ________________1_______ 260 * _________________4______ 261 * ___________________2____ 262 * ____________________33__ 263 * ______________________4_ 264 */ 265 struct change_member { 266 /* Pointer to the original entry: */ 267 struct e820_entry *entry; 268 /* Address for this change point: */ 269 unsigned long long addr; 270 }; 271 272 static struct change_member change_point_list[2*E820_MAX_ENTRIES] __initdata; 273 static struct change_member *change_point[2*E820_MAX_ENTRIES] __initdata; 274 static struct e820_entry *overlap_list[E820_MAX_ENTRIES] __initdata; 275 static struct e820_entry new_entries[E820_MAX_ENTRIES] __initdata; 276 277 static int __init cpcompare(const void *a, const void *b) 278 { 279 struct change_member * const *app = a, * const *bpp = b; 280 const struct change_member *ap = *app, *bp = *bpp; 281 282 /* 283 * Inputs are pointers to two elements of change_point[]. If their 284 * addresses are not equal, their difference dominates. If the addresses 285 * are equal, then consider one that represents the end of its region 286 * to be greater than one that does not. 287 */ 288 if (ap->addr != bp->addr) 289 return ap->addr > bp->addr ? 1 : -1; 290 291 return (ap->addr != ap->entry->addr) - (bp->addr != bp->entry->addr); 292 } 293 294 int __init e820__update_table(struct e820_table *table) 295 { 296 struct e820_entry *entries = table->entries; 297 u32 max_nr_entries = ARRAY_SIZE(table->entries); 298 enum e820_type current_type, last_type; 299 unsigned long long last_addr; 300 u32 new_nr_entries, overlap_entries; 301 u32 i, chg_idx, chg_nr; 302 303 /* If there's only one memory region, don't bother: */ 304 if (table->nr_entries < 2) 305 return -1; 306 307 BUG_ON(table->nr_entries > max_nr_entries); 308 309 /* Bail out if we find any unreasonable addresses in the map: */ 310 for (i = 0; i < table->nr_entries; i++) { 311 if (entries[i].addr + entries[i].size < entries[i].addr) 312 return -1; 313 } 314 315 /* Create pointers for initial change-point information (for sorting): */ 316 for (i = 0; i < 2 * table->nr_entries; i++) 317 change_point[i] = &change_point_list[i]; 318 319 /* 320 * Record all known change-points (starting and ending addresses), 321 * omitting empty memory regions: 322 */ 323 chg_idx = 0; 324 for (i = 0; i < table->nr_entries; i++) { 325 if (entries[i].size != 0) { 326 change_point[chg_idx]->addr = entries[i].addr; 327 change_point[chg_idx++]->entry = &entries[i]; 328 change_point[chg_idx]->addr = entries[i].addr + entries[i].size; 329 change_point[chg_idx++]->entry = &entries[i]; 330 } 331 } 332 chg_nr = chg_idx; 333 334 /* Sort change-point list by memory addresses (low -> high): */ 335 sort(change_point, chg_nr, sizeof(*change_point), cpcompare, NULL); 336 337 /* Create a new memory map, removing overlaps: */ 338 overlap_entries = 0; /* Number of entries in the overlap table */ 339 new_nr_entries = 0; /* Index for creating new map entries */ 340 last_type = 0; /* Start with undefined memory type */ 341 last_addr = 0; /* Start with 0 as last starting address */ 342 343 /* Loop through change-points, determining effect on the new map: */ 344 for (chg_idx = 0; chg_idx < chg_nr; chg_idx++) { 345 /* Keep track of all overlapping entries */ 346 if (change_point[chg_idx]->addr == change_point[chg_idx]->entry->addr) { 347 /* Add map entry to overlap list (> 1 entry implies an overlap) */ 348 overlap_list[overlap_entries++] = change_point[chg_idx]->entry; 349 } else { 350 /* Remove entry from list (order independent, so swap with last): */ 351 for (i = 0; i < overlap_entries; i++) { 352 if (overlap_list[i] == change_point[chg_idx]->entry) 353 overlap_list[i] = overlap_list[overlap_entries-1]; 354 } 355 overlap_entries--; 356 } 357 /* 358 * If there are overlapping entries, decide which 359 * "type" to use (larger value takes precedence -- 360 * 1=usable, 2,3,4,4+=unusable) 361 */ 362 current_type = 0; 363 for (i = 0; i < overlap_entries; i++) { 364 if (overlap_list[i]->type > current_type) 365 current_type = overlap_list[i]->type; 366 } 367 368 /* Continue building up new map based on this information: */ 369 if (current_type != last_type || current_type == E820_TYPE_PRAM) { 370 if (last_type != 0) { 371 new_entries[new_nr_entries].size = change_point[chg_idx]->addr - last_addr; 372 /* Move forward only if the new size was non-zero: */ 373 if (new_entries[new_nr_entries].size != 0) 374 /* No more space left for new entries? */ 375 if (++new_nr_entries >= max_nr_entries) 376 break; 377 } 378 if (current_type != 0) { 379 new_entries[new_nr_entries].addr = change_point[chg_idx]->addr; 380 new_entries[new_nr_entries].type = current_type; 381 last_addr = change_point[chg_idx]->addr; 382 } 383 last_type = current_type; 384 } 385 } 386 387 /* Copy the new entries into the original location: */ 388 memcpy(entries, new_entries, new_nr_entries*sizeof(*entries)); 389 table->nr_entries = new_nr_entries; 390 391 return 0; 392 } 393 394 static int __init __append_e820_table(struct boot_e820_entry *entries, u32 nr_entries) 395 { 396 struct boot_e820_entry *entry = entries; 397 398 while (nr_entries) { 399 u64 start = entry->addr; 400 u64 size = entry->size; 401 u64 end = start + size - 1; 402 u32 type = entry->type; 403 404 /* Ignore the entry on 64-bit overflow: */ 405 if (start > end && likely(size)) 406 return -1; 407 408 e820__range_add(start, size, type); 409 410 entry++; 411 nr_entries--; 412 } 413 return 0; 414 } 415 416 /* 417 * Copy the BIOS E820 map into a safe place. 418 * 419 * Sanity-check it while we're at it.. 420 * 421 * If we're lucky and live on a modern system, the setup code 422 * will have given us a memory map that we can use to properly 423 * set up memory. If we aren't, we'll fake a memory map. 424 */ 425 static int __init append_e820_table(struct boot_e820_entry *entries, u32 nr_entries) 426 { 427 /* Only one memory region (or negative)? Ignore it */ 428 if (nr_entries < 2) 429 return -1; 430 431 return __append_e820_table(entries, nr_entries); 432 } 433 434 static u64 __init 435 __e820__range_update(struct e820_table *table, u64 start, u64 size, enum e820_type old_type, enum e820_type new_type) 436 { 437 u64 end; 438 unsigned int i; 439 u64 real_updated_size = 0; 440 441 BUG_ON(old_type == new_type); 442 443 if (size > (ULLONG_MAX - start)) 444 size = ULLONG_MAX - start; 445 446 end = start + size; 447 printk(KERN_DEBUG "e820: update [mem %#010Lx-%#010Lx] ", start, end - 1); 448 e820_print_type(old_type); 449 pr_cont(" ==> "); 450 e820_print_type(new_type); 451 pr_cont("\n"); 452 453 for (i = 0; i < table->nr_entries; i++) { 454 struct e820_entry *entry = &table->entries[i]; 455 u64 final_start, final_end; 456 u64 entry_end; 457 458 if (entry->type != old_type) 459 continue; 460 461 entry_end = entry->addr + entry->size; 462 463 /* Completely covered by new range? */ 464 if (entry->addr >= start && entry_end <= end) { 465 entry->type = new_type; 466 real_updated_size += entry->size; 467 continue; 468 } 469 470 /* New range is completely covered? */ 471 if (entry->addr < start && entry_end > end) { 472 __e820__range_add(table, start, size, new_type); 473 __e820__range_add(table, end, entry_end - end, entry->type); 474 entry->size = start - entry->addr; 475 real_updated_size += size; 476 continue; 477 } 478 479 /* Partially covered: */ 480 final_start = max(start, entry->addr); 481 final_end = min(end, entry_end); 482 if (final_start >= final_end) 483 continue; 484 485 __e820__range_add(table, final_start, final_end - final_start, new_type); 486 487 real_updated_size += final_end - final_start; 488 489 /* 490 * Left range could be head or tail, so need to update 491 * its size first: 492 */ 493 entry->size -= final_end - final_start; 494 if (entry->addr < final_start) 495 continue; 496 497 entry->addr = final_end; 498 } 499 return real_updated_size; 500 } 501 502 u64 __init e820__range_update(u64 start, u64 size, enum e820_type old_type, enum e820_type new_type) 503 { 504 return __e820__range_update(e820_table, start, size, old_type, new_type); 505 } 506 507 static u64 __init e820__range_update_kexec(u64 start, u64 size, enum e820_type old_type, enum e820_type new_type) 508 { 509 return __e820__range_update(e820_table_kexec, start, size, old_type, new_type); 510 } 511 512 /* Remove a range of memory from the E820 table: */ 513 u64 __init e820__range_remove(u64 start, u64 size, enum e820_type old_type, bool check_type) 514 { 515 int i; 516 u64 end; 517 u64 real_removed_size = 0; 518 519 if (size > (ULLONG_MAX - start)) 520 size = ULLONG_MAX - start; 521 522 end = start + size; 523 printk(KERN_DEBUG "e820: remove [mem %#010Lx-%#010Lx] ", start, end - 1); 524 if (check_type) 525 e820_print_type(old_type); 526 pr_cont("\n"); 527 528 for (i = 0; i < e820_table->nr_entries; i++) { 529 struct e820_entry *entry = &e820_table->entries[i]; 530 u64 final_start, final_end; 531 u64 entry_end; 532 533 if (check_type && entry->type != old_type) 534 continue; 535 536 entry_end = entry->addr + entry->size; 537 538 /* Completely covered? */ 539 if (entry->addr >= start && entry_end <= end) { 540 real_removed_size += entry->size; 541 memset(entry, 0, sizeof(*entry)); 542 continue; 543 } 544 545 /* Is the new range completely covered? */ 546 if (entry->addr < start && entry_end > end) { 547 e820__range_add(end, entry_end - end, entry->type); 548 entry->size = start - entry->addr; 549 real_removed_size += size; 550 continue; 551 } 552 553 /* Partially covered: */ 554 final_start = max(start, entry->addr); 555 final_end = min(end, entry_end); 556 if (final_start >= final_end) 557 continue; 558 559 real_removed_size += final_end - final_start; 560 561 /* 562 * Left range could be head or tail, so need to update 563 * the size first: 564 */ 565 entry->size -= final_end - final_start; 566 if (entry->addr < final_start) 567 continue; 568 569 entry->addr = final_end; 570 } 571 return real_removed_size; 572 } 573 574 void __init e820__update_table_print(void) 575 { 576 if (e820__update_table(e820_table)) 577 return; 578 579 pr_info("modified physical RAM map:\n"); 580 e820__print_table("modified"); 581 } 582 583 static void __init e820__update_table_kexec(void) 584 { 585 e820__update_table(e820_table_kexec); 586 } 587 588 #define MAX_GAP_END 0x100000000ull 589 590 /* 591 * Search for a gap in the E820 memory space from 0 to MAX_GAP_END (4GB). 592 */ 593 static int __init e820_search_gap(unsigned long *gapstart, unsigned long *gapsize) 594 { 595 unsigned long long last = MAX_GAP_END; 596 int i = e820_table->nr_entries; 597 int found = 0; 598 599 while (--i >= 0) { 600 unsigned long long start = e820_table->entries[i].addr; 601 unsigned long long end = start + e820_table->entries[i].size; 602 603 /* 604 * Since "last" is at most 4GB, we know we'll 605 * fit in 32 bits if this condition is true: 606 */ 607 if (last > end) { 608 unsigned long gap = last - end; 609 610 if (gap >= *gapsize) { 611 *gapsize = gap; 612 *gapstart = end; 613 found = 1; 614 } 615 } 616 if (start < last) 617 last = start; 618 } 619 return found; 620 } 621 622 /* 623 * Search for the biggest gap in the low 32 bits of the E820 624 * memory space. We pass this space to the PCI subsystem, so 625 * that it can assign MMIO resources for hotplug or 626 * unconfigured devices in. 627 * 628 * Hopefully the BIOS let enough space left. 629 */ 630 __init void e820__setup_pci_gap(void) 631 { 632 unsigned long gapstart, gapsize; 633 int found; 634 635 gapsize = 0x400000; 636 found = e820_search_gap(&gapstart, &gapsize); 637 638 if (!found) { 639 #ifdef CONFIG_X86_64 640 gapstart = (max_pfn << PAGE_SHIFT) + 1024*1024; 641 pr_err("Cannot find an available gap in the 32-bit address range\n"); 642 pr_err("PCI devices with unassigned 32-bit BARs may not work!\n"); 643 #else 644 gapstart = 0x10000000; 645 #endif 646 } 647 648 /* 649 * e820__reserve_resources_late() protects stolen RAM already: 650 */ 651 pci_mem_start = gapstart; 652 653 pr_info("[mem %#010lx-%#010lx] available for PCI devices\n", 654 gapstart, gapstart + gapsize - 1); 655 } 656 657 /* 658 * Called late during init, in free_initmem(). 659 * 660 * Initial e820_table and e820_table_kexec are largish __initdata arrays. 661 * 662 * Copy them to a (usually much smaller) dynamically allocated area that is 663 * sized precisely after the number of e820 entries. 664 * 665 * This is done after we've performed all the fixes and tweaks to the tables. 666 * All functions which modify them are __init functions, which won't exist 667 * after free_initmem(). 668 */ 669 __init void e820__reallocate_tables(void) 670 { 671 struct e820_table *n; 672 int size; 673 674 size = offsetof(struct e820_table, entries) + sizeof(struct e820_entry)*e820_table->nr_entries; 675 n = kmemdup(e820_table, size, GFP_KERNEL); 676 BUG_ON(!n); 677 e820_table = n; 678 679 size = offsetof(struct e820_table, entries) + sizeof(struct e820_entry)*e820_table_kexec->nr_entries; 680 n = kmemdup(e820_table_kexec, size, GFP_KERNEL); 681 BUG_ON(!n); 682 e820_table_kexec = n; 683 684 size = offsetof(struct e820_table, entries) + sizeof(struct e820_entry)*e820_table_firmware->nr_entries; 685 n = kmemdup(e820_table_firmware, size, GFP_KERNEL); 686 BUG_ON(!n); 687 e820_table_firmware = n; 688 } 689 690 /* 691 * Because of the small fixed size of struct boot_params, only the first 692 * 128 E820 memory entries are passed to the kernel via boot_params.e820_table, 693 * the remaining (if any) entries are passed via the SETUP_E820_EXT node of 694 * struct setup_data, which is parsed here. 695 */ 696 void __init e820__memory_setup_extended(u64 phys_addr, u32 data_len) 697 { 698 int entries; 699 struct boot_e820_entry *extmap; 700 struct setup_data *sdata; 701 702 sdata = early_memremap(phys_addr, data_len); 703 entries = sdata->len / sizeof(*extmap); 704 extmap = (struct boot_e820_entry *)(sdata->data); 705 706 __append_e820_table(extmap, entries); 707 e820__update_table(e820_table); 708 709 memcpy(e820_table_kexec, e820_table, sizeof(*e820_table_kexec)); 710 memcpy(e820_table_firmware, e820_table, sizeof(*e820_table_firmware)); 711 712 early_memunmap(sdata, data_len); 713 pr_info("extended physical RAM map:\n"); 714 e820__print_table("extended"); 715 } 716 717 /* 718 * Find the ranges of physical addresses that do not correspond to 719 * E820 RAM areas and register the corresponding pages as 'nosave' for 720 * hibernation (32-bit) or software suspend and suspend to RAM (64-bit). 721 * 722 * This function requires the E820 map to be sorted and without any 723 * overlapping entries. 724 */ 725 void __init e820__register_nosave_regions(unsigned long limit_pfn) 726 { 727 int i; 728 unsigned long pfn = 0; 729 730 for (i = 0; i < e820_table->nr_entries; i++) { 731 struct e820_entry *entry = &e820_table->entries[i]; 732 733 if (pfn < PFN_UP(entry->addr)) 734 register_nosave_region(pfn, PFN_UP(entry->addr)); 735 736 pfn = PFN_DOWN(entry->addr + entry->size); 737 738 if (entry->type != E820_TYPE_RAM && entry->type != E820_TYPE_RESERVED_KERN) 739 register_nosave_region(PFN_UP(entry->addr), pfn); 740 741 if (pfn >= limit_pfn) 742 break; 743 } 744 } 745 746 #ifdef CONFIG_ACPI 747 /* 748 * Register ACPI NVS memory regions, so that we can save/restore them during 749 * hibernation and the subsequent resume: 750 */ 751 static int __init e820__register_nvs_regions(void) 752 { 753 int i; 754 755 for (i = 0; i < e820_table->nr_entries; i++) { 756 struct e820_entry *entry = &e820_table->entries[i]; 757 758 if (entry->type == E820_TYPE_NVS) 759 acpi_nvs_register(entry->addr, entry->size); 760 } 761 762 return 0; 763 } 764 core_initcall(e820__register_nvs_regions); 765 #endif 766 767 /* 768 * Allocate the requested number of bytes with the requsted alignment 769 * and return (the physical address) to the caller. Also register this 770 * range in the 'kexec' E820 table as a reserved range. 771 * 772 * This allows kexec to fake a new mptable, as if it came from the real 773 * system. 774 */ 775 u64 __init e820__memblock_alloc_reserved(u64 size, u64 align) 776 { 777 u64 addr; 778 779 addr = memblock_phys_alloc(size, align); 780 if (addr) { 781 e820__range_update_kexec(addr, size, E820_TYPE_RAM, E820_TYPE_RESERVED); 782 pr_info("update e820_table_kexec for e820__memblock_alloc_reserved()\n"); 783 e820__update_table_kexec(); 784 } 785 786 return addr; 787 } 788 789 #ifdef CONFIG_X86_32 790 # ifdef CONFIG_X86_PAE 791 # define MAX_ARCH_PFN (1ULL<<(36-PAGE_SHIFT)) 792 # else 793 # define MAX_ARCH_PFN (1ULL<<(32-PAGE_SHIFT)) 794 # endif 795 #else /* CONFIG_X86_32 */ 796 # define MAX_ARCH_PFN MAXMEM>>PAGE_SHIFT 797 #endif 798 799 /* 800 * Find the highest page frame number we have available 801 */ 802 static unsigned long __init e820_end_pfn(unsigned long limit_pfn, enum e820_type type) 803 { 804 int i; 805 unsigned long last_pfn = 0; 806 unsigned long max_arch_pfn = MAX_ARCH_PFN; 807 808 for (i = 0; i < e820_table->nr_entries; i++) { 809 struct e820_entry *entry = &e820_table->entries[i]; 810 unsigned long start_pfn; 811 unsigned long end_pfn; 812 813 if (entry->type != type) 814 continue; 815 816 start_pfn = entry->addr >> PAGE_SHIFT; 817 end_pfn = (entry->addr + entry->size) >> PAGE_SHIFT; 818 819 if (start_pfn >= limit_pfn) 820 continue; 821 if (end_pfn > limit_pfn) { 822 last_pfn = limit_pfn; 823 break; 824 } 825 if (end_pfn > last_pfn) 826 last_pfn = end_pfn; 827 } 828 829 if (last_pfn > max_arch_pfn) 830 last_pfn = max_arch_pfn; 831 832 pr_info("last_pfn = %#lx max_arch_pfn = %#lx\n", 833 last_pfn, max_arch_pfn); 834 return last_pfn; 835 } 836 837 unsigned long __init e820__end_of_ram_pfn(void) 838 { 839 return e820_end_pfn(MAX_ARCH_PFN, E820_TYPE_RAM); 840 } 841 842 unsigned long __init e820__end_of_low_ram_pfn(void) 843 { 844 return e820_end_pfn(1UL << (32 - PAGE_SHIFT), E820_TYPE_RAM); 845 } 846 847 static void __init early_panic(char *msg) 848 { 849 early_printk(msg); 850 panic(msg); 851 } 852 853 static int userdef __initdata; 854 855 /* The "mem=nopentium" boot option disables 4MB page tables on 32-bit kernels: */ 856 static int __init parse_memopt(char *p) 857 { 858 u64 mem_size; 859 860 if (!p) 861 return -EINVAL; 862 863 if (!strcmp(p, "nopentium")) { 864 #ifdef CONFIG_X86_32 865 setup_clear_cpu_cap(X86_FEATURE_PSE); 866 return 0; 867 #else 868 pr_warn("mem=nopentium ignored! (only supported on x86_32)\n"); 869 return -EINVAL; 870 #endif 871 } 872 873 userdef = 1; 874 mem_size = memparse(p, &p); 875 876 /* Don't remove all memory when getting "mem={invalid}" parameter: */ 877 if (mem_size == 0) 878 return -EINVAL; 879 880 e820__range_remove(mem_size, ULLONG_MAX - mem_size, E820_TYPE_RAM, 1); 881 882 #ifdef CONFIG_MEMORY_HOTPLUG 883 max_mem_size = mem_size; 884 #endif 885 886 return 0; 887 } 888 early_param("mem", parse_memopt); 889 890 static int __init parse_memmap_one(char *p) 891 { 892 char *oldp; 893 u64 start_at, mem_size; 894 895 if (!p) 896 return -EINVAL; 897 898 if (!strncmp(p, "exactmap", 8)) { 899 #ifdef CONFIG_CRASH_DUMP 900 /* 901 * If we are doing a crash dump, we still need to know 902 * the real memory size before the original memory map is 903 * reset. 904 */ 905 saved_max_pfn = e820__end_of_ram_pfn(); 906 #endif 907 e820_table->nr_entries = 0; 908 userdef = 1; 909 return 0; 910 } 911 912 oldp = p; 913 mem_size = memparse(p, &p); 914 if (p == oldp) 915 return -EINVAL; 916 917 userdef = 1; 918 if (*p == '@') { 919 start_at = memparse(p+1, &p); 920 e820__range_add(start_at, mem_size, E820_TYPE_RAM); 921 } else if (*p == '#') { 922 start_at = memparse(p+1, &p); 923 e820__range_add(start_at, mem_size, E820_TYPE_ACPI); 924 } else if (*p == '$') { 925 start_at = memparse(p+1, &p); 926 e820__range_add(start_at, mem_size, E820_TYPE_RESERVED); 927 } else if (*p == '!') { 928 start_at = memparse(p+1, &p); 929 e820__range_add(start_at, mem_size, E820_TYPE_PRAM); 930 } else if (*p == '%') { 931 enum e820_type from = 0, to = 0; 932 933 start_at = memparse(p + 1, &p); 934 if (*p == '-') 935 from = simple_strtoull(p + 1, &p, 0); 936 if (*p == '+') 937 to = simple_strtoull(p + 1, &p, 0); 938 if (*p != '\0') 939 return -EINVAL; 940 if (from && to) 941 e820__range_update(start_at, mem_size, from, to); 942 else if (to) 943 e820__range_add(start_at, mem_size, to); 944 else if (from) 945 e820__range_remove(start_at, mem_size, from, 1); 946 else 947 e820__range_remove(start_at, mem_size, 0, 0); 948 } else { 949 e820__range_remove(mem_size, ULLONG_MAX - mem_size, E820_TYPE_RAM, 1); 950 } 951 952 return *p == '\0' ? 0 : -EINVAL; 953 } 954 955 static int __init parse_memmap_opt(char *str) 956 { 957 while (str) { 958 char *k = strchr(str, ','); 959 960 if (k) 961 *k++ = 0; 962 963 parse_memmap_one(str); 964 str = k; 965 } 966 967 return 0; 968 } 969 early_param("memmap", parse_memmap_opt); 970 971 /* 972 * Reserve all entries from the bootloader's extensible data nodes list, 973 * because if present we are going to use it later on to fetch e820 974 * entries from it: 975 */ 976 void __init e820__reserve_setup_data(void) 977 { 978 struct setup_data *data; 979 u64 pa_data; 980 981 pa_data = boot_params.hdr.setup_data; 982 if (!pa_data) 983 return; 984 985 while (pa_data) { 986 data = early_memremap(pa_data, sizeof(*data)); 987 e820__range_update(pa_data, sizeof(*data)+data->len, E820_TYPE_RAM, E820_TYPE_RESERVED_KERN); 988 e820__range_update_kexec(pa_data, sizeof(*data)+data->len, E820_TYPE_RAM, E820_TYPE_RESERVED_KERN); 989 pa_data = data->next; 990 early_memunmap(data, sizeof(*data)); 991 } 992 993 e820__update_table(e820_table); 994 e820__update_table(e820_table_kexec); 995 996 pr_info("extended physical RAM map:\n"); 997 e820__print_table("reserve setup_data"); 998 } 999 1000 /* 1001 * Called after parse_early_param(), after early parameters (such as mem=) 1002 * have been processed, in which case we already have an E820 table filled in 1003 * via the parameter callback function(s), but it's not sorted and printed yet: 1004 */ 1005 void __init e820__finish_early_params(void) 1006 { 1007 if (userdef) { 1008 if (e820__update_table(e820_table) < 0) 1009 early_panic("Invalid user supplied memory map"); 1010 1011 pr_info("user-defined physical RAM map:\n"); 1012 e820__print_table("user"); 1013 } 1014 } 1015 1016 static const char *__init e820_type_to_string(struct e820_entry *entry) 1017 { 1018 switch (entry->type) { 1019 case E820_TYPE_RESERVED_KERN: /* Fall-through: */ 1020 case E820_TYPE_RAM: return "System RAM"; 1021 case E820_TYPE_ACPI: return "ACPI Tables"; 1022 case E820_TYPE_NVS: return "ACPI Non-volatile Storage"; 1023 case E820_TYPE_UNUSABLE: return "Unusable memory"; 1024 case E820_TYPE_PRAM: return "Persistent Memory (legacy)"; 1025 case E820_TYPE_PMEM: return "Persistent Memory"; 1026 case E820_TYPE_RESERVED: return "Reserved"; 1027 default: return "Unknown E820 type"; 1028 } 1029 } 1030 1031 static unsigned long __init e820_type_to_iomem_type(struct e820_entry *entry) 1032 { 1033 switch (entry->type) { 1034 case E820_TYPE_RESERVED_KERN: /* Fall-through: */ 1035 case E820_TYPE_RAM: return IORESOURCE_SYSTEM_RAM; 1036 case E820_TYPE_ACPI: /* Fall-through: */ 1037 case E820_TYPE_NVS: /* Fall-through: */ 1038 case E820_TYPE_UNUSABLE: /* Fall-through: */ 1039 case E820_TYPE_PRAM: /* Fall-through: */ 1040 case E820_TYPE_PMEM: /* Fall-through: */ 1041 case E820_TYPE_RESERVED: /* Fall-through: */ 1042 default: return IORESOURCE_MEM; 1043 } 1044 } 1045 1046 static unsigned long __init e820_type_to_iores_desc(struct e820_entry *entry) 1047 { 1048 switch (entry->type) { 1049 case E820_TYPE_ACPI: return IORES_DESC_ACPI_TABLES; 1050 case E820_TYPE_NVS: return IORES_DESC_ACPI_NV_STORAGE; 1051 case E820_TYPE_PMEM: return IORES_DESC_PERSISTENT_MEMORY; 1052 case E820_TYPE_PRAM: return IORES_DESC_PERSISTENT_MEMORY_LEGACY; 1053 case E820_TYPE_RESERVED_KERN: /* Fall-through: */ 1054 case E820_TYPE_RAM: /* Fall-through: */ 1055 case E820_TYPE_UNUSABLE: /* Fall-through: */ 1056 case E820_TYPE_RESERVED: /* Fall-through: */ 1057 default: return IORES_DESC_NONE; 1058 } 1059 } 1060 1061 static bool __init do_mark_busy(enum e820_type type, struct resource *res) 1062 { 1063 /* this is the legacy bios/dos rom-shadow + mmio region */ 1064 if (res->start < (1ULL<<20)) 1065 return true; 1066 1067 /* 1068 * Treat persistent memory like device memory, i.e. reserve it 1069 * for exclusive use of a driver 1070 */ 1071 switch (type) { 1072 case E820_TYPE_RESERVED: 1073 case E820_TYPE_PRAM: 1074 case E820_TYPE_PMEM: 1075 return false; 1076 case E820_TYPE_RESERVED_KERN: 1077 case E820_TYPE_RAM: 1078 case E820_TYPE_ACPI: 1079 case E820_TYPE_NVS: 1080 case E820_TYPE_UNUSABLE: 1081 default: 1082 return true; 1083 } 1084 } 1085 1086 /* 1087 * Mark E820 reserved areas as busy for the resource manager: 1088 */ 1089 1090 static struct resource __initdata *e820_res; 1091 1092 void __init e820__reserve_resources(void) 1093 { 1094 int i; 1095 struct resource *res; 1096 u64 end; 1097 1098 res = memblock_alloc(sizeof(*res) * e820_table->nr_entries, 1099 SMP_CACHE_BYTES); 1100 if (!res) 1101 panic("%s: Failed to allocate %zu bytes\n", __func__, 1102 sizeof(*res) * e820_table->nr_entries); 1103 e820_res = res; 1104 1105 for (i = 0; i < e820_table->nr_entries; i++) { 1106 struct e820_entry *entry = e820_table->entries + i; 1107 1108 end = entry->addr + entry->size - 1; 1109 if (end != (resource_size_t)end) { 1110 res++; 1111 continue; 1112 } 1113 res->start = entry->addr; 1114 res->end = end; 1115 res->name = e820_type_to_string(entry); 1116 res->flags = e820_type_to_iomem_type(entry); 1117 res->desc = e820_type_to_iores_desc(entry); 1118 1119 /* 1120 * Don't register the region that could be conflicted with 1121 * PCI device BAR resources and insert them later in 1122 * pcibios_resource_survey(): 1123 */ 1124 if (do_mark_busy(entry->type, res)) { 1125 res->flags |= IORESOURCE_BUSY; 1126 insert_resource(&iomem_resource, res); 1127 } 1128 res++; 1129 } 1130 1131 /* Expose the bootloader-provided memory layout to the sysfs. */ 1132 for (i = 0; i < e820_table_firmware->nr_entries; i++) { 1133 struct e820_entry *entry = e820_table_firmware->entries + i; 1134 1135 firmware_map_add_early(entry->addr, entry->addr + entry->size, e820_type_to_string(entry)); 1136 } 1137 } 1138 1139 /* 1140 * How much should we pad the end of RAM, depending on where it is? 1141 */ 1142 static unsigned long __init ram_alignment(resource_size_t pos) 1143 { 1144 unsigned long mb = pos >> 20; 1145 1146 /* To 64kB in the first megabyte */ 1147 if (!mb) 1148 return 64*1024; 1149 1150 /* To 1MB in the first 16MB */ 1151 if (mb < 16) 1152 return 1024*1024; 1153 1154 /* To 64MB for anything above that */ 1155 return 64*1024*1024; 1156 } 1157 1158 #define MAX_RESOURCE_SIZE ((resource_size_t)-1) 1159 1160 void __init e820__reserve_resources_late(void) 1161 { 1162 int i; 1163 struct resource *res; 1164 1165 res = e820_res; 1166 for (i = 0; i < e820_table->nr_entries; i++) { 1167 if (!res->parent && res->end) 1168 insert_resource_expand_to_fit(&iomem_resource, res); 1169 res++; 1170 } 1171 1172 /* 1173 * Try to bump up RAM regions to reasonable boundaries, to 1174 * avoid stolen RAM: 1175 */ 1176 for (i = 0; i < e820_table->nr_entries; i++) { 1177 struct e820_entry *entry = &e820_table->entries[i]; 1178 u64 start, end; 1179 1180 if (entry->type != E820_TYPE_RAM) 1181 continue; 1182 1183 start = entry->addr + entry->size; 1184 end = round_up(start, ram_alignment(start)) - 1; 1185 if (end > MAX_RESOURCE_SIZE) 1186 end = MAX_RESOURCE_SIZE; 1187 if (start >= end) 1188 continue; 1189 1190 printk(KERN_DEBUG "e820: reserve RAM buffer [mem %#010llx-%#010llx]\n", start, end); 1191 reserve_region_with_split(&iomem_resource, start, end, "RAM buffer"); 1192 } 1193 } 1194 1195 /* 1196 * Pass the firmware (bootloader) E820 map to the kernel and process it: 1197 */ 1198 char *__init e820__memory_setup_default(void) 1199 { 1200 char *who = "BIOS-e820"; 1201 1202 /* 1203 * Try to copy the BIOS-supplied E820-map. 1204 * 1205 * Otherwise fake a memory map; one section from 0k->640k, 1206 * the next section from 1mb->appropriate_mem_k 1207 */ 1208 if (append_e820_table(boot_params.e820_table, boot_params.e820_entries) < 0) { 1209 u64 mem_size; 1210 1211 /* Compare results from other methods and take the one that gives more RAM: */ 1212 if (boot_params.alt_mem_k < boot_params.screen_info.ext_mem_k) { 1213 mem_size = boot_params.screen_info.ext_mem_k; 1214 who = "BIOS-88"; 1215 } else { 1216 mem_size = boot_params.alt_mem_k; 1217 who = "BIOS-e801"; 1218 } 1219 1220 e820_table->nr_entries = 0; 1221 e820__range_add(0, LOWMEMSIZE(), E820_TYPE_RAM); 1222 e820__range_add(HIGH_MEMORY, mem_size << 10, E820_TYPE_RAM); 1223 } 1224 1225 /* We just appended a lot of ranges, sanitize the table: */ 1226 e820__update_table(e820_table); 1227 1228 return who; 1229 } 1230 1231 /* 1232 * Calls e820__memory_setup_default() in essence to pick up the firmware/bootloader 1233 * E820 map - with an optional platform quirk available for virtual platforms 1234 * to override this method of boot environment processing: 1235 */ 1236 void __init e820__memory_setup(void) 1237 { 1238 char *who; 1239 1240 /* This is a firmware interface ABI - make sure we don't break it: */ 1241 BUILD_BUG_ON(sizeof(struct boot_e820_entry) != 20); 1242 1243 who = x86_init.resources.memory_setup(); 1244 1245 memcpy(e820_table_kexec, e820_table, sizeof(*e820_table_kexec)); 1246 memcpy(e820_table_firmware, e820_table, sizeof(*e820_table_firmware)); 1247 1248 pr_info("BIOS-provided physical RAM map:\n"); 1249 e820__print_table(who); 1250 } 1251 1252 void __init e820__memblock_setup(void) 1253 { 1254 int i; 1255 u64 end; 1256 1257 /* 1258 * The bootstrap memblock region count maximum is 128 entries 1259 * (INIT_MEMBLOCK_REGIONS), but EFI might pass us more E820 entries 1260 * than that - so allow memblock resizing. 1261 * 1262 * This is safe, because this call happens pretty late during x86 setup, 1263 * so we know about reserved memory regions already. (This is important 1264 * so that memblock resizing does no stomp over reserved areas.) 1265 */ 1266 memblock_allow_resize(); 1267 1268 for (i = 0; i < e820_table->nr_entries; i++) { 1269 struct e820_entry *entry = &e820_table->entries[i]; 1270 1271 end = entry->addr + entry->size; 1272 if (end != (resource_size_t)end) 1273 continue; 1274 1275 if (entry->type != E820_TYPE_RAM && entry->type != E820_TYPE_RESERVED_KERN) 1276 continue; 1277 1278 memblock_add(entry->addr, entry->size); 1279 } 1280 1281 /* Throw away partial pages: */ 1282 memblock_trim_memory(PAGE_SIZE); 1283 1284 memblock_dump_all(); 1285 } 1286