xref: /openbmc/linux/arch/x86/kernel/e820.c (revision 78c99ba1)
1 /*
2  * Handle the memory map.
3  * The functions here do the job until bootmem takes over.
4  *
5  *  Getting sanitize_e820_map() in sync with i386 version by applying change:
6  *  -  Provisions for empty E820 memory regions (reported by certain BIOSes).
7  *     Alex Achenbach <xela@slit.de>, December 2002.
8  *  Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
9  *
10  */
11 #include <linux/kernel.h>
12 #include <linux/types.h>
13 #include <linux/init.h>
14 #include <linux/bootmem.h>
15 #include <linux/ioport.h>
16 #include <linux/string.h>
17 #include <linux/kexec.h>
18 #include <linux/module.h>
19 #include <linux/mm.h>
20 #include <linux/pfn.h>
21 #include <linux/suspend.h>
22 #include <linux/firmware-map.h>
23 
24 #include <asm/pgtable.h>
25 #include <asm/page.h>
26 #include <asm/e820.h>
27 #include <asm/proto.h>
28 #include <asm/setup.h>
29 #include <asm/trampoline.h>
30 
31 /*
32  * The e820 map is the map that gets modified e.g. with command line parameters
33  * and that is also registered with modifications in the kernel resource tree
34  * with the iomem_resource as parent.
35  *
36  * The e820_saved is directly saved after the BIOS-provided memory map is
37  * copied. It doesn't get modified afterwards. It's registered for the
38  * /sys/firmware/memmap interface.
39  *
40  * That memory map is not modified and is used as base for kexec. The kexec'd
41  * kernel should get the same memory map as the firmware provides. Then the
42  * user can e.g. boot the original kernel with mem=1G while still booting the
43  * next kernel with full memory.
44  */
45 struct e820map e820;
46 struct e820map e820_saved;
47 
48 /* For PCI or other memory-mapped resources */
49 unsigned long pci_mem_start = 0xaeedbabe;
50 #ifdef CONFIG_PCI
51 EXPORT_SYMBOL(pci_mem_start);
52 #endif
53 
54 /*
55  * This function checks if any part of the range <start,end> is mapped
56  * with type.
57  */
58 int
59 e820_any_mapped(u64 start, u64 end, unsigned type)
60 {
61 	int i;
62 
63 	for (i = 0; i < e820.nr_map; i++) {
64 		struct e820entry *ei = &e820.map[i];
65 
66 		if (type && ei->type != type)
67 			continue;
68 		if (ei->addr >= end || ei->addr + ei->size <= start)
69 			continue;
70 		return 1;
71 	}
72 	return 0;
73 }
74 EXPORT_SYMBOL_GPL(e820_any_mapped);
75 
76 /*
77  * This function checks if the entire range <start,end> is mapped with type.
78  *
79  * Note: this function only works correct if the e820 table is sorted and
80  * not-overlapping, which is the case
81  */
82 int __init e820_all_mapped(u64 start, u64 end, unsigned type)
83 {
84 	int i;
85 
86 	for (i = 0; i < e820.nr_map; i++) {
87 		struct e820entry *ei = &e820.map[i];
88 
89 		if (type && ei->type != type)
90 			continue;
91 		/* is the region (part) in overlap with the current region ?*/
92 		if (ei->addr >= end || ei->addr + ei->size <= start)
93 			continue;
94 
95 		/* if the region is at the beginning of <start,end> we move
96 		 * start to the end of the region since it's ok until there
97 		 */
98 		if (ei->addr <= start)
99 			start = ei->addr + ei->size;
100 		/*
101 		 * if start is now at or beyond end, we're done, full
102 		 * coverage
103 		 */
104 		if (start >= end)
105 			return 1;
106 	}
107 	return 0;
108 }
109 
110 /*
111  * Add a memory region to the kernel e820 map.
112  */
113 static void __init __e820_add_region(struct e820map *e820x, u64 start, u64 size,
114 					 int type)
115 {
116 	int x = e820x->nr_map;
117 
118 	if (x == ARRAY_SIZE(e820x->map)) {
119 		printk(KERN_ERR "Ooops! Too many entries in the memory map!\n");
120 		return;
121 	}
122 
123 	e820x->map[x].addr = start;
124 	e820x->map[x].size = size;
125 	e820x->map[x].type = type;
126 	e820x->nr_map++;
127 }
128 
129 void __init e820_add_region(u64 start, u64 size, int type)
130 {
131 	__e820_add_region(&e820, start, size, type);
132 }
133 
134 static void __init e820_print_type(u32 type)
135 {
136 	switch (type) {
137 	case E820_RAM:
138 	case E820_RESERVED_KERN:
139 		printk(KERN_CONT "(usable)");
140 		break;
141 	case E820_RESERVED:
142 		printk(KERN_CONT "(reserved)");
143 		break;
144 	case E820_ACPI:
145 		printk(KERN_CONT "(ACPI data)");
146 		break;
147 	case E820_NVS:
148 		printk(KERN_CONT "(ACPI NVS)");
149 		break;
150 	case E820_UNUSABLE:
151 		printk(KERN_CONT "(unusable)");
152 		break;
153 	default:
154 		printk(KERN_CONT "type %u", type);
155 		break;
156 	}
157 }
158 
159 void __init e820_print_map(char *who)
160 {
161 	int i;
162 
163 	for (i = 0; i < e820.nr_map; i++) {
164 		printk(KERN_INFO " %s: %016Lx - %016Lx ", who,
165 		       (unsigned long long) e820.map[i].addr,
166 		       (unsigned long long)
167 		       (e820.map[i].addr + e820.map[i].size));
168 		e820_print_type(e820.map[i].type);
169 		printk(KERN_CONT "\n");
170 	}
171 }
172 
173 /*
174  * Sanitize the BIOS e820 map.
175  *
176  * Some e820 responses include overlapping entries. The following
177  * replaces the original e820 map with a new one, removing overlaps,
178  * and resolving conflicting memory types in favor of highest
179  * numbered type.
180  *
181  * The input parameter biosmap points to an array of 'struct
182  * e820entry' which on entry has elements in the range [0, *pnr_map)
183  * valid, and which has space for up to max_nr_map entries.
184  * On return, the resulting sanitized e820 map entries will be in
185  * overwritten in the same location, starting at biosmap.
186  *
187  * The integer pointed to by pnr_map must be valid on entry (the
188  * current number of valid entries located at biosmap) and will
189  * be updated on return, with the new number of valid entries
190  * (something no more than max_nr_map.)
191  *
192  * The return value from sanitize_e820_map() is zero if it
193  * successfully 'sanitized' the map entries passed in, and is -1
194  * if it did nothing, which can happen if either of (1) it was
195  * only passed one map entry, or (2) any of the input map entries
196  * were invalid (start + size < start, meaning that the size was
197  * so big the described memory range wrapped around through zero.)
198  *
199  *	Visually we're performing the following
200  *	(1,2,3,4 = memory types)...
201  *
202  *	Sample memory map (w/overlaps):
203  *	   ____22__________________
204  *	   ______________________4_
205  *	   ____1111________________
206  *	   _44_____________________
207  *	   11111111________________
208  *	   ____________________33__
209  *	   ___________44___________
210  *	   __________33333_________
211  *	   ______________22________
212  *	   ___________________2222_
213  *	   _________111111111______
214  *	   _____________________11_
215  *	   _________________4______
216  *
217  *	Sanitized equivalent (no overlap):
218  *	   1_______________________
219  *	   _44_____________________
220  *	   ___1____________________
221  *	   ____22__________________
222  *	   ______11________________
223  *	   _________1______________
224  *	   __________3_____________
225  *	   ___________44___________
226  *	   _____________33_________
227  *	   _______________2________
228  *	   ________________1_______
229  *	   _________________4______
230  *	   ___________________2____
231  *	   ____________________33__
232  *	   ______________________4_
233  */
234 
235 int __init sanitize_e820_map(struct e820entry *biosmap, int max_nr_map,
236 			     u32 *pnr_map)
237 {
238 	struct change_member {
239 		struct e820entry *pbios; /* pointer to original bios entry */
240 		unsigned long long addr; /* address for this change point */
241 	};
242 	static struct change_member change_point_list[2*E820_X_MAX] __initdata;
243 	static struct change_member *change_point[2*E820_X_MAX] __initdata;
244 	static struct e820entry *overlap_list[E820_X_MAX] __initdata;
245 	static struct e820entry new_bios[E820_X_MAX] __initdata;
246 	struct change_member *change_tmp;
247 	unsigned long current_type, last_type;
248 	unsigned long long last_addr;
249 	int chgidx, still_changing;
250 	int overlap_entries;
251 	int new_bios_entry;
252 	int old_nr, new_nr, chg_nr;
253 	int i;
254 
255 	/* if there's only one memory region, don't bother */
256 	if (*pnr_map < 2)
257 		return -1;
258 
259 	old_nr = *pnr_map;
260 	BUG_ON(old_nr > max_nr_map);
261 
262 	/* bail out if we find any unreasonable addresses in bios map */
263 	for (i = 0; i < old_nr; i++)
264 		if (biosmap[i].addr + biosmap[i].size < biosmap[i].addr)
265 			return -1;
266 
267 	/* create pointers for initial change-point information (for sorting) */
268 	for (i = 0; i < 2 * old_nr; i++)
269 		change_point[i] = &change_point_list[i];
270 
271 	/* record all known change-points (starting and ending addresses),
272 	   omitting those that are for empty memory regions */
273 	chgidx = 0;
274 	for (i = 0; i < old_nr; i++)	{
275 		if (biosmap[i].size != 0) {
276 			change_point[chgidx]->addr = biosmap[i].addr;
277 			change_point[chgidx++]->pbios = &biosmap[i];
278 			change_point[chgidx]->addr = biosmap[i].addr +
279 				biosmap[i].size;
280 			change_point[chgidx++]->pbios = &biosmap[i];
281 		}
282 	}
283 	chg_nr = chgidx;
284 
285 	/* sort change-point list by memory addresses (low -> high) */
286 	still_changing = 1;
287 	while (still_changing)	{
288 		still_changing = 0;
289 		for (i = 1; i < chg_nr; i++)  {
290 			unsigned long long curaddr, lastaddr;
291 			unsigned long long curpbaddr, lastpbaddr;
292 
293 			curaddr = change_point[i]->addr;
294 			lastaddr = change_point[i - 1]->addr;
295 			curpbaddr = change_point[i]->pbios->addr;
296 			lastpbaddr = change_point[i - 1]->pbios->addr;
297 
298 			/*
299 			 * swap entries, when:
300 			 *
301 			 * curaddr > lastaddr or
302 			 * curaddr == lastaddr and curaddr == curpbaddr and
303 			 * lastaddr != lastpbaddr
304 			 */
305 			if (curaddr < lastaddr ||
306 			    (curaddr == lastaddr && curaddr == curpbaddr &&
307 			     lastaddr != lastpbaddr)) {
308 				change_tmp = change_point[i];
309 				change_point[i] = change_point[i-1];
310 				change_point[i-1] = change_tmp;
311 				still_changing = 1;
312 			}
313 		}
314 	}
315 
316 	/* create a new bios memory map, removing overlaps */
317 	overlap_entries = 0;	 /* number of entries in the overlap table */
318 	new_bios_entry = 0;	 /* index for creating new bios map entries */
319 	last_type = 0;		 /* start with undefined memory type */
320 	last_addr = 0;		 /* start with 0 as last starting address */
321 
322 	/* loop through change-points, determining affect on the new bios map */
323 	for (chgidx = 0; chgidx < chg_nr; chgidx++) {
324 		/* keep track of all overlapping bios entries */
325 		if (change_point[chgidx]->addr ==
326 		    change_point[chgidx]->pbios->addr) {
327 			/*
328 			 * add map entry to overlap list (> 1 entry
329 			 * implies an overlap)
330 			 */
331 			overlap_list[overlap_entries++] =
332 				change_point[chgidx]->pbios;
333 		} else {
334 			/*
335 			 * remove entry from list (order independent,
336 			 * so swap with last)
337 			 */
338 			for (i = 0; i < overlap_entries; i++) {
339 				if (overlap_list[i] ==
340 				    change_point[chgidx]->pbios)
341 					overlap_list[i] =
342 						overlap_list[overlap_entries-1];
343 			}
344 			overlap_entries--;
345 		}
346 		/*
347 		 * if there are overlapping entries, decide which
348 		 * "type" to use (larger value takes precedence --
349 		 * 1=usable, 2,3,4,4+=unusable)
350 		 */
351 		current_type = 0;
352 		for (i = 0; i < overlap_entries; i++)
353 			if (overlap_list[i]->type > current_type)
354 				current_type = overlap_list[i]->type;
355 		/*
356 		 * continue building up new bios map based on this
357 		 * information
358 		 */
359 		if (current_type != last_type)	{
360 			if (last_type != 0)	 {
361 				new_bios[new_bios_entry].size =
362 					change_point[chgidx]->addr - last_addr;
363 				/*
364 				 * move forward only if the new size
365 				 * was non-zero
366 				 */
367 				if (new_bios[new_bios_entry].size != 0)
368 					/*
369 					 * no more space left for new
370 					 * bios entries ?
371 					 */
372 					if (++new_bios_entry >= max_nr_map)
373 						break;
374 			}
375 			if (current_type != 0)	{
376 				new_bios[new_bios_entry].addr =
377 					change_point[chgidx]->addr;
378 				new_bios[new_bios_entry].type = current_type;
379 				last_addr = change_point[chgidx]->addr;
380 			}
381 			last_type = current_type;
382 		}
383 	}
384 	/* retain count for new bios entries */
385 	new_nr = new_bios_entry;
386 
387 	/* copy new bios mapping into original location */
388 	memcpy(biosmap, new_bios, new_nr * sizeof(struct e820entry));
389 	*pnr_map = new_nr;
390 
391 	return 0;
392 }
393 
394 static int __init __append_e820_map(struct e820entry *biosmap, int nr_map)
395 {
396 	while (nr_map) {
397 		u64 start = biosmap->addr;
398 		u64 size = biosmap->size;
399 		u64 end = start + size;
400 		u32 type = biosmap->type;
401 
402 		/* Overflow in 64 bits? Ignore the memory map. */
403 		if (start > end)
404 			return -1;
405 
406 		e820_add_region(start, size, type);
407 
408 		biosmap++;
409 		nr_map--;
410 	}
411 	return 0;
412 }
413 
414 /*
415  * Copy the BIOS e820 map into a safe place.
416  *
417  * Sanity-check it while we're at it..
418  *
419  * If we're lucky and live on a modern system, the setup code
420  * will have given us a memory map that we can use to properly
421  * set up memory.  If we aren't, we'll fake a memory map.
422  */
423 static int __init append_e820_map(struct e820entry *biosmap, int nr_map)
424 {
425 	/* Only one memory region (or negative)? Ignore it */
426 	if (nr_map < 2)
427 		return -1;
428 
429 	return __append_e820_map(biosmap, nr_map);
430 }
431 
432 static u64 __init __e820_update_range(struct e820map *e820x, u64 start,
433 					u64 size, unsigned old_type,
434 					unsigned new_type)
435 {
436 	u64 end;
437 	unsigned int i;
438 	u64 real_updated_size = 0;
439 
440 	BUG_ON(old_type == new_type);
441 
442 	if (size > (ULLONG_MAX - start))
443 		size = ULLONG_MAX - start;
444 
445 	end = start + size;
446 	printk(KERN_DEBUG "e820 update range: %016Lx - %016Lx ",
447 		       (unsigned long long) start,
448 		       (unsigned long long) end);
449 	e820_print_type(old_type);
450 	printk(KERN_CONT " ==> ");
451 	e820_print_type(new_type);
452 	printk(KERN_CONT "\n");
453 
454 	for (i = 0; i < e820x->nr_map; i++) {
455 		struct e820entry *ei = &e820x->map[i];
456 		u64 final_start, final_end;
457 		u64 ei_end;
458 
459 		if (ei->type != old_type)
460 			continue;
461 
462 		ei_end = ei->addr + ei->size;
463 		/* totally covered by new range? */
464 		if (ei->addr >= start && ei_end <= end) {
465 			ei->type = new_type;
466 			real_updated_size += ei->size;
467 			continue;
468 		}
469 
470 		/* new range is totally covered? */
471 		if (ei->addr < start && ei_end > end) {
472 			__e820_add_region(e820x, start, size, new_type);
473 			__e820_add_region(e820x, end, ei_end - end, ei->type);
474 			ei->size = start - ei->addr;
475 			real_updated_size += size;
476 			continue;
477 		}
478 
479 		/* partially covered */
480 		final_start = max(start, ei->addr);
481 		final_end = min(end, ei_end);
482 		if (final_start >= final_end)
483 			continue;
484 
485 		__e820_add_region(e820x, final_start, final_end - final_start,
486 				  new_type);
487 
488 		real_updated_size += final_end - final_start;
489 
490 		/*
491 		 * left range could be head or tail, so need to update
492 		 * size at first.
493 		 */
494 		ei->size -= final_end - final_start;
495 		if (ei->addr < final_start)
496 			continue;
497 		ei->addr = final_end;
498 	}
499 	return real_updated_size;
500 }
501 
502 u64 __init e820_update_range(u64 start, u64 size, unsigned old_type,
503 			     unsigned new_type)
504 {
505 	return __e820_update_range(&e820, start, size, old_type, new_type);
506 }
507 
508 static u64 __init e820_update_range_saved(u64 start, u64 size,
509 					  unsigned old_type, unsigned new_type)
510 {
511 	return __e820_update_range(&e820_saved, start, size, old_type,
512 				     new_type);
513 }
514 
515 /* make e820 not cover the range */
516 u64 __init e820_remove_range(u64 start, u64 size, unsigned old_type,
517 			     int checktype)
518 {
519 	int i;
520 	u64 real_removed_size = 0;
521 
522 	if (size > (ULLONG_MAX - start))
523 		size = ULLONG_MAX - start;
524 
525 	for (i = 0; i < e820.nr_map; i++) {
526 		struct e820entry *ei = &e820.map[i];
527 		u64 final_start, final_end;
528 
529 		if (checktype && ei->type != old_type)
530 			continue;
531 		/* totally covered? */
532 		if (ei->addr >= start &&
533 		    (ei->addr + ei->size) <= (start + size)) {
534 			real_removed_size += ei->size;
535 			memset(ei, 0, sizeof(struct e820entry));
536 			continue;
537 		}
538 		/* partially covered */
539 		final_start = max(start, ei->addr);
540 		final_end = min(start + size, ei->addr + ei->size);
541 		if (final_start >= final_end)
542 			continue;
543 		real_removed_size += final_end - final_start;
544 
545 		ei->size -= final_end - final_start;
546 		if (ei->addr < final_start)
547 			continue;
548 		ei->addr = final_end;
549 	}
550 	return real_removed_size;
551 }
552 
553 void __init update_e820(void)
554 {
555 	u32 nr_map;
556 
557 	nr_map = e820.nr_map;
558 	if (sanitize_e820_map(e820.map, ARRAY_SIZE(e820.map), &nr_map))
559 		return;
560 	e820.nr_map = nr_map;
561 	printk(KERN_INFO "modified physical RAM map:\n");
562 	e820_print_map("modified");
563 }
564 static void __init update_e820_saved(void)
565 {
566 	u32 nr_map;
567 
568 	nr_map = e820_saved.nr_map;
569 	if (sanitize_e820_map(e820_saved.map, ARRAY_SIZE(e820_saved.map), &nr_map))
570 		return;
571 	e820_saved.nr_map = nr_map;
572 }
573 #define MAX_GAP_END 0x100000000ull
574 /*
575  * Search for a gap in the e820 memory space from start_addr to end_addr.
576  */
577 __init int e820_search_gap(unsigned long *gapstart, unsigned long *gapsize,
578 		unsigned long start_addr, unsigned long long end_addr)
579 {
580 	unsigned long long last;
581 	int i = e820.nr_map;
582 	int found = 0;
583 
584 	last = (end_addr && end_addr < MAX_GAP_END) ? end_addr : MAX_GAP_END;
585 
586 	while (--i >= 0) {
587 		unsigned long long start = e820.map[i].addr;
588 		unsigned long long end = start + e820.map[i].size;
589 
590 		if (end < start_addr)
591 			continue;
592 
593 		/*
594 		 * Since "last" is at most 4GB, we know we'll
595 		 * fit in 32 bits if this condition is true
596 		 */
597 		if (last > end) {
598 			unsigned long gap = last - end;
599 
600 			if (gap >= *gapsize) {
601 				*gapsize = gap;
602 				*gapstart = end;
603 				found = 1;
604 			}
605 		}
606 		if (start < last)
607 			last = start;
608 	}
609 	return found;
610 }
611 
612 /*
613  * Search for the biggest gap in the low 32 bits of the e820
614  * memory space.  We pass this space to PCI to assign MMIO resources
615  * for hotplug or unconfigured devices in.
616  * Hopefully the BIOS let enough space left.
617  */
618 __init void e820_setup_gap(void)
619 {
620 	unsigned long gapstart, gapsize;
621 	int found;
622 
623 	gapstart = 0x10000000;
624 	gapsize = 0x400000;
625 	found  = e820_search_gap(&gapstart, &gapsize, 0, MAX_GAP_END);
626 
627 #ifdef CONFIG_X86_64
628 	if (!found) {
629 		gapstart = (max_pfn << PAGE_SHIFT) + 1024*1024;
630 		printk(KERN_ERR "PCI: Warning: Cannot find a gap in the 32bit "
631 		       "address range\n"
632 		       KERN_ERR "PCI: Unassigned devices with 32bit resource "
633 		       "registers may break!\n");
634 	}
635 #endif
636 
637 	/*
638 	 * e820_reserve_resources_late protect stolen RAM already
639 	 */
640 	pci_mem_start = gapstart;
641 
642 	printk(KERN_INFO
643 	       "Allocating PCI resources starting at %lx (gap: %lx:%lx)\n",
644 	       pci_mem_start, gapstart, gapsize);
645 }
646 
647 /**
648  * Because of the size limitation of struct boot_params, only first
649  * 128 E820 memory entries are passed to kernel via
650  * boot_params.e820_map, others are passed via SETUP_E820_EXT node of
651  * linked list of struct setup_data, which is parsed here.
652  */
653 void __init parse_e820_ext(struct setup_data *sdata, unsigned long pa_data)
654 {
655 	u32 map_len;
656 	int entries;
657 	struct e820entry *extmap;
658 
659 	entries = sdata->len / sizeof(struct e820entry);
660 	map_len = sdata->len + sizeof(struct setup_data);
661 	if (map_len > PAGE_SIZE)
662 		sdata = early_ioremap(pa_data, map_len);
663 	extmap = (struct e820entry *)(sdata->data);
664 	__append_e820_map(extmap, entries);
665 	sanitize_e820_map(e820.map, ARRAY_SIZE(e820.map), &e820.nr_map);
666 	if (map_len > PAGE_SIZE)
667 		early_iounmap(sdata, map_len);
668 	printk(KERN_INFO "extended physical RAM map:\n");
669 	e820_print_map("extended");
670 }
671 
672 #if defined(CONFIG_X86_64) || \
673 	(defined(CONFIG_X86_32) && defined(CONFIG_HIBERNATION))
674 /**
675  * Find the ranges of physical addresses that do not correspond to
676  * e820 RAM areas and mark the corresponding pages as nosave for
677  * hibernation (32 bit) or software suspend and suspend to RAM (64 bit).
678  *
679  * This function requires the e820 map to be sorted and without any
680  * overlapping entries and assumes the first e820 area to be RAM.
681  */
682 void __init e820_mark_nosave_regions(unsigned long limit_pfn)
683 {
684 	int i;
685 	unsigned long pfn;
686 
687 	pfn = PFN_DOWN(e820.map[0].addr + e820.map[0].size);
688 	for (i = 1; i < e820.nr_map; i++) {
689 		struct e820entry *ei = &e820.map[i];
690 
691 		if (pfn < PFN_UP(ei->addr))
692 			register_nosave_region(pfn, PFN_UP(ei->addr));
693 
694 		pfn = PFN_DOWN(ei->addr + ei->size);
695 		if (ei->type != E820_RAM && ei->type != E820_RESERVED_KERN)
696 			register_nosave_region(PFN_UP(ei->addr), pfn);
697 
698 		if (pfn >= limit_pfn)
699 			break;
700 	}
701 }
702 #endif
703 
704 #ifdef CONFIG_HIBERNATION
705 /**
706  * Mark ACPI NVS memory region, so that we can save/restore it during
707  * hibernation and the subsequent resume.
708  */
709 static int __init e820_mark_nvs_memory(void)
710 {
711 	int i;
712 
713 	for (i = 0; i < e820.nr_map; i++) {
714 		struct e820entry *ei = &e820.map[i];
715 
716 		if (ei->type == E820_NVS)
717 			hibernate_nvs_register(ei->addr, ei->size);
718 	}
719 
720 	return 0;
721 }
722 core_initcall(e820_mark_nvs_memory);
723 #endif
724 
725 /*
726  * Early reserved memory areas.
727  */
728 #define MAX_EARLY_RES 20
729 
730 struct early_res {
731 	u64 start, end;
732 	char name[16];
733 	char overlap_ok;
734 };
735 static struct early_res early_res[MAX_EARLY_RES] __initdata = {
736 	{ 0, PAGE_SIZE, "BIOS data page" },	/* BIOS data page */
737 	{}
738 };
739 
740 static int __init find_overlapped_early(u64 start, u64 end)
741 {
742 	int i;
743 	struct early_res *r;
744 
745 	for (i = 0; i < MAX_EARLY_RES && early_res[i].end; i++) {
746 		r = &early_res[i];
747 		if (end > r->start && start < r->end)
748 			break;
749 	}
750 
751 	return i;
752 }
753 
754 /*
755  * Drop the i-th range from the early reservation map,
756  * by copying any higher ranges down one over it, and
757  * clearing what had been the last slot.
758  */
759 static void __init drop_range(int i)
760 {
761 	int j;
762 
763 	for (j = i + 1; j < MAX_EARLY_RES && early_res[j].end; j++)
764 		;
765 
766 	memmove(&early_res[i], &early_res[i + 1],
767 	       (j - 1 - i) * sizeof(struct early_res));
768 
769 	early_res[j - 1].end = 0;
770 }
771 
772 /*
773  * Split any existing ranges that:
774  *  1) are marked 'overlap_ok', and
775  *  2) overlap with the stated range [start, end)
776  * into whatever portion (if any) of the existing range is entirely
777  * below or entirely above the stated range.  Drop the portion
778  * of the existing range that overlaps with the stated range,
779  * which will allow the caller of this routine to then add that
780  * stated range without conflicting with any existing range.
781  */
782 static void __init drop_overlaps_that_are_ok(u64 start, u64 end)
783 {
784 	int i;
785 	struct early_res *r;
786 	u64 lower_start, lower_end;
787 	u64 upper_start, upper_end;
788 	char name[16];
789 
790 	for (i = 0; i < MAX_EARLY_RES && early_res[i].end; i++) {
791 		r = &early_res[i];
792 
793 		/* Continue past non-overlapping ranges */
794 		if (end <= r->start || start >= r->end)
795 			continue;
796 
797 		/*
798 		 * Leave non-ok overlaps as is; let caller
799 		 * panic "Overlapping early reservations"
800 		 * when it hits this overlap.
801 		 */
802 		if (!r->overlap_ok)
803 			return;
804 
805 		/*
806 		 * We have an ok overlap.  We will drop it from the early
807 		 * reservation map, and add back in any non-overlapping
808 		 * portions (lower or upper) as separate, overlap_ok,
809 		 * non-overlapping ranges.
810 		 */
811 
812 		/* 1. Note any non-overlapping (lower or upper) ranges. */
813 		strncpy(name, r->name, sizeof(name) - 1);
814 
815 		lower_start = lower_end = 0;
816 		upper_start = upper_end = 0;
817 		if (r->start < start) {
818 		 	lower_start = r->start;
819 			lower_end = start;
820 		}
821 		if (r->end > end) {
822 			upper_start = end;
823 			upper_end = r->end;
824 		}
825 
826 		/* 2. Drop the original ok overlapping range */
827 		drop_range(i);
828 
829 		i--;		/* resume for-loop on copied down entry */
830 
831 		/* 3. Add back in any non-overlapping ranges. */
832 		if (lower_end)
833 			reserve_early_overlap_ok(lower_start, lower_end, name);
834 		if (upper_end)
835 			reserve_early_overlap_ok(upper_start, upper_end, name);
836 	}
837 }
838 
839 static void __init __reserve_early(u64 start, u64 end, char *name,
840 						int overlap_ok)
841 {
842 	int i;
843 	struct early_res *r;
844 
845 	i = find_overlapped_early(start, end);
846 	if (i >= MAX_EARLY_RES)
847 		panic("Too many early reservations");
848 	r = &early_res[i];
849 	if (r->end)
850 		panic("Overlapping early reservations "
851 		      "%llx-%llx %s to %llx-%llx %s\n",
852 		      start, end - 1, name?name:"", r->start,
853 		      r->end - 1, r->name);
854 	r->start = start;
855 	r->end = end;
856 	r->overlap_ok = overlap_ok;
857 	if (name)
858 		strncpy(r->name, name, sizeof(r->name) - 1);
859 }
860 
861 /*
862  * A few early reservtations come here.
863  *
864  * The 'overlap_ok' in the name of this routine does -not- mean it
865  * is ok for these reservations to overlap an earlier reservation.
866  * Rather it means that it is ok for subsequent reservations to
867  * overlap this one.
868  *
869  * Use this entry point to reserve early ranges when you are doing
870  * so out of "Paranoia", reserving perhaps more memory than you need,
871  * just in case, and don't mind a subsequent overlapping reservation
872  * that is known to be needed.
873  *
874  * The drop_overlaps_that_are_ok() call here isn't really needed.
875  * It would be needed if we had two colliding 'overlap_ok'
876  * reservations, so that the second such would not panic on the
877  * overlap with the first.  We don't have any such as of this
878  * writing, but might as well tolerate such if it happens in
879  * the future.
880  */
881 void __init reserve_early_overlap_ok(u64 start, u64 end, char *name)
882 {
883 	drop_overlaps_that_are_ok(start, end);
884 	__reserve_early(start, end, name, 1);
885 }
886 
887 /*
888  * Most early reservations come here.
889  *
890  * We first have drop_overlaps_that_are_ok() drop any pre-existing
891  * 'overlap_ok' ranges, so that we can then reserve this memory
892  * range without risk of panic'ing on an overlapping overlap_ok
893  * early reservation.
894  */
895 void __init reserve_early(u64 start, u64 end, char *name)
896 {
897 	if (start >= end)
898 		return;
899 
900 	drop_overlaps_that_are_ok(start, end);
901 	__reserve_early(start, end, name, 0);
902 }
903 
904 void __init free_early(u64 start, u64 end)
905 {
906 	struct early_res *r;
907 	int i;
908 
909 	i = find_overlapped_early(start, end);
910 	r = &early_res[i];
911 	if (i >= MAX_EARLY_RES || r->end != end || r->start != start)
912 		panic("free_early on not reserved area: %llx-%llx!",
913 			 start, end - 1);
914 
915 	drop_range(i);
916 }
917 
918 void __init early_res_to_bootmem(u64 start, u64 end)
919 {
920 	int i, count;
921 	u64 final_start, final_end;
922 
923 	count  = 0;
924 	for (i = 0; i < MAX_EARLY_RES && early_res[i].end; i++)
925 		count++;
926 
927 	printk(KERN_INFO "(%d early reservations) ==> bootmem [%010llx - %010llx]\n",
928 			 count, start, end);
929 	for (i = 0; i < count; i++) {
930 		struct early_res *r = &early_res[i];
931 		printk(KERN_INFO "  #%d [%010llx - %010llx] %16s", i,
932 			r->start, r->end, r->name);
933 		final_start = max(start, r->start);
934 		final_end = min(end, r->end);
935 		if (final_start >= final_end) {
936 			printk(KERN_CONT "\n");
937 			continue;
938 		}
939 		printk(KERN_CONT " ==> [%010llx - %010llx]\n",
940 			final_start, final_end);
941 		reserve_bootmem_generic(final_start, final_end - final_start,
942 				BOOTMEM_DEFAULT);
943 	}
944 }
945 
946 /* Check for already reserved areas */
947 static inline int __init bad_addr(u64 *addrp, u64 size, u64 align)
948 {
949 	int i;
950 	u64 addr = *addrp;
951 	int changed = 0;
952 	struct early_res *r;
953 again:
954 	i = find_overlapped_early(addr, addr + size);
955 	r = &early_res[i];
956 	if (i < MAX_EARLY_RES && r->end) {
957 		*addrp = addr = round_up(r->end, align);
958 		changed = 1;
959 		goto again;
960 	}
961 	return changed;
962 }
963 
964 /* Check for already reserved areas */
965 static inline int __init bad_addr_size(u64 *addrp, u64 *sizep, u64 align)
966 {
967 	int i;
968 	u64 addr = *addrp, last;
969 	u64 size = *sizep;
970 	int changed = 0;
971 again:
972 	last = addr + size;
973 	for (i = 0; i < MAX_EARLY_RES && early_res[i].end; i++) {
974 		struct early_res *r = &early_res[i];
975 		if (last > r->start && addr < r->start) {
976 			size = r->start - addr;
977 			changed = 1;
978 			goto again;
979 		}
980 		if (last > r->end && addr < r->end) {
981 			addr = round_up(r->end, align);
982 			size = last - addr;
983 			changed = 1;
984 			goto again;
985 		}
986 		if (last <= r->end && addr >= r->start) {
987 			(*sizep)++;
988 			return 0;
989 		}
990 	}
991 	if (changed) {
992 		*addrp = addr;
993 		*sizep = size;
994 	}
995 	return changed;
996 }
997 
998 /*
999  * Find a free area with specified alignment in a specific range.
1000  */
1001 u64 __init find_e820_area(u64 start, u64 end, u64 size, u64 align)
1002 {
1003 	int i;
1004 
1005 	for (i = 0; i < e820.nr_map; i++) {
1006 		struct e820entry *ei = &e820.map[i];
1007 		u64 addr, last;
1008 		u64 ei_last;
1009 
1010 		if (ei->type != E820_RAM)
1011 			continue;
1012 		addr = round_up(ei->addr, align);
1013 		ei_last = ei->addr + ei->size;
1014 		if (addr < start)
1015 			addr = round_up(start, align);
1016 		if (addr >= ei_last)
1017 			continue;
1018 		while (bad_addr(&addr, size, align) && addr+size <= ei_last)
1019 			;
1020 		last = addr + size;
1021 		if (last > ei_last)
1022 			continue;
1023 		if (last > end)
1024 			continue;
1025 		return addr;
1026 	}
1027 	return -1ULL;
1028 }
1029 
1030 /*
1031  * Find next free range after *start
1032  */
1033 u64 __init find_e820_area_size(u64 start, u64 *sizep, u64 align)
1034 {
1035 	int i;
1036 
1037 	for (i = 0; i < e820.nr_map; i++) {
1038 		struct e820entry *ei = &e820.map[i];
1039 		u64 addr, last;
1040 		u64 ei_last;
1041 
1042 		if (ei->type != E820_RAM)
1043 			continue;
1044 		addr = round_up(ei->addr, align);
1045 		ei_last = ei->addr + ei->size;
1046 		if (addr < start)
1047 			addr = round_up(start, align);
1048 		if (addr >= ei_last)
1049 			continue;
1050 		*sizep = ei_last - addr;
1051 		while (bad_addr_size(&addr, sizep, align) &&
1052 			addr + *sizep <= ei_last)
1053 			;
1054 		last = addr + *sizep;
1055 		if (last > ei_last)
1056 			continue;
1057 		return addr;
1058 	}
1059 
1060 	return -1ULL;
1061 }
1062 
1063 /*
1064  * pre allocated 4k and reserved it in e820
1065  */
1066 u64 __init early_reserve_e820(u64 startt, u64 sizet, u64 align)
1067 {
1068 	u64 size = 0;
1069 	u64 addr;
1070 	u64 start;
1071 
1072 	for (start = startt; ; start += size) {
1073 		start = find_e820_area_size(start, &size, align);
1074 		if (!(start + 1))
1075 			return 0;
1076 		if (size >= sizet)
1077 			break;
1078 	}
1079 
1080 #ifdef CONFIG_X86_32
1081 	if (start >= MAXMEM)
1082 		return 0;
1083 	if (start + size > MAXMEM)
1084 		size = MAXMEM - start;
1085 #endif
1086 
1087 	addr = round_down(start + size - sizet, align);
1088 	if (addr < start)
1089 		return 0;
1090 	e820_update_range(addr, sizet, E820_RAM, E820_RESERVED);
1091 	e820_update_range_saved(addr, sizet, E820_RAM, E820_RESERVED);
1092 	printk(KERN_INFO "update e820 for early_reserve_e820\n");
1093 	update_e820();
1094 	update_e820_saved();
1095 
1096 	return addr;
1097 }
1098 
1099 #ifdef CONFIG_X86_32
1100 # ifdef CONFIG_X86_PAE
1101 #  define MAX_ARCH_PFN		(1ULL<<(36-PAGE_SHIFT))
1102 # else
1103 #  define MAX_ARCH_PFN		(1ULL<<(32-PAGE_SHIFT))
1104 # endif
1105 #else /* CONFIG_X86_32 */
1106 # define MAX_ARCH_PFN MAXMEM>>PAGE_SHIFT
1107 #endif
1108 
1109 /*
1110  * Find the highest page frame number we have available
1111  */
1112 static unsigned long __init e820_end_pfn(unsigned long limit_pfn, unsigned type)
1113 {
1114 	int i;
1115 	unsigned long last_pfn = 0;
1116 	unsigned long max_arch_pfn = MAX_ARCH_PFN;
1117 
1118 	for (i = 0; i < e820.nr_map; i++) {
1119 		struct e820entry *ei = &e820.map[i];
1120 		unsigned long start_pfn;
1121 		unsigned long end_pfn;
1122 
1123 		if (ei->type != type)
1124 			continue;
1125 
1126 		start_pfn = ei->addr >> PAGE_SHIFT;
1127 		end_pfn = (ei->addr + ei->size) >> PAGE_SHIFT;
1128 
1129 		if (start_pfn >= limit_pfn)
1130 			continue;
1131 		if (end_pfn > limit_pfn) {
1132 			last_pfn = limit_pfn;
1133 			break;
1134 		}
1135 		if (end_pfn > last_pfn)
1136 			last_pfn = end_pfn;
1137 	}
1138 
1139 	if (last_pfn > max_arch_pfn)
1140 		last_pfn = max_arch_pfn;
1141 
1142 	printk(KERN_INFO "last_pfn = %#lx max_arch_pfn = %#lx\n",
1143 			 last_pfn, max_arch_pfn);
1144 	return last_pfn;
1145 }
1146 unsigned long __init e820_end_of_ram_pfn(void)
1147 {
1148 	return e820_end_pfn(MAX_ARCH_PFN, E820_RAM);
1149 }
1150 
1151 unsigned long __init e820_end_of_low_ram_pfn(void)
1152 {
1153 	return e820_end_pfn(1UL<<(32 - PAGE_SHIFT), E820_RAM);
1154 }
1155 /*
1156  * Finds an active region in the address range from start_pfn to last_pfn and
1157  * returns its range in ei_startpfn and ei_endpfn for the e820 entry.
1158  */
1159 int __init e820_find_active_region(const struct e820entry *ei,
1160 				  unsigned long start_pfn,
1161 				  unsigned long last_pfn,
1162 				  unsigned long *ei_startpfn,
1163 				  unsigned long *ei_endpfn)
1164 {
1165 	u64 align = PAGE_SIZE;
1166 
1167 	*ei_startpfn = round_up(ei->addr, align) >> PAGE_SHIFT;
1168 	*ei_endpfn = round_down(ei->addr + ei->size, align) >> PAGE_SHIFT;
1169 
1170 	/* Skip map entries smaller than a page */
1171 	if (*ei_startpfn >= *ei_endpfn)
1172 		return 0;
1173 
1174 	/* Skip if map is outside the node */
1175 	if (ei->type != E820_RAM || *ei_endpfn <= start_pfn ||
1176 				    *ei_startpfn >= last_pfn)
1177 		return 0;
1178 
1179 	/* Check for overlaps */
1180 	if (*ei_startpfn < start_pfn)
1181 		*ei_startpfn = start_pfn;
1182 	if (*ei_endpfn > last_pfn)
1183 		*ei_endpfn = last_pfn;
1184 
1185 	return 1;
1186 }
1187 
1188 /* Walk the e820 map and register active regions within a node */
1189 void __init e820_register_active_regions(int nid, unsigned long start_pfn,
1190 					 unsigned long last_pfn)
1191 {
1192 	unsigned long ei_startpfn;
1193 	unsigned long ei_endpfn;
1194 	int i;
1195 
1196 	for (i = 0; i < e820.nr_map; i++)
1197 		if (e820_find_active_region(&e820.map[i],
1198 					    start_pfn, last_pfn,
1199 					    &ei_startpfn, &ei_endpfn))
1200 			add_active_range(nid, ei_startpfn, ei_endpfn);
1201 }
1202 
1203 /*
1204  * Find the hole size (in bytes) in the memory range.
1205  * @start: starting address of the memory range to scan
1206  * @end: ending address of the memory range to scan
1207  */
1208 u64 __init e820_hole_size(u64 start, u64 end)
1209 {
1210 	unsigned long start_pfn = start >> PAGE_SHIFT;
1211 	unsigned long last_pfn = end >> PAGE_SHIFT;
1212 	unsigned long ei_startpfn, ei_endpfn, ram = 0;
1213 	int i;
1214 
1215 	for (i = 0; i < e820.nr_map; i++) {
1216 		if (e820_find_active_region(&e820.map[i],
1217 					    start_pfn, last_pfn,
1218 					    &ei_startpfn, &ei_endpfn))
1219 			ram += ei_endpfn - ei_startpfn;
1220 	}
1221 	return end - start - ((u64)ram << PAGE_SHIFT);
1222 }
1223 
1224 static void early_panic(char *msg)
1225 {
1226 	early_printk(msg);
1227 	panic(msg);
1228 }
1229 
1230 static int userdef __initdata;
1231 
1232 /* "mem=nopentium" disables the 4MB page tables. */
1233 static int __init parse_memopt(char *p)
1234 {
1235 	u64 mem_size;
1236 
1237 	if (!p)
1238 		return -EINVAL;
1239 
1240 #ifdef CONFIG_X86_32
1241 	if (!strcmp(p, "nopentium")) {
1242 		setup_clear_cpu_cap(X86_FEATURE_PSE);
1243 		return 0;
1244 	}
1245 #endif
1246 
1247 	userdef = 1;
1248 	mem_size = memparse(p, &p);
1249 	e820_remove_range(mem_size, ULLONG_MAX - mem_size, E820_RAM, 1);
1250 
1251 	return 0;
1252 }
1253 early_param("mem", parse_memopt);
1254 
1255 static int __init parse_memmap_opt(char *p)
1256 {
1257 	char *oldp;
1258 	u64 start_at, mem_size;
1259 
1260 	if (!p)
1261 		return -EINVAL;
1262 
1263 	if (!strncmp(p, "exactmap", 8)) {
1264 #ifdef CONFIG_CRASH_DUMP
1265 		/*
1266 		 * If we are doing a crash dump, we still need to know
1267 		 * the real mem size before original memory map is
1268 		 * reset.
1269 		 */
1270 		saved_max_pfn = e820_end_of_ram_pfn();
1271 #endif
1272 		e820.nr_map = 0;
1273 		userdef = 1;
1274 		return 0;
1275 	}
1276 
1277 	oldp = p;
1278 	mem_size = memparse(p, &p);
1279 	if (p == oldp)
1280 		return -EINVAL;
1281 
1282 	userdef = 1;
1283 	if (*p == '@') {
1284 		start_at = memparse(p+1, &p);
1285 		e820_add_region(start_at, mem_size, E820_RAM);
1286 	} else if (*p == '#') {
1287 		start_at = memparse(p+1, &p);
1288 		e820_add_region(start_at, mem_size, E820_ACPI);
1289 	} else if (*p == '$') {
1290 		start_at = memparse(p+1, &p);
1291 		e820_add_region(start_at, mem_size, E820_RESERVED);
1292 	} else
1293 		e820_remove_range(mem_size, ULLONG_MAX - mem_size, E820_RAM, 1);
1294 
1295 	return *p == '\0' ? 0 : -EINVAL;
1296 }
1297 early_param("memmap", parse_memmap_opt);
1298 
1299 void __init finish_e820_parsing(void)
1300 {
1301 	if (userdef) {
1302 		u32 nr = e820.nr_map;
1303 
1304 		if (sanitize_e820_map(e820.map, ARRAY_SIZE(e820.map), &nr) < 0)
1305 			early_panic("Invalid user supplied memory map");
1306 		e820.nr_map = nr;
1307 
1308 		printk(KERN_INFO "user-defined physical RAM map:\n");
1309 		e820_print_map("user");
1310 	}
1311 }
1312 
1313 static inline const char *e820_type_to_string(int e820_type)
1314 {
1315 	switch (e820_type) {
1316 	case E820_RESERVED_KERN:
1317 	case E820_RAM:	return "System RAM";
1318 	case E820_ACPI:	return "ACPI Tables";
1319 	case E820_NVS:	return "ACPI Non-volatile Storage";
1320 	case E820_UNUSABLE:	return "Unusable memory";
1321 	default:	return "reserved";
1322 	}
1323 }
1324 
1325 /*
1326  * Mark e820 reserved areas as busy for the resource manager.
1327  */
1328 static struct resource __initdata *e820_res;
1329 void __init e820_reserve_resources(void)
1330 {
1331 	int i;
1332 	struct resource *res;
1333 	u64 end;
1334 
1335 	res = alloc_bootmem_low(sizeof(struct resource) * e820.nr_map);
1336 	e820_res = res;
1337 	for (i = 0; i < e820.nr_map; i++) {
1338 		end = e820.map[i].addr + e820.map[i].size - 1;
1339 		if (end != (resource_size_t)end) {
1340 			res++;
1341 			continue;
1342 		}
1343 		res->name = e820_type_to_string(e820.map[i].type);
1344 		res->start = e820.map[i].addr;
1345 		res->end = end;
1346 
1347 		res->flags = IORESOURCE_MEM;
1348 
1349 		/*
1350 		 * don't register the region that could be conflicted with
1351 		 * pci device BAR resource and insert them later in
1352 		 * pcibios_resource_survey()
1353 		 */
1354 		if (e820.map[i].type != E820_RESERVED || res->start < (1ULL<<20)) {
1355 			res->flags |= IORESOURCE_BUSY;
1356 			insert_resource(&iomem_resource, res);
1357 		}
1358 		res++;
1359 	}
1360 
1361 	for (i = 0; i < e820_saved.nr_map; i++) {
1362 		struct e820entry *entry = &e820_saved.map[i];
1363 		firmware_map_add_early(entry->addr,
1364 			entry->addr + entry->size - 1,
1365 			e820_type_to_string(entry->type));
1366 	}
1367 }
1368 
1369 /* How much should we pad RAM ending depending on where it is? */
1370 static unsigned long ram_alignment(resource_size_t pos)
1371 {
1372 	unsigned long mb = pos >> 20;
1373 
1374 	/* To 64kB in the first megabyte */
1375 	if (!mb)
1376 		return 64*1024;
1377 
1378 	/* To 1MB in the first 16MB */
1379 	if (mb < 16)
1380 		return 1024*1024;
1381 
1382 	/* To 32MB for anything above that */
1383 	return 32*1024*1024;
1384 }
1385 
1386 void __init e820_reserve_resources_late(void)
1387 {
1388 	int i;
1389 	struct resource *res;
1390 
1391 	res = e820_res;
1392 	for (i = 0; i < e820.nr_map; i++) {
1393 		if (!res->parent && res->end)
1394 			insert_resource_expand_to_fit(&iomem_resource, res);
1395 		res++;
1396 	}
1397 
1398 	/*
1399 	 * Try to bump up RAM regions to reasonable boundaries to
1400 	 * avoid stolen RAM:
1401 	 */
1402 	for (i = 0; i < e820.nr_map; i++) {
1403 		struct e820entry *entry = &e820_saved.map[i];
1404 		resource_size_t start, end;
1405 
1406 		if (entry->type != E820_RAM)
1407 			continue;
1408 		start = entry->addr + entry->size;
1409 		end = round_up(start, ram_alignment(start));
1410 		if (start == end)
1411 			continue;
1412 		reserve_region_with_split(&iomem_resource, start,
1413 						  end - 1, "RAM buffer");
1414 	}
1415 }
1416 
1417 char *__init default_machine_specific_memory_setup(void)
1418 {
1419 	char *who = "BIOS-e820";
1420 	u32 new_nr;
1421 	/*
1422 	 * Try to copy the BIOS-supplied E820-map.
1423 	 *
1424 	 * Otherwise fake a memory map; one section from 0k->640k,
1425 	 * the next section from 1mb->appropriate_mem_k
1426 	 */
1427 	new_nr = boot_params.e820_entries;
1428 	sanitize_e820_map(boot_params.e820_map,
1429 			ARRAY_SIZE(boot_params.e820_map),
1430 			&new_nr);
1431 	boot_params.e820_entries = new_nr;
1432 	if (append_e820_map(boot_params.e820_map, boot_params.e820_entries)
1433 	  < 0) {
1434 		u64 mem_size;
1435 
1436 		/* compare results from other methods and take the greater */
1437 		if (boot_params.alt_mem_k
1438 		    < boot_params.screen_info.ext_mem_k) {
1439 			mem_size = boot_params.screen_info.ext_mem_k;
1440 			who = "BIOS-88";
1441 		} else {
1442 			mem_size = boot_params.alt_mem_k;
1443 			who = "BIOS-e801";
1444 		}
1445 
1446 		e820.nr_map = 0;
1447 		e820_add_region(0, LOWMEMSIZE(), E820_RAM);
1448 		e820_add_region(HIGH_MEMORY, mem_size << 10, E820_RAM);
1449 	}
1450 
1451 	/* In case someone cares... */
1452 	return who;
1453 }
1454 
1455 char *__init __attribute__((weak)) machine_specific_memory_setup(void)
1456 {
1457 	if (x86_quirks->arch_memory_setup) {
1458 		char *who = x86_quirks->arch_memory_setup();
1459 
1460 		if (who)
1461 			return who;
1462 	}
1463 	return default_machine_specific_memory_setup();
1464 }
1465 
1466 /* Overridden in paravirt.c if CONFIG_PARAVIRT */
1467 char * __init __attribute__((weak)) memory_setup(void)
1468 {
1469 	return machine_specific_memory_setup();
1470 }
1471 
1472 void __init setup_memory_map(void)
1473 {
1474 	char *who;
1475 
1476 	who = memory_setup();
1477 	memcpy(&e820_saved, &e820, sizeof(struct e820map));
1478 	printk(KERN_INFO "BIOS-provided physical RAM map:\n");
1479 	e820_print_map(who);
1480 }
1481