xref: /openbmc/linux/arch/x86/kernel/e820.c (revision ddc141e5)
1 /*
2  * Low level x86 E820 memory map handling functions.
3  *
4  * The firmware and bootloader passes us the "E820 table", which is the primary
5  * physical memory layout description available about x86 systems.
6  *
7  * The kernel takes the E820 memory layout and optionally modifies it with
8  * quirks and other tweaks, and feeds that into the generic Linux memory
9  * allocation code routines via a platform independent interface (memblock, etc.).
10  */
11 #include <linux/crash_dump.h>
12 #include <linux/bootmem.h>
13 #include <linux/suspend.h>
14 #include <linux/acpi.h>
15 #include <linux/firmware-map.h>
16 #include <linux/memblock.h>
17 #include <linux/sort.h>
18 
19 #include <asm/e820/api.h>
20 #include <asm/setup.h>
21 
22 /*
23  * We organize the E820 table into three main data structures:
24  *
25  * - 'e820_table_firmware': the original firmware version passed to us by the
26  *   bootloader - not modified by the kernel. It is composed of two parts:
27  *   the first 128 E820 memory entries in boot_params.e820_table and the remaining
28  *   (if any) entries of the SETUP_E820_EXT nodes. We use this to:
29  *
30  *       - inform the user about the firmware's notion of memory layout
31  *         via /sys/firmware/memmap
32  *
33  *       - the hibernation code uses it to generate a kernel-independent MD5
34  *         fingerprint of the physical memory layout of a system.
35  *
36  * - 'e820_table_kexec': a slightly modified (by the kernel) firmware version
37  *   passed to us by the bootloader - the major difference between
38  *   e820_table_firmware[] and this one is that, the latter marks the setup_data
39  *   list created by the EFI boot stub as reserved, so that kexec can reuse the
40  *   setup_data information in the second kernel. Besides, e820_table_kexec[]
41  *   might also be modified by the kexec itself to fake a mptable.
42  *   We use this to:
43  *
44  *       - kexec, which is a bootloader in disguise, uses the original E820
45  *         layout to pass to the kexec-ed kernel. This way the original kernel
46  *         can have a restricted E820 map while the kexec()-ed kexec-kernel
47  *         can have access to full memory - etc.
48  *
49  * - 'e820_table': this is the main E820 table that is massaged by the
50  *   low level x86 platform code, or modified by boot parameters, before
51  *   passed on to higher level MM layers.
52  *
53  * Once the E820 map has been converted to the standard Linux memory layout
54  * information its role stops - modifying it has no effect and does not get
55  * re-propagated. So itsmain role is a temporary bootstrap storage of firmware
56  * specific memory layout data during early bootup.
57  */
58 static struct e820_table e820_table_init		__initdata;
59 static struct e820_table e820_table_kexec_init		__initdata;
60 static struct e820_table e820_table_firmware_init	__initdata;
61 
62 struct e820_table *e820_table __refdata			= &e820_table_init;
63 struct e820_table *e820_table_kexec __refdata		= &e820_table_kexec_init;
64 struct e820_table *e820_table_firmware __refdata	= &e820_table_firmware_init;
65 
66 /* For PCI or other memory-mapped resources */
67 unsigned long pci_mem_start = 0xaeedbabe;
68 #ifdef CONFIG_PCI
69 EXPORT_SYMBOL(pci_mem_start);
70 #endif
71 
72 /*
73  * This function checks if any part of the range <start,end> is mapped
74  * with type.
75  */
76 bool e820__mapped_any(u64 start, u64 end, enum e820_type type)
77 {
78 	int i;
79 
80 	for (i = 0; i < e820_table->nr_entries; i++) {
81 		struct e820_entry *entry = &e820_table->entries[i];
82 
83 		if (type && entry->type != type)
84 			continue;
85 		if (entry->addr >= end || entry->addr + entry->size <= start)
86 			continue;
87 		return 1;
88 	}
89 	return 0;
90 }
91 EXPORT_SYMBOL_GPL(e820__mapped_any);
92 
93 /*
94  * This function checks if the entire <start,end> range is mapped with 'type'.
95  *
96  * Note: this function only works correctly once the E820 table is sorted and
97  * not-overlapping (at least for the range specified), which is the case normally.
98  */
99 static struct e820_entry *__e820__mapped_all(u64 start, u64 end,
100 					     enum e820_type type)
101 {
102 	int i;
103 
104 	for (i = 0; i < e820_table->nr_entries; i++) {
105 		struct e820_entry *entry = &e820_table->entries[i];
106 
107 		if (type && entry->type != type)
108 			continue;
109 
110 		/* Is the region (part) in overlap with the current region? */
111 		if (entry->addr >= end || entry->addr + entry->size <= start)
112 			continue;
113 
114 		/*
115 		 * If the region is at the beginning of <start,end> we move
116 		 * 'start' to the end of the region since it's ok until there
117 		 */
118 		if (entry->addr <= start)
119 			start = entry->addr + entry->size;
120 
121 		/*
122 		 * If 'start' is now at or beyond 'end', we're done, full
123 		 * coverage of the desired range exists:
124 		 */
125 		if (start >= end)
126 			return entry;
127 	}
128 
129 	return NULL;
130 }
131 
132 /*
133  * This function checks if the entire range <start,end> is mapped with type.
134  */
135 bool __init e820__mapped_all(u64 start, u64 end, enum e820_type type)
136 {
137 	return __e820__mapped_all(start, end, type);
138 }
139 
140 /*
141  * This function returns the type associated with the range <start,end>.
142  */
143 int e820__get_entry_type(u64 start, u64 end)
144 {
145 	struct e820_entry *entry = __e820__mapped_all(start, end, 0);
146 
147 	return entry ? entry->type : -EINVAL;
148 }
149 
150 /*
151  * Add a memory region to the kernel E820 map.
152  */
153 static void __init __e820__range_add(struct e820_table *table, u64 start, u64 size, enum e820_type type)
154 {
155 	int x = table->nr_entries;
156 
157 	if (x >= ARRAY_SIZE(table->entries)) {
158 		pr_err("e820: too many entries; ignoring [mem %#010llx-%#010llx]\n", start, start + size - 1);
159 		return;
160 	}
161 
162 	table->entries[x].addr = start;
163 	table->entries[x].size = size;
164 	table->entries[x].type = type;
165 	table->nr_entries++;
166 }
167 
168 void __init e820__range_add(u64 start, u64 size, enum e820_type type)
169 {
170 	__e820__range_add(e820_table, start, size, type);
171 }
172 
173 static void __init e820_print_type(enum e820_type type)
174 {
175 	switch (type) {
176 	case E820_TYPE_RAM:		/* Fall through: */
177 	case E820_TYPE_RESERVED_KERN:	pr_cont("usable");			break;
178 	case E820_TYPE_RESERVED:	pr_cont("reserved");			break;
179 	case E820_TYPE_ACPI:		pr_cont("ACPI data");			break;
180 	case E820_TYPE_NVS:		pr_cont("ACPI NVS");			break;
181 	case E820_TYPE_UNUSABLE:	pr_cont("unusable");			break;
182 	case E820_TYPE_PMEM:		/* Fall through: */
183 	case E820_TYPE_PRAM:		pr_cont("persistent (type %u)", type);	break;
184 	default:			pr_cont("type %u", type);		break;
185 	}
186 }
187 
188 void __init e820__print_table(char *who)
189 {
190 	int i;
191 
192 	for (i = 0; i < e820_table->nr_entries; i++) {
193 		pr_info("%s: [mem %#018Lx-%#018Lx] ", who,
194 		       e820_table->entries[i].addr,
195 		       e820_table->entries[i].addr + e820_table->entries[i].size - 1);
196 
197 		e820_print_type(e820_table->entries[i].type);
198 		pr_cont("\n");
199 	}
200 }
201 
202 /*
203  * Sanitize an E820 map.
204  *
205  * Some E820 layouts include overlapping entries. The following
206  * replaces the original E820 map with a new one, removing overlaps,
207  * and resolving conflicting memory types in favor of highest
208  * numbered type.
209  *
210  * The input parameter 'entries' points to an array of 'struct
211  * e820_entry' which on entry has elements in the range [0, *nr_entries)
212  * valid, and which has space for up to max_nr_entries entries.
213  * On return, the resulting sanitized E820 map entries will be in
214  * overwritten in the same location, starting at 'entries'.
215  *
216  * The integer pointed to by nr_entries must be valid on entry (the
217  * current number of valid entries located at 'entries'). If the
218  * sanitizing succeeds the *nr_entries will be updated with the new
219  * number of valid entries (something no more than max_nr_entries).
220  *
221  * The return value from e820__update_table() is zero if it
222  * successfully 'sanitized' the map entries passed in, and is -1
223  * if it did nothing, which can happen if either of (1) it was
224  * only passed one map entry, or (2) any of the input map entries
225  * were invalid (start + size < start, meaning that the size was
226  * so big the described memory range wrapped around through zero.)
227  *
228  *	Visually we're performing the following
229  *	(1,2,3,4 = memory types)...
230  *
231  *	Sample memory map (w/overlaps):
232  *	   ____22__________________
233  *	   ______________________4_
234  *	   ____1111________________
235  *	   _44_____________________
236  *	   11111111________________
237  *	   ____________________33__
238  *	   ___________44___________
239  *	   __________33333_________
240  *	   ______________22________
241  *	   ___________________2222_
242  *	   _________111111111______
243  *	   _____________________11_
244  *	   _________________4______
245  *
246  *	Sanitized equivalent (no overlap):
247  *	   1_______________________
248  *	   _44_____________________
249  *	   ___1____________________
250  *	   ____22__________________
251  *	   ______11________________
252  *	   _________1______________
253  *	   __________3_____________
254  *	   ___________44___________
255  *	   _____________33_________
256  *	   _______________2________
257  *	   ________________1_______
258  *	   _________________4______
259  *	   ___________________2____
260  *	   ____________________33__
261  *	   ______________________4_
262  */
263 struct change_member {
264 	/* Pointer to the original entry: */
265 	struct e820_entry	*entry;
266 	/* Address for this change point: */
267 	unsigned long long	addr;
268 };
269 
270 static struct change_member	change_point_list[2*E820_MAX_ENTRIES]	__initdata;
271 static struct change_member	*change_point[2*E820_MAX_ENTRIES]	__initdata;
272 static struct e820_entry	*overlap_list[E820_MAX_ENTRIES]		__initdata;
273 static struct e820_entry	new_entries[E820_MAX_ENTRIES]		__initdata;
274 
275 static int __init cpcompare(const void *a, const void *b)
276 {
277 	struct change_member * const *app = a, * const *bpp = b;
278 	const struct change_member *ap = *app, *bp = *bpp;
279 
280 	/*
281 	 * Inputs are pointers to two elements of change_point[].  If their
282 	 * addresses are not equal, their difference dominates.  If the addresses
283 	 * are equal, then consider one that represents the end of its region
284 	 * to be greater than one that does not.
285 	 */
286 	if (ap->addr != bp->addr)
287 		return ap->addr > bp->addr ? 1 : -1;
288 
289 	return (ap->addr != ap->entry->addr) - (bp->addr != bp->entry->addr);
290 }
291 
292 int __init e820__update_table(struct e820_table *table)
293 {
294 	struct e820_entry *entries = table->entries;
295 	u32 max_nr_entries = ARRAY_SIZE(table->entries);
296 	enum e820_type current_type, last_type;
297 	unsigned long long last_addr;
298 	u32 new_nr_entries, overlap_entries;
299 	u32 i, chg_idx, chg_nr;
300 
301 	/* If there's only one memory region, don't bother: */
302 	if (table->nr_entries < 2)
303 		return -1;
304 
305 	BUG_ON(table->nr_entries > max_nr_entries);
306 
307 	/* Bail out if we find any unreasonable addresses in the map: */
308 	for (i = 0; i < table->nr_entries; i++) {
309 		if (entries[i].addr + entries[i].size < entries[i].addr)
310 			return -1;
311 	}
312 
313 	/* Create pointers for initial change-point information (for sorting): */
314 	for (i = 0; i < 2 * table->nr_entries; i++)
315 		change_point[i] = &change_point_list[i];
316 
317 	/*
318 	 * Record all known change-points (starting and ending addresses),
319 	 * omitting empty memory regions:
320 	 */
321 	chg_idx = 0;
322 	for (i = 0; i < table->nr_entries; i++)	{
323 		if (entries[i].size != 0) {
324 			change_point[chg_idx]->addr	= entries[i].addr;
325 			change_point[chg_idx++]->entry	= &entries[i];
326 			change_point[chg_idx]->addr	= entries[i].addr + entries[i].size;
327 			change_point[chg_idx++]->entry	= &entries[i];
328 		}
329 	}
330 	chg_nr = chg_idx;
331 
332 	/* Sort change-point list by memory addresses (low -> high): */
333 	sort(change_point, chg_nr, sizeof(*change_point), cpcompare, NULL);
334 
335 	/* Create a new memory map, removing overlaps: */
336 	overlap_entries = 0;	 /* Number of entries in the overlap table */
337 	new_nr_entries = 0;	 /* Index for creating new map entries */
338 	last_type = 0;		 /* Start with undefined memory type */
339 	last_addr = 0;		 /* Start with 0 as last starting address */
340 
341 	/* Loop through change-points, determining effect on the new map: */
342 	for (chg_idx = 0; chg_idx < chg_nr; chg_idx++) {
343 		/* Keep track of all overlapping entries */
344 		if (change_point[chg_idx]->addr == change_point[chg_idx]->entry->addr) {
345 			/* Add map entry to overlap list (> 1 entry implies an overlap) */
346 			overlap_list[overlap_entries++] = change_point[chg_idx]->entry;
347 		} else {
348 			/* Remove entry from list (order independent, so swap with last): */
349 			for (i = 0; i < overlap_entries; i++) {
350 				if (overlap_list[i] == change_point[chg_idx]->entry)
351 					overlap_list[i] = overlap_list[overlap_entries-1];
352 			}
353 			overlap_entries--;
354 		}
355 		/*
356 		 * If there are overlapping entries, decide which
357 		 * "type" to use (larger value takes precedence --
358 		 * 1=usable, 2,3,4,4+=unusable)
359 		 */
360 		current_type = 0;
361 		for (i = 0; i < overlap_entries; i++) {
362 			if (overlap_list[i]->type > current_type)
363 				current_type = overlap_list[i]->type;
364 		}
365 
366 		/* Continue building up new map based on this information: */
367 		if (current_type != last_type || current_type == E820_TYPE_PRAM) {
368 			if (last_type != 0)	 {
369 				new_entries[new_nr_entries].size = change_point[chg_idx]->addr - last_addr;
370 				/* Move forward only if the new size was non-zero: */
371 				if (new_entries[new_nr_entries].size != 0)
372 					/* No more space left for new entries? */
373 					if (++new_nr_entries >= max_nr_entries)
374 						break;
375 			}
376 			if (current_type != 0)	{
377 				new_entries[new_nr_entries].addr = change_point[chg_idx]->addr;
378 				new_entries[new_nr_entries].type = current_type;
379 				last_addr = change_point[chg_idx]->addr;
380 			}
381 			last_type = current_type;
382 		}
383 	}
384 
385 	/* Copy the new entries into the original location: */
386 	memcpy(entries, new_entries, new_nr_entries*sizeof(*entries));
387 	table->nr_entries = new_nr_entries;
388 
389 	return 0;
390 }
391 
392 static int __init __append_e820_table(struct boot_e820_entry *entries, u32 nr_entries)
393 {
394 	struct boot_e820_entry *entry = entries;
395 
396 	while (nr_entries) {
397 		u64 start = entry->addr;
398 		u64 size = entry->size;
399 		u64 end = start + size - 1;
400 		u32 type = entry->type;
401 
402 		/* Ignore the entry on 64-bit overflow: */
403 		if (start > end && likely(size))
404 			return -1;
405 
406 		e820__range_add(start, size, type);
407 
408 		entry++;
409 		nr_entries--;
410 	}
411 	return 0;
412 }
413 
414 /*
415  * Copy the BIOS E820 map into a safe place.
416  *
417  * Sanity-check it while we're at it..
418  *
419  * If we're lucky and live on a modern system, the setup code
420  * will have given us a memory map that we can use to properly
421  * set up memory.  If we aren't, we'll fake a memory map.
422  */
423 static int __init append_e820_table(struct boot_e820_entry *entries, u32 nr_entries)
424 {
425 	/* Only one memory region (or negative)? Ignore it */
426 	if (nr_entries < 2)
427 		return -1;
428 
429 	return __append_e820_table(entries, nr_entries);
430 }
431 
432 static u64 __init
433 __e820__range_update(struct e820_table *table, u64 start, u64 size, enum e820_type old_type, enum e820_type new_type)
434 {
435 	u64 end;
436 	unsigned int i;
437 	u64 real_updated_size = 0;
438 
439 	BUG_ON(old_type == new_type);
440 
441 	if (size > (ULLONG_MAX - start))
442 		size = ULLONG_MAX - start;
443 
444 	end = start + size;
445 	printk(KERN_DEBUG "e820: update [mem %#010Lx-%#010Lx] ", start, end - 1);
446 	e820_print_type(old_type);
447 	pr_cont(" ==> ");
448 	e820_print_type(new_type);
449 	pr_cont("\n");
450 
451 	for (i = 0; i < table->nr_entries; i++) {
452 		struct e820_entry *entry = &table->entries[i];
453 		u64 final_start, final_end;
454 		u64 entry_end;
455 
456 		if (entry->type != old_type)
457 			continue;
458 
459 		entry_end = entry->addr + entry->size;
460 
461 		/* Completely covered by new range? */
462 		if (entry->addr >= start && entry_end <= end) {
463 			entry->type = new_type;
464 			real_updated_size += entry->size;
465 			continue;
466 		}
467 
468 		/* New range is completely covered? */
469 		if (entry->addr < start && entry_end > end) {
470 			__e820__range_add(table, start, size, new_type);
471 			__e820__range_add(table, end, entry_end - end, entry->type);
472 			entry->size = start - entry->addr;
473 			real_updated_size += size;
474 			continue;
475 		}
476 
477 		/* Partially covered: */
478 		final_start = max(start, entry->addr);
479 		final_end = min(end, entry_end);
480 		if (final_start >= final_end)
481 			continue;
482 
483 		__e820__range_add(table, final_start, final_end - final_start, new_type);
484 
485 		real_updated_size += final_end - final_start;
486 
487 		/*
488 		 * Left range could be head or tail, so need to update
489 		 * its size first:
490 		 */
491 		entry->size -= final_end - final_start;
492 		if (entry->addr < final_start)
493 			continue;
494 
495 		entry->addr = final_end;
496 	}
497 	return real_updated_size;
498 }
499 
500 u64 __init e820__range_update(u64 start, u64 size, enum e820_type old_type, enum e820_type new_type)
501 {
502 	return __e820__range_update(e820_table, start, size, old_type, new_type);
503 }
504 
505 static u64 __init e820__range_update_kexec(u64 start, u64 size, enum e820_type old_type, enum e820_type  new_type)
506 {
507 	return __e820__range_update(e820_table_kexec, start, size, old_type, new_type);
508 }
509 
510 /* Remove a range of memory from the E820 table: */
511 u64 __init e820__range_remove(u64 start, u64 size, enum e820_type old_type, bool check_type)
512 {
513 	int i;
514 	u64 end;
515 	u64 real_removed_size = 0;
516 
517 	if (size > (ULLONG_MAX - start))
518 		size = ULLONG_MAX - start;
519 
520 	end = start + size;
521 	printk(KERN_DEBUG "e820: remove [mem %#010Lx-%#010Lx] ", start, end - 1);
522 	if (check_type)
523 		e820_print_type(old_type);
524 	pr_cont("\n");
525 
526 	for (i = 0; i < e820_table->nr_entries; i++) {
527 		struct e820_entry *entry = &e820_table->entries[i];
528 		u64 final_start, final_end;
529 		u64 entry_end;
530 
531 		if (check_type && entry->type != old_type)
532 			continue;
533 
534 		entry_end = entry->addr + entry->size;
535 
536 		/* Completely covered? */
537 		if (entry->addr >= start && entry_end <= end) {
538 			real_removed_size += entry->size;
539 			memset(entry, 0, sizeof(*entry));
540 			continue;
541 		}
542 
543 		/* Is the new range completely covered? */
544 		if (entry->addr < start && entry_end > end) {
545 			e820__range_add(end, entry_end - end, entry->type);
546 			entry->size = start - entry->addr;
547 			real_removed_size += size;
548 			continue;
549 		}
550 
551 		/* Partially covered: */
552 		final_start = max(start, entry->addr);
553 		final_end = min(end, entry_end);
554 		if (final_start >= final_end)
555 			continue;
556 
557 		real_removed_size += final_end - final_start;
558 
559 		/*
560 		 * Left range could be head or tail, so need to update
561 		 * the size first:
562 		 */
563 		entry->size -= final_end - final_start;
564 		if (entry->addr < final_start)
565 			continue;
566 
567 		entry->addr = final_end;
568 	}
569 	return real_removed_size;
570 }
571 
572 void __init e820__update_table_print(void)
573 {
574 	if (e820__update_table(e820_table))
575 		return;
576 
577 	pr_info("e820: modified physical RAM map:\n");
578 	e820__print_table("modified");
579 }
580 
581 static void __init e820__update_table_kexec(void)
582 {
583 	e820__update_table(e820_table_kexec);
584 }
585 
586 #define MAX_GAP_END 0x100000000ull
587 
588 /*
589  * Search for a gap in the E820 memory space from 0 to MAX_GAP_END (4GB).
590  */
591 static int __init e820_search_gap(unsigned long *gapstart, unsigned long *gapsize)
592 {
593 	unsigned long long last = MAX_GAP_END;
594 	int i = e820_table->nr_entries;
595 	int found = 0;
596 
597 	while (--i >= 0) {
598 		unsigned long long start = e820_table->entries[i].addr;
599 		unsigned long long end = start + e820_table->entries[i].size;
600 
601 		/*
602 		 * Since "last" is at most 4GB, we know we'll
603 		 * fit in 32 bits if this condition is true:
604 		 */
605 		if (last > end) {
606 			unsigned long gap = last - end;
607 
608 			if (gap >= *gapsize) {
609 				*gapsize = gap;
610 				*gapstart = end;
611 				found = 1;
612 			}
613 		}
614 		if (start < last)
615 			last = start;
616 	}
617 	return found;
618 }
619 
620 /*
621  * Search for the biggest gap in the low 32 bits of the E820
622  * memory space. We pass this space to the PCI subsystem, so
623  * that it can assign MMIO resources for hotplug or
624  * unconfigured devices in.
625  *
626  * Hopefully the BIOS let enough space left.
627  */
628 __init void e820__setup_pci_gap(void)
629 {
630 	unsigned long gapstart, gapsize;
631 	int found;
632 
633 	gapsize = 0x400000;
634 	found  = e820_search_gap(&gapstart, &gapsize);
635 
636 	if (!found) {
637 #ifdef CONFIG_X86_64
638 		gapstart = (max_pfn << PAGE_SHIFT) + 1024*1024;
639 		pr_err(
640 			"e820: Cannot find an available gap in the 32-bit address range\n"
641 			"e820: PCI devices with unassigned 32-bit BARs may not work!\n");
642 #else
643 		gapstart = 0x10000000;
644 #endif
645 	}
646 
647 	/*
648 	 * e820__reserve_resources_late() protects stolen RAM already:
649 	 */
650 	pci_mem_start = gapstart;
651 
652 	pr_info("e820: [mem %#010lx-%#010lx] available for PCI devices\n", gapstart, gapstart + gapsize - 1);
653 }
654 
655 /*
656  * Called late during init, in free_initmem().
657  *
658  * Initial e820_table and e820_table_kexec are largish __initdata arrays.
659  *
660  * Copy them to a (usually much smaller) dynamically allocated area that is
661  * sized precisely after the number of e820 entries.
662  *
663  * This is done after we've performed all the fixes and tweaks to the tables.
664  * All functions which modify them are __init functions, which won't exist
665  * after free_initmem().
666  */
667 __init void e820__reallocate_tables(void)
668 {
669 	struct e820_table *n;
670 	int size;
671 
672 	size = offsetof(struct e820_table, entries) + sizeof(struct e820_entry)*e820_table->nr_entries;
673 	n = kmalloc(size, GFP_KERNEL);
674 	BUG_ON(!n);
675 	memcpy(n, e820_table, size);
676 	e820_table = n;
677 
678 	size = offsetof(struct e820_table, entries) + sizeof(struct e820_entry)*e820_table_kexec->nr_entries;
679 	n = kmalloc(size, GFP_KERNEL);
680 	BUG_ON(!n);
681 	memcpy(n, e820_table_kexec, size);
682 	e820_table_kexec = n;
683 
684 	size = offsetof(struct e820_table, entries) + sizeof(struct e820_entry)*e820_table_firmware->nr_entries;
685 	n = kmalloc(size, GFP_KERNEL);
686 	BUG_ON(!n);
687 	memcpy(n, e820_table_firmware, size);
688 	e820_table_firmware = n;
689 }
690 
691 /*
692  * Because of the small fixed size of struct boot_params, only the first
693  * 128 E820 memory entries are passed to the kernel via boot_params.e820_table,
694  * the remaining (if any) entries are passed via the SETUP_E820_EXT node of
695  * struct setup_data, which is parsed here.
696  */
697 void __init e820__memory_setup_extended(u64 phys_addr, u32 data_len)
698 {
699 	int entries;
700 	struct boot_e820_entry *extmap;
701 	struct setup_data *sdata;
702 
703 	sdata = early_memremap(phys_addr, data_len);
704 	entries = sdata->len / sizeof(*extmap);
705 	extmap = (struct boot_e820_entry *)(sdata->data);
706 
707 	__append_e820_table(extmap, entries);
708 	e820__update_table(e820_table);
709 
710 	memcpy(e820_table_kexec, e820_table, sizeof(*e820_table_kexec));
711 	memcpy(e820_table_firmware, e820_table, sizeof(*e820_table_firmware));
712 
713 	early_memunmap(sdata, data_len);
714 	pr_info("e820: extended physical RAM map:\n");
715 	e820__print_table("extended");
716 }
717 
718 /*
719  * Find the ranges of physical addresses that do not correspond to
720  * E820 RAM areas and register the corresponding pages as 'nosave' for
721  * hibernation (32-bit) or software suspend and suspend to RAM (64-bit).
722  *
723  * This function requires the E820 map to be sorted and without any
724  * overlapping entries.
725  */
726 void __init e820__register_nosave_regions(unsigned long limit_pfn)
727 {
728 	int i;
729 	unsigned long pfn = 0;
730 
731 	for (i = 0; i < e820_table->nr_entries; i++) {
732 		struct e820_entry *entry = &e820_table->entries[i];
733 
734 		if (pfn < PFN_UP(entry->addr))
735 			register_nosave_region(pfn, PFN_UP(entry->addr));
736 
737 		pfn = PFN_DOWN(entry->addr + entry->size);
738 
739 		if (entry->type != E820_TYPE_RAM && entry->type != E820_TYPE_RESERVED_KERN)
740 			register_nosave_region(PFN_UP(entry->addr), pfn);
741 
742 		if (pfn >= limit_pfn)
743 			break;
744 	}
745 }
746 
747 #ifdef CONFIG_ACPI
748 /*
749  * Register ACPI NVS memory regions, so that we can save/restore them during
750  * hibernation and the subsequent resume:
751  */
752 static int __init e820__register_nvs_regions(void)
753 {
754 	int i;
755 
756 	for (i = 0; i < e820_table->nr_entries; i++) {
757 		struct e820_entry *entry = &e820_table->entries[i];
758 
759 		if (entry->type == E820_TYPE_NVS)
760 			acpi_nvs_register(entry->addr, entry->size);
761 	}
762 
763 	return 0;
764 }
765 core_initcall(e820__register_nvs_regions);
766 #endif
767 
768 /*
769  * Allocate the requested number of bytes with the requsted alignment
770  * and return (the physical address) to the caller. Also register this
771  * range in the 'kexec' E820 table as a reserved range.
772  *
773  * This allows kexec to fake a new mptable, as if it came from the real
774  * system.
775  */
776 u64 __init e820__memblock_alloc_reserved(u64 size, u64 align)
777 {
778 	u64 addr;
779 
780 	addr = __memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE);
781 	if (addr) {
782 		e820__range_update_kexec(addr, size, E820_TYPE_RAM, E820_TYPE_RESERVED);
783 		pr_info("e820: update e820_table_kexec for e820__memblock_alloc_reserved()\n");
784 		e820__update_table_kexec();
785 	}
786 
787 	return addr;
788 }
789 
790 #ifdef CONFIG_X86_32
791 # ifdef CONFIG_X86_PAE
792 #  define MAX_ARCH_PFN		(1ULL<<(36-PAGE_SHIFT))
793 # else
794 #  define MAX_ARCH_PFN		(1ULL<<(32-PAGE_SHIFT))
795 # endif
796 #else /* CONFIG_X86_32 */
797 # define MAX_ARCH_PFN MAXMEM>>PAGE_SHIFT
798 #endif
799 
800 /*
801  * Find the highest page frame number we have available
802  */
803 static unsigned long __init e820_end_pfn(unsigned long limit_pfn, enum e820_type type)
804 {
805 	int i;
806 	unsigned long last_pfn = 0;
807 	unsigned long max_arch_pfn = MAX_ARCH_PFN;
808 
809 	for (i = 0; i < e820_table->nr_entries; i++) {
810 		struct e820_entry *entry = &e820_table->entries[i];
811 		unsigned long start_pfn;
812 		unsigned long end_pfn;
813 
814 		if (entry->type != type)
815 			continue;
816 
817 		start_pfn = entry->addr >> PAGE_SHIFT;
818 		end_pfn = (entry->addr + entry->size) >> PAGE_SHIFT;
819 
820 		if (start_pfn >= limit_pfn)
821 			continue;
822 		if (end_pfn > limit_pfn) {
823 			last_pfn = limit_pfn;
824 			break;
825 		}
826 		if (end_pfn > last_pfn)
827 			last_pfn = end_pfn;
828 	}
829 
830 	if (last_pfn > max_arch_pfn)
831 		last_pfn = max_arch_pfn;
832 
833 	pr_info("e820: last_pfn = %#lx max_arch_pfn = %#lx\n",
834 			 last_pfn, max_arch_pfn);
835 	return last_pfn;
836 }
837 
838 unsigned long __init e820__end_of_ram_pfn(void)
839 {
840 	return e820_end_pfn(MAX_ARCH_PFN, E820_TYPE_RAM);
841 }
842 
843 unsigned long __init e820__end_of_low_ram_pfn(void)
844 {
845 	return e820_end_pfn(1UL << (32 - PAGE_SHIFT), E820_TYPE_RAM);
846 }
847 
848 static void __init early_panic(char *msg)
849 {
850 	early_printk(msg);
851 	panic(msg);
852 }
853 
854 static int userdef __initdata;
855 
856 /* The "mem=nopentium" boot option disables 4MB page tables on 32-bit kernels: */
857 static int __init parse_memopt(char *p)
858 {
859 	u64 mem_size;
860 
861 	if (!p)
862 		return -EINVAL;
863 
864 	if (!strcmp(p, "nopentium")) {
865 #ifdef CONFIG_X86_32
866 		setup_clear_cpu_cap(X86_FEATURE_PSE);
867 		return 0;
868 #else
869 		pr_warn("mem=nopentium ignored! (only supported on x86_32)\n");
870 		return -EINVAL;
871 #endif
872 	}
873 
874 	userdef = 1;
875 	mem_size = memparse(p, &p);
876 
877 	/* Don't remove all memory when getting "mem={invalid}" parameter: */
878 	if (mem_size == 0)
879 		return -EINVAL;
880 
881 	e820__range_remove(mem_size, ULLONG_MAX - mem_size, E820_TYPE_RAM, 1);
882 
883 	return 0;
884 }
885 early_param("mem", parse_memopt);
886 
887 static int __init parse_memmap_one(char *p)
888 {
889 	char *oldp;
890 	u64 start_at, mem_size;
891 
892 	if (!p)
893 		return -EINVAL;
894 
895 	if (!strncmp(p, "exactmap", 8)) {
896 #ifdef CONFIG_CRASH_DUMP
897 		/*
898 		 * If we are doing a crash dump, we still need to know
899 		 * the real memory size before the original memory map is
900 		 * reset.
901 		 */
902 		saved_max_pfn = e820__end_of_ram_pfn();
903 #endif
904 		e820_table->nr_entries = 0;
905 		userdef = 1;
906 		return 0;
907 	}
908 
909 	oldp = p;
910 	mem_size = memparse(p, &p);
911 	if (p == oldp)
912 		return -EINVAL;
913 
914 	userdef = 1;
915 	if (*p == '@') {
916 		start_at = memparse(p+1, &p);
917 		e820__range_add(start_at, mem_size, E820_TYPE_RAM);
918 	} else if (*p == '#') {
919 		start_at = memparse(p+1, &p);
920 		e820__range_add(start_at, mem_size, E820_TYPE_ACPI);
921 	} else if (*p == '$') {
922 		start_at = memparse(p+1, &p);
923 		e820__range_add(start_at, mem_size, E820_TYPE_RESERVED);
924 	} else if (*p == '!') {
925 		start_at = memparse(p+1, &p);
926 		e820__range_add(start_at, mem_size, E820_TYPE_PRAM);
927 	} else {
928 		e820__range_remove(mem_size, ULLONG_MAX - mem_size, E820_TYPE_RAM, 1);
929 	}
930 
931 	return *p == '\0' ? 0 : -EINVAL;
932 }
933 
934 static int __init parse_memmap_opt(char *str)
935 {
936 	while (str) {
937 		char *k = strchr(str, ',');
938 
939 		if (k)
940 			*k++ = 0;
941 
942 		parse_memmap_one(str);
943 		str = k;
944 	}
945 
946 	return 0;
947 }
948 early_param("memmap", parse_memmap_opt);
949 
950 /*
951  * Reserve all entries from the bootloader's extensible data nodes list,
952  * because if present we are going to use it later on to fetch e820
953  * entries from it:
954  */
955 void __init e820__reserve_setup_data(void)
956 {
957 	struct setup_data *data;
958 	u64 pa_data;
959 
960 	pa_data = boot_params.hdr.setup_data;
961 	if (!pa_data)
962 		return;
963 
964 	while (pa_data) {
965 		data = early_memremap(pa_data, sizeof(*data));
966 		e820__range_update(pa_data, sizeof(*data)+data->len, E820_TYPE_RAM, E820_TYPE_RESERVED_KERN);
967 		e820__range_update_kexec(pa_data, sizeof(*data)+data->len, E820_TYPE_RAM, E820_TYPE_RESERVED_KERN);
968 		pa_data = data->next;
969 		early_memunmap(data, sizeof(*data));
970 	}
971 
972 	e820__update_table(e820_table);
973 	e820__update_table(e820_table_kexec);
974 
975 	pr_info("extended physical RAM map:\n");
976 	e820__print_table("reserve setup_data");
977 }
978 
979 /*
980  * Called after parse_early_param(), after early parameters (such as mem=)
981  * have been processed, in which case we already have an E820 table filled in
982  * via the parameter callback function(s), but it's not sorted and printed yet:
983  */
984 void __init e820__finish_early_params(void)
985 {
986 	if (userdef) {
987 		if (e820__update_table(e820_table) < 0)
988 			early_panic("Invalid user supplied memory map");
989 
990 		pr_info("e820: user-defined physical RAM map:\n");
991 		e820__print_table("user");
992 	}
993 }
994 
995 static const char *__init e820_type_to_string(struct e820_entry *entry)
996 {
997 	switch (entry->type) {
998 	case E820_TYPE_RESERVED_KERN:	/* Fall-through: */
999 	case E820_TYPE_RAM:		return "System RAM";
1000 	case E820_TYPE_ACPI:		return "ACPI Tables";
1001 	case E820_TYPE_NVS:		return "ACPI Non-volatile Storage";
1002 	case E820_TYPE_UNUSABLE:	return "Unusable memory";
1003 	case E820_TYPE_PRAM:		return "Persistent Memory (legacy)";
1004 	case E820_TYPE_PMEM:		return "Persistent Memory";
1005 	case E820_TYPE_RESERVED:	return "Reserved";
1006 	default:			return "Unknown E820 type";
1007 	}
1008 }
1009 
1010 static unsigned long __init e820_type_to_iomem_type(struct e820_entry *entry)
1011 {
1012 	switch (entry->type) {
1013 	case E820_TYPE_RESERVED_KERN:	/* Fall-through: */
1014 	case E820_TYPE_RAM:		return IORESOURCE_SYSTEM_RAM;
1015 	case E820_TYPE_ACPI:		/* Fall-through: */
1016 	case E820_TYPE_NVS:		/* Fall-through: */
1017 	case E820_TYPE_UNUSABLE:	/* Fall-through: */
1018 	case E820_TYPE_PRAM:		/* Fall-through: */
1019 	case E820_TYPE_PMEM:		/* Fall-through: */
1020 	case E820_TYPE_RESERVED:	/* Fall-through: */
1021 	default:			return IORESOURCE_MEM;
1022 	}
1023 }
1024 
1025 static unsigned long __init e820_type_to_iores_desc(struct e820_entry *entry)
1026 {
1027 	switch (entry->type) {
1028 	case E820_TYPE_ACPI:		return IORES_DESC_ACPI_TABLES;
1029 	case E820_TYPE_NVS:		return IORES_DESC_ACPI_NV_STORAGE;
1030 	case E820_TYPE_PMEM:		return IORES_DESC_PERSISTENT_MEMORY;
1031 	case E820_TYPE_PRAM:		return IORES_DESC_PERSISTENT_MEMORY_LEGACY;
1032 	case E820_TYPE_RESERVED_KERN:	/* Fall-through: */
1033 	case E820_TYPE_RAM:		/* Fall-through: */
1034 	case E820_TYPE_UNUSABLE:	/* Fall-through: */
1035 	case E820_TYPE_RESERVED:	/* Fall-through: */
1036 	default:			return IORES_DESC_NONE;
1037 	}
1038 }
1039 
1040 static bool __init do_mark_busy(enum e820_type type, struct resource *res)
1041 {
1042 	/* this is the legacy bios/dos rom-shadow + mmio region */
1043 	if (res->start < (1ULL<<20))
1044 		return true;
1045 
1046 	/*
1047 	 * Treat persistent memory like device memory, i.e. reserve it
1048 	 * for exclusive use of a driver
1049 	 */
1050 	switch (type) {
1051 	case E820_TYPE_RESERVED:
1052 	case E820_TYPE_PRAM:
1053 	case E820_TYPE_PMEM:
1054 		return false;
1055 	case E820_TYPE_RESERVED_KERN:
1056 	case E820_TYPE_RAM:
1057 	case E820_TYPE_ACPI:
1058 	case E820_TYPE_NVS:
1059 	case E820_TYPE_UNUSABLE:
1060 	default:
1061 		return true;
1062 	}
1063 }
1064 
1065 /*
1066  * Mark E820 reserved areas as busy for the resource manager:
1067  */
1068 
1069 static struct resource __initdata *e820_res;
1070 
1071 void __init e820__reserve_resources(void)
1072 {
1073 	int i;
1074 	struct resource *res;
1075 	u64 end;
1076 
1077 	res = alloc_bootmem(sizeof(*res) * e820_table->nr_entries);
1078 	e820_res = res;
1079 
1080 	for (i = 0; i < e820_table->nr_entries; i++) {
1081 		struct e820_entry *entry = e820_table->entries + i;
1082 
1083 		end = entry->addr + entry->size - 1;
1084 		if (end != (resource_size_t)end) {
1085 			res++;
1086 			continue;
1087 		}
1088 		res->start = entry->addr;
1089 		res->end   = end;
1090 		res->name  = e820_type_to_string(entry);
1091 		res->flags = e820_type_to_iomem_type(entry);
1092 		res->desc  = e820_type_to_iores_desc(entry);
1093 
1094 		/*
1095 		 * Don't register the region that could be conflicted with
1096 		 * PCI device BAR resources and insert them later in
1097 		 * pcibios_resource_survey():
1098 		 */
1099 		if (do_mark_busy(entry->type, res)) {
1100 			res->flags |= IORESOURCE_BUSY;
1101 			insert_resource(&iomem_resource, res);
1102 		}
1103 		res++;
1104 	}
1105 
1106 	/* Expose the bootloader-provided memory layout to the sysfs. */
1107 	for (i = 0; i < e820_table_firmware->nr_entries; i++) {
1108 		struct e820_entry *entry = e820_table_firmware->entries + i;
1109 
1110 		firmware_map_add_early(entry->addr, entry->addr + entry->size, e820_type_to_string(entry));
1111 	}
1112 }
1113 
1114 /*
1115  * How much should we pad the end of RAM, depending on where it is?
1116  */
1117 static unsigned long __init ram_alignment(resource_size_t pos)
1118 {
1119 	unsigned long mb = pos >> 20;
1120 
1121 	/* To 64kB in the first megabyte */
1122 	if (!mb)
1123 		return 64*1024;
1124 
1125 	/* To 1MB in the first 16MB */
1126 	if (mb < 16)
1127 		return 1024*1024;
1128 
1129 	/* To 64MB for anything above that */
1130 	return 64*1024*1024;
1131 }
1132 
1133 #define MAX_RESOURCE_SIZE ((resource_size_t)-1)
1134 
1135 void __init e820__reserve_resources_late(void)
1136 {
1137 	int i;
1138 	struct resource *res;
1139 
1140 	res = e820_res;
1141 	for (i = 0; i < e820_table->nr_entries; i++) {
1142 		if (!res->parent && res->end)
1143 			insert_resource_expand_to_fit(&iomem_resource, res);
1144 		res++;
1145 	}
1146 
1147 	/*
1148 	 * Try to bump up RAM regions to reasonable boundaries, to
1149 	 * avoid stolen RAM:
1150 	 */
1151 	for (i = 0; i < e820_table->nr_entries; i++) {
1152 		struct e820_entry *entry = &e820_table->entries[i];
1153 		u64 start, end;
1154 
1155 		if (entry->type != E820_TYPE_RAM)
1156 			continue;
1157 
1158 		start = entry->addr + entry->size;
1159 		end = round_up(start, ram_alignment(start)) - 1;
1160 		if (end > MAX_RESOURCE_SIZE)
1161 			end = MAX_RESOURCE_SIZE;
1162 		if (start >= end)
1163 			continue;
1164 
1165 		printk(KERN_DEBUG "e820: reserve RAM buffer [mem %#010llx-%#010llx]\n", start, end);
1166 		reserve_region_with_split(&iomem_resource, start, end, "RAM buffer");
1167 	}
1168 }
1169 
1170 /*
1171  * Pass the firmware (bootloader) E820 map to the kernel and process it:
1172  */
1173 char *__init e820__memory_setup_default(void)
1174 {
1175 	char *who = "BIOS-e820";
1176 
1177 	/*
1178 	 * Try to copy the BIOS-supplied E820-map.
1179 	 *
1180 	 * Otherwise fake a memory map; one section from 0k->640k,
1181 	 * the next section from 1mb->appropriate_mem_k
1182 	 */
1183 	if (append_e820_table(boot_params.e820_table, boot_params.e820_entries) < 0) {
1184 		u64 mem_size;
1185 
1186 		/* Compare results from other methods and take the one that gives more RAM: */
1187 		if (boot_params.alt_mem_k < boot_params.screen_info.ext_mem_k) {
1188 			mem_size = boot_params.screen_info.ext_mem_k;
1189 			who = "BIOS-88";
1190 		} else {
1191 			mem_size = boot_params.alt_mem_k;
1192 			who = "BIOS-e801";
1193 		}
1194 
1195 		e820_table->nr_entries = 0;
1196 		e820__range_add(0, LOWMEMSIZE(), E820_TYPE_RAM);
1197 		e820__range_add(HIGH_MEMORY, mem_size << 10, E820_TYPE_RAM);
1198 	}
1199 
1200 	/* We just appended a lot of ranges, sanitize the table: */
1201 	e820__update_table(e820_table);
1202 
1203 	return who;
1204 }
1205 
1206 /*
1207  * Calls e820__memory_setup_default() in essence to pick up the firmware/bootloader
1208  * E820 map - with an optional platform quirk available for virtual platforms
1209  * to override this method of boot environment processing:
1210  */
1211 void __init e820__memory_setup(void)
1212 {
1213 	char *who;
1214 
1215 	/* This is a firmware interface ABI - make sure we don't break it: */
1216 	BUILD_BUG_ON(sizeof(struct boot_e820_entry) != 20);
1217 
1218 	who = x86_init.resources.memory_setup();
1219 
1220 	memcpy(e820_table_kexec, e820_table, sizeof(*e820_table_kexec));
1221 	memcpy(e820_table_firmware, e820_table, sizeof(*e820_table_firmware));
1222 
1223 	pr_info("e820: BIOS-provided physical RAM map:\n");
1224 	e820__print_table(who);
1225 }
1226 
1227 void __init e820__memblock_setup(void)
1228 {
1229 	int i;
1230 	u64 end;
1231 
1232 	/*
1233 	 * The bootstrap memblock region count maximum is 128 entries
1234 	 * (INIT_MEMBLOCK_REGIONS), but EFI might pass us more E820 entries
1235 	 * than that - so allow memblock resizing.
1236 	 *
1237 	 * This is safe, because this call happens pretty late during x86 setup,
1238 	 * so we know about reserved memory regions already. (This is important
1239 	 * so that memblock resizing does no stomp over reserved areas.)
1240 	 */
1241 	memblock_allow_resize();
1242 
1243 	for (i = 0; i < e820_table->nr_entries; i++) {
1244 		struct e820_entry *entry = &e820_table->entries[i];
1245 
1246 		end = entry->addr + entry->size;
1247 		if (end != (resource_size_t)end)
1248 			continue;
1249 
1250 		if (entry->type != E820_TYPE_RAM && entry->type != E820_TYPE_RESERVED_KERN)
1251 			continue;
1252 
1253 		memblock_add(entry->addr, entry->size);
1254 	}
1255 
1256 	/* Throw away partial pages: */
1257 	memblock_trim_memory(PAGE_SIZE);
1258 
1259 	memblock_dump_all();
1260 }
1261