1 /* 2 * Low level x86 E820 memory map handling functions. 3 * 4 * The firmware and bootloader passes us the "E820 table", which is the primary 5 * physical memory layout description available about x86 systems. 6 * 7 * The kernel takes the E820 memory layout and optionally modifies it with 8 * quirks and other tweaks, and feeds that into the generic Linux memory 9 * allocation code routines via a platform independent interface (memblock, etc.). 10 */ 11 #include <linux/crash_dump.h> 12 #include <linux/memblock.h> 13 #include <linux/suspend.h> 14 #include <linux/acpi.h> 15 #include <linux/firmware-map.h> 16 #include <linux/sort.h> 17 18 #include <asm/e820/api.h> 19 #include <asm/setup.h> 20 21 /* 22 * We organize the E820 table into three main data structures: 23 * 24 * - 'e820_table_firmware': the original firmware version passed to us by the 25 * bootloader - not modified by the kernel. It is composed of two parts: 26 * the first 128 E820 memory entries in boot_params.e820_table and the remaining 27 * (if any) entries of the SETUP_E820_EXT nodes. We use this to: 28 * 29 * - inform the user about the firmware's notion of memory layout 30 * via /sys/firmware/memmap 31 * 32 * - the hibernation code uses it to generate a kernel-independent MD5 33 * fingerprint of the physical memory layout of a system. 34 * 35 * - 'e820_table_kexec': a slightly modified (by the kernel) firmware version 36 * passed to us by the bootloader - the major difference between 37 * e820_table_firmware[] and this one is that, the latter marks the setup_data 38 * list created by the EFI boot stub as reserved, so that kexec can reuse the 39 * setup_data information in the second kernel. Besides, e820_table_kexec[] 40 * might also be modified by the kexec itself to fake a mptable. 41 * We use this to: 42 * 43 * - kexec, which is a bootloader in disguise, uses the original E820 44 * layout to pass to the kexec-ed kernel. This way the original kernel 45 * can have a restricted E820 map while the kexec()-ed kexec-kernel 46 * can have access to full memory - etc. 47 * 48 * - 'e820_table': this is the main E820 table that is massaged by the 49 * low level x86 platform code, or modified by boot parameters, before 50 * passed on to higher level MM layers. 51 * 52 * Once the E820 map has been converted to the standard Linux memory layout 53 * information its role stops - modifying it has no effect and does not get 54 * re-propagated. So itsmain role is a temporary bootstrap storage of firmware 55 * specific memory layout data during early bootup. 56 */ 57 static struct e820_table e820_table_init __initdata; 58 static struct e820_table e820_table_kexec_init __initdata; 59 static struct e820_table e820_table_firmware_init __initdata; 60 61 struct e820_table *e820_table __refdata = &e820_table_init; 62 struct e820_table *e820_table_kexec __refdata = &e820_table_kexec_init; 63 struct e820_table *e820_table_firmware __refdata = &e820_table_firmware_init; 64 65 /* For PCI or other memory-mapped resources */ 66 unsigned long pci_mem_start = 0xaeedbabe; 67 #ifdef CONFIG_PCI 68 EXPORT_SYMBOL(pci_mem_start); 69 #endif 70 71 /* 72 * This function checks if any part of the range <start,end> is mapped 73 * with type. 74 */ 75 bool e820__mapped_any(u64 start, u64 end, enum e820_type type) 76 { 77 int i; 78 79 for (i = 0; i < e820_table->nr_entries; i++) { 80 struct e820_entry *entry = &e820_table->entries[i]; 81 82 if (type && entry->type != type) 83 continue; 84 if (entry->addr >= end || entry->addr + entry->size <= start) 85 continue; 86 return 1; 87 } 88 return 0; 89 } 90 EXPORT_SYMBOL_GPL(e820__mapped_any); 91 92 /* 93 * This function checks if the entire <start,end> range is mapped with 'type'. 94 * 95 * Note: this function only works correctly once the E820 table is sorted and 96 * not-overlapping (at least for the range specified), which is the case normally. 97 */ 98 static struct e820_entry *__e820__mapped_all(u64 start, u64 end, 99 enum e820_type type) 100 { 101 int i; 102 103 for (i = 0; i < e820_table->nr_entries; i++) { 104 struct e820_entry *entry = &e820_table->entries[i]; 105 106 if (type && entry->type != type) 107 continue; 108 109 /* Is the region (part) in overlap with the current region? */ 110 if (entry->addr >= end || entry->addr + entry->size <= start) 111 continue; 112 113 /* 114 * If the region is at the beginning of <start,end> we move 115 * 'start' to the end of the region since it's ok until there 116 */ 117 if (entry->addr <= start) 118 start = entry->addr + entry->size; 119 120 /* 121 * If 'start' is now at or beyond 'end', we're done, full 122 * coverage of the desired range exists: 123 */ 124 if (start >= end) 125 return entry; 126 } 127 128 return NULL; 129 } 130 131 /* 132 * This function checks if the entire range <start,end> is mapped with type. 133 */ 134 bool __init e820__mapped_all(u64 start, u64 end, enum e820_type type) 135 { 136 return __e820__mapped_all(start, end, type); 137 } 138 139 /* 140 * This function returns the type associated with the range <start,end>. 141 */ 142 int e820__get_entry_type(u64 start, u64 end) 143 { 144 struct e820_entry *entry = __e820__mapped_all(start, end, 0); 145 146 return entry ? entry->type : -EINVAL; 147 } 148 149 /* 150 * Add a memory region to the kernel E820 map. 151 */ 152 static void __init __e820__range_add(struct e820_table *table, u64 start, u64 size, enum e820_type type) 153 { 154 int x = table->nr_entries; 155 156 if (x >= ARRAY_SIZE(table->entries)) { 157 pr_err("too many entries; ignoring [mem %#010llx-%#010llx]\n", 158 start, start + size - 1); 159 return; 160 } 161 162 table->entries[x].addr = start; 163 table->entries[x].size = size; 164 table->entries[x].type = type; 165 table->nr_entries++; 166 } 167 168 void __init e820__range_add(u64 start, u64 size, enum e820_type type) 169 { 170 __e820__range_add(e820_table, start, size, type); 171 } 172 173 static void __init e820_print_type(enum e820_type type) 174 { 175 switch (type) { 176 case E820_TYPE_RAM: /* Fall through: */ 177 case E820_TYPE_RESERVED_KERN: pr_cont("usable"); break; 178 case E820_TYPE_RESERVED: pr_cont("reserved"); break; 179 case E820_TYPE_ACPI: pr_cont("ACPI data"); break; 180 case E820_TYPE_NVS: pr_cont("ACPI NVS"); break; 181 case E820_TYPE_UNUSABLE: pr_cont("unusable"); break; 182 case E820_TYPE_PMEM: /* Fall through: */ 183 case E820_TYPE_PRAM: pr_cont("persistent (type %u)", type); break; 184 default: pr_cont("type %u", type); break; 185 } 186 } 187 188 void __init e820__print_table(char *who) 189 { 190 int i; 191 192 for (i = 0; i < e820_table->nr_entries; i++) { 193 pr_info("%s: [mem %#018Lx-%#018Lx] ", 194 who, 195 e820_table->entries[i].addr, 196 e820_table->entries[i].addr + e820_table->entries[i].size - 1); 197 198 e820_print_type(e820_table->entries[i].type); 199 pr_cont("\n"); 200 } 201 } 202 203 /* 204 * Sanitize an E820 map. 205 * 206 * Some E820 layouts include overlapping entries. The following 207 * replaces the original E820 map with a new one, removing overlaps, 208 * and resolving conflicting memory types in favor of highest 209 * numbered type. 210 * 211 * The input parameter 'entries' points to an array of 'struct 212 * e820_entry' which on entry has elements in the range [0, *nr_entries) 213 * valid, and which has space for up to max_nr_entries entries. 214 * On return, the resulting sanitized E820 map entries will be in 215 * overwritten in the same location, starting at 'entries'. 216 * 217 * The integer pointed to by nr_entries must be valid on entry (the 218 * current number of valid entries located at 'entries'). If the 219 * sanitizing succeeds the *nr_entries will be updated with the new 220 * number of valid entries (something no more than max_nr_entries). 221 * 222 * The return value from e820__update_table() is zero if it 223 * successfully 'sanitized' the map entries passed in, and is -1 224 * if it did nothing, which can happen if either of (1) it was 225 * only passed one map entry, or (2) any of the input map entries 226 * were invalid (start + size < start, meaning that the size was 227 * so big the described memory range wrapped around through zero.) 228 * 229 * Visually we're performing the following 230 * (1,2,3,4 = memory types)... 231 * 232 * Sample memory map (w/overlaps): 233 * ____22__________________ 234 * ______________________4_ 235 * ____1111________________ 236 * _44_____________________ 237 * 11111111________________ 238 * ____________________33__ 239 * ___________44___________ 240 * __________33333_________ 241 * ______________22________ 242 * ___________________2222_ 243 * _________111111111______ 244 * _____________________11_ 245 * _________________4______ 246 * 247 * Sanitized equivalent (no overlap): 248 * 1_______________________ 249 * _44_____________________ 250 * ___1____________________ 251 * ____22__________________ 252 * ______11________________ 253 * _________1______________ 254 * __________3_____________ 255 * ___________44___________ 256 * _____________33_________ 257 * _______________2________ 258 * ________________1_______ 259 * _________________4______ 260 * ___________________2____ 261 * ____________________33__ 262 * ______________________4_ 263 */ 264 struct change_member { 265 /* Pointer to the original entry: */ 266 struct e820_entry *entry; 267 /* Address for this change point: */ 268 unsigned long long addr; 269 }; 270 271 static struct change_member change_point_list[2*E820_MAX_ENTRIES] __initdata; 272 static struct change_member *change_point[2*E820_MAX_ENTRIES] __initdata; 273 static struct e820_entry *overlap_list[E820_MAX_ENTRIES] __initdata; 274 static struct e820_entry new_entries[E820_MAX_ENTRIES] __initdata; 275 276 static int __init cpcompare(const void *a, const void *b) 277 { 278 struct change_member * const *app = a, * const *bpp = b; 279 const struct change_member *ap = *app, *bp = *bpp; 280 281 /* 282 * Inputs are pointers to two elements of change_point[]. If their 283 * addresses are not equal, their difference dominates. If the addresses 284 * are equal, then consider one that represents the end of its region 285 * to be greater than one that does not. 286 */ 287 if (ap->addr != bp->addr) 288 return ap->addr > bp->addr ? 1 : -1; 289 290 return (ap->addr != ap->entry->addr) - (bp->addr != bp->entry->addr); 291 } 292 293 int __init e820__update_table(struct e820_table *table) 294 { 295 struct e820_entry *entries = table->entries; 296 u32 max_nr_entries = ARRAY_SIZE(table->entries); 297 enum e820_type current_type, last_type; 298 unsigned long long last_addr; 299 u32 new_nr_entries, overlap_entries; 300 u32 i, chg_idx, chg_nr; 301 302 /* If there's only one memory region, don't bother: */ 303 if (table->nr_entries < 2) 304 return -1; 305 306 BUG_ON(table->nr_entries > max_nr_entries); 307 308 /* Bail out if we find any unreasonable addresses in the map: */ 309 for (i = 0; i < table->nr_entries; i++) { 310 if (entries[i].addr + entries[i].size < entries[i].addr) 311 return -1; 312 } 313 314 /* Create pointers for initial change-point information (for sorting): */ 315 for (i = 0; i < 2 * table->nr_entries; i++) 316 change_point[i] = &change_point_list[i]; 317 318 /* 319 * Record all known change-points (starting and ending addresses), 320 * omitting empty memory regions: 321 */ 322 chg_idx = 0; 323 for (i = 0; i < table->nr_entries; i++) { 324 if (entries[i].size != 0) { 325 change_point[chg_idx]->addr = entries[i].addr; 326 change_point[chg_idx++]->entry = &entries[i]; 327 change_point[chg_idx]->addr = entries[i].addr + entries[i].size; 328 change_point[chg_idx++]->entry = &entries[i]; 329 } 330 } 331 chg_nr = chg_idx; 332 333 /* Sort change-point list by memory addresses (low -> high): */ 334 sort(change_point, chg_nr, sizeof(*change_point), cpcompare, NULL); 335 336 /* Create a new memory map, removing overlaps: */ 337 overlap_entries = 0; /* Number of entries in the overlap table */ 338 new_nr_entries = 0; /* Index for creating new map entries */ 339 last_type = 0; /* Start with undefined memory type */ 340 last_addr = 0; /* Start with 0 as last starting address */ 341 342 /* Loop through change-points, determining effect on the new map: */ 343 for (chg_idx = 0; chg_idx < chg_nr; chg_idx++) { 344 /* Keep track of all overlapping entries */ 345 if (change_point[chg_idx]->addr == change_point[chg_idx]->entry->addr) { 346 /* Add map entry to overlap list (> 1 entry implies an overlap) */ 347 overlap_list[overlap_entries++] = change_point[chg_idx]->entry; 348 } else { 349 /* Remove entry from list (order independent, so swap with last): */ 350 for (i = 0; i < overlap_entries; i++) { 351 if (overlap_list[i] == change_point[chg_idx]->entry) 352 overlap_list[i] = overlap_list[overlap_entries-1]; 353 } 354 overlap_entries--; 355 } 356 /* 357 * If there are overlapping entries, decide which 358 * "type" to use (larger value takes precedence -- 359 * 1=usable, 2,3,4,4+=unusable) 360 */ 361 current_type = 0; 362 for (i = 0; i < overlap_entries; i++) { 363 if (overlap_list[i]->type > current_type) 364 current_type = overlap_list[i]->type; 365 } 366 367 /* Continue building up new map based on this information: */ 368 if (current_type != last_type || current_type == E820_TYPE_PRAM) { 369 if (last_type != 0) { 370 new_entries[new_nr_entries].size = change_point[chg_idx]->addr - last_addr; 371 /* Move forward only if the new size was non-zero: */ 372 if (new_entries[new_nr_entries].size != 0) 373 /* No more space left for new entries? */ 374 if (++new_nr_entries >= max_nr_entries) 375 break; 376 } 377 if (current_type != 0) { 378 new_entries[new_nr_entries].addr = change_point[chg_idx]->addr; 379 new_entries[new_nr_entries].type = current_type; 380 last_addr = change_point[chg_idx]->addr; 381 } 382 last_type = current_type; 383 } 384 } 385 386 /* Copy the new entries into the original location: */ 387 memcpy(entries, new_entries, new_nr_entries*sizeof(*entries)); 388 table->nr_entries = new_nr_entries; 389 390 return 0; 391 } 392 393 static int __init __append_e820_table(struct boot_e820_entry *entries, u32 nr_entries) 394 { 395 struct boot_e820_entry *entry = entries; 396 397 while (nr_entries) { 398 u64 start = entry->addr; 399 u64 size = entry->size; 400 u64 end = start + size - 1; 401 u32 type = entry->type; 402 403 /* Ignore the entry on 64-bit overflow: */ 404 if (start > end && likely(size)) 405 return -1; 406 407 e820__range_add(start, size, type); 408 409 entry++; 410 nr_entries--; 411 } 412 return 0; 413 } 414 415 /* 416 * Copy the BIOS E820 map into a safe place. 417 * 418 * Sanity-check it while we're at it.. 419 * 420 * If we're lucky and live on a modern system, the setup code 421 * will have given us a memory map that we can use to properly 422 * set up memory. If we aren't, we'll fake a memory map. 423 */ 424 static int __init append_e820_table(struct boot_e820_entry *entries, u32 nr_entries) 425 { 426 /* Only one memory region (or negative)? Ignore it */ 427 if (nr_entries < 2) 428 return -1; 429 430 return __append_e820_table(entries, nr_entries); 431 } 432 433 static u64 __init 434 __e820__range_update(struct e820_table *table, u64 start, u64 size, enum e820_type old_type, enum e820_type new_type) 435 { 436 u64 end; 437 unsigned int i; 438 u64 real_updated_size = 0; 439 440 BUG_ON(old_type == new_type); 441 442 if (size > (ULLONG_MAX - start)) 443 size = ULLONG_MAX - start; 444 445 end = start + size; 446 printk(KERN_DEBUG "e820: update [mem %#010Lx-%#010Lx] ", start, end - 1); 447 e820_print_type(old_type); 448 pr_cont(" ==> "); 449 e820_print_type(new_type); 450 pr_cont("\n"); 451 452 for (i = 0; i < table->nr_entries; i++) { 453 struct e820_entry *entry = &table->entries[i]; 454 u64 final_start, final_end; 455 u64 entry_end; 456 457 if (entry->type != old_type) 458 continue; 459 460 entry_end = entry->addr + entry->size; 461 462 /* Completely covered by new range? */ 463 if (entry->addr >= start && entry_end <= end) { 464 entry->type = new_type; 465 real_updated_size += entry->size; 466 continue; 467 } 468 469 /* New range is completely covered? */ 470 if (entry->addr < start && entry_end > end) { 471 __e820__range_add(table, start, size, new_type); 472 __e820__range_add(table, end, entry_end - end, entry->type); 473 entry->size = start - entry->addr; 474 real_updated_size += size; 475 continue; 476 } 477 478 /* Partially covered: */ 479 final_start = max(start, entry->addr); 480 final_end = min(end, entry_end); 481 if (final_start >= final_end) 482 continue; 483 484 __e820__range_add(table, final_start, final_end - final_start, new_type); 485 486 real_updated_size += final_end - final_start; 487 488 /* 489 * Left range could be head or tail, so need to update 490 * its size first: 491 */ 492 entry->size -= final_end - final_start; 493 if (entry->addr < final_start) 494 continue; 495 496 entry->addr = final_end; 497 } 498 return real_updated_size; 499 } 500 501 u64 __init e820__range_update(u64 start, u64 size, enum e820_type old_type, enum e820_type new_type) 502 { 503 return __e820__range_update(e820_table, start, size, old_type, new_type); 504 } 505 506 static u64 __init e820__range_update_kexec(u64 start, u64 size, enum e820_type old_type, enum e820_type new_type) 507 { 508 return __e820__range_update(e820_table_kexec, start, size, old_type, new_type); 509 } 510 511 /* Remove a range of memory from the E820 table: */ 512 u64 __init e820__range_remove(u64 start, u64 size, enum e820_type old_type, bool check_type) 513 { 514 int i; 515 u64 end; 516 u64 real_removed_size = 0; 517 518 if (size > (ULLONG_MAX - start)) 519 size = ULLONG_MAX - start; 520 521 end = start + size; 522 printk(KERN_DEBUG "e820: remove [mem %#010Lx-%#010Lx] ", start, end - 1); 523 if (check_type) 524 e820_print_type(old_type); 525 pr_cont("\n"); 526 527 for (i = 0; i < e820_table->nr_entries; i++) { 528 struct e820_entry *entry = &e820_table->entries[i]; 529 u64 final_start, final_end; 530 u64 entry_end; 531 532 if (check_type && entry->type != old_type) 533 continue; 534 535 entry_end = entry->addr + entry->size; 536 537 /* Completely covered? */ 538 if (entry->addr >= start && entry_end <= end) { 539 real_removed_size += entry->size; 540 memset(entry, 0, sizeof(*entry)); 541 continue; 542 } 543 544 /* Is the new range completely covered? */ 545 if (entry->addr < start && entry_end > end) { 546 e820__range_add(end, entry_end - end, entry->type); 547 entry->size = start - entry->addr; 548 real_removed_size += size; 549 continue; 550 } 551 552 /* Partially covered: */ 553 final_start = max(start, entry->addr); 554 final_end = min(end, entry_end); 555 if (final_start >= final_end) 556 continue; 557 558 real_removed_size += final_end - final_start; 559 560 /* 561 * Left range could be head or tail, so need to update 562 * the size first: 563 */ 564 entry->size -= final_end - final_start; 565 if (entry->addr < final_start) 566 continue; 567 568 entry->addr = final_end; 569 } 570 return real_removed_size; 571 } 572 573 void __init e820__update_table_print(void) 574 { 575 if (e820__update_table(e820_table)) 576 return; 577 578 pr_info("modified physical RAM map:\n"); 579 e820__print_table("modified"); 580 } 581 582 static void __init e820__update_table_kexec(void) 583 { 584 e820__update_table(e820_table_kexec); 585 } 586 587 #define MAX_GAP_END 0x100000000ull 588 589 /* 590 * Search for a gap in the E820 memory space from 0 to MAX_GAP_END (4GB). 591 */ 592 static int __init e820_search_gap(unsigned long *gapstart, unsigned long *gapsize) 593 { 594 unsigned long long last = MAX_GAP_END; 595 int i = e820_table->nr_entries; 596 int found = 0; 597 598 while (--i >= 0) { 599 unsigned long long start = e820_table->entries[i].addr; 600 unsigned long long end = start + e820_table->entries[i].size; 601 602 /* 603 * Since "last" is at most 4GB, we know we'll 604 * fit in 32 bits if this condition is true: 605 */ 606 if (last > end) { 607 unsigned long gap = last - end; 608 609 if (gap >= *gapsize) { 610 *gapsize = gap; 611 *gapstart = end; 612 found = 1; 613 } 614 } 615 if (start < last) 616 last = start; 617 } 618 return found; 619 } 620 621 /* 622 * Search for the biggest gap in the low 32 bits of the E820 623 * memory space. We pass this space to the PCI subsystem, so 624 * that it can assign MMIO resources for hotplug or 625 * unconfigured devices in. 626 * 627 * Hopefully the BIOS let enough space left. 628 */ 629 __init void e820__setup_pci_gap(void) 630 { 631 unsigned long gapstart, gapsize; 632 int found; 633 634 gapsize = 0x400000; 635 found = e820_search_gap(&gapstart, &gapsize); 636 637 if (!found) { 638 #ifdef CONFIG_X86_64 639 gapstart = (max_pfn << PAGE_SHIFT) + 1024*1024; 640 pr_err("Cannot find an available gap in the 32-bit address range\n"); 641 pr_err("PCI devices with unassigned 32-bit BARs may not work!\n"); 642 #else 643 gapstart = 0x10000000; 644 #endif 645 } 646 647 /* 648 * e820__reserve_resources_late() protects stolen RAM already: 649 */ 650 pci_mem_start = gapstart; 651 652 pr_info("[mem %#010lx-%#010lx] available for PCI devices\n", 653 gapstart, gapstart + gapsize - 1); 654 } 655 656 /* 657 * Called late during init, in free_initmem(). 658 * 659 * Initial e820_table and e820_table_kexec are largish __initdata arrays. 660 * 661 * Copy them to a (usually much smaller) dynamically allocated area that is 662 * sized precisely after the number of e820 entries. 663 * 664 * This is done after we've performed all the fixes and tweaks to the tables. 665 * All functions which modify them are __init functions, which won't exist 666 * after free_initmem(). 667 */ 668 __init void e820__reallocate_tables(void) 669 { 670 struct e820_table *n; 671 int size; 672 673 size = offsetof(struct e820_table, entries) + sizeof(struct e820_entry)*e820_table->nr_entries; 674 n = kmalloc(size, GFP_KERNEL); 675 BUG_ON(!n); 676 memcpy(n, e820_table, size); 677 e820_table = n; 678 679 size = offsetof(struct e820_table, entries) + sizeof(struct e820_entry)*e820_table_kexec->nr_entries; 680 n = kmalloc(size, GFP_KERNEL); 681 BUG_ON(!n); 682 memcpy(n, e820_table_kexec, size); 683 e820_table_kexec = n; 684 685 size = offsetof(struct e820_table, entries) + sizeof(struct e820_entry)*e820_table_firmware->nr_entries; 686 n = kmalloc(size, GFP_KERNEL); 687 BUG_ON(!n); 688 memcpy(n, e820_table_firmware, size); 689 e820_table_firmware = n; 690 } 691 692 /* 693 * Because of the small fixed size of struct boot_params, only the first 694 * 128 E820 memory entries are passed to the kernel via boot_params.e820_table, 695 * the remaining (if any) entries are passed via the SETUP_E820_EXT node of 696 * struct setup_data, which is parsed here. 697 */ 698 void __init e820__memory_setup_extended(u64 phys_addr, u32 data_len) 699 { 700 int entries; 701 struct boot_e820_entry *extmap; 702 struct setup_data *sdata; 703 704 sdata = early_memremap(phys_addr, data_len); 705 entries = sdata->len / sizeof(*extmap); 706 extmap = (struct boot_e820_entry *)(sdata->data); 707 708 __append_e820_table(extmap, entries); 709 e820__update_table(e820_table); 710 711 memcpy(e820_table_kexec, e820_table, sizeof(*e820_table_kexec)); 712 memcpy(e820_table_firmware, e820_table, sizeof(*e820_table_firmware)); 713 714 early_memunmap(sdata, data_len); 715 pr_info("extended physical RAM map:\n"); 716 e820__print_table("extended"); 717 } 718 719 /* 720 * Find the ranges of physical addresses that do not correspond to 721 * E820 RAM areas and register the corresponding pages as 'nosave' for 722 * hibernation (32-bit) or software suspend and suspend to RAM (64-bit). 723 * 724 * This function requires the E820 map to be sorted and without any 725 * overlapping entries. 726 */ 727 void __init e820__register_nosave_regions(unsigned long limit_pfn) 728 { 729 int i; 730 unsigned long pfn = 0; 731 732 for (i = 0; i < e820_table->nr_entries; i++) { 733 struct e820_entry *entry = &e820_table->entries[i]; 734 735 if (pfn < PFN_UP(entry->addr)) 736 register_nosave_region(pfn, PFN_UP(entry->addr)); 737 738 pfn = PFN_DOWN(entry->addr + entry->size); 739 740 if (entry->type != E820_TYPE_RAM && entry->type != E820_TYPE_RESERVED_KERN) 741 register_nosave_region(PFN_UP(entry->addr), pfn); 742 743 if (pfn >= limit_pfn) 744 break; 745 } 746 } 747 748 #ifdef CONFIG_ACPI 749 /* 750 * Register ACPI NVS memory regions, so that we can save/restore them during 751 * hibernation and the subsequent resume: 752 */ 753 static int __init e820__register_nvs_regions(void) 754 { 755 int i; 756 757 for (i = 0; i < e820_table->nr_entries; i++) { 758 struct e820_entry *entry = &e820_table->entries[i]; 759 760 if (entry->type == E820_TYPE_NVS) 761 acpi_nvs_register(entry->addr, entry->size); 762 } 763 764 return 0; 765 } 766 core_initcall(e820__register_nvs_regions); 767 #endif 768 769 /* 770 * Allocate the requested number of bytes with the requsted alignment 771 * and return (the physical address) to the caller. Also register this 772 * range in the 'kexec' E820 table as a reserved range. 773 * 774 * This allows kexec to fake a new mptable, as if it came from the real 775 * system. 776 */ 777 u64 __init e820__memblock_alloc_reserved(u64 size, u64 align) 778 { 779 u64 addr; 780 781 addr = __memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE); 782 if (addr) { 783 e820__range_update_kexec(addr, size, E820_TYPE_RAM, E820_TYPE_RESERVED); 784 pr_info("update e820_table_kexec for e820__memblock_alloc_reserved()\n"); 785 e820__update_table_kexec(); 786 } 787 788 return addr; 789 } 790 791 #ifdef CONFIG_X86_32 792 # ifdef CONFIG_X86_PAE 793 # define MAX_ARCH_PFN (1ULL<<(36-PAGE_SHIFT)) 794 # else 795 # define MAX_ARCH_PFN (1ULL<<(32-PAGE_SHIFT)) 796 # endif 797 #else /* CONFIG_X86_32 */ 798 # define MAX_ARCH_PFN MAXMEM>>PAGE_SHIFT 799 #endif 800 801 /* 802 * Find the highest page frame number we have available 803 */ 804 static unsigned long __init e820_end_pfn(unsigned long limit_pfn, enum e820_type type) 805 { 806 int i; 807 unsigned long last_pfn = 0; 808 unsigned long max_arch_pfn = MAX_ARCH_PFN; 809 810 for (i = 0; i < e820_table->nr_entries; i++) { 811 struct e820_entry *entry = &e820_table->entries[i]; 812 unsigned long start_pfn; 813 unsigned long end_pfn; 814 815 if (entry->type != type) 816 continue; 817 818 start_pfn = entry->addr >> PAGE_SHIFT; 819 end_pfn = (entry->addr + entry->size) >> PAGE_SHIFT; 820 821 if (start_pfn >= limit_pfn) 822 continue; 823 if (end_pfn > limit_pfn) { 824 last_pfn = limit_pfn; 825 break; 826 } 827 if (end_pfn > last_pfn) 828 last_pfn = end_pfn; 829 } 830 831 if (last_pfn > max_arch_pfn) 832 last_pfn = max_arch_pfn; 833 834 pr_info("last_pfn = %#lx max_arch_pfn = %#lx\n", 835 last_pfn, max_arch_pfn); 836 return last_pfn; 837 } 838 839 unsigned long __init e820__end_of_ram_pfn(void) 840 { 841 return e820_end_pfn(MAX_ARCH_PFN, E820_TYPE_RAM); 842 } 843 844 unsigned long __init e820__end_of_low_ram_pfn(void) 845 { 846 return e820_end_pfn(1UL << (32 - PAGE_SHIFT), E820_TYPE_RAM); 847 } 848 849 static void __init early_panic(char *msg) 850 { 851 early_printk(msg); 852 panic(msg); 853 } 854 855 static int userdef __initdata; 856 857 /* The "mem=nopentium" boot option disables 4MB page tables on 32-bit kernels: */ 858 static int __init parse_memopt(char *p) 859 { 860 u64 mem_size; 861 862 if (!p) 863 return -EINVAL; 864 865 if (!strcmp(p, "nopentium")) { 866 #ifdef CONFIG_X86_32 867 setup_clear_cpu_cap(X86_FEATURE_PSE); 868 return 0; 869 #else 870 pr_warn("mem=nopentium ignored! (only supported on x86_32)\n"); 871 return -EINVAL; 872 #endif 873 } 874 875 userdef = 1; 876 mem_size = memparse(p, &p); 877 878 /* Don't remove all memory when getting "mem={invalid}" parameter: */ 879 if (mem_size == 0) 880 return -EINVAL; 881 882 e820__range_remove(mem_size, ULLONG_MAX - mem_size, E820_TYPE_RAM, 1); 883 884 return 0; 885 } 886 early_param("mem", parse_memopt); 887 888 static int __init parse_memmap_one(char *p) 889 { 890 char *oldp; 891 u64 start_at, mem_size; 892 893 if (!p) 894 return -EINVAL; 895 896 if (!strncmp(p, "exactmap", 8)) { 897 #ifdef CONFIG_CRASH_DUMP 898 /* 899 * If we are doing a crash dump, we still need to know 900 * the real memory size before the original memory map is 901 * reset. 902 */ 903 saved_max_pfn = e820__end_of_ram_pfn(); 904 #endif 905 e820_table->nr_entries = 0; 906 userdef = 1; 907 return 0; 908 } 909 910 oldp = p; 911 mem_size = memparse(p, &p); 912 if (p == oldp) 913 return -EINVAL; 914 915 userdef = 1; 916 if (*p == '@') { 917 start_at = memparse(p+1, &p); 918 e820__range_add(start_at, mem_size, E820_TYPE_RAM); 919 } else if (*p == '#') { 920 start_at = memparse(p+1, &p); 921 e820__range_add(start_at, mem_size, E820_TYPE_ACPI); 922 } else if (*p == '$') { 923 start_at = memparse(p+1, &p); 924 e820__range_add(start_at, mem_size, E820_TYPE_RESERVED); 925 } else if (*p == '!') { 926 start_at = memparse(p+1, &p); 927 e820__range_add(start_at, mem_size, E820_TYPE_PRAM); 928 } else if (*p == '%') { 929 enum e820_type from = 0, to = 0; 930 931 start_at = memparse(p + 1, &p); 932 if (*p == '-') 933 from = simple_strtoull(p + 1, &p, 0); 934 if (*p == '+') 935 to = simple_strtoull(p + 1, &p, 0); 936 if (*p != '\0') 937 return -EINVAL; 938 if (from && to) 939 e820__range_update(start_at, mem_size, from, to); 940 else if (to) 941 e820__range_add(start_at, mem_size, to); 942 else if (from) 943 e820__range_remove(start_at, mem_size, from, 1); 944 else 945 e820__range_remove(start_at, mem_size, 0, 0); 946 } else { 947 e820__range_remove(mem_size, ULLONG_MAX - mem_size, E820_TYPE_RAM, 1); 948 } 949 950 return *p == '\0' ? 0 : -EINVAL; 951 } 952 953 static int __init parse_memmap_opt(char *str) 954 { 955 while (str) { 956 char *k = strchr(str, ','); 957 958 if (k) 959 *k++ = 0; 960 961 parse_memmap_one(str); 962 str = k; 963 } 964 965 return 0; 966 } 967 early_param("memmap", parse_memmap_opt); 968 969 /* 970 * Reserve all entries from the bootloader's extensible data nodes list, 971 * because if present we are going to use it later on to fetch e820 972 * entries from it: 973 */ 974 void __init e820__reserve_setup_data(void) 975 { 976 struct setup_data *data; 977 u64 pa_data; 978 979 pa_data = boot_params.hdr.setup_data; 980 if (!pa_data) 981 return; 982 983 while (pa_data) { 984 data = early_memremap(pa_data, sizeof(*data)); 985 e820__range_update(pa_data, sizeof(*data)+data->len, E820_TYPE_RAM, E820_TYPE_RESERVED_KERN); 986 e820__range_update_kexec(pa_data, sizeof(*data)+data->len, E820_TYPE_RAM, E820_TYPE_RESERVED_KERN); 987 pa_data = data->next; 988 early_memunmap(data, sizeof(*data)); 989 } 990 991 e820__update_table(e820_table); 992 e820__update_table(e820_table_kexec); 993 994 pr_info("extended physical RAM map:\n"); 995 e820__print_table("reserve setup_data"); 996 } 997 998 /* 999 * Called after parse_early_param(), after early parameters (such as mem=) 1000 * have been processed, in which case we already have an E820 table filled in 1001 * via the parameter callback function(s), but it's not sorted and printed yet: 1002 */ 1003 void __init e820__finish_early_params(void) 1004 { 1005 if (userdef) { 1006 if (e820__update_table(e820_table) < 0) 1007 early_panic("Invalid user supplied memory map"); 1008 1009 pr_info("user-defined physical RAM map:\n"); 1010 e820__print_table("user"); 1011 } 1012 } 1013 1014 static const char *__init e820_type_to_string(struct e820_entry *entry) 1015 { 1016 switch (entry->type) { 1017 case E820_TYPE_RESERVED_KERN: /* Fall-through: */ 1018 case E820_TYPE_RAM: return "System RAM"; 1019 case E820_TYPE_ACPI: return "ACPI Tables"; 1020 case E820_TYPE_NVS: return "ACPI Non-volatile Storage"; 1021 case E820_TYPE_UNUSABLE: return "Unusable memory"; 1022 case E820_TYPE_PRAM: return "Persistent Memory (legacy)"; 1023 case E820_TYPE_PMEM: return "Persistent Memory"; 1024 case E820_TYPE_RESERVED: return "Reserved"; 1025 default: return "Unknown E820 type"; 1026 } 1027 } 1028 1029 static unsigned long __init e820_type_to_iomem_type(struct e820_entry *entry) 1030 { 1031 switch (entry->type) { 1032 case E820_TYPE_RESERVED_KERN: /* Fall-through: */ 1033 case E820_TYPE_RAM: return IORESOURCE_SYSTEM_RAM; 1034 case E820_TYPE_ACPI: /* Fall-through: */ 1035 case E820_TYPE_NVS: /* Fall-through: */ 1036 case E820_TYPE_UNUSABLE: /* Fall-through: */ 1037 case E820_TYPE_PRAM: /* Fall-through: */ 1038 case E820_TYPE_PMEM: /* Fall-through: */ 1039 case E820_TYPE_RESERVED: /* Fall-through: */ 1040 default: return IORESOURCE_MEM; 1041 } 1042 } 1043 1044 static unsigned long __init e820_type_to_iores_desc(struct e820_entry *entry) 1045 { 1046 switch (entry->type) { 1047 case E820_TYPE_ACPI: return IORES_DESC_ACPI_TABLES; 1048 case E820_TYPE_NVS: return IORES_DESC_ACPI_NV_STORAGE; 1049 case E820_TYPE_PMEM: return IORES_DESC_PERSISTENT_MEMORY; 1050 case E820_TYPE_PRAM: return IORES_DESC_PERSISTENT_MEMORY_LEGACY; 1051 case E820_TYPE_RESERVED_KERN: /* Fall-through: */ 1052 case E820_TYPE_RAM: /* Fall-through: */ 1053 case E820_TYPE_UNUSABLE: /* Fall-through: */ 1054 case E820_TYPE_RESERVED: /* Fall-through: */ 1055 default: return IORES_DESC_NONE; 1056 } 1057 } 1058 1059 static bool __init do_mark_busy(enum e820_type type, struct resource *res) 1060 { 1061 /* this is the legacy bios/dos rom-shadow + mmio region */ 1062 if (res->start < (1ULL<<20)) 1063 return true; 1064 1065 /* 1066 * Treat persistent memory like device memory, i.e. reserve it 1067 * for exclusive use of a driver 1068 */ 1069 switch (type) { 1070 case E820_TYPE_RESERVED: 1071 case E820_TYPE_PRAM: 1072 case E820_TYPE_PMEM: 1073 return false; 1074 case E820_TYPE_RESERVED_KERN: 1075 case E820_TYPE_RAM: 1076 case E820_TYPE_ACPI: 1077 case E820_TYPE_NVS: 1078 case E820_TYPE_UNUSABLE: 1079 default: 1080 return true; 1081 } 1082 } 1083 1084 /* 1085 * Mark E820 reserved areas as busy for the resource manager: 1086 */ 1087 1088 static struct resource __initdata *e820_res; 1089 1090 void __init e820__reserve_resources(void) 1091 { 1092 int i; 1093 struct resource *res; 1094 u64 end; 1095 1096 res = memblock_alloc(sizeof(*res) * e820_table->nr_entries, 1097 SMP_CACHE_BYTES); 1098 e820_res = res; 1099 1100 for (i = 0; i < e820_table->nr_entries; i++) { 1101 struct e820_entry *entry = e820_table->entries + i; 1102 1103 end = entry->addr + entry->size - 1; 1104 if (end != (resource_size_t)end) { 1105 res++; 1106 continue; 1107 } 1108 res->start = entry->addr; 1109 res->end = end; 1110 res->name = e820_type_to_string(entry); 1111 res->flags = e820_type_to_iomem_type(entry); 1112 res->desc = e820_type_to_iores_desc(entry); 1113 1114 /* 1115 * Don't register the region that could be conflicted with 1116 * PCI device BAR resources and insert them later in 1117 * pcibios_resource_survey(): 1118 */ 1119 if (do_mark_busy(entry->type, res)) { 1120 res->flags |= IORESOURCE_BUSY; 1121 insert_resource(&iomem_resource, res); 1122 } 1123 res++; 1124 } 1125 1126 /* Expose the bootloader-provided memory layout to the sysfs. */ 1127 for (i = 0; i < e820_table_firmware->nr_entries; i++) { 1128 struct e820_entry *entry = e820_table_firmware->entries + i; 1129 1130 firmware_map_add_early(entry->addr, entry->addr + entry->size, e820_type_to_string(entry)); 1131 } 1132 } 1133 1134 /* 1135 * How much should we pad the end of RAM, depending on where it is? 1136 */ 1137 static unsigned long __init ram_alignment(resource_size_t pos) 1138 { 1139 unsigned long mb = pos >> 20; 1140 1141 /* To 64kB in the first megabyte */ 1142 if (!mb) 1143 return 64*1024; 1144 1145 /* To 1MB in the first 16MB */ 1146 if (mb < 16) 1147 return 1024*1024; 1148 1149 /* To 64MB for anything above that */ 1150 return 64*1024*1024; 1151 } 1152 1153 #define MAX_RESOURCE_SIZE ((resource_size_t)-1) 1154 1155 void __init e820__reserve_resources_late(void) 1156 { 1157 int i; 1158 struct resource *res; 1159 1160 res = e820_res; 1161 for (i = 0; i < e820_table->nr_entries; i++) { 1162 if (!res->parent && res->end) 1163 insert_resource_expand_to_fit(&iomem_resource, res); 1164 res++; 1165 } 1166 1167 /* 1168 * Try to bump up RAM regions to reasonable boundaries, to 1169 * avoid stolen RAM: 1170 */ 1171 for (i = 0; i < e820_table->nr_entries; i++) { 1172 struct e820_entry *entry = &e820_table->entries[i]; 1173 u64 start, end; 1174 1175 if (entry->type != E820_TYPE_RAM) 1176 continue; 1177 1178 start = entry->addr + entry->size; 1179 end = round_up(start, ram_alignment(start)) - 1; 1180 if (end > MAX_RESOURCE_SIZE) 1181 end = MAX_RESOURCE_SIZE; 1182 if (start >= end) 1183 continue; 1184 1185 printk(KERN_DEBUG "e820: reserve RAM buffer [mem %#010llx-%#010llx]\n", start, end); 1186 reserve_region_with_split(&iomem_resource, start, end, "RAM buffer"); 1187 } 1188 } 1189 1190 /* 1191 * Pass the firmware (bootloader) E820 map to the kernel and process it: 1192 */ 1193 char *__init e820__memory_setup_default(void) 1194 { 1195 char *who = "BIOS-e820"; 1196 1197 /* 1198 * Try to copy the BIOS-supplied E820-map. 1199 * 1200 * Otherwise fake a memory map; one section from 0k->640k, 1201 * the next section from 1mb->appropriate_mem_k 1202 */ 1203 if (append_e820_table(boot_params.e820_table, boot_params.e820_entries) < 0) { 1204 u64 mem_size; 1205 1206 /* Compare results from other methods and take the one that gives more RAM: */ 1207 if (boot_params.alt_mem_k < boot_params.screen_info.ext_mem_k) { 1208 mem_size = boot_params.screen_info.ext_mem_k; 1209 who = "BIOS-88"; 1210 } else { 1211 mem_size = boot_params.alt_mem_k; 1212 who = "BIOS-e801"; 1213 } 1214 1215 e820_table->nr_entries = 0; 1216 e820__range_add(0, LOWMEMSIZE(), E820_TYPE_RAM); 1217 e820__range_add(HIGH_MEMORY, mem_size << 10, E820_TYPE_RAM); 1218 } 1219 1220 /* We just appended a lot of ranges, sanitize the table: */ 1221 e820__update_table(e820_table); 1222 1223 return who; 1224 } 1225 1226 /* 1227 * Calls e820__memory_setup_default() in essence to pick up the firmware/bootloader 1228 * E820 map - with an optional platform quirk available for virtual platforms 1229 * to override this method of boot environment processing: 1230 */ 1231 void __init e820__memory_setup(void) 1232 { 1233 char *who; 1234 1235 /* This is a firmware interface ABI - make sure we don't break it: */ 1236 BUILD_BUG_ON(sizeof(struct boot_e820_entry) != 20); 1237 1238 who = x86_init.resources.memory_setup(); 1239 1240 memcpy(e820_table_kexec, e820_table, sizeof(*e820_table_kexec)); 1241 memcpy(e820_table_firmware, e820_table, sizeof(*e820_table_firmware)); 1242 1243 pr_info("BIOS-provided physical RAM map:\n"); 1244 e820__print_table(who); 1245 } 1246 1247 void __init e820__memblock_setup(void) 1248 { 1249 int i; 1250 u64 end; 1251 1252 /* 1253 * The bootstrap memblock region count maximum is 128 entries 1254 * (INIT_MEMBLOCK_REGIONS), but EFI might pass us more E820 entries 1255 * than that - so allow memblock resizing. 1256 * 1257 * This is safe, because this call happens pretty late during x86 setup, 1258 * so we know about reserved memory regions already. (This is important 1259 * so that memblock resizing does no stomp over reserved areas.) 1260 */ 1261 memblock_allow_resize(); 1262 1263 for (i = 0; i < e820_table->nr_entries; i++) { 1264 struct e820_entry *entry = &e820_table->entries[i]; 1265 1266 end = entry->addr + entry->size; 1267 if (end != (resource_size_t)end) 1268 continue; 1269 1270 if (entry->type != E820_TYPE_RAM && entry->type != E820_TYPE_RESERVED_KERN) 1271 continue; 1272 1273 memblock_add(entry->addr, entry->size); 1274 } 1275 1276 /* Throw away partial pages: */ 1277 memblock_trim_memory(PAGE_SIZE); 1278 1279 memblock_dump_all(); 1280 } 1281