xref: /openbmc/linux/arch/x86/kernel/e820.c (revision 8fa5723aa7e053d498336b48448b292fc2e0458b)
1 /*
2  * Handle the memory map.
3  * The functions here do the job until bootmem takes over.
4  *
5  *  Getting sanitize_e820_map() in sync with i386 version by applying change:
6  *  -  Provisions for empty E820 memory regions (reported by certain BIOSes).
7  *     Alex Achenbach <xela@slit.de>, December 2002.
8  *  Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
9  *
10  */
11 #include <linux/kernel.h>
12 #include <linux/types.h>
13 #include <linux/init.h>
14 #include <linux/bootmem.h>
15 #include <linux/ioport.h>
16 #include <linux/string.h>
17 #include <linux/kexec.h>
18 #include <linux/module.h>
19 #include <linux/mm.h>
20 #include <linux/pfn.h>
21 #include <linux/suspend.h>
22 #include <linux/firmware-map.h>
23 
24 #include <asm/pgtable.h>
25 #include <asm/page.h>
26 #include <asm/e820.h>
27 #include <asm/proto.h>
28 #include <asm/setup.h>
29 #include <asm/trampoline.h>
30 
31 /*
32  * The e820 map is the map that gets modified e.g. with command line parameters
33  * and that is also registered with modifications in the kernel resource tree
34  * with the iomem_resource as parent.
35  *
36  * The e820_saved is directly saved after the BIOS-provided memory map is
37  * copied. It doesn't get modified afterwards. It's registered for the
38  * /sys/firmware/memmap interface.
39  *
40  * That memory map is not modified and is used as base for kexec. The kexec'd
41  * kernel should get the same memory map as the firmware provides. Then the
42  * user can e.g. boot the original kernel with mem=1G while still booting the
43  * next kernel with full memory.
44  */
45 struct e820map e820;
46 struct e820map e820_saved;
47 
48 /* For PCI or other memory-mapped resources */
49 unsigned long pci_mem_start = 0xaeedbabe;
50 #ifdef CONFIG_PCI
51 EXPORT_SYMBOL(pci_mem_start);
52 #endif
53 
54 /*
55  * This function checks if any part of the range <start,end> is mapped
56  * with type.
57  */
58 int
59 e820_any_mapped(u64 start, u64 end, unsigned type)
60 {
61 	int i;
62 
63 	for (i = 0; i < e820.nr_map; i++) {
64 		struct e820entry *ei = &e820.map[i];
65 
66 		if (type && ei->type != type)
67 			continue;
68 		if (ei->addr >= end || ei->addr + ei->size <= start)
69 			continue;
70 		return 1;
71 	}
72 	return 0;
73 }
74 EXPORT_SYMBOL_GPL(e820_any_mapped);
75 
76 /*
77  * This function checks if the entire range <start,end> is mapped with type.
78  *
79  * Note: this function only works correct if the e820 table is sorted and
80  * not-overlapping, which is the case
81  */
82 int __init e820_all_mapped(u64 start, u64 end, unsigned type)
83 {
84 	int i;
85 
86 	for (i = 0; i < e820.nr_map; i++) {
87 		struct e820entry *ei = &e820.map[i];
88 
89 		if (type && ei->type != type)
90 			continue;
91 		/* is the region (part) in overlap with the current region ?*/
92 		if (ei->addr >= end || ei->addr + ei->size <= start)
93 			continue;
94 
95 		/* if the region is at the beginning of <start,end> we move
96 		 * start to the end of the region since it's ok until there
97 		 */
98 		if (ei->addr <= start)
99 			start = ei->addr + ei->size;
100 		/*
101 		 * if start is now at or beyond end, we're done, full
102 		 * coverage
103 		 */
104 		if (start >= end)
105 			return 1;
106 	}
107 	return 0;
108 }
109 
110 /*
111  * Add a memory region to the kernel e820 map.
112  */
113 void __init e820_add_region(u64 start, u64 size, int type)
114 {
115 	int x = e820.nr_map;
116 
117 	if (x == ARRAY_SIZE(e820.map)) {
118 		printk(KERN_ERR "Ooops! Too many entries in the memory map!\n");
119 		return;
120 	}
121 
122 	e820.map[x].addr = start;
123 	e820.map[x].size = size;
124 	e820.map[x].type = type;
125 	e820.nr_map++;
126 }
127 
128 void __init e820_print_map(char *who)
129 {
130 	int i;
131 
132 	for (i = 0; i < e820.nr_map; i++) {
133 		printk(KERN_INFO " %s: %016Lx - %016Lx ", who,
134 		       (unsigned long long) e820.map[i].addr,
135 		       (unsigned long long)
136 		       (e820.map[i].addr + e820.map[i].size));
137 		switch (e820.map[i].type) {
138 		case E820_RAM:
139 		case E820_RESERVED_KERN:
140 			printk(KERN_CONT "(usable)\n");
141 			break;
142 		case E820_RESERVED:
143 			printk(KERN_CONT "(reserved)\n");
144 			break;
145 		case E820_ACPI:
146 			printk(KERN_CONT "(ACPI data)\n");
147 			break;
148 		case E820_NVS:
149 			printk(KERN_CONT "(ACPI NVS)\n");
150 			break;
151 		case E820_UNUSABLE:
152 			printk("(unusable)\n");
153 			break;
154 		default:
155 			printk(KERN_CONT "type %u\n", e820.map[i].type);
156 			break;
157 		}
158 	}
159 }
160 
161 /*
162  * Sanitize the BIOS e820 map.
163  *
164  * Some e820 responses include overlapping entries. The following
165  * replaces the original e820 map with a new one, removing overlaps,
166  * and resolving conflicting memory types in favor of highest
167  * numbered type.
168  *
169  * The input parameter biosmap points to an array of 'struct
170  * e820entry' which on entry has elements in the range [0, *pnr_map)
171  * valid, and which has space for up to max_nr_map entries.
172  * On return, the resulting sanitized e820 map entries will be in
173  * overwritten in the same location, starting at biosmap.
174  *
175  * The integer pointed to by pnr_map must be valid on entry (the
176  * current number of valid entries located at biosmap) and will
177  * be updated on return, with the new number of valid entries
178  * (something no more than max_nr_map.)
179  *
180  * The return value from sanitize_e820_map() is zero if it
181  * successfully 'sanitized' the map entries passed in, and is -1
182  * if it did nothing, which can happen if either of (1) it was
183  * only passed one map entry, or (2) any of the input map entries
184  * were invalid (start + size < start, meaning that the size was
185  * so big the described memory range wrapped around through zero.)
186  *
187  *	Visually we're performing the following
188  *	(1,2,3,4 = memory types)...
189  *
190  *	Sample memory map (w/overlaps):
191  *	   ____22__________________
192  *	   ______________________4_
193  *	   ____1111________________
194  *	   _44_____________________
195  *	   11111111________________
196  *	   ____________________33__
197  *	   ___________44___________
198  *	   __________33333_________
199  *	   ______________22________
200  *	   ___________________2222_
201  *	   _________111111111______
202  *	   _____________________11_
203  *	   _________________4______
204  *
205  *	Sanitized equivalent (no overlap):
206  *	   1_______________________
207  *	   _44_____________________
208  *	   ___1____________________
209  *	   ____22__________________
210  *	   ______11________________
211  *	   _________1______________
212  *	   __________3_____________
213  *	   ___________44___________
214  *	   _____________33_________
215  *	   _______________2________
216  *	   ________________1_______
217  *	   _________________4______
218  *	   ___________________2____
219  *	   ____________________33__
220  *	   ______________________4_
221  */
222 
223 int __init sanitize_e820_map(struct e820entry *biosmap, int max_nr_map,
224 				int *pnr_map)
225 {
226 	struct change_member {
227 		struct e820entry *pbios; /* pointer to original bios entry */
228 		unsigned long long addr; /* address for this change point */
229 	};
230 	static struct change_member change_point_list[2*E820_X_MAX] __initdata;
231 	static struct change_member *change_point[2*E820_X_MAX] __initdata;
232 	static struct e820entry *overlap_list[E820_X_MAX] __initdata;
233 	static struct e820entry new_bios[E820_X_MAX] __initdata;
234 	struct change_member *change_tmp;
235 	unsigned long current_type, last_type;
236 	unsigned long long last_addr;
237 	int chgidx, still_changing;
238 	int overlap_entries;
239 	int new_bios_entry;
240 	int old_nr, new_nr, chg_nr;
241 	int i;
242 
243 	/* if there's only one memory region, don't bother */
244 	if (*pnr_map < 2)
245 		return -1;
246 
247 	old_nr = *pnr_map;
248 	BUG_ON(old_nr > max_nr_map);
249 
250 	/* bail out if we find any unreasonable addresses in bios map */
251 	for (i = 0; i < old_nr; i++)
252 		if (biosmap[i].addr + biosmap[i].size < biosmap[i].addr)
253 			return -1;
254 
255 	/* create pointers for initial change-point information (for sorting) */
256 	for (i = 0; i < 2 * old_nr; i++)
257 		change_point[i] = &change_point_list[i];
258 
259 	/* record all known change-points (starting and ending addresses),
260 	   omitting those that are for empty memory regions */
261 	chgidx = 0;
262 	for (i = 0; i < old_nr; i++)	{
263 		if (biosmap[i].size != 0) {
264 			change_point[chgidx]->addr = biosmap[i].addr;
265 			change_point[chgidx++]->pbios = &biosmap[i];
266 			change_point[chgidx]->addr = biosmap[i].addr +
267 				biosmap[i].size;
268 			change_point[chgidx++]->pbios = &biosmap[i];
269 		}
270 	}
271 	chg_nr = chgidx;
272 
273 	/* sort change-point list by memory addresses (low -> high) */
274 	still_changing = 1;
275 	while (still_changing)	{
276 		still_changing = 0;
277 		for (i = 1; i < chg_nr; i++)  {
278 			unsigned long long curaddr, lastaddr;
279 			unsigned long long curpbaddr, lastpbaddr;
280 
281 			curaddr = change_point[i]->addr;
282 			lastaddr = change_point[i - 1]->addr;
283 			curpbaddr = change_point[i]->pbios->addr;
284 			lastpbaddr = change_point[i - 1]->pbios->addr;
285 
286 			/*
287 			 * swap entries, when:
288 			 *
289 			 * curaddr > lastaddr or
290 			 * curaddr == lastaddr and curaddr == curpbaddr and
291 			 * lastaddr != lastpbaddr
292 			 */
293 			if (curaddr < lastaddr ||
294 			    (curaddr == lastaddr && curaddr == curpbaddr &&
295 			     lastaddr != lastpbaddr)) {
296 				change_tmp = change_point[i];
297 				change_point[i] = change_point[i-1];
298 				change_point[i-1] = change_tmp;
299 				still_changing = 1;
300 			}
301 		}
302 	}
303 
304 	/* create a new bios memory map, removing overlaps */
305 	overlap_entries = 0;	 /* number of entries in the overlap table */
306 	new_bios_entry = 0;	 /* index for creating new bios map entries */
307 	last_type = 0;		 /* start with undefined memory type */
308 	last_addr = 0;		 /* start with 0 as last starting address */
309 
310 	/* loop through change-points, determining affect on the new bios map */
311 	for (chgidx = 0; chgidx < chg_nr; chgidx++) {
312 		/* keep track of all overlapping bios entries */
313 		if (change_point[chgidx]->addr ==
314 		    change_point[chgidx]->pbios->addr) {
315 			/*
316 			 * add map entry to overlap list (> 1 entry
317 			 * implies an overlap)
318 			 */
319 			overlap_list[overlap_entries++] =
320 				change_point[chgidx]->pbios;
321 		} else {
322 			/*
323 			 * remove entry from list (order independent,
324 			 * so swap with last)
325 			 */
326 			for (i = 0; i < overlap_entries; i++) {
327 				if (overlap_list[i] ==
328 				    change_point[chgidx]->pbios)
329 					overlap_list[i] =
330 						overlap_list[overlap_entries-1];
331 			}
332 			overlap_entries--;
333 		}
334 		/*
335 		 * if there are overlapping entries, decide which
336 		 * "type" to use (larger value takes precedence --
337 		 * 1=usable, 2,3,4,4+=unusable)
338 		 */
339 		current_type = 0;
340 		for (i = 0; i < overlap_entries; i++)
341 			if (overlap_list[i]->type > current_type)
342 				current_type = overlap_list[i]->type;
343 		/*
344 		 * continue building up new bios map based on this
345 		 * information
346 		 */
347 		if (current_type != last_type)	{
348 			if (last_type != 0)	 {
349 				new_bios[new_bios_entry].size =
350 					change_point[chgidx]->addr - last_addr;
351 				/*
352 				 * move forward only if the new size
353 				 * was non-zero
354 				 */
355 				if (new_bios[new_bios_entry].size != 0)
356 					/*
357 					 * no more space left for new
358 					 * bios entries ?
359 					 */
360 					if (++new_bios_entry >= max_nr_map)
361 						break;
362 			}
363 			if (current_type != 0)	{
364 				new_bios[new_bios_entry].addr =
365 					change_point[chgidx]->addr;
366 				new_bios[new_bios_entry].type = current_type;
367 				last_addr = change_point[chgidx]->addr;
368 			}
369 			last_type = current_type;
370 		}
371 	}
372 	/* retain count for new bios entries */
373 	new_nr = new_bios_entry;
374 
375 	/* copy new bios mapping into original location */
376 	memcpy(biosmap, new_bios, new_nr * sizeof(struct e820entry));
377 	*pnr_map = new_nr;
378 
379 	return 0;
380 }
381 
382 static int __init __append_e820_map(struct e820entry *biosmap, int nr_map)
383 {
384 	while (nr_map) {
385 		u64 start = biosmap->addr;
386 		u64 size = biosmap->size;
387 		u64 end = start + size;
388 		u32 type = biosmap->type;
389 
390 		/* Overflow in 64 bits? Ignore the memory map. */
391 		if (start > end)
392 			return -1;
393 
394 		e820_add_region(start, size, type);
395 
396 		biosmap++;
397 		nr_map--;
398 	}
399 	return 0;
400 }
401 
402 /*
403  * Copy the BIOS e820 map into a safe place.
404  *
405  * Sanity-check it while we're at it..
406  *
407  * If we're lucky and live on a modern system, the setup code
408  * will have given us a memory map that we can use to properly
409  * set up memory.  If we aren't, we'll fake a memory map.
410  */
411 static int __init append_e820_map(struct e820entry *biosmap, int nr_map)
412 {
413 	/* Only one memory region (or negative)? Ignore it */
414 	if (nr_map < 2)
415 		return -1;
416 
417 	return __append_e820_map(biosmap, nr_map);
418 }
419 
420 static u64 __init e820_update_range_map(struct e820map *e820x, u64 start,
421 					u64 size, unsigned old_type,
422 					unsigned new_type)
423 {
424 	int i;
425 	u64 real_updated_size = 0;
426 
427 	BUG_ON(old_type == new_type);
428 
429 	if (size > (ULLONG_MAX - start))
430 		size = ULLONG_MAX - start;
431 
432 	for (i = 0; i < e820.nr_map; i++) {
433 		struct e820entry *ei = &e820x->map[i];
434 		u64 final_start, final_end;
435 		if (ei->type != old_type)
436 			continue;
437 		/* totally covered? */
438 		if (ei->addr >= start &&
439 		    (ei->addr + ei->size) <= (start + size)) {
440 			ei->type = new_type;
441 			real_updated_size += ei->size;
442 			continue;
443 		}
444 		/* partially covered */
445 		final_start = max(start, ei->addr);
446 		final_end = min(start + size, ei->addr + ei->size);
447 		if (final_start >= final_end)
448 			continue;
449 		e820_add_region(final_start, final_end - final_start,
450 					 new_type);
451 		real_updated_size += final_end - final_start;
452 
453 		ei->size -= final_end - final_start;
454 		if (ei->addr < final_start)
455 			continue;
456 		ei->addr = final_end;
457 	}
458 	return real_updated_size;
459 }
460 
461 u64 __init e820_update_range(u64 start, u64 size, unsigned old_type,
462 			     unsigned new_type)
463 {
464 	return e820_update_range_map(&e820, start, size, old_type, new_type);
465 }
466 
467 static u64 __init e820_update_range_saved(u64 start, u64 size,
468 					  unsigned old_type, unsigned new_type)
469 {
470 	return e820_update_range_map(&e820_saved, start, size, old_type,
471 				     new_type);
472 }
473 
474 /* make e820 not cover the range */
475 u64 __init e820_remove_range(u64 start, u64 size, unsigned old_type,
476 			     int checktype)
477 {
478 	int i;
479 	u64 real_removed_size = 0;
480 
481 	if (size > (ULLONG_MAX - start))
482 		size = ULLONG_MAX - start;
483 
484 	for (i = 0; i < e820.nr_map; i++) {
485 		struct e820entry *ei = &e820.map[i];
486 		u64 final_start, final_end;
487 
488 		if (checktype && ei->type != old_type)
489 			continue;
490 		/* totally covered? */
491 		if (ei->addr >= start &&
492 		    (ei->addr + ei->size) <= (start + size)) {
493 			real_removed_size += ei->size;
494 			memset(ei, 0, sizeof(struct e820entry));
495 			continue;
496 		}
497 		/* partially covered */
498 		final_start = max(start, ei->addr);
499 		final_end = min(start + size, ei->addr + ei->size);
500 		if (final_start >= final_end)
501 			continue;
502 		real_removed_size += final_end - final_start;
503 
504 		ei->size -= final_end - final_start;
505 		if (ei->addr < final_start)
506 			continue;
507 		ei->addr = final_end;
508 	}
509 	return real_removed_size;
510 }
511 
512 void __init update_e820(void)
513 {
514 	int nr_map;
515 
516 	nr_map = e820.nr_map;
517 	if (sanitize_e820_map(e820.map, ARRAY_SIZE(e820.map), &nr_map))
518 		return;
519 	e820.nr_map = nr_map;
520 	printk(KERN_INFO "modified physical RAM map:\n");
521 	e820_print_map("modified");
522 }
523 static void __init update_e820_saved(void)
524 {
525 	int nr_map;
526 
527 	nr_map = e820_saved.nr_map;
528 	if (sanitize_e820_map(e820_saved.map, ARRAY_SIZE(e820_saved.map), &nr_map))
529 		return;
530 	e820_saved.nr_map = nr_map;
531 }
532 #define MAX_GAP_END 0x100000000ull
533 /*
534  * Search for a gap in the e820 memory space from start_addr to end_addr.
535  */
536 __init int e820_search_gap(unsigned long *gapstart, unsigned long *gapsize,
537 		unsigned long start_addr, unsigned long long end_addr)
538 {
539 	unsigned long long last;
540 	int i = e820.nr_map;
541 	int found = 0;
542 
543 	last = (end_addr && end_addr < MAX_GAP_END) ? end_addr : MAX_GAP_END;
544 
545 	while (--i >= 0) {
546 		unsigned long long start = e820.map[i].addr;
547 		unsigned long long end = start + e820.map[i].size;
548 
549 		if (end < start_addr)
550 			continue;
551 
552 		/*
553 		 * Since "last" is at most 4GB, we know we'll
554 		 * fit in 32 bits if this condition is true
555 		 */
556 		if (last > end) {
557 			unsigned long gap = last - end;
558 
559 			if (gap >= *gapsize) {
560 				*gapsize = gap;
561 				*gapstart = end;
562 				found = 1;
563 			}
564 		}
565 		if (start < last)
566 			last = start;
567 	}
568 	return found;
569 }
570 
571 /*
572  * Search for the biggest gap in the low 32 bits of the e820
573  * memory space.  We pass this space to PCI to assign MMIO resources
574  * for hotplug or unconfigured devices in.
575  * Hopefully the BIOS let enough space left.
576  */
577 __init void e820_setup_gap(void)
578 {
579 	unsigned long gapstart, gapsize, round;
580 	int found;
581 
582 	gapstart = 0x10000000;
583 	gapsize = 0x400000;
584 	found  = e820_search_gap(&gapstart, &gapsize, 0, MAX_GAP_END);
585 
586 #ifdef CONFIG_X86_64
587 	if (!found) {
588 		gapstart = (max_pfn << PAGE_SHIFT) + 1024*1024;
589 		printk(KERN_ERR "PCI: Warning: Cannot find a gap in the 32bit "
590 		       "address range\n"
591 		       KERN_ERR "PCI: Unassigned devices with 32bit resource "
592 		       "registers may break!\n");
593 	}
594 #endif
595 
596 	/*
597 	 * See how much we want to round up: start off with
598 	 * rounding to the next 1MB area.
599 	 */
600 	round = 0x100000;
601 	while ((gapsize >> 4) > round)
602 		round += round;
603 	/* Fun with two's complement */
604 	pci_mem_start = (gapstart + round) & -round;
605 
606 	printk(KERN_INFO
607 	       "Allocating PCI resources starting at %lx (gap: %lx:%lx)\n",
608 	       pci_mem_start, gapstart, gapsize);
609 }
610 
611 /**
612  * Because of the size limitation of struct boot_params, only first
613  * 128 E820 memory entries are passed to kernel via
614  * boot_params.e820_map, others are passed via SETUP_E820_EXT node of
615  * linked list of struct setup_data, which is parsed here.
616  */
617 void __init parse_e820_ext(struct setup_data *sdata, unsigned long pa_data)
618 {
619 	u32 map_len;
620 	int entries;
621 	struct e820entry *extmap;
622 
623 	entries = sdata->len / sizeof(struct e820entry);
624 	map_len = sdata->len + sizeof(struct setup_data);
625 	if (map_len > PAGE_SIZE)
626 		sdata = early_ioremap(pa_data, map_len);
627 	extmap = (struct e820entry *)(sdata->data);
628 	__append_e820_map(extmap, entries);
629 	sanitize_e820_map(e820.map, ARRAY_SIZE(e820.map), &e820.nr_map);
630 	if (map_len > PAGE_SIZE)
631 		early_iounmap(sdata, map_len);
632 	printk(KERN_INFO "extended physical RAM map:\n");
633 	e820_print_map("extended");
634 }
635 
636 #if defined(CONFIG_X86_64) || \
637 	(defined(CONFIG_X86_32) && defined(CONFIG_HIBERNATION))
638 /**
639  * Find the ranges of physical addresses that do not correspond to
640  * e820 RAM areas and mark the corresponding pages as nosave for
641  * hibernation (32 bit) or software suspend and suspend to RAM (64 bit).
642  *
643  * This function requires the e820 map to be sorted and without any
644  * overlapping entries and assumes the first e820 area to be RAM.
645  */
646 void __init e820_mark_nosave_regions(unsigned long limit_pfn)
647 {
648 	int i;
649 	unsigned long pfn;
650 
651 	pfn = PFN_DOWN(e820.map[0].addr + e820.map[0].size);
652 	for (i = 1; i < e820.nr_map; i++) {
653 		struct e820entry *ei = &e820.map[i];
654 
655 		if (pfn < PFN_UP(ei->addr))
656 			register_nosave_region(pfn, PFN_UP(ei->addr));
657 
658 		pfn = PFN_DOWN(ei->addr + ei->size);
659 		if (ei->type != E820_RAM && ei->type != E820_RESERVED_KERN)
660 			register_nosave_region(PFN_UP(ei->addr), pfn);
661 
662 		if (pfn >= limit_pfn)
663 			break;
664 	}
665 }
666 #endif
667 
668 /*
669  * Early reserved memory areas.
670  */
671 #define MAX_EARLY_RES 20
672 
673 struct early_res {
674 	u64 start, end;
675 	char name[16];
676 	char overlap_ok;
677 };
678 static struct early_res early_res[MAX_EARLY_RES] __initdata = {
679 	{ 0, PAGE_SIZE, "BIOS data page" },	/* BIOS data page */
680 #if defined(CONFIG_X86_64) && defined(CONFIG_X86_TRAMPOLINE)
681 	{ TRAMPOLINE_BASE, TRAMPOLINE_BASE + 2 * PAGE_SIZE, "TRAMPOLINE" },
682 #endif
683 #if defined(CONFIG_X86_32) && defined(CONFIG_SMP)
684 	/*
685 	 * But first pinch a few for the stack/trampoline stuff
686 	 * FIXME: Don't need the extra page at 4K, but need to fix
687 	 * trampoline before removing it. (see the GDT stuff)
688 	 */
689 	{ PAGE_SIZE, PAGE_SIZE + PAGE_SIZE, "EX TRAMPOLINE" },
690 	/*
691 	 * Has to be in very low memory so we can execute
692 	 * real-mode AP code.
693 	 */
694 	{ TRAMPOLINE_BASE, TRAMPOLINE_BASE + PAGE_SIZE, "TRAMPOLINE" },
695 #endif
696 	{}
697 };
698 
699 static int __init find_overlapped_early(u64 start, u64 end)
700 {
701 	int i;
702 	struct early_res *r;
703 
704 	for (i = 0; i < MAX_EARLY_RES && early_res[i].end; i++) {
705 		r = &early_res[i];
706 		if (end > r->start && start < r->end)
707 			break;
708 	}
709 
710 	return i;
711 }
712 
713 /*
714  * Drop the i-th range from the early reservation map,
715  * by copying any higher ranges down one over it, and
716  * clearing what had been the last slot.
717  */
718 static void __init drop_range(int i)
719 {
720 	int j;
721 
722 	for (j = i + 1; j < MAX_EARLY_RES && early_res[j].end; j++)
723 		;
724 
725 	memmove(&early_res[i], &early_res[i + 1],
726 	       (j - 1 - i) * sizeof(struct early_res));
727 
728 	early_res[j - 1].end = 0;
729 }
730 
731 /*
732  * Split any existing ranges that:
733  *  1) are marked 'overlap_ok', and
734  *  2) overlap with the stated range [start, end)
735  * into whatever portion (if any) of the existing range is entirely
736  * below or entirely above the stated range.  Drop the portion
737  * of the existing range that overlaps with the stated range,
738  * which will allow the caller of this routine to then add that
739  * stated range without conflicting with any existing range.
740  */
741 static void __init drop_overlaps_that_are_ok(u64 start, u64 end)
742 {
743 	int i;
744 	struct early_res *r;
745 	u64 lower_start, lower_end;
746 	u64 upper_start, upper_end;
747 	char name[16];
748 
749 	for (i = 0; i < MAX_EARLY_RES && early_res[i].end; i++) {
750 		r = &early_res[i];
751 
752 		/* Continue past non-overlapping ranges */
753 		if (end <= r->start || start >= r->end)
754 			continue;
755 
756 		/*
757 		 * Leave non-ok overlaps as is; let caller
758 		 * panic "Overlapping early reservations"
759 		 * when it hits this overlap.
760 		 */
761 		if (!r->overlap_ok)
762 			return;
763 
764 		/*
765 		 * We have an ok overlap.  We will drop it from the early
766 		 * reservation map, and add back in any non-overlapping
767 		 * portions (lower or upper) as separate, overlap_ok,
768 		 * non-overlapping ranges.
769 		 */
770 
771 		/* 1. Note any non-overlapping (lower or upper) ranges. */
772 		strncpy(name, r->name, sizeof(name) - 1);
773 
774 		lower_start = lower_end = 0;
775 		upper_start = upper_end = 0;
776 		if (r->start < start) {
777 		 	lower_start = r->start;
778 			lower_end = start;
779 		}
780 		if (r->end > end) {
781 			upper_start = end;
782 			upper_end = r->end;
783 		}
784 
785 		/* 2. Drop the original ok overlapping range */
786 		drop_range(i);
787 
788 		i--;		/* resume for-loop on copied down entry */
789 
790 		/* 3. Add back in any non-overlapping ranges. */
791 		if (lower_end)
792 			reserve_early_overlap_ok(lower_start, lower_end, name);
793 		if (upper_end)
794 			reserve_early_overlap_ok(upper_start, upper_end, name);
795 	}
796 }
797 
798 static void __init __reserve_early(u64 start, u64 end, char *name,
799 						int overlap_ok)
800 {
801 	int i;
802 	struct early_res *r;
803 
804 	i = find_overlapped_early(start, end);
805 	if (i >= MAX_EARLY_RES)
806 		panic("Too many early reservations");
807 	r = &early_res[i];
808 	if (r->end)
809 		panic("Overlapping early reservations "
810 		      "%llx-%llx %s to %llx-%llx %s\n",
811 		      start, end - 1, name?name:"", r->start,
812 		      r->end - 1, r->name);
813 	r->start = start;
814 	r->end = end;
815 	r->overlap_ok = overlap_ok;
816 	if (name)
817 		strncpy(r->name, name, sizeof(r->name) - 1);
818 }
819 
820 /*
821  * A few early reservtations come here.
822  *
823  * The 'overlap_ok' in the name of this routine does -not- mean it
824  * is ok for these reservations to overlap an earlier reservation.
825  * Rather it means that it is ok for subsequent reservations to
826  * overlap this one.
827  *
828  * Use this entry point to reserve early ranges when you are doing
829  * so out of "Paranoia", reserving perhaps more memory than you need,
830  * just in case, and don't mind a subsequent overlapping reservation
831  * that is known to be needed.
832  *
833  * The drop_overlaps_that_are_ok() call here isn't really needed.
834  * It would be needed if we had two colliding 'overlap_ok'
835  * reservations, so that the second such would not panic on the
836  * overlap with the first.  We don't have any such as of this
837  * writing, but might as well tolerate such if it happens in
838  * the future.
839  */
840 void __init reserve_early_overlap_ok(u64 start, u64 end, char *name)
841 {
842 	drop_overlaps_that_are_ok(start, end);
843 	__reserve_early(start, end, name, 1);
844 }
845 
846 /*
847  * Most early reservations come here.
848  *
849  * We first have drop_overlaps_that_are_ok() drop any pre-existing
850  * 'overlap_ok' ranges, so that we can then reserve this memory
851  * range without risk of panic'ing on an overlapping overlap_ok
852  * early reservation.
853  */
854 void __init reserve_early(u64 start, u64 end, char *name)
855 {
856 	drop_overlaps_that_are_ok(start, end);
857 	__reserve_early(start, end, name, 0);
858 }
859 
860 void __init free_early(u64 start, u64 end)
861 {
862 	struct early_res *r;
863 	int i;
864 
865 	i = find_overlapped_early(start, end);
866 	r = &early_res[i];
867 	if (i >= MAX_EARLY_RES || r->end != end || r->start != start)
868 		panic("free_early on not reserved area: %llx-%llx!",
869 			 start, end - 1);
870 
871 	drop_range(i);
872 }
873 
874 void __init early_res_to_bootmem(u64 start, u64 end)
875 {
876 	int i, count;
877 	u64 final_start, final_end;
878 
879 	count  = 0;
880 	for (i = 0; i < MAX_EARLY_RES && early_res[i].end; i++)
881 		count++;
882 
883 	printk(KERN_INFO "(%d early reservations) ==> bootmem [%010llx - %010llx]\n",
884 			 count, start, end);
885 	for (i = 0; i < count; i++) {
886 		struct early_res *r = &early_res[i];
887 		printk(KERN_INFO "  #%d [%010llx - %010llx] %16s", i,
888 			r->start, r->end, r->name);
889 		final_start = max(start, r->start);
890 		final_end = min(end, r->end);
891 		if (final_start >= final_end) {
892 			printk(KERN_CONT "\n");
893 			continue;
894 		}
895 		printk(KERN_CONT " ==> [%010llx - %010llx]\n",
896 			final_start, final_end);
897 		reserve_bootmem_generic(final_start, final_end - final_start,
898 				BOOTMEM_DEFAULT);
899 	}
900 }
901 
902 /* Check for already reserved areas */
903 static inline int __init bad_addr(u64 *addrp, u64 size, u64 align)
904 {
905 	int i;
906 	u64 addr = *addrp;
907 	int changed = 0;
908 	struct early_res *r;
909 again:
910 	i = find_overlapped_early(addr, addr + size);
911 	r = &early_res[i];
912 	if (i < MAX_EARLY_RES && r->end) {
913 		*addrp = addr = round_up(r->end, align);
914 		changed = 1;
915 		goto again;
916 	}
917 	return changed;
918 }
919 
920 /* Check for already reserved areas */
921 static inline int __init bad_addr_size(u64 *addrp, u64 *sizep, u64 align)
922 {
923 	int i;
924 	u64 addr = *addrp, last;
925 	u64 size = *sizep;
926 	int changed = 0;
927 again:
928 	last = addr + size;
929 	for (i = 0; i < MAX_EARLY_RES && early_res[i].end; i++) {
930 		struct early_res *r = &early_res[i];
931 		if (last > r->start && addr < r->start) {
932 			size = r->start - addr;
933 			changed = 1;
934 			goto again;
935 		}
936 		if (last > r->end && addr < r->end) {
937 			addr = round_up(r->end, align);
938 			size = last - addr;
939 			changed = 1;
940 			goto again;
941 		}
942 		if (last <= r->end && addr >= r->start) {
943 			(*sizep)++;
944 			return 0;
945 		}
946 	}
947 	if (changed) {
948 		*addrp = addr;
949 		*sizep = size;
950 	}
951 	return changed;
952 }
953 
954 /*
955  * Find a free area with specified alignment in a specific range.
956  */
957 u64 __init find_e820_area(u64 start, u64 end, u64 size, u64 align)
958 {
959 	int i;
960 
961 	for (i = 0; i < e820.nr_map; i++) {
962 		struct e820entry *ei = &e820.map[i];
963 		u64 addr, last;
964 		u64 ei_last;
965 
966 		if (ei->type != E820_RAM)
967 			continue;
968 		addr = round_up(ei->addr, align);
969 		ei_last = ei->addr + ei->size;
970 		if (addr < start)
971 			addr = round_up(start, align);
972 		if (addr >= ei_last)
973 			continue;
974 		while (bad_addr(&addr, size, align) && addr+size <= ei_last)
975 			;
976 		last = addr + size;
977 		if (last > ei_last)
978 			continue;
979 		if (last > end)
980 			continue;
981 		return addr;
982 	}
983 	return -1ULL;
984 }
985 
986 /*
987  * Find next free range after *start
988  */
989 u64 __init find_e820_area_size(u64 start, u64 *sizep, u64 align)
990 {
991 	int i;
992 
993 	for (i = 0; i < e820.nr_map; i++) {
994 		struct e820entry *ei = &e820.map[i];
995 		u64 addr, last;
996 		u64 ei_last;
997 
998 		if (ei->type != E820_RAM)
999 			continue;
1000 		addr = round_up(ei->addr, align);
1001 		ei_last = ei->addr + ei->size;
1002 		if (addr < start)
1003 			addr = round_up(start, align);
1004 		if (addr >= ei_last)
1005 			continue;
1006 		*sizep = ei_last - addr;
1007 		while (bad_addr_size(&addr, sizep, align) &&
1008 			addr + *sizep <= ei_last)
1009 			;
1010 		last = addr + *sizep;
1011 		if (last > ei_last)
1012 			continue;
1013 		return addr;
1014 	}
1015 	return -1UL;
1016 
1017 }
1018 
1019 /*
1020  * pre allocated 4k and reserved it in e820
1021  */
1022 u64 __init early_reserve_e820(u64 startt, u64 sizet, u64 align)
1023 {
1024 	u64 size = 0;
1025 	u64 addr;
1026 	u64 start;
1027 
1028 	start = startt;
1029 	while (size < sizet)
1030 		start = find_e820_area_size(start, &size, align);
1031 
1032 	if (size < sizet)
1033 		return 0;
1034 
1035 	addr = round_down(start + size - sizet, align);
1036 	e820_update_range(addr, sizet, E820_RAM, E820_RESERVED);
1037 	e820_update_range_saved(addr, sizet, E820_RAM, E820_RESERVED);
1038 	printk(KERN_INFO "update e820 for early_reserve_e820\n");
1039 	update_e820();
1040 	update_e820_saved();
1041 
1042 	return addr;
1043 }
1044 
1045 #ifdef CONFIG_X86_32
1046 # ifdef CONFIG_X86_PAE
1047 #  define MAX_ARCH_PFN		(1ULL<<(36-PAGE_SHIFT))
1048 # else
1049 #  define MAX_ARCH_PFN		(1ULL<<(32-PAGE_SHIFT))
1050 # endif
1051 #else /* CONFIG_X86_32 */
1052 # define MAX_ARCH_PFN MAXMEM>>PAGE_SHIFT
1053 #endif
1054 
1055 /*
1056  * Find the highest page frame number we have available
1057  */
1058 static unsigned long __init e820_end_pfn(unsigned long limit_pfn, unsigned type)
1059 {
1060 	int i;
1061 	unsigned long last_pfn = 0;
1062 	unsigned long max_arch_pfn = MAX_ARCH_PFN;
1063 
1064 	for (i = 0; i < e820.nr_map; i++) {
1065 		struct e820entry *ei = &e820.map[i];
1066 		unsigned long start_pfn;
1067 		unsigned long end_pfn;
1068 
1069 		if (ei->type != type)
1070 			continue;
1071 
1072 		start_pfn = ei->addr >> PAGE_SHIFT;
1073 		end_pfn = (ei->addr + ei->size) >> PAGE_SHIFT;
1074 
1075 		if (start_pfn >= limit_pfn)
1076 			continue;
1077 		if (end_pfn > limit_pfn) {
1078 			last_pfn = limit_pfn;
1079 			break;
1080 		}
1081 		if (end_pfn > last_pfn)
1082 			last_pfn = end_pfn;
1083 	}
1084 
1085 	if (last_pfn > max_arch_pfn)
1086 		last_pfn = max_arch_pfn;
1087 
1088 	printk(KERN_INFO "last_pfn = %#lx max_arch_pfn = %#lx\n",
1089 			 last_pfn, max_arch_pfn);
1090 	return last_pfn;
1091 }
1092 unsigned long __init e820_end_of_ram_pfn(void)
1093 {
1094 	return e820_end_pfn(MAX_ARCH_PFN, E820_RAM);
1095 }
1096 
1097 unsigned long __init e820_end_of_low_ram_pfn(void)
1098 {
1099 	return e820_end_pfn(1UL<<(32 - PAGE_SHIFT), E820_RAM);
1100 }
1101 /*
1102  * Finds an active region in the address range from start_pfn to last_pfn and
1103  * returns its range in ei_startpfn and ei_endpfn for the e820 entry.
1104  */
1105 int __init e820_find_active_region(const struct e820entry *ei,
1106 				  unsigned long start_pfn,
1107 				  unsigned long last_pfn,
1108 				  unsigned long *ei_startpfn,
1109 				  unsigned long *ei_endpfn)
1110 {
1111 	u64 align = PAGE_SIZE;
1112 
1113 	*ei_startpfn = round_up(ei->addr, align) >> PAGE_SHIFT;
1114 	*ei_endpfn = round_down(ei->addr + ei->size, align) >> PAGE_SHIFT;
1115 
1116 	/* Skip map entries smaller than a page */
1117 	if (*ei_startpfn >= *ei_endpfn)
1118 		return 0;
1119 
1120 	/* Skip if map is outside the node */
1121 	if (ei->type != E820_RAM || *ei_endpfn <= start_pfn ||
1122 				    *ei_startpfn >= last_pfn)
1123 		return 0;
1124 
1125 	/* Check for overlaps */
1126 	if (*ei_startpfn < start_pfn)
1127 		*ei_startpfn = start_pfn;
1128 	if (*ei_endpfn > last_pfn)
1129 		*ei_endpfn = last_pfn;
1130 
1131 	return 1;
1132 }
1133 
1134 /* Walk the e820 map and register active regions within a node */
1135 void __init e820_register_active_regions(int nid, unsigned long start_pfn,
1136 					 unsigned long last_pfn)
1137 {
1138 	unsigned long ei_startpfn;
1139 	unsigned long ei_endpfn;
1140 	int i;
1141 
1142 	for (i = 0; i < e820.nr_map; i++)
1143 		if (e820_find_active_region(&e820.map[i],
1144 					    start_pfn, last_pfn,
1145 					    &ei_startpfn, &ei_endpfn))
1146 			add_active_range(nid, ei_startpfn, ei_endpfn);
1147 }
1148 
1149 /*
1150  * Find the hole size (in bytes) in the memory range.
1151  * @start: starting address of the memory range to scan
1152  * @end: ending address of the memory range to scan
1153  */
1154 u64 __init e820_hole_size(u64 start, u64 end)
1155 {
1156 	unsigned long start_pfn = start >> PAGE_SHIFT;
1157 	unsigned long last_pfn = end >> PAGE_SHIFT;
1158 	unsigned long ei_startpfn, ei_endpfn, ram = 0;
1159 	int i;
1160 
1161 	for (i = 0; i < e820.nr_map; i++) {
1162 		if (e820_find_active_region(&e820.map[i],
1163 					    start_pfn, last_pfn,
1164 					    &ei_startpfn, &ei_endpfn))
1165 			ram += ei_endpfn - ei_startpfn;
1166 	}
1167 	return end - start - ((u64)ram << PAGE_SHIFT);
1168 }
1169 
1170 static void early_panic(char *msg)
1171 {
1172 	early_printk(msg);
1173 	panic(msg);
1174 }
1175 
1176 static int userdef __initdata;
1177 
1178 /* "mem=nopentium" disables the 4MB page tables. */
1179 static int __init parse_memopt(char *p)
1180 {
1181 	u64 mem_size;
1182 
1183 	if (!p)
1184 		return -EINVAL;
1185 
1186 #ifdef CONFIG_X86_32
1187 	if (!strcmp(p, "nopentium")) {
1188 		setup_clear_cpu_cap(X86_FEATURE_PSE);
1189 		return 0;
1190 	}
1191 #endif
1192 
1193 	userdef = 1;
1194 	mem_size = memparse(p, &p);
1195 	e820_remove_range(mem_size, ULLONG_MAX - mem_size, E820_RAM, 1);
1196 
1197 	return 0;
1198 }
1199 early_param("mem", parse_memopt);
1200 
1201 static int __init parse_memmap_opt(char *p)
1202 {
1203 	char *oldp;
1204 	u64 start_at, mem_size;
1205 
1206 	if (!p)
1207 		return -EINVAL;
1208 
1209 	if (!strncmp(p, "exactmap", 8)) {
1210 #ifdef CONFIG_CRASH_DUMP
1211 		/*
1212 		 * If we are doing a crash dump, we still need to know
1213 		 * the real mem size before original memory map is
1214 		 * reset.
1215 		 */
1216 		saved_max_pfn = e820_end_of_ram_pfn();
1217 #endif
1218 		e820.nr_map = 0;
1219 		userdef = 1;
1220 		return 0;
1221 	}
1222 
1223 	oldp = p;
1224 	mem_size = memparse(p, &p);
1225 	if (p == oldp)
1226 		return -EINVAL;
1227 
1228 	userdef = 1;
1229 	if (*p == '@') {
1230 		start_at = memparse(p+1, &p);
1231 		e820_add_region(start_at, mem_size, E820_RAM);
1232 	} else if (*p == '#') {
1233 		start_at = memparse(p+1, &p);
1234 		e820_add_region(start_at, mem_size, E820_ACPI);
1235 	} else if (*p == '$') {
1236 		start_at = memparse(p+1, &p);
1237 		e820_add_region(start_at, mem_size, E820_RESERVED);
1238 	} else
1239 		e820_remove_range(mem_size, ULLONG_MAX - mem_size, E820_RAM, 1);
1240 
1241 	return *p == '\0' ? 0 : -EINVAL;
1242 }
1243 early_param("memmap", parse_memmap_opt);
1244 
1245 void __init finish_e820_parsing(void)
1246 {
1247 	if (userdef) {
1248 		int nr = e820.nr_map;
1249 
1250 		if (sanitize_e820_map(e820.map, ARRAY_SIZE(e820.map), &nr) < 0)
1251 			early_panic("Invalid user supplied memory map");
1252 		e820.nr_map = nr;
1253 
1254 		printk(KERN_INFO "user-defined physical RAM map:\n");
1255 		e820_print_map("user");
1256 	}
1257 }
1258 
1259 static inline const char *e820_type_to_string(int e820_type)
1260 {
1261 	switch (e820_type) {
1262 	case E820_RESERVED_KERN:
1263 	case E820_RAM:	return "System RAM";
1264 	case E820_ACPI:	return "ACPI Tables";
1265 	case E820_NVS:	return "ACPI Non-volatile Storage";
1266 	case E820_UNUSABLE:	return "Unusable memory";
1267 	default:	return "reserved";
1268 	}
1269 }
1270 
1271 /*
1272  * Mark e820 reserved areas as busy for the resource manager.
1273  */
1274 static struct resource __initdata *e820_res;
1275 void __init e820_reserve_resources(void)
1276 {
1277 	int i;
1278 	struct resource *res;
1279 	u64 end;
1280 
1281 	res = alloc_bootmem_low(sizeof(struct resource) * e820.nr_map);
1282 	e820_res = res;
1283 	for (i = 0; i < e820.nr_map; i++) {
1284 		end = e820.map[i].addr + e820.map[i].size - 1;
1285 		if (end != (resource_size_t)end) {
1286 			res++;
1287 			continue;
1288 		}
1289 		res->name = e820_type_to_string(e820.map[i].type);
1290 		res->start = e820.map[i].addr;
1291 		res->end = end;
1292 
1293 		res->flags = IORESOURCE_MEM;
1294 
1295 		/*
1296 		 * don't register the region that could be conflicted with
1297 		 * pci device BAR resource and insert them later in
1298 		 * pcibios_resource_survey()
1299 		 */
1300 		if (e820.map[i].type != E820_RESERVED || res->start < (1ULL<<20)) {
1301 			res->flags |= IORESOURCE_BUSY;
1302 			insert_resource(&iomem_resource, res);
1303 		}
1304 		res++;
1305 	}
1306 
1307 	for (i = 0; i < e820_saved.nr_map; i++) {
1308 		struct e820entry *entry = &e820_saved.map[i];
1309 		firmware_map_add_early(entry->addr,
1310 			entry->addr + entry->size - 1,
1311 			e820_type_to_string(entry->type));
1312 	}
1313 }
1314 
1315 void __init e820_reserve_resources_late(void)
1316 {
1317 	int i;
1318 	struct resource *res;
1319 
1320 	res = e820_res;
1321 	for (i = 0; i < e820.nr_map; i++) {
1322 		if (!res->parent && res->end)
1323 			insert_resource_expand_to_fit(&iomem_resource, res);
1324 		res++;
1325 	}
1326 }
1327 
1328 char *__init default_machine_specific_memory_setup(void)
1329 {
1330 	char *who = "BIOS-e820";
1331 	int new_nr;
1332 	/*
1333 	 * Try to copy the BIOS-supplied E820-map.
1334 	 *
1335 	 * Otherwise fake a memory map; one section from 0k->640k,
1336 	 * the next section from 1mb->appropriate_mem_k
1337 	 */
1338 	new_nr = boot_params.e820_entries;
1339 	sanitize_e820_map(boot_params.e820_map,
1340 			ARRAY_SIZE(boot_params.e820_map),
1341 			&new_nr);
1342 	boot_params.e820_entries = new_nr;
1343 	if (append_e820_map(boot_params.e820_map, boot_params.e820_entries)
1344 	  < 0) {
1345 		u64 mem_size;
1346 
1347 		/* compare results from other methods and take the greater */
1348 		if (boot_params.alt_mem_k
1349 		    < boot_params.screen_info.ext_mem_k) {
1350 			mem_size = boot_params.screen_info.ext_mem_k;
1351 			who = "BIOS-88";
1352 		} else {
1353 			mem_size = boot_params.alt_mem_k;
1354 			who = "BIOS-e801";
1355 		}
1356 
1357 		e820.nr_map = 0;
1358 		e820_add_region(0, LOWMEMSIZE(), E820_RAM);
1359 		e820_add_region(HIGH_MEMORY, mem_size << 10, E820_RAM);
1360 	}
1361 
1362 	/* In case someone cares... */
1363 	return who;
1364 }
1365 
1366 char *__init __attribute__((weak)) machine_specific_memory_setup(void)
1367 {
1368 	if (x86_quirks->arch_memory_setup) {
1369 		char *who = x86_quirks->arch_memory_setup();
1370 
1371 		if (who)
1372 			return who;
1373 	}
1374 	return default_machine_specific_memory_setup();
1375 }
1376 
1377 /* Overridden in paravirt.c if CONFIG_PARAVIRT */
1378 char * __init __attribute__((weak)) memory_setup(void)
1379 {
1380 	return machine_specific_memory_setup();
1381 }
1382 
1383 void __init setup_memory_map(void)
1384 {
1385 	char *who;
1386 
1387 	who = memory_setup();
1388 	memcpy(&e820_saved, &e820, sizeof(struct e820map));
1389 	printk(KERN_INFO "BIOS-provided physical RAM map:\n");
1390 	e820_print_map(who);
1391 }
1392