xref: /openbmc/linux/arch/x86/kernel/e820.c (revision b11ed18e)
1 /*
2  * Low level x86 E820 memory map handling functions.
3  *
4  * The firmware and bootloader passes us the "E820 table", which is the primary
5  * physical memory layout description available about x86 systems.
6  *
7  * The kernel takes the E820 memory layout and optionally modifies it with
8  * quirks and other tweaks, and feeds that into the generic Linux memory
9  * allocation code routines via a platform independent interface (memblock, etc.).
10  */
11 #include <linux/crash_dump.h>
12 #include <linux/memblock.h>
13 #include <linux/suspend.h>
14 #include <linux/acpi.h>
15 #include <linux/firmware-map.h>
16 #include <linux/sort.h>
17 #include <linux/memory_hotplug.h>
18 
19 #include <asm/e820/api.h>
20 #include <asm/setup.h>
21 
22 /*
23  * We organize the E820 table into three main data structures:
24  *
25  * - 'e820_table_firmware': the original firmware version passed to us by the
26  *   bootloader - not modified by the kernel. It is composed of two parts:
27  *   the first 128 E820 memory entries in boot_params.e820_table and the remaining
28  *   (if any) entries of the SETUP_E820_EXT nodes. We use this to:
29  *
30  *       - inform the user about the firmware's notion of memory layout
31  *         via /sys/firmware/memmap
32  *
33  *       - the hibernation code uses it to generate a kernel-independent MD5
34  *         fingerprint of the physical memory layout of a system.
35  *
36  * - 'e820_table_kexec': a slightly modified (by the kernel) firmware version
37  *   passed to us by the bootloader - the major difference between
38  *   e820_table_firmware[] and this one is that, the latter marks the setup_data
39  *   list created by the EFI boot stub as reserved, so that kexec can reuse the
40  *   setup_data information in the second kernel. Besides, e820_table_kexec[]
41  *   might also be modified by the kexec itself to fake a mptable.
42  *   We use this to:
43  *
44  *       - kexec, which is a bootloader in disguise, uses the original E820
45  *         layout to pass to the kexec-ed kernel. This way the original kernel
46  *         can have a restricted E820 map while the kexec()-ed kexec-kernel
47  *         can have access to full memory - etc.
48  *
49  * - 'e820_table': this is the main E820 table that is massaged by the
50  *   low level x86 platform code, or modified by boot parameters, before
51  *   passed on to higher level MM layers.
52  *
53  * Once the E820 map has been converted to the standard Linux memory layout
54  * information its role stops - modifying it has no effect and does not get
55  * re-propagated. So itsmain role is a temporary bootstrap storage of firmware
56  * specific memory layout data during early bootup.
57  */
58 static struct e820_table e820_table_init		__initdata;
59 static struct e820_table e820_table_kexec_init		__initdata;
60 static struct e820_table e820_table_firmware_init	__initdata;
61 
62 struct e820_table *e820_table __refdata			= &e820_table_init;
63 struct e820_table *e820_table_kexec __refdata		= &e820_table_kexec_init;
64 struct e820_table *e820_table_firmware __refdata	= &e820_table_firmware_init;
65 
66 /* For PCI or other memory-mapped resources */
67 unsigned long pci_mem_start = 0xaeedbabe;
68 #ifdef CONFIG_PCI
69 EXPORT_SYMBOL(pci_mem_start);
70 #endif
71 
72 /*
73  * This function checks if any part of the range <start,end> is mapped
74  * with type.
75  */
76 bool e820__mapped_any(u64 start, u64 end, enum e820_type type)
77 {
78 	int i;
79 
80 	for (i = 0; i < e820_table->nr_entries; i++) {
81 		struct e820_entry *entry = &e820_table->entries[i];
82 
83 		if (type && entry->type != type)
84 			continue;
85 		if (entry->addr >= end || entry->addr + entry->size <= start)
86 			continue;
87 		return 1;
88 	}
89 	return 0;
90 }
91 EXPORT_SYMBOL_GPL(e820__mapped_any);
92 
93 /*
94  * This function checks if the entire <start,end> range is mapped with 'type'.
95  *
96  * Note: this function only works correctly once the E820 table is sorted and
97  * not-overlapping (at least for the range specified), which is the case normally.
98  */
99 static struct e820_entry *__e820__mapped_all(u64 start, u64 end,
100 					     enum e820_type type)
101 {
102 	int i;
103 
104 	for (i = 0; i < e820_table->nr_entries; i++) {
105 		struct e820_entry *entry = &e820_table->entries[i];
106 
107 		if (type && entry->type != type)
108 			continue;
109 
110 		/* Is the region (part) in overlap with the current region? */
111 		if (entry->addr >= end || entry->addr + entry->size <= start)
112 			continue;
113 
114 		/*
115 		 * If the region is at the beginning of <start,end> we move
116 		 * 'start' to the end of the region since it's ok until there
117 		 */
118 		if (entry->addr <= start)
119 			start = entry->addr + entry->size;
120 
121 		/*
122 		 * If 'start' is now at or beyond 'end', we're done, full
123 		 * coverage of the desired range exists:
124 		 */
125 		if (start >= end)
126 			return entry;
127 	}
128 
129 	return NULL;
130 }
131 
132 /*
133  * This function checks if the entire range <start,end> is mapped with type.
134  */
135 bool __init e820__mapped_all(u64 start, u64 end, enum e820_type type)
136 {
137 	return __e820__mapped_all(start, end, type);
138 }
139 
140 /*
141  * This function returns the type associated with the range <start,end>.
142  */
143 int e820__get_entry_type(u64 start, u64 end)
144 {
145 	struct e820_entry *entry = __e820__mapped_all(start, end, 0);
146 
147 	return entry ? entry->type : -EINVAL;
148 }
149 
150 /*
151  * Add a memory region to the kernel E820 map.
152  */
153 static void __init __e820__range_add(struct e820_table *table, u64 start, u64 size, enum e820_type type)
154 {
155 	int x = table->nr_entries;
156 
157 	if (x >= ARRAY_SIZE(table->entries)) {
158 		pr_err("too many entries; ignoring [mem %#010llx-%#010llx]\n",
159 		       start, start + size - 1);
160 		return;
161 	}
162 
163 	table->entries[x].addr = start;
164 	table->entries[x].size = size;
165 	table->entries[x].type = type;
166 	table->nr_entries++;
167 }
168 
169 void __init e820__range_add(u64 start, u64 size, enum e820_type type)
170 {
171 	__e820__range_add(e820_table, start, size, type);
172 }
173 
174 static void __init e820_print_type(enum e820_type type)
175 {
176 	switch (type) {
177 	case E820_TYPE_RAM:		/* Fall through: */
178 	case E820_TYPE_RESERVED_KERN:	pr_cont("usable");			break;
179 	case E820_TYPE_RESERVED:	pr_cont("reserved");			break;
180 	case E820_TYPE_ACPI:		pr_cont("ACPI data");			break;
181 	case E820_TYPE_NVS:		pr_cont("ACPI NVS");			break;
182 	case E820_TYPE_UNUSABLE:	pr_cont("unusable");			break;
183 	case E820_TYPE_PMEM:		/* Fall through: */
184 	case E820_TYPE_PRAM:		pr_cont("persistent (type %u)", type);	break;
185 	default:			pr_cont("type %u", type);		break;
186 	}
187 }
188 
189 void __init e820__print_table(char *who)
190 {
191 	int i;
192 
193 	for (i = 0; i < e820_table->nr_entries; i++) {
194 		pr_info("%s: [mem %#018Lx-%#018Lx] ",
195 			who,
196 			e820_table->entries[i].addr,
197 			e820_table->entries[i].addr + e820_table->entries[i].size - 1);
198 
199 		e820_print_type(e820_table->entries[i].type);
200 		pr_cont("\n");
201 	}
202 }
203 
204 /*
205  * Sanitize an E820 map.
206  *
207  * Some E820 layouts include overlapping entries. The following
208  * replaces the original E820 map with a new one, removing overlaps,
209  * and resolving conflicting memory types in favor of highest
210  * numbered type.
211  *
212  * The input parameter 'entries' points to an array of 'struct
213  * e820_entry' which on entry has elements in the range [0, *nr_entries)
214  * valid, and which has space for up to max_nr_entries entries.
215  * On return, the resulting sanitized E820 map entries will be in
216  * overwritten in the same location, starting at 'entries'.
217  *
218  * The integer pointed to by nr_entries must be valid on entry (the
219  * current number of valid entries located at 'entries'). If the
220  * sanitizing succeeds the *nr_entries will be updated with the new
221  * number of valid entries (something no more than max_nr_entries).
222  *
223  * The return value from e820__update_table() is zero if it
224  * successfully 'sanitized' the map entries passed in, and is -1
225  * if it did nothing, which can happen if either of (1) it was
226  * only passed one map entry, or (2) any of the input map entries
227  * were invalid (start + size < start, meaning that the size was
228  * so big the described memory range wrapped around through zero.)
229  *
230  *	Visually we're performing the following
231  *	(1,2,3,4 = memory types)...
232  *
233  *	Sample memory map (w/overlaps):
234  *	   ____22__________________
235  *	   ______________________4_
236  *	   ____1111________________
237  *	   _44_____________________
238  *	   11111111________________
239  *	   ____________________33__
240  *	   ___________44___________
241  *	   __________33333_________
242  *	   ______________22________
243  *	   ___________________2222_
244  *	   _________111111111______
245  *	   _____________________11_
246  *	   _________________4______
247  *
248  *	Sanitized equivalent (no overlap):
249  *	   1_______________________
250  *	   _44_____________________
251  *	   ___1____________________
252  *	   ____22__________________
253  *	   ______11________________
254  *	   _________1______________
255  *	   __________3_____________
256  *	   ___________44___________
257  *	   _____________33_________
258  *	   _______________2________
259  *	   ________________1_______
260  *	   _________________4______
261  *	   ___________________2____
262  *	   ____________________33__
263  *	   ______________________4_
264  */
265 struct change_member {
266 	/* Pointer to the original entry: */
267 	struct e820_entry	*entry;
268 	/* Address for this change point: */
269 	unsigned long long	addr;
270 };
271 
272 static struct change_member	change_point_list[2*E820_MAX_ENTRIES]	__initdata;
273 static struct change_member	*change_point[2*E820_MAX_ENTRIES]	__initdata;
274 static struct e820_entry	*overlap_list[E820_MAX_ENTRIES]		__initdata;
275 static struct e820_entry	new_entries[E820_MAX_ENTRIES]		__initdata;
276 
277 static int __init cpcompare(const void *a, const void *b)
278 {
279 	struct change_member * const *app = a, * const *bpp = b;
280 	const struct change_member *ap = *app, *bp = *bpp;
281 
282 	/*
283 	 * Inputs are pointers to two elements of change_point[].  If their
284 	 * addresses are not equal, their difference dominates.  If the addresses
285 	 * are equal, then consider one that represents the end of its region
286 	 * to be greater than one that does not.
287 	 */
288 	if (ap->addr != bp->addr)
289 		return ap->addr > bp->addr ? 1 : -1;
290 
291 	return (ap->addr != ap->entry->addr) - (bp->addr != bp->entry->addr);
292 }
293 
294 int __init e820__update_table(struct e820_table *table)
295 {
296 	struct e820_entry *entries = table->entries;
297 	u32 max_nr_entries = ARRAY_SIZE(table->entries);
298 	enum e820_type current_type, last_type;
299 	unsigned long long last_addr;
300 	u32 new_nr_entries, overlap_entries;
301 	u32 i, chg_idx, chg_nr;
302 
303 	/* If there's only one memory region, don't bother: */
304 	if (table->nr_entries < 2)
305 		return -1;
306 
307 	BUG_ON(table->nr_entries > max_nr_entries);
308 
309 	/* Bail out if we find any unreasonable addresses in the map: */
310 	for (i = 0; i < table->nr_entries; i++) {
311 		if (entries[i].addr + entries[i].size < entries[i].addr)
312 			return -1;
313 	}
314 
315 	/* Create pointers for initial change-point information (for sorting): */
316 	for (i = 0; i < 2 * table->nr_entries; i++)
317 		change_point[i] = &change_point_list[i];
318 
319 	/*
320 	 * Record all known change-points (starting and ending addresses),
321 	 * omitting empty memory regions:
322 	 */
323 	chg_idx = 0;
324 	for (i = 0; i < table->nr_entries; i++)	{
325 		if (entries[i].size != 0) {
326 			change_point[chg_idx]->addr	= entries[i].addr;
327 			change_point[chg_idx++]->entry	= &entries[i];
328 			change_point[chg_idx]->addr	= entries[i].addr + entries[i].size;
329 			change_point[chg_idx++]->entry	= &entries[i];
330 		}
331 	}
332 	chg_nr = chg_idx;
333 
334 	/* Sort change-point list by memory addresses (low -> high): */
335 	sort(change_point, chg_nr, sizeof(*change_point), cpcompare, NULL);
336 
337 	/* Create a new memory map, removing overlaps: */
338 	overlap_entries = 0;	 /* Number of entries in the overlap table */
339 	new_nr_entries = 0;	 /* Index for creating new map entries */
340 	last_type = 0;		 /* Start with undefined memory type */
341 	last_addr = 0;		 /* Start with 0 as last starting address */
342 
343 	/* Loop through change-points, determining effect on the new map: */
344 	for (chg_idx = 0; chg_idx < chg_nr; chg_idx++) {
345 		/* Keep track of all overlapping entries */
346 		if (change_point[chg_idx]->addr == change_point[chg_idx]->entry->addr) {
347 			/* Add map entry to overlap list (> 1 entry implies an overlap) */
348 			overlap_list[overlap_entries++] = change_point[chg_idx]->entry;
349 		} else {
350 			/* Remove entry from list (order independent, so swap with last): */
351 			for (i = 0; i < overlap_entries; i++) {
352 				if (overlap_list[i] == change_point[chg_idx]->entry)
353 					overlap_list[i] = overlap_list[overlap_entries-1];
354 			}
355 			overlap_entries--;
356 		}
357 		/*
358 		 * If there are overlapping entries, decide which
359 		 * "type" to use (larger value takes precedence --
360 		 * 1=usable, 2,3,4,4+=unusable)
361 		 */
362 		current_type = 0;
363 		for (i = 0; i < overlap_entries; i++) {
364 			if (overlap_list[i]->type > current_type)
365 				current_type = overlap_list[i]->type;
366 		}
367 
368 		/* Continue building up new map based on this information: */
369 		if (current_type != last_type || current_type == E820_TYPE_PRAM) {
370 			if (last_type != 0)	 {
371 				new_entries[new_nr_entries].size = change_point[chg_idx]->addr - last_addr;
372 				/* Move forward only if the new size was non-zero: */
373 				if (new_entries[new_nr_entries].size != 0)
374 					/* No more space left for new entries? */
375 					if (++new_nr_entries >= max_nr_entries)
376 						break;
377 			}
378 			if (current_type != 0)	{
379 				new_entries[new_nr_entries].addr = change_point[chg_idx]->addr;
380 				new_entries[new_nr_entries].type = current_type;
381 				last_addr = change_point[chg_idx]->addr;
382 			}
383 			last_type = current_type;
384 		}
385 	}
386 
387 	/* Copy the new entries into the original location: */
388 	memcpy(entries, new_entries, new_nr_entries*sizeof(*entries));
389 	table->nr_entries = new_nr_entries;
390 
391 	return 0;
392 }
393 
394 static int __init __append_e820_table(struct boot_e820_entry *entries, u32 nr_entries)
395 {
396 	struct boot_e820_entry *entry = entries;
397 
398 	while (nr_entries) {
399 		u64 start = entry->addr;
400 		u64 size = entry->size;
401 		u64 end = start + size - 1;
402 		u32 type = entry->type;
403 
404 		/* Ignore the entry on 64-bit overflow: */
405 		if (start > end && likely(size))
406 			return -1;
407 
408 		e820__range_add(start, size, type);
409 
410 		entry++;
411 		nr_entries--;
412 	}
413 	return 0;
414 }
415 
416 /*
417  * Copy the BIOS E820 map into a safe place.
418  *
419  * Sanity-check it while we're at it..
420  *
421  * If we're lucky and live on a modern system, the setup code
422  * will have given us a memory map that we can use to properly
423  * set up memory.  If we aren't, we'll fake a memory map.
424  */
425 static int __init append_e820_table(struct boot_e820_entry *entries, u32 nr_entries)
426 {
427 	/* Only one memory region (or negative)? Ignore it */
428 	if (nr_entries < 2)
429 		return -1;
430 
431 	return __append_e820_table(entries, nr_entries);
432 }
433 
434 static u64 __init
435 __e820__range_update(struct e820_table *table, u64 start, u64 size, enum e820_type old_type, enum e820_type new_type)
436 {
437 	u64 end;
438 	unsigned int i;
439 	u64 real_updated_size = 0;
440 
441 	BUG_ON(old_type == new_type);
442 
443 	if (size > (ULLONG_MAX - start))
444 		size = ULLONG_MAX - start;
445 
446 	end = start + size;
447 	printk(KERN_DEBUG "e820: update [mem %#010Lx-%#010Lx] ", start, end - 1);
448 	e820_print_type(old_type);
449 	pr_cont(" ==> ");
450 	e820_print_type(new_type);
451 	pr_cont("\n");
452 
453 	for (i = 0; i < table->nr_entries; i++) {
454 		struct e820_entry *entry = &table->entries[i];
455 		u64 final_start, final_end;
456 		u64 entry_end;
457 
458 		if (entry->type != old_type)
459 			continue;
460 
461 		entry_end = entry->addr + entry->size;
462 
463 		/* Completely covered by new range? */
464 		if (entry->addr >= start && entry_end <= end) {
465 			entry->type = new_type;
466 			real_updated_size += entry->size;
467 			continue;
468 		}
469 
470 		/* New range is completely covered? */
471 		if (entry->addr < start && entry_end > end) {
472 			__e820__range_add(table, start, size, new_type);
473 			__e820__range_add(table, end, entry_end - end, entry->type);
474 			entry->size = start - entry->addr;
475 			real_updated_size += size;
476 			continue;
477 		}
478 
479 		/* Partially covered: */
480 		final_start = max(start, entry->addr);
481 		final_end = min(end, entry_end);
482 		if (final_start >= final_end)
483 			continue;
484 
485 		__e820__range_add(table, final_start, final_end - final_start, new_type);
486 
487 		real_updated_size += final_end - final_start;
488 
489 		/*
490 		 * Left range could be head or tail, so need to update
491 		 * its size first:
492 		 */
493 		entry->size -= final_end - final_start;
494 		if (entry->addr < final_start)
495 			continue;
496 
497 		entry->addr = final_end;
498 	}
499 	return real_updated_size;
500 }
501 
502 u64 __init e820__range_update(u64 start, u64 size, enum e820_type old_type, enum e820_type new_type)
503 {
504 	return __e820__range_update(e820_table, start, size, old_type, new_type);
505 }
506 
507 static u64 __init e820__range_update_kexec(u64 start, u64 size, enum e820_type old_type, enum e820_type  new_type)
508 {
509 	return __e820__range_update(e820_table_kexec, start, size, old_type, new_type);
510 }
511 
512 /* Remove a range of memory from the E820 table: */
513 u64 __init e820__range_remove(u64 start, u64 size, enum e820_type old_type, bool check_type)
514 {
515 	int i;
516 	u64 end;
517 	u64 real_removed_size = 0;
518 
519 	if (size > (ULLONG_MAX - start))
520 		size = ULLONG_MAX - start;
521 
522 	end = start + size;
523 	printk(KERN_DEBUG "e820: remove [mem %#010Lx-%#010Lx] ", start, end - 1);
524 	if (check_type)
525 		e820_print_type(old_type);
526 	pr_cont("\n");
527 
528 	for (i = 0; i < e820_table->nr_entries; i++) {
529 		struct e820_entry *entry = &e820_table->entries[i];
530 		u64 final_start, final_end;
531 		u64 entry_end;
532 
533 		if (check_type && entry->type != old_type)
534 			continue;
535 
536 		entry_end = entry->addr + entry->size;
537 
538 		/* Completely covered? */
539 		if (entry->addr >= start && entry_end <= end) {
540 			real_removed_size += entry->size;
541 			memset(entry, 0, sizeof(*entry));
542 			continue;
543 		}
544 
545 		/* Is the new range completely covered? */
546 		if (entry->addr < start && entry_end > end) {
547 			e820__range_add(end, entry_end - end, entry->type);
548 			entry->size = start - entry->addr;
549 			real_removed_size += size;
550 			continue;
551 		}
552 
553 		/* Partially covered: */
554 		final_start = max(start, entry->addr);
555 		final_end = min(end, entry_end);
556 		if (final_start >= final_end)
557 			continue;
558 
559 		real_removed_size += final_end - final_start;
560 
561 		/*
562 		 * Left range could be head or tail, so need to update
563 		 * the size first:
564 		 */
565 		entry->size -= final_end - final_start;
566 		if (entry->addr < final_start)
567 			continue;
568 
569 		entry->addr = final_end;
570 	}
571 	return real_removed_size;
572 }
573 
574 void __init e820__update_table_print(void)
575 {
576 	if (e820__update_table(e820_table))
577 		return;
578 
579 	pr_info("modified physical RAM map:\n");
580 	e820__print_table("modified");
581 }
582 
583 static void __init e820__update_table_kexec(void)
584 {
585 	e820__update_table(e820_table_kexec);
586 }
587 
588 #define MAX_GAP_END 0x100000000ull
589 
590 /*
591  * Search for a gap in the E820 memory space from 0 to MAX_GAP_END (4GB).
592  */
593 static int __init e820_search_gap(unsigned long *gapstart, unsigned long *gapsize)
594 {
595 	unsigned long long last = MAX_GAP_END;
596 	int i = e820_table->nr_entries;
597 	int found = 0;
598 
599 	while (--i >= 0) {
600 		unsigned long long start = e820_table->entries[i].addr;
601 		unsigned long long end = start + e820_table->entries[i].size;
602 
603 		/*
604 		 * Since "last" is at most 4GB, we know we'll
605 		 * fit in 32 bits if this condition is true:
606 		 */
607 		if (last > end) {
608 			unsigned long gap = last - end;
609 
610 			if (gap >= *gapsize) {
611 				*gapsize = gap;
612 				*gapstart = end;
613 				found = 1;
614 			}
615 		}
616 		if (start < last)
617 			last = start;
618 	}
619 	return found;
620 }
621 
622 /*
623  * Search for the biggest gap in the low 32 bits of the E820
624  * memory space. We pass this space to the PCI subsystem, so
625  * that it can assign MMIO resources for hotplug or
626  * unconfigured devices in.
627  *
628  * Hopefully the BIOS let enough space left.
629  */
630 __init void e820__setup_pci_gap(void)
631 {
632 	unsigned long gapstart, gapsize;
633 	int found;
634 
635 	gapsize = 0x400000;
636 	found  = e820_search_gap(&gapstart, &gapsize);
637 
638 	if (!found) {
639 #ifdef CONFIG_X86_64
640 		gapstart = (max_pfn << PAGE_SHIFT) + 1024*1024;
641 		pr_err("Cannot find an available gap in the 32-bit address range\n");
642 		pr_err("PCI devices with unassigned 32-bit BARs may not work!\n");
643 #else
644 		gapstart = 0x10000000;
645 #endif
646 	}
647 
648 	/*
649 	 * e820__reserve_resources_late() protects stolen RAM already:
650 	 */
651 	pci_mem_start = gapstart;
652 
653 	pr_info("[mem %#010lx-%#010lx] available for PCI devices\n",
654 		gapstart, gapstart + gapsize - 1);
655 }
656 
657 /*
658  * Called late during init, in free_initmem().
659  *
660  * Initial e820_table and e820_table_kexec are largish __initdata arrays.
661  *
662  * Copy them to a (usually much smaller) dynamically allocated area that is
663  * sized precisely after the number of e820 entries.
664  *
665  * This is done after we've performed all the fixes and tweaks to the tables.
666  * All functions which modify them are __init functions, which won't exist
667  * after free_initmem().
668  */
669 __init void e820__reallocate_tables(void)
670 {
671 	struct e820_table *n;
672 	int size;
673 
674 	size = offsetof(struct e820_table, entries) + sizeof(struct e820_entry)*e820_table->nr_entries;
675 	n = kmemdup(e820_table, size, GFP_KERNEL);
676 	BUG_ON(!n);
677 	e820_table = n;
678 
679 	size = offsetof(struct e820_table, entries) + sizeof(struct e820_entry)*e820_table_kexec->nr_entries;
680 	n = kmemdup(e820_table_kexec, size, GFP_KERNEL);
681 	BUG_ON(!n);
682 	e820_table_kexec = n;
683 
684 	size = offsetof(struct e820_table, entries) + sizeof(struct e820_entry)*e820_table_firmware->nr_entries;
685 	n = kmemdup(e820_table_firmware, size, GFP_KERNEL);
686 	BUG_ON(!n);
687 	e820_table_firmware = n;
688 }
689 
690 /*
691  * Because of the small fixed size of struct boot_params, only the first
692  * 128 E820 memory entries are passed to the kernel via boot_params.e820_table,
693  * the remaining (if any) entries are passed via the SETUP_E820_EXT node of
694  * struct setup_data, which is parsed here.
695  */
696 void __init e820__memory_setup_extended(u64 phys_addr, u32 data_len)
697 {
698 	int entries;
699 	struct boot_e820_entry *extmap;
700 	struct setup_data *sdata;
701 
702 	sdata = early_memremap(phys_addr, data_len);
703 	entries = sdata->len / sizeof(*extmap);
704 	extmap = (struct boot_e820_entry *)(sdata->data);
705 
706 	__append_e820_table(extmap, entries);
707 	e820__update_table(e820_table);
708 
709 	memcpy(e820_table_kexec, e820_table, sizeof(*e820_table_kexec));
710 	memcpy(e820_table_firmware, e820_table, sizeof(*e820_table_firmware));
711 
712 	early_memunmap(sdata, data_len);
713 	pr_info("extended physical RAM map:\n");
714 	e820__print_table("extended");
715 }
716 
717 /*
718  * Find the ranges of physical addresses that do not correspond to
719  * E820 RAM areas and register the corresponding pages as 'nosave' for
720  * hibernation (32-bit) or software suspend and suspend to RAM (64-bit).
721  *
722  * This function requires the E820 map to be sorted and without any
723  * overlapping entries.
724  */
725 void __init e820__register_nosave_regions(unsigned long limit_pfn)
726 {
727 	int i;
728 	unsigned long pfn = 0;
729 
730 	for (i = 0; i < e820_table->nr_entries; i++) {
731 		struct e820_entry *entry = &e820_table->entries[i];
732 
733 		if (pfn < PFN_UP(entry->addr))
734 			register_nosave_region(pfn, PFN_UP(entry->addr));
735 
736 		pfn = PFN_DOWN(entry->addr + entry->size);
737 
738 		if (entry->type != E820_TYPE_RAM && entry->type != E820_TYPE_RESERVED_KERN)
739 			register_nosave_region(PFN_UP(entry->addr), pfn);
740 
741 		if (pfn >= limit_pfn)
742 			break;
743 	}
744 }
745 
746 #ifdef CONFIG_ACPI
747 /*
748  * Register ACPI NVS memory regions, so that we can save/restore them during
749  * hibernation and the subsequent resume:
750  */
751 static int __init e820__register_nvs_regions(void)
752 {
753 	int i;
754 
755 	for (i = 0; i < e820_table->nr_entries; i++) {
756 		struct e820_entry *entry = &e820_table->entries[i];
757 
758 		if (entry->type == E820_TYPE_NVS)
759 			acpi_nvs_register(entry->addr, entry->size);
760 	}
761 
762 	return 0;
763 }
764 core_initcall(e820__register_nvs_regions);
765 #endif
766 
767 /*
768  * Allocate the requested number of bytes with the requsted alignment
769  * and return (the physical address) to the caller. Also register this
770  * range in the 'kexec' E820 table as a reserved range.
771  *
772  * This allows kexec to fake a new mptable, as if it came from the real
773  * system.
774  */
775 u64 __init e820__memblock_alloc_reserved(u64 size, u64 align)
776 {
777 	u64 addr;
778 
779 	addr = memblock_phys_alloc(size, align);
780 	if (addr) {
781 		e820__range_update_kexec(addr, size, E820_TYPE_RAM, E820_TYPE_RESERVED);
782 		pr_info("update e820_table_kexec for e820__memblock_alloc_reserved()\n");
783 		e820__update_table_kexec();
784 	}
785 
786 	return addr;
787 }
788 
789 #ifdef CONFIG_X86_32
790 # ifdef CONFIG_X86_PAE
791 #  define MAX_ARCH_PFN		(1ULL<<(36-PAGE_SHIFT))
792 # else
793 #  define MAX_ARCH_PFN		(1ULL<<(32-PAGE_SHIFT))
794 # endif
795 #else /* CONFIG_X86_32 */
796 # define MAX_ARCH_PFN MAXMEM>>PAGE_SHIFT
797 #endif
798 
799 /*
800  * Find the highest page frame number we have available
801  */
802 static unsigned long __init e820_end_pfn(unsigned long limit_pfn, enum e820_type type)
803 {
804 	int i;
805 	unsigned long last_pfn = 0;
806 	unsigned long max_arch_pfn = MAX_ARCH_PFN;
807 
808 	for (i = 0; i < e820_table->nr_entries; i++) {
809 		struct e820_entry *entry = &e820_table->entries[i];
810 		unsigned long start_pfn;
811 		unsigned long end_pfn;
812 
813 		if (entry->type != type)
814 			continue;
815 
816 		start_pfn = entry->addr >> PAGE_SHIFT;
817 		end_pfn = (entry->addr + entry->size) >> PAGE_SHIFT;
818 
819 		if (start_pfn >= limit_pfn)
820 			continue;
821 		if (end_pfn > limit_pfn) {
822 			last_pfn = limit_pfn;
823 			break;
824 		}
825 		if (end_pfn > last_pfn)
826 			last_pfn = end_pfn;
827 	}
828 
829 	if (last_pfn > max_arch_pfn)
830 		last_pfn = max_arch_pfn;
831 
832 	pr_info("last_pfn = %#lx max_arch_pfn = %#lx\n",
833 		last_pfn, max_arch_pfn);
834 	return last_pfn;
835 }
836 
837 unsigned long __init e820__end_of_ram_pfn(void)
838 {
839 	return e820_end_pfn(MAX_ARCH_PFN, E820_TYPE_RAM);
840 }
841 
842 unsigned long __init e820__end_of_low_ram_pfn(void)
843 {
844 	return e820_end_pfn(1UL << (32 - PAGE_SHIFT), E820_TYPE_RAM);
845 }
846 
847 static void __init early_panic(char *msg)
848 {
849 	early_printk(msg);
850 	panic(msg);
851 }
852 
853 static int userdef __initdata;
854 
855 /* The "mem=nopentium" boot option disables 4MB page tables on 32-bit kernels: */
856 static int __init parse_memopt(char *p)
857 {
858 	u64 mem_size;
859 
860 	if (!p)
861 		return -EINVAL;
862 
863 	if (!strcmp(p, "nopentium")) {
864 #ifdef CONFIG_X86_32
865 		setup_clear_cpu_cap(X86_FEATURE_PSE);
866 		return 0;
867 #else
868 		pr_warn("mem=nopentium ignored! (only supported on x86_32)\n");
869 		return -EINVAL;
870 #endif
871 	}
872 
873 	userdef = 1;
874 	mem_size = memparse(p, &p);
875 
876 	/* Don't remove all memory when getting "mem={invalid}" parameter: */
877 	if (mem_size == 0)
878 		return -EINVAL;
879 
880 	e820__range_remove(mem_size, ULLONG_MAX - mem_size, E820_TYPE_RAM, 1);
881 
882 #ifdef CONFIG_MEMORY_HOTPLUG
883 	max_mem_size = mem_size;
884 #endif
885 
886 	return 0;
887 }
888 early_param("mem", parse_memopt);
889 
890 static int __init parse_memmap_one(char *p)
891 {
892 	char *oldp;
893 	u64 start_at, mem_size;
894 
895 	if (!p)
896 		return -EINVAL;
897 
898 	if (!strncmp(p, "exactmap", 8)) {
899 #ifdef CONFIG_CRASH_DUMP
900 		/*
901 		 * If we are doing a crash dump, we still need to know
902 		 * the real memory size before the original memory map is
903 		 * reset.
904 		 */
905 		saved_max_pfn = e820__end_of_ram_pfn();
906 #endif
907 		e820_table->nr_entries = 0;
908 		userdef = 1;
909 		return 0;
910 	}
911 
912 	oldp = p;
913 	mem_size = memparse(p, &p);
914 	if (p == oldp)
915 		return -EINVAL;
916 
917 	userdef = 1;
918 	if (*p == '@') {
919 		start_at = memparse(p+1, &p);
920 		e820__range_add(start_at, mem_size, E820_TYPE_RAM);
921 	} else if (*p == '#') {
922 		start_at = memparse(p+1, &p);
923 		e820__range_add(start_at, mem_size, E820_TYPE_ACPI);
924 	} else if (*p == '$') {
925 		start_at = memparse(p+1, &p);
926 		e820__range_add(start_at, mem_size, E820_TYPE_RESERVED);
927 	} else if (*p == '!') {
928 		start_at = memparse(p+1, &p);
929 		e820__range_add(start_at, mem_size, E820_TYPE_PRAM);
930 	} else if (*p == '%') {
931 		enum e820_type from = 0, to = 0;
932 
933 		start_at = memparse(p + 1, &p);
934 		if (*p == '-')
935 			from = simple_strtoull(p + 1, &p, 0);
936 		if (*p == '+')
937 			to = simple_strtoull(p + 1, &p, 0);
938 		if (*p != '\0')
939 			return -EINVAL;
940 		if (from && to)
941 			e820__range_update(start_at, mem_size, from, to);
942 		else if (to)
943 			e820__range_add(start_at, mem_size, to);
944 		else if (from)
945 			e820__range_remove(start_at, mem_size, from, 1);
946 		else
947 			e820__range_remove(start_at, mem_size, 0, 0);
948 	} else {
949 		e820__range_remove(mem_size, ULLONG_MAX - mem_size, E820_TYPE_RAM, 1);
950 	}
951 
952 	return *p == '\0' ? 0 : -EINVAL;
953 }
954 
955 static int __init parse_memmap_opt(char *str)
956 {
957 	while (str) {
958 		char *k = strchr(str, ',');
959 
960 		if (k)
961 			*k++ = 0;
962 
963 		parse_memmap_one(str);
964 		str = k;
965 	}
966 
967 	return 0;
968 }
969 early_param("memmap", parse_memmap_opt);
970 
971 /*
972  * Reserve all entries from the bootloader's extensible data nodes list,
973  * because if present we are going to use it later on to fetch e820
974  * entries from it:
975  */
976 void __init e820__reserve_setup_data(void)
977 {
978 	struct setup_data *data;
979 	u64 pa_data;
980 
981 	pa_data = boot_params.hdr.setup_data;
982 	if (!pa_data)
983 		return;
984 
985 	while (pa_data) {
986 		data = early_memremap(pa_data, sizeof(*data));
987 		e820__range_update(pa_data, sizeof(*data)+data->len, E820_TYPE_RAM, E820_TYPE_RESERVED_KERN);
988 		e820__range_update_kexec(pa_data, sizeof(*data)+data->len, E820_TYPE_RAM, E820_TYPE_RESERVED_KERN);
989 		pa_data = data->next;
990 		early_memunmap(data, sizeof(*data));
991 	}
992 
993 	e820__update_table(e820_table);
994 	e820__update_table(e820_table_kexec);
995 
996 	pr_info("extended physical RAM map:\n");
997 	e820__print_table("reserve setup_data");
998 }
999 
1000 /*
1001  * Called after parse_early_param(), after early parameters (such as mem=)
1002  * have been processed, in which case we already have an E820 table filled in
1003  * via the parameter callback function(s), but it's not sorted and printed yet:
1004  */
1005 void __init e820__finish_early_params(void)
1006 {
1007 	if (userdef) {
1008 		if (e820__update_table(e820_table) < 0)
1009 			early_panic("Invalid user supplied memory map");
1010 
1011 		pr_info("user-defined physical RAM map:\n");
1012 		e820__print_table("user");
1013 	}
1014 }
1015 
1016 static const char *__init e820_type_to_string(struct e820_entry *entry)
1017 {
1018 	switch (entry->type) {
1019 	case E820_TYPE_RESERVED_KERN:	/* Fall-through: */
1020 	case E820_TYPE_RAM:		return "System RAM";
1021 	case E820_TYPE_ACPI:		return "ACPI Tables";
1022 	case E820_TYPE_NVS:		return "ACPI Non-volatile Storage";
1023 	case E820_TYPE_UNUSABLE:	return "Unusable memory";
1024 	case E820_TYPE_PRAM:		return "Persistent Memory (legacy)";
1025 	case E820_TYPE_PMEM:		return "Persistent Memory";
1026 	case E820_TYPE_RESERVED:	return "Reserved";
1027 	default:			return "Unknown E820 type";
1028 	}
1029 }
1030 
1031 static unsigned long __init e820_type_to_iomem_type(struct e820_entry *entry)
1032 {
1033 	switch (entry->type) {
1034 	case E820_TYPE_RESERVED_KERN:	/* Fall-through: */
1035 	case E820_TYPE_RAM:		return IORESOURCE_SYSTEM_RAM;
1036 	case E820_TYPE_ACPI:		/* Fall-through: */
1037 	case E820_TYPE_NVS:		/* Fall-through: */
1038 	case E820_TYPE_UNUSABLE:	/* Fall-through: */
1039 	case E820_TYPE_PRAM:		/* Fall-through: */
1040 	case E820_TYPE_PMEM:		/* Fall-through: */
1041 	case E820_TYPE_RESERVED:	/* Fall-through: */
1042 	default:			return IORESOURCE_MEM;
1043 	}
1044 }
1045 
1046 static unsigned long __init e820_type_to_iores_desc(struct e820_entry *entry)
1047 {
1048 	switch (entry->type) {
1049 	case E820_TYPE_ACPI:		return IORES_DESC_ACPI_TABLES;
1050 	case E820_TYPE_NVS:		return IORES_DESC_ACPI_NV_STORAGE;
1051 	case E820_TYPE_PMEM:		return IORES_DESC_PERSISTENT_MEMORY;
1052 	case E820_TYPE_PRAM:		return IORES_DESC_PERSISTENT_MEMORY_LEGACY;
1053 	case E820_TYPE_RESERVED_KERN:	/* Fall-through: */
1054 	case E820_TYPE_RAM:		/* Fall-through: */
1055 	case E820_TYPE_UNUSABLE:	/* Fall-through: */
1056 	case E820_TYPE_RESERVED:	/* Fall-through: */
1057 	default:			return IORES_DESC_NONE;
1058 	}
1059 }
1060 
1061 static bool __init do_mark_busy(enum e820_type type, struct resource *res)
1062 {
1063 	/* this is the legacy bios/dos rom-shadow + mmio region */
1064 	if (res->start < (1ULL<<20))
1065 		return true;
1066 
1067 	/*
1068 	 * Treat persistent memory like device memory, i.e. reserve it
1069 	 * for exclusive use of a driver
1070 	 */
1071 	switch (type) {
1072 	case E820_TYPE_RESERVED:
1073 	case E820_TYPE_PRAM:
1074 	case E820_TYPE_PMEM:
1075 		return false;
1076 	case E820_TYPE_RESERVED_KERN:
1077 	case E820_TYPE_RAM:
1078 	case E820_TYPE_ACPI:
1079 	case E820_TYPE_NVS:
1080 	case E820_TYPE_UNUSABLE:
1081 	default:
1082 		return true;
1083 	}
1084 }
1085 
1086 /*
1087  * Mark E820 reserved areas as busy for the resource manager:
1088  */
1089 
1090 static struct resource __initdata *e820_res;
1091 
1092 void __init e820__reserve_resources(void)
1093 {
1094 	int i;
1095 	struct resource *res;
1096 	u64 end;
1097 
1098 	res = memblock_alloc(sizeof(*res) * e820_table->nr_entries,
1099 			     SMP_CACHE_BYTES);
1100 	if (!res)
1101 		panic("%s: Failed to allocate %zu bytes\n", __func__,
1102 		      sizeof(*res) * e820_table->nr_entries);
1103 	e820_res = res;
1104 
1105 	for (i = 0; i < e820_table->nr_entries; i++) {
1106 		struct e820_entry *entry = e820_table->entries + i;
1107 
1108 		end = entry->addr + entry->size - 1;
1109 		if (end != (resource_size_t)end) {
1110 			res++;
1111 			continue;
1112 		}
1113 		res->start = entry->addr;
1114 		res->end   = end;
1115 		res->name  = e820_type_to_string(entry);
1116 		res->flags = e820_type_to_iomem_type(entry);
1117 		res->desc  = e820_type_to_iores_desc(entry);
1118 
1119 		/*
1120 		 * Don't register the region that could be conflicted with
1121 		 * PCI device BAR resources and insert them later in
1122 		 * pcibios_resource_survey():
1123 		 */
1124 		if (do_mark_busy(entry->type, res)) {
1125 			res->flags |= IORESOURCE_BUSY;
1126 			insert_resource(&iomem_resource, res);
1127 		}
1128 		res++;
1129 	}
1130 
1131 	/* Expose the bootloader-provided memory layout to the sysfs. */
1132 	for (i = 0; i < e820_table_firmware->nr_entries; i++) {
1133 		struct e820_entry *entry = e820_table_firmware->entries + i;
1134 
1135 		firmware_map_add_early(entry->addr, entry->addr + entry->size, e820_type_to_string(entry));
1136 	}
1137 }
1138 
1139 /*
1140  * How much should we pad the end of RAM, depending on where it is?
1141  */
1142 static unsigned long __init ram_alignment(resource_size_t pos)
1143 {
1144 	unsigned long mb = pos >> 20;
1145 
1146 	/* To 64kB in the first megabyte */
1147 	if (!mb)
1148 		return 64*1024;
1149 
1150 	/* To 1MB in the first 16MB */
1151 	if (mb < 16)
1152 		return 1024*1024;
1153 
1154 	/* To 64MB for anything above that */
1155 	return 64*1024*1024;
1156 }
1157 
1158 #define MAX_RESOURCE_SIZE ((resource_size_t)-1)
1159 
1160 void __init e820__reserve_resources_late(void)
1161 {
1162 	int i;
1163 	struct resource *res;
1164 
1165 	res = e820_res;
1166 	for (i = 0; i < e820_table->nr_entries; i++) {
1167 		if (!res->parent && res->end)
1168 			insert_resource_expand_to_fit(&iomem_resource, res);
1169 		res++;
1170 	}
1171 
1172 	/*
1173 	 * Try to bump up RAM regions to reasonable boundaries, to
1174 	 * avoid stolen RAM:
1175 	 */
1176 	for (i = 0; i < e820_table->nr_entries; i++) {
1177 		struct e820_entry *entry = &e820_table->entries[i];
1178 		u64 start, end;
1179 
1180 		if (entry->type != E820_TYPE_RAM)
1181 			continue;
1182 
1183 		start = entry->addr + entry->size;
1184 		end = round_up(start, ram_alignment(start)) - 1;
1185 		if (end > MAX_RESOURCE_SIZE)
1186 			end = MAX_RESOURCE_SIZE;
1187 		if (start >= end)
1188 			continue;
1189 
1190 		printk(KERN_DEBUG "e820: reserve RAM buffer [mem %#010llx-%#010llx]\n", start, end);
1191 		reserve_region_with_split(&iomem_resource, start, end, "RAM buffer");
1192 	}
1193 }
1194 
1195 /*
1196  * Pass the firmware (bootloader) E820 map to the kernel and process it:
1197  */
1198 char *__init e820__memory_setup_default(void)
1199 {
1200 	char *who = "BIOS-e820";
1201 
1202 	/*
1203 	 * Try to copy the BIOS-supplied E820-map.
1204 	 *
1205 	 * Otherwise fake a memory map; one section from 0k->640k,
1206 	 * the next section from 1mb->appropriate_mem_k
1207 	 */
1208 	if (append_e820_table(boot_params.e820_table, boot_params.e820_entries) < 0) {
1209 		u64 mem_size;
1210 
1211 		/* Compare results from other methods and take the one that gives more RAM: */
1212 		if (boot_params.alt_mem_k < boot_params.screen_info.ext_mem_k) {
1213 			mem_size = boot_params.screen_info.ext_mem_k;
1214 			who = "BIOS-88";
1215 		} else {
1216 			mem_size = boot_params.alt_mem_k;
1217 			who = "BIOS-e801";
1218 		}
1219 
1220 		e820_table->nr_entries = 0;
1221 		e820__range_add(0, LOWMEMSIZE(), E820_TYPE_RAM);
1222 		e820__range_add(HIGH_MEMORY, mem_size << 10, E820_TYPE_RAM);
1223 	}
1224 
1225 	/* We just appended a lot of ranges, sanitize the table: */
1226 	e820__update_table(e820_table);
1227 
1228 	return who;
1229 }
1230 
1231 /*
1232  * Calls e820__memory_setup_default() in essence to pick up the firmware/bootloader
1233  * E820 map - with an optional platform quirk available for virtual platforms
1234  * to override this method of boot environment processing:
1235  */
1236 void __init e820__memory_setup(void)
1237 {
1238 	char *who;
1239 
1240 	/* This is a firmware interface ABI - make sure we don't break it: */
1241 	BUILD_BUG_ON(sizeof(struct boot_e820_entry) != 20);
1242 
1243 	who = x86_init.resources.memory_setup();
1244 
1245 	memcpy(e820_table_kexec, e820_table, sizeof(*e820_table_kexec));
1246 	memcpy(e820_table_firmware, e820_table, sizeof(*e820_table_firmware));
1247 
1248 	pr_info("BIOS-provided physical RAM map:\n");
1249 	e820__print_table(who);
1250 }
1251 
1252 void __init e820__memblock_setup(void)
1253 {
1254 	int i;
1255 	u64 end;
1256 
1257 	/*
1258 	 * The bootstrap memblock region count maximum is 128 entries
1259 	 * (INIT_MEMBLOCK_REGIONS), but EFI might pass us more E820 entries
1260 	 * than that - so allow memblock resizing.
1261 	 *
1262 	 * This is safe, because this call happens pretty late during x86 setup,
1263 	 * so we know about reserved memory regions already. (This is important
1264 	 * so that memblock resizing does no stomp over reserved areas.)
1265 	 */
1266 	memblock_allow_resize();
1267 
1268 	for (i = 0; i < e820_table->nr_entries; i++) {
1269 		struct e820_entry *entry = &e820_table->entries[i];
1270 
1271 		end = entry->addr + entry->size;
1272 		if (end != (resource_size_t)end)
1273 			continue;
1274 
1275 		if (entry->type != E820_TYPE_RAM && entry->type != E820_TYPE_RESERVED_KERN)
1276 			continue;
1277 
1278 		memblock_add(entry->addr, entry->size);
1279 	}
1280 
1281 	/* Throw away partial pages: */
1282 	memblock_trim_memory(PAGE_SIZE);
1283 
1284 	memblock_dump_all();
1285 }
1286