xref: /openbmc/linux/arch/x86/kernel/e820.c (revision 83268fa6b43cefb60ee188fd53ed49120d3ae4f4)
1 /*
2  * Low level x86 E820 memory map handling functions.
3  *
4  * The firmware and bootloader passes us the "E820 table", which is the primary
5  * physical memory layout description available about x86 systems.
6  *
7  * The kernel takes the E820 memory layout and optionally modifies it with
8  * quirks and other tweaks, and feeds that into the generic Linux memory
9  * allocation code routines via a platform independent interface (memblock, etc.).
10  */
11 #include <linux/crash_dump.h>
12 #include <linux/memblock.h>
13 #include <linux/suspend.h>
14 #include <linux/acpi.h>
15 #include <linux/firmware-map.h>
16 #include <linux/sort.h>
17 
18 #include <asm/e820/api.h>
19 #include <asm/setup.h>
20 
21 /*
22  * We organize the E820 table into three main data structures:
23  *
24  * - 'e820_table_firmware': the original firmware version passed to us by the
25  *   bootloader - not modified by the kernel. It is composed of two parts:
26  *   the first 128 E820 memory entries in boot_params.e820_table and the remaining
27  *   (if any) entries of the SETUP_E820_EXT nodes. We use this to:
28  *
29  *       - inform the user about the firmware's notion of memory layout
30  *         via /sys/firmware/memmap
31  *
32  *       - the hibernation code uses it to generate a kernel-independent MD5
33  *         fingerprint of the physical memory layout of a system.
34  *
35  * - 'e820_table_kexec': a slightly modified (by the kernel) firmware version
36  *   passed to us by the bootloader - the major difference between
37  *   e820_table_firmware[] and this one is that, the latter marks the setup_data
38  *   list created by the EFI boot stub as reserved, so that kexec can reuse the
39  *   setup_data information in the second kernel. Besides, e820_table_kexec[]
40  *   might also be modified by the kexec itself to fake a mptable.
41  *   We use this to:
42  *
43  *       - kexec, which is a bootloader in disguise, uses the original E820
44  *         layout to pass to the kexec-ed kernel. This way the original kernel
45  *         can have a restricted E820 map while the kexec()-ed kexec-kernel
46  *         can have access to full memory - etc.
47  *
48  * - 'e820_table': this is the main E820 table that is massaged by the
49  *   low level x86 platform code, or modified by boot parameters, before
50  *   passed on to higher level MM layers.
51  *
52  * Once the E820 map has been converted to the standard Linux memory layout
53  * information its role stops - modifying it has no effect and does not get
54  * re-propagated. So itsmain role is a temporary bootstrap storage of firmware
55  * specific memory layout data during early bootup.
56  */
57 static struct e820_table e820_table_init		__initdata;
58 static struct e820_table e820_table_kexec_init		__initdata;
59 static struct e820_table e820_table_firmware_init	__initdata;
60 
61 struct e820_table *e820_table __refdata			= &e820_table_init;
62 struct e820_table *e820_table_kexec __refdata		= &e820_table_kexec_init;
63 struct e820_table *e820_table_firmware __refdata	= &e820_table_firmware_init;
64 
65 /* For PCI or other memory-mapped resources */
66 unsigned long pci_mem_start = 0xaeedbabe;
67 #ifdef CONFIG_PCI
68 EXPORT_SYMBOL(pci_mem_start);
69 #endif
70 
71 /*
72  * This function checks if any part of the range <start,end> is mapped
73  * with type.
74  */
75 bool e820__mapped_any(u64 start, u64 end, enum e820_type type)
76 {
77 	int i;
78 
79 	for (i = 0; i < e820_table->nr_entries; i++) {
80 		struct e820_entry *entry = &e820_table->entries[i];
81 
82 		if (type && entry->type != type)
83 			continue;
84 		if (entry->addr >= end || entry->addr + entry->size <= start)
85 			continue;
86 		return 1;
87 	}
88 	return 0;
89 }
90 EXPORT_SYMBOL_GPL(e820__mapped_any);
91 
92 /*
93  * This function checks if the entire <start,end> range is mapped with 'type'.
94  *
95  * Note: this function only works correctly once the E820 table is sorted and
96  * not-overlapping (at least for the range specified), which is the case normally.
97  */
98 static struct e820_entry *__e820__mapped_all(u64 start, u64 end,
99 					     enum e820_type type)
100 {
101 	int i;
102 
103 	for (i = 0; i < e820_table->nr_entries; i++) {
104 		struct e820_entry *entry = &e820_table->entries[i];
105 
106 		if (type && entry->type != type)
107 			continue;
108 
109 		/* Is the region (part) in overlap with the current region? */
110 		if (entry->addr >= end || entry->addr + entry->size <= start)
111 			continue;
112 
113 		/*
114 		 * If the region is at the beginning of <start,end> we move
115 		 * 'start' to the end of the region since it's ok until there
116 		 */
117 		if (entry->addr <= start)
118 			start = entry->addr + entry->size;
119 
120 		/*
121 		 * If 'start' is now at or beyond 'end', we're done, full
122 		 * coverage of the desired range exists:
123 		 */
124 		if (start >= end)
125 			return entry;
126 	}
127 
128 	return NULL;
129 }
130 
131 /*
132  * This function checks if the entire range <start,end> is mapped with type.
133  */
134 bool __init e820__mapped_all(u64 start, u64 end, enum e820_type type)
135 {
136 	return __e820__mapped_all(start, end, type);
137 }
138 
139 /*
140  * This function returns the type associated with the range <start,end>.
141  */
142 int e820__get_entry_type(u64 start, u64 end)
143 {
144 	struct e820_entry *entry = __e820__mapped_all(start, end, 0);
145 
146 	return entry ? entry->type : -EINVAL;
147 }
148 
149 /*
150  * Add a memory region to the kernel E820 map.
151  */
152 static void __init __e820__range_add(struct e820_table *table, u64 start, u64 size, enum e820_type type)
153 {
154 	int x = table->nr_entries;
155 
156 	if (x >= ARRAY_SIZE(table->entries)) {
157 		pr_err("too many entries; ignoring [mem %#010llx-%#010llx]\n",
158 		       start, start + size - 1);
159 		return;
160 	}
161 
162 	table->entries[x].addr = start;
163 	table->entries[x].size = size;
164 	table->entries[x].type = type;
165 	table->nr_entries++;
166 }
167 
168 void __init e820__range_add(u64 start, u64 size, enum e820_type type)
169 {
170 	__e820__range_add(e820_table, start, size, type);
171 }
172 
173 static void __init e820_print_type(enum e820_type type)
174 {
175 	switch (type) {
176 	case E820_TYPE_RAM:		/* Fall through: */
177 	case E820_TYPE_RESERVED_KERN:	pr_cont("usable");			break;
178 	case E820_TYPE_RESERVED:	pr_cont("reserved");			break;
179 	case E820_TYPE_ACPI:		pr_cont("ACPI data");			break;
180 	case E820_TYPE_NVS:		pr_cont("ACPI NVS");			break;
181 	case E820_TYPE_UNUSABLE:	pr_cont("unusable");			break;
182 	case E820_TYPE_PMEM:		/* Fall through: */
183 	case E820_TYPE_PRAM:		pr_cont("persistent (type %u)", type);	break;
184 	default:			pr_cont("type %u", type);		break;
185 	}
186 }
187 
188 void __init e820__print_table(char *who)
189 {
190 	int i;
191 
192 	for (i = 0; i < e820_table->nr_entries; i++) {
193 		pr_info("%s: [mem %#018Lx-%#018Lx] ",
194 			who,
195 			e820_table->entries[i].addr,
196 			e820_table->entries[i].addr + e820_table->entries[i].size - 1);
197 
198 		e820_print_type(e820_table->entries[i].type);
199 		pr_cont("\n");
200 	}
201 }
202 
203 /*
204  * Sanitize an E820 map.
205  *
206  * Some E820 layouts include overlapping entries. The following
207  * replaces the original E820 map with a new one, removing overlaps,
208  * and resolving conflicting memory types in favor of highest
209  * numbered type.
210  *
211  * The input parameter 'entries' points to an array of 'struct
212  * e820_entry' which on entry has elements in the range [0, *nr_entries)
213  * valid, and which has space for up to max_nr_entries entries.
214  * On return, the resulting sanitized E820 map entries will be in
215  * overwritten in the same location, starting at 'entries'.
216  *
217  * The integer pointed to by nr_entries must be valid on entry (the
218  * current number of valid entries located at 'entries'). If the
219  * sanitizing succeeds the *nr_entries will be updated with the new
220  * number of valid entries (something no more than max_nr_entries).
221  *
222  * The return value from e820__update_table() is zero if it
223  * successfully 'sanitized' the map entries passed in, and is -1
224  * if it did nothing, which can happen if either of (1) it was
225  * only passed one map entry, or (2) any of the input map entries
226  * were invalid (start + size < start, meaning that the size was
227  * so big the described memory range wrapped around through zero.)
228  *
229  *	Visually we're performing the following
230  *	(1,2,3,4 = memory types)...
231  *
232  *	Sample memory map (w/overlaps):
233  *	   ____22__________________
234  *	   ______________________4_
235  *	   ____1111________________
236  *	   _44_____________________
237  *	   11111111________________
238  *	   ____________________33__
239  *	   ___________44___________
240  *	   __________33333_________
241  *	   ______________22________
242  *	   ___________________2222_
243  *	   _________111111111______
244  *	   _____________________11_
245  *	   _________________4______
246  *
247  *	Sanitized equivalent (no overlap):
248  *	   1_______________________
249  *	   _44_____________________
250  *	   ___1____________________
251  *	   ____22__________________
252  *	   ______11________________
253  *	   _________1______________
254  *	   __________3_____________
255  *	   ___________44___________
256  *	   _____________33_________
257  *	   _______________2________
258  *	   ________________1_______
259  *	   _________________4______
260  *	   ___________________2____
261  *	   ____________________33__
262  *	   ______________________4_
263  */
264 struct change_member {
265 	/* Pointer to the original entry: */
266 	struct e820_entry	*entry;
267 	/* Address for this change point: */
268 	unsigned long long	addr;
269 };
270 
271 static struct change_member	change_point_list[2*E820_MAX_ENTRIES]	__initdata;
272 static struct change_member	*change_point[2*E820_MAX_ENTRIES]	__initdata;
273 static struct e820_entry	*overlap_list[E820_MAX_ENTRIES]		__initdata;
274 static struct e820_entry	new_entries[E820_MAX_ENTRIES]		__initdata;
275 
276 static int __init cpcompare(const void *a, const void *b)
277 {
278 	struct change_member * const *app = a, * const *bpp = b;
279 	const struct change_member *ap = *app, *bp = *bpp;
280 
281 	/*
282 	 * Inputs are pointers to two elements of change_point[].  If their
283 	 * addresses are not equal, their difference dominates.  If the addresses
284 	 * are equal, then consider one that represents the end of its region
285 	 * to be greater than one that does not.
286 	 */
287 	if (ap->addr != bp->addr)
288 		return ap->addr > bp->addr ? 1 : -1;
289 
290 	return (ap->addr != ap->entry->addr) - (bp->addr != bp->entry->addr);
291 }
292 
293 int __init e820__update_table(struct e820_table *table)
294 {
295 	struct e820_entry *entries = table->entries;
296 	u32 max_nr_entries = ARRAY_SIZE(table->entries);
297 	enum e820_type current_type, last_type;
298 	unsigned long long last_addr;
299 	u32 new_nr_entries, overlap_entries;
300 	u32 i, chg_idx, chg_nr;
301 
302 	/* If there's only one memory region, don't bother: */
303 	if (table->nr_entries < 2)
304 		return -1;
305 
306 	BUG_ON(table->nr_entries > max_nr_entries);
307 
308 	/* Bail out if we find any unreasonable addresses in the map: */
309 	for (i = 0; i < table->nr_entries; i++) {
310 		if (entries[i].addr + entries[i].size < entries[i].addr)
311 			return -1;
312 	}
313 
314 	/* Create pointers for initial change-point information (for sorting): */
315 	for (i = 0; i < 2 * table->nr_entries; i++)
316 		change_point[i] = &change_point_list[i];
317 
318 	/*
319 	 * Record all known change-points (starting and ending addresses),
320 	 * omitting empty memory regions:
321 	 */
322 	chg_idx = 0;
323 	for (i = 0; i < table->nr_entries; i++)	{
324 		if (entries[i].size != 0) {
325 			change_point[chg_idx]->addr	= entries[i].addr;
326 			change_point[chg_idx++]->entry	= &entries[i];
327 			change_point[chg_idx]->addr	= entries[i].addr + entries[i].size;
328 			change_point[chg_idx++]->entry	= &entries[i];
329 		}
330 	}
331 	chg_nr = chg_idx;
332 
333 	/* Sort change-point list by memory addresses (low -> high): */
334 	sort(change_point, chg_nr, sizeof(*change_point), cpcompare, NULL);
335 
336 	/* Create a new memory map, removing overlaps: */
337 	overlap_entries = 0;	 /* Number of entries in the overlap table */
338 	new_nr_entries = 0;	 /* Index for creating new map entries */
339 	last_type = 0;		 /* Start with undefined memory type */
340 	last_addr = 0;		 /* Start with 0 as last starting address */
341 
342 	/* Loop through change-points, determining effect on the new map: */
343 	for (chg_idx = 0; chg_idx < chg_nr; chg_idx++) {
344 		/* Keep track of all overlapping entries */
345 		if (change_point[chg_idx]->addr == change_point[chg_idx]->entry->addr) {
346 			/* Add map entry to overlap list (> 1 entry implies an overlap) */
347 			overlap_list[overlap_entries++] = change_point[chg_idx]->entry;
348 		} else {
349 			/* Remove entry from list (order independent, so swap with last): */
350 			for (i = 0; i < overlap_entries; i++) {
351 				if (overlap_list[i] == change_point[chg_idx]->entry)
352 					overlap_list[i] = overlap_list[overlap_entries-1];
353 			}
354 			overlap_entries--;
355 		}
356 		/*
357 		 * If there are overlapping entries, decide which
358 		 * "type" to use (larger value takes precedence --
359 		 * 1=usable, 2,3,4,4+=unusable)
360 		 */
361 		current_type = 0;
362 		for (i = 0; i < overlap_entries; i++) {
363 			if (overlap_list[i]->type > current_type)
364 				current_type = overlap_list[i]->type;
365 		}
366 
367 		/* Continue building up new map based on this information: */
368 		if (current_type != last_type || current_type == E820_TYPE_PRAM) {
369 			if (last_type != 0)	 {
370 				new_entries[new_nr_entries].size = change_point[chg_idx]->addr - last_addr;
371 				/* Move forward only if the new size was non-zero: */
372 				if (new_entries[new_nr_entries].size != 0)
373 					/* No more space left for new entries? */
374 					if (++new_nr_entries >= max_nr_entries)
375 						break;
376 			}
377 			if (current_type != 0)	{
378 				new_entries[new_nr_entries].addr = change_point[chg_idx]->addr;
379 				new_entries[new_nr_entries].type = current_type;
380 				last_addr = change_point[chg_idx]->addr;
381 			}
382 			last_type = current_type;
383 		}
384 	}
385 
386 	/* Copy the new entries into the original location: */
387 	memcpy(entries, new_entries, new_nr_entries*sizeof(*entries));
388 	table->nr_entries = new_nr_entries;
389 
390 	return 0;
391 }
392 
393 static int __init __append_e820_table(struct boot_e820_entry *entries, u32 nr_entries)
394 {
395 	struct boot_e820_entry *entry = entries;
396 
397 	while (nr_entries) {
398 		u64 start = entry->addr;
399 		u64 size = entry->size;
400 		u64 end = start + size - 1;
401 		u32 type = entry->type;
402 
403 		/* Ignore the entry on 64-bit overflow: */
404 		if (start > end && likely(size))
405 			return -1;
406 
407 		e820__range_add(start, size, type);
408 
409 		entry++;
410 		nr_entries--;
411 	}
412 	return 0;
413 }
414 
415 /*
416  * Copy the BIOS E820 map into a safe place.
417  *
418  * Sanity-check it while we're at it..
419  *
420  * If we're lucky and live on a modern system, the setup code
421  * will have given us a memory map that we can use to properly
422  * set up memory.  If we aren't, we'll fake a memory map.
423  */
424 static int __init append_e820_table(struct boot_e820_entry *entries, u32 nr_entries)
425 {
426 	/* Only one memory region (or negative)? Ignore it */
427 	if (nr_entries < 2)
428 		return -1;
429 
430 	return __append_e820_table(entries, nr_entries);
431 }
432 
433 static u64 __init
434 __e820__range_update(struct e820_table *table, u64 start, u64 size, enum e820_type old_type, enum e820_type new_type)
435 {
436 	u64 end;
437 	unsigned int i;
438 	u64 real_updated_size = 0;
439 
440 	BUG_ON(old_type == new_type);
441 
442 	if (size > (ULLONG_MAX - start))
443 		size = ULLONG_MAX - start;
444 
445 	end = start + size;
446 	printk(KERN_DEBUG "e820: update [mem %#010Lx-%#010Lx] ", start, end - 1);
447 	e820_print_type(old_type);
448 	pr_cont(" ==> ");
449 	e820_print_type(new_type);
450 	pr_cont("\n");
451 
452 	for (i = 0; i < table->nr_entries; i++) {
453 		struct e820_entry *entry = &table->entries[i];
454 		u64 final_start, final_end;
455 		u64 entry_end;
456 
457 		if (entry->type != old_type)
458 			continue;
459 
460 		entry_end = entry->addr + entry->size;
461 
462 		/* Completely covered by new range? */
463 		if (entry->addr >= start && entry_end <= end) {
464 			entry->type = new_type;
465 			real_updated_size += entry->size;
466 			continue;
467 		}
468 
469 		/* New range is completely covered? */
470 		if (entry->addr < start && entry_end > end) {
471 			__e820__range_add(table, start, size, new_type);
472 			__e820__range_add(table, end, entry_end - end, entry->type);
473 			entry->size = start - entry->addr;
474 			real_updated_size += size;
475 			continue;
476 		}
477 
478 		/* Partially covered: */
479 		final_start = max(start, entry->addr);
480 		final_end = min(end, entry_end);
481 		if (final_start >= final_end)
482 			continue;
483 
484 		__e820__range_add(table, final_start, final_end - final_start, new_type);
485 
486 		real_updated_size += final_end - final_start;
487 
488 		/*
489 		 * Left range could be head or tail, so need to update
490 		 * its size first:
491 		 */
492 		entry->size -= final_end - final_start;
493 		if (entry->addr < final_start)
494 			continue;
495 
496 		entry->addr = final_end;
497 	}
498 	return real_updated_size;
499 }
500 
501 u64 __init e820__range_update(u64 start, u64 size, enum e820_type old_type, enum e820_type new_type)
502 {
503 	return __e820__range_update(e820_table, start, size, old_type, new_type);
504 }
505 
506 static u64 __init e820__range_update_kexec(u64 start, u64 size, enum e820_type old_type, enum e820_type  new_type)
507 {
508 	return __e820__range_update(e820_table_kexec, start, size, old_type, new_type);
509 }
510 
511 /* Remove a range of memory from the E820 table: */
512 u64 __init e820__range_remove(u64 start, u64 size, enum e820_type old_type, bool check_type)
513 {
514 	int i;
515 	u64 end;
516 	u64 real_removed_size = 0;
517 
518 	if (size > (ULLONG_MAX - start))
519 		size = ULLONG_MAX - start;
520 
521 	end = start + size;
522 	printk(KERN_DEBUG "e820: remove [mem %#010Lx-%#010Lx] ", start, end - 1);
523 	if (check_type)
524 		e820_print_type(old_type);
525 	pr_cont("\n");
526 
527 	for (i = 0; i < e820_table->nr_entries; i++) {
528 		struct e820_entry *entry = &e820_table->entries[i];
529 		u64 final_start, final_end;
530 		u64 entry_end;
531 
532 		if (check_type && entry->type != old_type)
533 			continue;
534 
535 		entry_end = entry->addr + entry->size;
536 
537 		/* Completely covered? */
538 		if (entry->addr >= start && entry_end <= end) {
539 			real_removed_size += entry->size;
540 			memset(entry, 0, sizeof(*entry));
541 			continue;
542 		}
543 
544 		/* Is the new range completely covered? */
545 		if (entry->addr < start && entry_end > end) {
546 			e820__range_add(end, entry_end - end, entry->type);
547 			entry->size = start - entry->addr;
548 			real_removed_size += size;
549 			continue;
550 		}
551 
552 		/* Partially covered: */
553 		final_start = max(start, entry->addr);
554 		final_end = min(end, entry_end);
555 		if (final_start >= final_end)
556 			continue;
557 
558 		real_removed_size += final_end - final_start;
559 
560 		/*
561 		 * Left range could be head or tail, so need to update
562 		 * the size first:
563 		 */
564 		entry->size -= final_end - final_start;
565 		if (entry->addr < final_start)
566 			continue;
567 
568 		entry->addr = final_end;
569 	}
570 	return real_removed_size;
571 }
572 
573 void __init e820__update_table_print(void)
574 {
575 	if (e820__update_table(e820_table))
576 		return;
577 
578 	pr_info("modified physical RAM map:\n");
579 	e820__print_table("modified");
580 }
581 
582 static void __init e820__update_table_kexec(void)
583 {
584 	e820__update_table(e820_table_kexec);
585 }
586 
587 #define MAX_GAP_END 0x100000000ull
588 
589 /*
590  * Search for a gap in the E820 memory space from 0 to MAX_GAP_END (4GB).
591  */
592 static int __init e820_search_gap(unsigned long *gapstart, unsigned long *gapsize)
593 {
594 	unsigned long long last = MAX_GAP_END;
595 	int i = e820_table->nr_entries;
596 	int found = 0;
597 
598 	while (--i >= 0) {
599 		unsigned long long start = e820_table->entries[i].addr;
600 		unsigned long long end = start + e820_table->entries[i].size;
601 
602 		/*
603 		 * Since "last" is at most 4GB, we know we'll
604 		 * fit in 32 bits if this condition is true:
605 		 */
606 		if (last > end) {
607 			unsigned long gap = last - end;
608 
609 			if (gap >= *gapsize) {
610 				*gapsize = gap;
611 				*gapstart = end;
612 				found = 1;
613 			}
614 		}
615 		if (start < last)
616 			last = start;
617 	}
618 	return found;
619 }
620 
621 /*
622  * Search for the biggest gap in the low 32 bits of the E820
623  * memory space. We pass this space to the PCI subsystem, so
624  * that it can assign MMIO resources for hotplug or
625  * unconfigured devices in.
626  *
627  * Hopefully the BIOS let enough space left.
628  */
629 __init void e820__setup_pci_gap(void)
630 {
631 	unsigned long gapstart, gapsize;
632 	int found;
633 
634 	gapsize = 0x400000;
635 	found  = e820_search_gap(&gapstart, &gapsize);
636 
637 	if (!found) {
638 #ifdef CONFIG_X86_64
639 		gapstart = (max_pfn << PAGE_SHIFT) + 1024*1024;
640 		pr_err("Cannot find an available gap in the 32-bit address range\n");
641 		pr_err("PCI devices with unassigned 32-bit BARs may not work!\n");
642 #else
643 		gapstart = 0x10000000;
644 #endif
645 	}
646 
647 	/*
648 	 * e820__reserve_resources_late() protects stolen RAM already:
649 	 */
650 	pci_mem_start = gapstart;
651 
652 	pr_info("[mem %#010lx-%#010lx] available for PCI devices\n",
653 		gapstart, gapstart + gapsize - 1);
654 }
655 
656 /*
657  * Called late during init, in free_initmem().
658  *
659  * Initial e820_table and e820_table_kexec are largish __initdata arrays.
660  *
661  * Copy them to a (usually much smaller) dynamically allocated area that is
662  * sized precisely after the number of e820 entries.
663  *
664  * This is done after we've performed all the fixes and tweaks to the tables.
665  * All functions which modify them are __init functions, which won't exist
666  * after free_initmem().
667  */
668 __init void e820__reallocate_tables(void)
669 {
670 	struct e820_table *n;
671 	int size;
672 
673 	size = offsetof(struct e820_table, entries) + sizeof(struct e820_entry)*e820_table->nr_entries;
674 	n = kmalloc(size, GFP_KERNEL);
675 	BUG_ON(!n);
676 	memcpy(n, e820_table, size);
677 	e820_table = n;
678 
679 	size = offsetof(struct e820_table, entries) + sizeof(struct e820_entry)*e820_table_kexec->nr_entries;
680 	n = kmalloc(size, GFP_KERNEL);
681 	BUG_ON(!n);
682 	memcpy(n, e820_table_kexec, size);
683 	e820_table_kexec = n;
684 
685 	size = offsetof(struct e820_table, entries) + sizeof(struct e820_entry)*e820_table_firmware->nr_entries;
686 	n = kmalloc(size, GFP_KERNEL);
687 	BUG_ON(!n);
688 	memcpy(n, e820_table_firmware, size);
689 	e820_table_firmware = n;
690 }
691 
692 /*
693  * Because of the small fixed size of struct boot_params, only the first
694  * 128 E820 memory entries are passed to the kernel via boot_params.e820_table,
695  * the remaining (if any) entries are passed via the SETUP_E820_EXT node of
696  * struct setup_data, which is parsed here.
697  */
698 void __init e820__memory_setup_extended(u64 phys_addr, u32 data_len)
699 {
700 	int entries;
701 	struct boot_e820_entry *extmap;
702 	struct setup_data *sdata;
703 
704 	sdata = early_memremap(phys_addr, data_len);
705 	entries = sdata->len / sizeof(*extmap);
706 	extmap = (struct boot_e820_entry *)(sdata->data);
707 
708 	__append_e820_table(extmap, entries);
709 	e820__update_table(e820_table);
710 
711 	memcpy(e820_table_kexec, e820_table, sizeof(*e820_table_kexec));
712 	memcpy(e820_table_firmware, e820_table, sizeof(*e820_table_firmware));
713 
714 	early_memunmap(sdata, data_len);
715 	pr_info("extended physical RAM map:\n");
716 	e820__print_table("extended");
717 }
718 
719 /*
720  * Find the ranges of physical addresses that do not correspond to
721  * E820 RAM areas and register the corresponding pages as 'nosave' for
722  * hibernation (32-bit) or software suspend and suspend to RAM (64-bit).
723  *
724  * This function requires the E820 map to be sorted and without any
725  * overlapping entries.
726  */
727 void __init e820__register_nosave_regions(unsigned long limit_pfn)
728 {
729 	int i;
730 	unsigned long pfn = 0;
731 
732 	for (i = 0; i < e820_table->nr_entries; i++) {
733 		struct e820_entry *entry = &e820_table->entries[i];
734 
735 		if (pfn < PFN_UP(entry->addr))
736 			register_nosave_region(pfn, PFN_UP(entry->addr));
737 
738 		pfn = PFN_DOWN(entry->addr + entry->size);
739 
740 		if (entry->type != E820_TYPE_RAM && entry->type != E820_TYPE_RESERVED_KERN)
741 			register_nosave_region(PFN_UP(entry->addr), pfn);
742 
743 		if (pfn >= limit_pfn)
744 			break;
745 	}
746 }
747 
748 #ifdef CONFIG_ACPI
749 /*
750  * Register ACPI NVS memory regions, so that we can save/restore them during
751  * hibernation and the subsequent resume:
752  */
753 static int __init e820__register_nvs_regions(void)
754 {
755 	int i;
756 
757 	for (i = 0; i < e820_table->nr_entries; i++) {
758 		struct e820_entry *entry = &e820_table->entries[i];
759 
760 		if (entry->type == E820_TYPE_NVS)
761 			acpi_nvs_register(entry->addr, entry->size);
762 	}
763 
764 	return 0;
765 }
766 core_initcall(e820__register_nvs_regions);
767 #endif
768 
769 /*
770  * Allocate the requested number of bytes with the requsted alignment
771  * and return (the physical address) to the caller. Also register this
772  * range in the 'kexec' E820 table as a reserved range.
773  *
774  * This allows kexec to fake a new mptable, as if it came from the real
775  * system.
776  */
777 u64 __init e820__memblock_alloc_reserved(u64 size, u64 align)
778 {
779 	u64 addr;
780 
781 	addr = __memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE);
782 	if (addr) {
783 		e820__range_update_kexec(addr, size, E820_TYPE_RAM, E820_TYPE_RESERVED);
784 		pr_info("update e820_table_kexec for e820__memblock_alloc_reserved()\n");
785 		e820__update_table_kexec();
786 	}
787 
788 	return addr;
789 }
790 
791 #ifdef CONFIG_X86_32
792 # ifdef CONFIG_X86_PAE
793 #  define MAX_ARCH_PFN		(1ULL<<(36-PAGE_SHIFT))
794 # else
795 #  define MAX_ARCH_PFN		(1ULL<<(32-PAGE_SHIFT))
796 # endif
797 #else /* CONFIG_X86_32 */
798 # define MAX_ARCH_PFN MAXMEM>>PAGE_SHIFT
799 #endif
800 
801 /*
802  * Find the highest page frame number we have available
803  */
804 static unsigned long __init e820_end_pfn(unsigned long limit_pfn, enum e820_type type)
805 {
806 	int i;
807 	unsigned long last_pfn = 0;
808 	unsigned long max_arch_pfn = MAX_ARCH_PFN;
809 
810 	for (i = 0; i < e820_table->nr_entries; i++) {
811 		struct e820_entry *entry = &e820_table->entries[i];
812 		unsigned long start_pfn;
813 		unsigned long end_pfn;
814 
815 		if (entry->type != type)
816 			continue;
817 
818 		start_pfn = entry->addr >> PAGE_SHIFT;
819 		end_pfn = (entry->addr + entry->size) >> PAGE_SHIFT;
820 
821 		if (start_pfn >= limit_pfn)
822 			continue;
823 		if (end_pfn > limit_pfn) {
824 			last_pfn = limit_pfn;
825 			break;
826 		}
827 		if (end_pfn > last_pfn)
828 			last_pfn = end_pfn;
829 	}
830 
831 	if (last_pfn > max_arch_pfn)
832 		last_pfn = max_arch_pfn;
833 
834 	pr_info("last_pfn = %#lx max_arch_pfn = %#lx\n",
835 		last_pfn, max_arch_pfn);
836 	return last_pfn;
837 }
838 
839 unsigned long __init e820__end_of_ram_pfn(void)
840 {
841 	return e820_end_pfn(MAX_ARCH_PFN, E820_TYPE_RAM);
842 }
843 
844 unsigned long __init e820__end_of_low_ram_pfn(void)
845 {
846 	return e820_end_pfn(1UL << (32 - PAGE_SHIFT), E820_TYPE_RAM);
847 }
848 
849 static void __init early_panic(char *msg)
850 {
851 	early_printk(msg);
852 	panic(msg);
853 }
854 
855 static int userdef __initdata;
856 
857 /* The "mem=nopentium" boot option disables 4MB page tables on 32-bit kernels: */
858 static int __init parse_memopt(char *p)
859 {
860 	u64 mem_size;
861 
862 	if (!p)
863 		return -EINVAL;
864 
865 	if (!strcmp(p, "nopentium")) {
866 #ifdef CONFIG_X86_32
867 		setup_clear_cpu_cap(X86_FEATURE_PSE);
868 		return 0;
869 #else
870 		pr_warn("mem=nopentium ignored! (only supported on x86_32)\n");
871 		return -EINVAL;
872 #endif
873 	}
874 
875 	userdef = 1;
876 	mem_size = memparse(p, &p);
877 
878 	/* Don't remove all memory when getting "mem={invalid}" parameter: */
879 	if (mem_size == 0)
880 		return -EINVAL;
881 
882 	e820__range_remove(mem_size, ULLONG_MAX - mem_size, E820_TYPE_RAM, 1);
883 
884 	return 0;
885 }
886 early_param("mem", parse_memopt);
887 
888 static int __init parse_memmap_one(char *p)
889 {
890 	char *oldp;
891 	u64 start_at, mem_size;
892 
893 	if (!p)
894 		return -EINVAL;
895 
896 	if (!strncmp(p, "exactmap", 8)) {
897 #ifdef CONFIG_CRASH_DUMP
898 		/*
899 		 * If we are doing a crash dump, we still need to know
900 		 * the real memory size before the original memory map is
901 		 * reset.
902 		 */
903 		saved_max_pfn = e820__end_of_ram_pfn();
904 #endif
905 		e820_table->nr_entries = 0;
906 		userdef = 1;
907 		return 0;
908 	}
909 
910 	oldp = p;
911 	mem_size = memparse(p, &p);
912 	if (p == oldp)
913 		return -EINVAL;
914 
915 	userdef = 1;
916 	if (*p == '@') {
917 		start_at = memparse(p+1, &p);
918 		e820__range_add(start_at, mem_size, E820_TYPE_RAM);
919 	} else if (*p == '#') {
920 		start_at = memparse(p+1, &p);
921 		e820__range_add(start_at, mem_size, E820_TYPE_ACPI);
922 	} else if (*p == '$') {
923 		start_at = memparse(p+1, &p);
924 		e820__range_add(start_at, mem_size, E820_TYPE_RESERVED);
925 	} else if (*p == '!') {
926 		start_at = memparse(p+1, &p);
927 		e820__range_add(start_at, mem_size, E820_TYPE_PRAM);
928 	} else if (*p == '%') {
929 		enum e820_type from = 0, to = 0;
930 
931 		start_at = memparse(p + 1, &p);
932 		if (*p == '-')
933 			from = simple_strtoull(p + 1, &p, 0);
934 		if (*p == '+')
935 			to = simple_strtoull(p + 1, &p, 0);
936 		if (*p != '\0')
937 			return -EINVAL;
938 		if (from && to)
939 			e820__range_update(start_at, mem_size, from, to);
940 		else if (to)
941 			e820__range_add(start_at, mem_size, to);
942 		else if (from)
943 			e820__range_remove(start_at, mem_size, from, 1);
944 		else
945 			e820__range_remove(start_at, mem_size, 0, 0);
946 	} else {
947 		e820__range_remove(mem_size, ULLONG_MAX - mem_size, E820_TYPE_RAM, 1);
948 	}
949 
950 	return *p == '\0' ? 0 : -EINVAL;
951 }
952 
953 static int __init parse_memmap_opt(char *str)
954 {
955 	while (str) {
956 		char *k = strchr(str, ',');
957 
958 		if (k)
959 			*k++ = 0;
960 
961 		parse_memmap_one(str);
962 		str = k;
963 	}
964 
965 	return 0;
966 }
967 early_param("memmap", parse_memmap_opt);
968 
969 /*
970  * Reserve all entries from the bootloader's extensible data nodes list,
971  * because if present we are going to use it later on to fetch e820
972  * entries from it:
973  */
974 void __init e820__reserve_setup_data(void)
975 {
976 	struct setup_data *data;
977 	u64 pa_data;
978 
979 	pa_data = boot_params.hdr.setup_data;
980 	if (!pa_data)
981 		return;
982 
983 	while (pa_data) {
984 		data = early_memremap(pa_data, sizeof(*data));
985 		e820__range_update(pa_data, sizeof(*data)+data->len, E820_TYPE_RAM, E820_TYPE_RESERVED_KERN);
986 		e820__range_update_kexec(pa_data, sizeof(*data)+data->len, E820_TYPE_RAM, E820_TYPE_RESERVED_KERN);
987 		pa_data = data->next;
988 		early_memunmap(data, sizeof(*data));
989 	}
990 
991 	e820__update_table(e820_table);
992 	e820__update_table(e820_table_kexec);
993 
994 	pr_info("extended physical RAM map:\n");
995 	e820__print_table("reserve setup_data");
996 }
997 
998 /*
999  * Called after parse_early_param(), after early parameters (such as mem=)
1000  * have been processed, in which case we already have an E820 table filled in
1001  * via the parameter callback function(s), but it's not sorted and printed yet:
1002  */
1003 void __init e820__finish_early_params(void)
1004 {
1005 	if (userdef) {
1006 		if (e820__update_table(e820_table) < 0)
1007 			early_panic("Invalid user supplied memory map");
1008 
1009 		pr_info("user-defined physical RAM map:\n");
1010 		e820__print_table("user");
1011 	}
1012 }
1013 
1014 static const char *__init e820_type_to_string(struct e820_entry *entry)
1015 {
1016 	switch (entry->type) {
1017 	case E820_TYPE_RESERVED_KERN:	/* Fall-through: */
1018 	case E820_TYPE_RAM:		return "System RAM";
1019 	case E820_TYPE_ACPI:		return "ACPI Tables";
1020 	case E820_TYPE_NVS:		return "ACPI Non-volatile Storage";
1021 	case E820_TYPE_UNUSABLE:	return "Unusable memory";
1022 	case E820_TYPE_PRAM:		return "Persistent Memory (legacy)";
1023 	case E820_TYPE_PMEM:		return "Persistent Memory";
1024 	case E820_TYPE_RESERVED:	return "Reserved";
1025 	default:			return "Unknown E820 type";
1026 	}
1027 }
1028 
1029 static unsigned long __init e820_type_to_iomem_type(struct e820_entry *entry)
1030 {
1031 	switch (entry->type) {
1032 	case E820_TYPE_RESERVED_KERN:	/* Fall-through: */
1033 	case E820_TYPE_RAM:		return IORESOURCE_SYSTEM_RAM;
1034 	case E820_TYPE_ACPI:		/* Fall-through: */
1035 	case E820_TYPE_NVS:		/* Fall-through: */
1036 	case E820_TYPE_UNUSABLE:	/* Fall-through: */
1037 	case E820_TYPE_PRAM:		/* Fall-through: */
1038 	case E820_TYPE_PMEM:		/* Fall-through: */
1039 	case E820_TYPE_RESERVED:	/* Fall-through: */
1040 	default:			return IORESOURCE_MEM;
1041 	}
1042 }
1043 
1044 static unsigned long __init e820_type_to_iores_desc(struct e820_entry *entry)
1045 {
1046 	switch (entry->type) {
1047 	case E820_TYPE_ACPI:		return IORES_DESC_ACPI_TABLES;
1048 	case E820_TYPE_NVS:		return IORES_DESC_ACPI_NV_STORAGE;
1049 	case E820_TYPE_PMEM:		return IORES_DESC_PERSISTENT_MEMORY;
1050 	case E820_TYPE_PRAM:		return IORES_DESC_PERSISTENT_MEMORY_LEGACY;
1051 	case E820_TYPE_RESERVED_KERN:	/* Fall-through: */
1052 	case E820_TYPE_RAM:		/* Fall-through: */
1053 	case E820_TYPE_UNUSABLE:	/* Fall-through: */
1054 	case E820_TYPE_RESERVED:	/* Fall-through: */
1055 	default:			return IORES_DESC_NONE;
1056 	}
1057 }
1058 
1059 static bool __init do_mark_busy(enum e820_type type, struct resource *res)
1060 {
1061 	/* this is the legacy bios/dos rom-shadow + mmio region */
1062 	if (res->start < (1ULL<<20))
1063 		return true;
1064 
1065 	/*
1066 	 * Treat persistent memory like device memory, i.e. reserve it
1067 	 * for exclusive use of a driver
1068 	 */
1069 	switch (type) {
1070 	case E820_TYPE_RESERVED:
1071 	case E820_TYPE_PRAM:
1072 	case E820_TYPE_PMEM:
1073 		return false;
1074 	case E820_TYPE_RESERVED_KERN:
1075 	case E820_TYPE_RAM:
1076 	case E820_TYPE_ACPI:
1077 	case E820_TYPE_NVS:
1078 	case E820_TYPE_UNUSABLE:
1079 	default:
1080 		return true;
1081 	}
1082 }
1083 
1084 /*
1085  * Mark E820 reserved areas as busy for the resource manager:
1086  */
1087 
1088 static struct resource __initdata *e820_res;
1089 
1090 void __init e820__reserve_resources(void)
1091 {
1092 	int i;
1093 	struct resource *res;
1094 	u64 end;
1095 
1096 	res = memblock_alloc(sizeof(*res) * e820_table->nr_entries,
1097 			     SMP_CACHE_BYTES);
1098 	e820_res = res;
1099 
1100 	for (i = 0; i < e820_table->nr_entries; i++) {
1101 		struct e820_entry *entry = e820_table->entries + i;
1102 
1103 		end = entry->addr + entry->size - 1;
1104 		if (end != (resource_size_t)end) {
1105 			res++;
1106 			continue;
1107 		}
1108 		res->start = entry->addr;
1109 		res->end   = end;
1110 		res->name  = e820_type_to_string(entry);
1111 		res->flags = e820_type_to_iomem_type(entry);
1112 		res->desc  = e820_type_to_iores_desc(entry);
1113 
1114 		/*
1115 		 * Don't register the region that could be conflicted with
1116 		 * PCI device BAR resources and insert them later in
1117 		 * pcibios_resource_survey():
1118 		 */
1119 		if (do_mark_busy(entry->type, res)) {
1120 			res->flags |= IORESOURCE_BUSY;
1121 			insert_resource(&iomem_resource, res);
1122 		}
1123 		res++;
1124 	}
1125 
1126 	/* Expose the bootloader-provided memory layout to the sysfs. */
1127 	for (i = 0; i < e820_table_firmware->nr_entries; i++) {
1128 		struct e820_entry *entry = e820_table_firmware->entries + i;
1129 
1130 		firmware_map_add_early(entry->addr, entry->addr + entry->size, e820_type_to_string(entry));
1131 	}
1132 }
1133 
1134 /*
1135  * How much should we pad the end of RAM, depending on where it is?
1136  */
1137 static unsigned long __init ram_alignment(resource_size_t pos)
1138 {
1139 	unsigned long mb = pos >> 20;
1140 
1141 	/* To 64kB in the first megabyte */
1142 	if (!mb)
1143 		return 64*1024;
1144 
1145 	/* To 1MB in the first 16MB */
1146 	if (mb < 16)
1147 		return 1024*1024;
1148 
1149 	/* To 64MB for anything above that */
1150 	return 64*1024*1024;
1151 }
1152 
1153 #define MAX_RESOURCE_SIZE ((resource_size_t)-1)
1154 
1155 void __init e820__reserve_resources_late(void)
1156 {
1157 	int i;
1158 	struct resource *res;
1159 
1160 	res = e820_res;
1161 	for (i = 0; i < e820_table->nr_entries; i++) {
1162 		if (!res->parent && res->end)
1163 			insert_resource_expand_to_fit(&iomem_resource, res);
1164 		res++;
1165 	}
1166 
1167 	/*
1168 	 * Try to bump up RAM regions to reasonable boundaries, to
1169 	 * avoid stolen RAM:
1170 	 */
1171 	for (i = 0; i < e820_table->nr_entries; i++) {
1172 		struct e820_entry *entry = &e820_table->entries[i];
1173 		u64 start, end;
1174 
1175 		if (entry->type != E820_TYPE_RAM)
1176 			continue;
1177 
1178 		start = entry->addr + entry->size;
1179 		end = round_up(start, ram_alignment(start)) - 1;
1180 		if (end > MAX_RESOURCE_SIZE)
1181 			end = MAX_RESOURCE_SIZE;
1182 		if (start >= end)
1183 			continue;
1184 
1185 		printk(KERN_DEBUG "e820: reserve RAM buffer [mem %#010llx-%#010llx]\n", start, end);
1186 		reserve_region_with_split(&iomem_resource, start, end, "RAM buffer");
1187 	}
1188 }
1189 
1190 /*
1191  * Pass the firmware (bootloader) E820 map to the kernel and process it:
1192  */
1193 char *__init e820__memory_setup_default(void)
1194 {
1195 	char *who = "BIOS-e820";
1196 
1197 	/*
1198 	 * Try to copy the BIOS-supplied E820-map.
1199 	 *
1200 	 * Otherwise fake a memory map; one section from 0k->640k,
1201 	 * the next section from 1mb->appropriate_mem_k
1202 	 */
1203 	if (append_e820_table(boot_params.e820_table, boot_params.e820_entries) < 0) {
1204 		u64 mem_size;
1205 
1206 		/* Compare results from other methods and take the one that gives more RAM: */
1207 		if (boot_params.alt_mem_k < boot_params.screen_info.ext_mem_k) {
1208 			mem_size = boot_params.screen_info.ext_mem_k;
1209 			who = "BIOS-88";
1210 		} else {
1211 			mem_size = boot_params.alt_mem_k;
1212 			who = "BIOS-e801";
1213 		}
1214 
1215 		e820_table->nr_entries = 0;
1216 		e820__range_add(0, LOWMEMSIZE(), E820_TYPE_RAM);
1217 		e820__range_add(HIGH_MEMORY, mem_size << 10, E820_TYPE_RAM);
1218 	}
1219 
1220 	/* We just appended a lot of ranges, sanitize the table: */
1221 	e820__update_table(e820_table);
1222 
1223 	return who;
1224 }
1225 
1226 /*
1227  * Calls e820__memory_setup_default() in essence to pick up the firmware/bootloader
1228  * E820 map - with an optional platform quirk available for virtual platforms
1229  * to override this method of boot environment processing:
1230  */
1231 void __init e820__memory_setup(void)
1232 {
1233 	char *who;
1234 
1235 	/* This is a firmware interface ABI - make sure we don't break it: */
1236 	BUILD_BUG_ON(sizeof(struct boot_e820_entry) != 20);
1237 
1238 	who = x86_init.resources.memory_setup();
1239 
1240 	memcpy(e820_table_kexec, e820_table, sizeof(*e820_table_kexec));
1241 	memcpy(e820_table_firmware, e820_table, sizeof(*e820_table_firmware));
1242 
1243 	pr_info("BIOS-provided physical RAM map:\n");
1244 	e820__print_table(who);
1245 }
1246 
1247 void __init e820__memblock_setup(void)
1248 {
1249 	int i;
1250 	u64 end;
1251 
1252 	/*
1253 	 * The bootstrap memblock region count maximum is 128 entries
1254 	 * (INIT_MEMBLOCK_REGIONS), but EFI might pass us more E820 entries
1255 	 * than that - so allow memblock resizing.
1256 	 *
1257 	 * This is safe, because this call happens pretty late during x86 setup,
1258 	 * so we know about reserved memory regions already. (This is important
1259 	 * so that memblock resizing does no stomp over reserved areas.)
1260 	 */
1261 	memblock_allow_resize();
1262 
1263 	for (i = 0; i < e820_table->nr_entries; i++) {
1264 		struct e820_entry *entry = &e820_table->entries[i];
1265 
1266 		end = entry->addr + entry->size;
1267 		if (end != (resource_size_t)end)
1268 			continue;
1269 
1270 		if (entry->type != E820_TYPE_RAM && entry->type != E820_TYPE_RESERVED_KERN)
1271 			continue;
1272 
1273 		memblock_add(entry->addr, entry->size);
1274 	}
1275 
1276 	/* Throw away partial pages: */
1277 	memblock_trim_memory(PAGE_SIZE);
1278 
1279 	memblock_dump_all();
1280 }
1281