1 /* 2 * Handle the memory map. 3 * The functions here do the job until bootmem takes over. 4 * 5 * Getting sanitize_e820_map() in sync with i386 version by applying change: 6 * - Provisions for empty E820 memory regions (reported by certain BIOSes). 7 * Alex Achenbach <xela@slit.de>, December 2002. 8 * Venkatesh Pallipadi <venkatesh.pallipadi@intel.com> 9 * 10 */ 11 #include <linux/kernel.h> 12 #include <linux/types.h> 13 #include <linux/init.h> 14 #include <linux/bootmem.h> 15 #include <linux/pfn.h> 16 #include <linux/suspend.h> 17 #include <linux/acpi.h> 18 #include <linux/firmware-map.h> 19 #include <linux/memblock.h> 20 21 #include <asm/e820.h> 22 #include <asm/proto.h> 23 #include <asm/setup.h> 24 25 /* 26 * The e820 map is the map that gets modified e.g. with command line parameters 27 * and that is also registered with modifications in the kernel resource tree 28 * with the iomem_resource as parent. 29 * 30 * The e820_saved is directly saved after the BIOS-provided memory map is 31 * copied. It doesn't get modified afterwards. It's registered for the 32 * /sys/firmware/memmap interface. 33 * 34 * That memory map is not modified and is used as base for kexec. The kexec'd 35 * kernel should get the same memory map as the firmware provides. Then the 36 * user can e.g. boot the original kernel with mem=1G while still booting the 37 * next kernel with full memory. 38 */ 39 struct e820map e820; 40 struct e820map e820_saved; 41 42 /* For PCI or other memory-mapped resources */ 43 unsigned long pci_mem_start = 0xaeedbabe; 44 #ifdef CONFIG_PCI 45 EXPORT_SYMBOL(pci_mem_start); 46 #endif 47 48 /* 49 * This function checks if any part of the range <start,end> is mapped 50 * with type. 51 */ 52 int 53 e820_any_mapped(u64 start, u64 end, unsigned type) 54 { 55 int i; 56 57 for (i = 0; i < e820.nr_map; i++) { 58 struct e820entry *ei = &e820.map[i]; 59 60 if (type && ei->type != type) 61 continue; 62 if (ei->addr >= end || ei->addr + ei->size <= start) 63 continue; 64 return 1; 65 } 66 return 0; 67 } 68 EXPORT_SYMBOL_GPL(e820_any_mapped); 69 70 /* 71 * This function checks if the entire range <start,end> is mapped with type. 72 * 73 * Note: this function only works correct if the e820 table is sorted and 74 * not-overlapping, which is the case 75 */ 76 int __init e820_all_mapped(u64 start, u64 end, unsigned type) 77 { 78 int i; 79 80 for (i = 0; i < e820.nr_map; i++) { 81 struct e820entry *ei = &e820.map[i]; 82 83 if (type && ei->type != type) 84 continue; 85 /* is the region (part) in overlap with the current region ?*/ 86 if (ei->addr >= end || ei->addr + ei->size <= start) 87 continue; 88 89 /* if the region is at the beginning of <start,end> we move 90 * start to the end of the region since it's ok until there 91 */ 92 if (ei->addr <= start) 93 start = ei->addr + ei->size; 94 /* 95 * if start is now at or beyond end, we're done, full 96 * coverage 97 */ 98 if (start >= end) 99 return 1; 100 } 101 return 0; 102 } 103 104 /* 105 * Add a memory region to the kernel e820 map. 106 */ 107 static void __init __e820_add_region(struct e820map *e820x, u64 start, u64 size, 108 int type) 109 { 110 int x = e820x->nr_map; 111 112 if (x >= ARRAY_SIZE(e820x->map)) { 113 printk(KERN_ERR "Ooops! Too many entries in the memory map!\n"); 114 return; 115 } 116 117 e820x->map[x].addr = start; 118 e820x->map[x].size = size; 119 e820x->map[x].type = type; 120 e820x->nr_map++; 121 } 122 123 void __init e820_add_region(u64 start, u64 size, int type) 124 { 125 __e820_add_region(&e820, start, size, type); 126 } 127 128 static void __init e820_print_type(u32 type) 129 { 130 switch (type) { 131 case E820_RAM: 132 case E820_RESERVED_KERN: 133 printk(KERN_CONT "(usable)"); 134 break; 135 case E820_RESERVED: 136 printk(KERN_CONT "(reserved)"); 137 break; 138 case E820_ACPI: 139 printk(KERN_CONT "(ACPI data)"); 140 break; 141 case E820_NVS: 142 printk(KERN_CONT "(ACPI NVS)"); 143 break; 144 case E820_UNUSABLE: 145 printk(KERN_CONT "(unusable)"); 146 break; 147 default: 148 printk(KERN_CONT "type %u", type); 149 break; 150 } 151 } 152 153 void __init e820_print_map(char *who) 154 { 155 int i; 156 157 for (i = 0; i < e820.nr_map; i++) { 158 printk(KERN_INFO " %s: %016Lx - %016Lx ", who, 159 (unsigned long long) e820.map[i].addr, 160 (unsigned long long) 161 (e820.map[i].addr + e820.map[i].size)); 162 e820_print_type(e820.map[i].type); 163 printk(KERN_CONT "\n"); 164 } 165 } 166 167 /* 168 * Sanitize the BIOS e820 map. 169 * 170 * Some e820 responses include overlapping entries. The following 171 * replaces the original e820 map with a new one, removing overlaps, 172 * and resolving conflicting memory types in favor of highest 173 * numbered type. 174 * 175 * The input parameter biosmap points to an array of 'struct 176 * e820entry' which on entry has elements in the range [0, *pnr_map) 177 * valid, and which has space for up to max_nr_map entries. 178 * On return, the resulting sanitized e820 map entries will be in 179 * overwritten in the same location, starting at biosmap. 180 * 181 * The integer pointed to by pnr_map must be valid on entry (the 182 * current number of valid entries located at biosmap) and will 183 * be updated on return, with the new number of valid entries 184 * (something no more than max_nr_map.) 185 * 186 * The return value from sanitize_e820_map() is zero if it 187 * successfully 'sanitized' the map entries passed in, and is -1 188 * if it did nothing, which can happen if either of (1) it was 189 * only passed one map entry, or (2) any of the input map entries 190 * were invalid (start + size < start, meaning that the size was 191 * so big the described memory range wrapped around through zero.) 192 * 193 * Visually we're performing the following 194 * (1,2,3,4 = memory types)... 195 * 196 * Sample memory map (w/overlaps): 197 * ____22__________________ 198 * ______________________4_ 199 * ____1111________________ 200 * _44_____________________ 201 * 11111111________________ 202 * ____________________33__ 203 * ___________44___________ 204 * __________33333_________ 205 * ______________22________ 206 * ___________________2222_ 207 * _________111111111______ 208 * _____________________11_ 209 * _________________4______ 210 * 211 * Sanitized equivalent (no overlap): 212 * 1_______________________ 213 * _44_____________________ 214 * ___1____________________ 215 * ____22__________________ 216 * ______11________________ 217 * _________1______________ 218 * __________3_____________ 219 * ___________44___________ 220 * _____________33_________ 221 * _______________2________ 222 * ________________1_______ 223 * _________________4______ 224 * ___________________2____ 225 * ____________________33__ 226 * ______________________4_ 227 */ 228 229 int __init sanitize_e820_map(struct e820entry *biosmap, int max_nr_map, 230 u32 *pnr_map) 231 { 232 struct change_member { 233 struct e820entry *pbios; /* pointer to original bios entry */ 234 unsigned long long addr; /* address for this change point */ 235 }; 236 static struct change_member change_point_list[2*E820_X_MAX] __initdata; 237 static struct change_member *change_point[2*E820_X_MAX] __initdata; 238 static struct e820entry *overlap_list[E820_X_MAX] __initdata; 239 static struct e820entry new_bios[E820_X_MAX] __initdata; 240 struct change_member *change_tmp; 241 unsigned long current_type, last_type; 242 unsigned long long last_addr; 243 int chgidx, still_changing; 244 int overlap_entries; 245 int new_bios_entry; 246 int old_nr, new_nr, chg_nr; 247 int i; 248 249 /* if there's only one memory region, don't bother */ 250 if (*pnr_map < 2) 251 return -1; 252 253 old_nr = *pnr_map; 254 BUG_ON(old_nr > max_nr_map); 255 256 /* bail out if we find any unreasonable addresses in bios map */ 257 for (i = 0; i < old_nr; i++) 258 if (biosmap[i].addr + biosmap[i].size < biosmap[i].addr) 259 return -1; 260 261 /* create pointers for initial change-point information (for sorting) */ 262 for (i = 0; i < 2 * old_nr; i++) 263 change_point[i] = &change_point_list[i]; 264 265 /* record all known change-points (starting and ending addresses), 266 omitting those that are for empty memory regions */ 267 chgidx = 0; 268 for (i = 0; i < old_nr; i++) { 269 if (biosmap[i].size != 0) { 270 change_point[chgidx]->addr = biosmap[i].addr; 271 change_point[chgidx++]->pbios = &biosmap[i]; 272 change_point[chgidx]->addr = biosmap[i].addr + 273 biosmap[i].size; 274 change_point[chgidx++]->pbios = &biosmap[i]; 275 } 276 } 277 chg_nr = chgidx; 278 279 /* sort change-point list by memory addresses (low -> high) */ 280 still_changing = 1; 281 while (still_changing) { 282 still_changing = 0; 283 for (i = 1; i < chg_nr; i++) { 284 unsigned long long curaddr, lastaddr; 285 unsigned long long curpbaddr, lastpbaddr; 286 287 curaddr = change_point[i]->addr; 288 lastaddr = change_point[i - 1]->addr; 289 curpbaddr = change_point[i]->pbios->addr; 290 lastpbaddr = change_point[i - 1]->pbios->addr; 291 292 /* 293 * swap entries, when: 294 * 295 * curaddr > lastaddr or 296 * curaddr == lastaddr and curaddr == curpbaddr and 297 * lastaddr != lastpbaddr 298 */ 299 if (curaddr < lastaddr || 300 (curaddr == lastaddr && curaddr == curpbaddr && 301 lastaddr != lastpbaddr)) { 302 change_tmp = change_point[i]; 303 change_point[i] = change_point[i-1]; 304 change_point[i-1] = change_tmp; 305 still_changing = 1; 306 } 307 } 308 } 309 310 /* create a new bios memory map, removing overlaps */ 311 overlap_entries = 0; /* number of entries in the overlap table */ 312 new_bios_entry = 0; /* index for creating new bios map entries */ 313 last_type = 0; /* start with undefined memory type */ 314 last_addr = 0; /* start with 0 as last starting address */ 315 316 /* loop through change-points, determining affect on the new bios map */ 317 for (chgidx = 0; chgidx < chg_nr; chgidx++) { 318 /* keep track of all overlapping bios entries */ 319 if (change_point[chgidx]->addr == 320 change_point[chgidx]->pbios->addr) { 321 /* 322 * add map entry to overlap list (> 1 entry 323 * implies an overlap) 324 */ 325 overlap_list[overlap_entries++] = 326 change_point[chgidx]->pbios; 327 } else { 328 /* 329 * remove entry from list (order independent, 330 * so swap with last) 331 */ 332 for (i = 0; i < overlap_entries; i++) { 333 if (overlap_list[i] == 334 change_point[chgidx]->pbios) 335 overlap_list[i] = 336 overlap_list[overlap_entries-1]; 337 } 338 overlap_entries--; 339 } 340 /* 341 * if there are overlapping entries, decide which 342 * "type" to use (larger value takes precedence -- 343 * 1=usable, 2,3,4,4+=unusable) 344 */ 345 current_type = 0; 346 for (i = 0; i < overlap_entries; i++) 347 if (overlap_list[i]->type > current_type) 348 current_type = overlap_list[i]->type; 349 /* 350 * continue building up new bios map based on this 351 * information 352 */ 353 if (current_type != last_type) { 354 if (last_type != 0) { 355 new_bios[new_bios_entry].size = 356 change_point[chgidx]->addr - last_addr; 357 /* 358 * move forward only if the new size 359 * was non-zero 360 */ 361 if (new_bios[new_bios_entry].size != 0) 362 /* 363 * no more space left for new 364 * bios entries ? 365 */ 366 if (++new_bios_entry >= max_nr_map) 367 break; 368 } 369 if (current_type != 0) { 370 new_bios[new_bios_entry].addr = 371 change_point[chgidx]->addr; 372 new_bios[new_bios_entry].type = current_type; 373 last_addr = change_point[chgidx]->addr; 374 } 375 last_type = current_type; 376 } 377 } 378 /* retain count for new bios entries */ 379 new_nr = new_bios_entry; 380 381 /* copy new bios mapping into original location */ 382 memcpy(biosmap, new_bios, new_nr * sizeof(struct e820entry)); 383 *pnr_map = new_nr; 384 385 return 0; 386 } 387 388 static int __init __append_e820_map(struct e820entry *biosmap, int nr_map) 389 { 390 while (nr_map) { 391 u64 start = biosmap->addr; 392 u64 size = biosmap->size; 393 u64 end = start + size; 394 u32 type = biosmap->type; 395 396 /* Overflow in 64 bits? Ignore the memory map. */ 397 if (start > end) 398 return -1; 399 400 e820_add_region(start, size, type); 401 402 biosmap++; 403 nr_map--; 404 } 405 return 0; 406 } 407 408 /* 409 * Copy the BIOS e820 map into a safe place. 410 * 411 * Sanity-check it while we're at it.. 412 * 413 * If we're lucky and live on a modern system, the setup code 414 * will have given us a memory map that we can use to properly 415 * set up memory. If we aren't, we'll fake a memory map. 416 */ 417 static int __init append_e820_map(struct e820entry *biosmap, int nr_map) 418 { 419 /* Only one memory region (or negative)? Ignore it */ 420 if (nr_map < 2) 421 return -1; 422 423 return __append_e820_map(biosmap, nr_map); 424 } 425 426 static u64 __init __e820_update_range(struct e820map *e820x, u64 start, 427 u64 size, unsigned old_type, 428 unsigned new_type) 429 { 430 u64 end; 431 unsigned int i; 432 u64 real_updated_size = 0; 433 434 BUG_ON(old_type == new_type); 435 436 if (size > (ULLONG_MAX - start)) 437 size = ULLONG_MAX - start; 438 439 end = start + size; 440 printk(KERN_DEBUG "e820 update range: %016Lx - %016Lx ", 441 (unsigned long long) start, 442 (unsigned long long) end); 443 e820_print_type(old_type); 444 printk(KERN_CONT " ==> "); 445 e820_print_type(new_type); 446 printk(KERN_CONT "\n"); 447 448 for (i = 0; i < e820x->nr_map; i++) { 449 struct e820entry *ei = &e820x->map[i]; 450 u64 final_start, final_end; 451 u64 ei_end; 452 453 if (ei->type != old_type) 454 continue; 455 456 ei_end = ei->addr + ei->size; 457 /* totally covered by new range? */ 458 if (ei->addr >= start && ei_end <= end) { 459 ei->type = new_type; 460 real_updated_size += ei->size; 461 continue; 462 } 463 464 /* new range is totally covered? */ 465 if (ei->addr < start && ei_end > end) { 466 __e820_add_region(e820x, start, size, new_type); 467 __e820_add_region(e820x, end, ei_end - end, ei->type); 468 ei->size = start - ei->addr; 469 real_updated_size += size; 470 continue; 471 } 472 473 /* partially covered */ 474 final_start = max(start, ei->addr); 475 final_end = min(end, ei_end); 476 if (final_start >= final_end) 477 continue; 478 479 __e820_add_region(e820x, final_start, final_end - final_start, 480 new_type); 481 482 real_updated_size += final_end - final_start; 483 484 /* 485 * left range could be head or tail, so need to update 486 * size at first. 487 */ 488 ei->size -= final_end - final_start; 489 if (ei->addr < final_start) 490 continue; 491 ei->addr = final_end; 492 } 493 return real_updated_size; 494 } 495 496 u64 __init e820_update_range(u64 start, u64 size, unsigned old_type, 497 unsigned new_type) 498 { 499 return __e820_update_range(&e820, start, size, old_type, new_type); 500 } 501 502 static u64 __init e820_update_range_saved(u64 start, u64 size, 503 unsigned old_type, unsigned new_type) 504 { 505 return __e820_update_range(&e820_saved, start, size, old_type, 506 new_type); 507 } 508 509 /* make e820 not cover the range */ 510 u64 __init e820_remove_range(u64 start, u64 size, unsigned old_type, 511 int checktype) 512 { 513 int i; 514 u64 end; 515 u64 real_removed_size = 0; 516 517 if (size > (ULLONG_MAX - start)) 518 size = ULLONG_MAX - start; 519 520 end = start + size; 521 printk(KERN_DEBUG "e820 remove range: %016Lx - %016Lx ", 522 (unsigned long long) start, 523 (unsigned long long) end); 524 if (checktype) 525 e820_print_type(old_type); 526 printk(KERN_CONT "\n"); 527 528 for (i = 0; i < e820.nr_map; i++) { 529 struct e820entry *ei = &e820.map[i]; 530 u64 final_start, final_end; 531 u64 ei_end; 532 533 if (checktype && ei->type != old_type) 534 continue; 535 536 ei_end = ei->addr + ei->size; 537 /* totally covered? */ 538 if (ei->addr >= start && ei_end <= end) { 539 real_removed_size += ei->size; 540 memset(ei, 0, sizeof(struct e820entry)); 541 continue; 542 } 543 544 /* new range is totally covered? */ 545 if (ei->addr < start && ei_end > end) { 546 e820_add_region(end, ei_end - end, ei->type); 547 ei->size = start - ei->addr; 548 real_removed_size += size; 549 continue; 550 } 551 552 /* partially covered */ 553 final_start = max(start, ei->addr); 554 final_end = min(end, ei_end); 555 if (final_start >= final_end) 556 continue; 557 real_removed_size += final_end - final_start; 558 559 /* 560 * left range could be head or tail, so need to update 561 * size at first. 562 */ 563 ei->size -= final_end - final_start; 564 if (ei->addr < final_start) 565 continue; 566 ei->addr = final_end; 567 } 568 return real_removed_size; 569 } 570 571 void __init update_e820(void) 572 { 573 u32 nr_map; 574 575 nr_map = e820.nr_map; 576 if (sanitize_e820_map(e820.map, ARRAY_SIZE(e820.map), &nr_map)) 577 return; 578 e820.nr_map = nr_map; 579 printk(KERN_INFO "modified physical RAM map:\n"); 580 e820_print_map("modified"); 581 } 582 static void __init update_e820_saved(void) 583 { 584 u32 nr_map; 585 586 nr_map = e820_saved.nr_map; 587 if (sanitize_e820_map(e820_saved.map, ARRAY_SIZE(e820_saved.map), &nr_map)) 588 return; 589 e820_saved.nr_map = nr_map; 590 } 591 #define MAX_GAP_END 0x100000000ull 592 /* 593 * Search for a gap in the e820 memory space from start_addr to end_addr. 594 */ 595 __init int e820_search_gap(unsigned long *gapstart, unsigned long *gapsize, 596 unsigned long start_addr, unsigned long long end_addr) 597 { 598 unsigned long long last; 599 int i = e820.nr_map; 600 int found = 0; 601 602 last = (end_addr && end_addr < MAX_GAP_END) ? end_addr : MAX_GAP_END; 603 604 while (--i >= 0) { 605 unsigned long long start = e820.map[i].addr; 606 unsigned long long end = start + e820.map[i].size; 607 608 if (end < start_addr) 609 continue; 610 611 /* 612 * Since "last" is at most 4GB, we know we'll 613 * fit in 32 bits if this condition is true 614 */ 615 if (last > end) { 616 unsigned long gap = last - end; 617 618 if (gap >= *gapsize) { 619 *gapsize = gap; 620 *gapstart = end; 621 found = 1; 622 } 623 } 624 if (start < last) 625 last = start; 626 } 627 return found; 628 } 629 630 /* 631 * Search for the biggest gap in the low 32 bits of the e820 632 * memory space. We pass this space to PCI to assign MMIO resources 633 * for hotplug or unconfigured devices in. 634 * Hopefully the BIOS let enough space left. 635 */ 636 __init void e820_setup_gap(void) 637 { 638 unsigned long gapstart, gapsize; 639 int found; 640 641 gapstart = 0x10000000; 642 gapsize = 0x400000; 643 found = e820_search_gap(&gapstart, &gapsize, 0, MAX_GAP_END); 644 645 #ifdef CONFIG_X86_64 646 if (!found) { 647 gapstart = (max_pfn << PAGE_SHIFT) + 1024*1024; 648 printk(KERN_ERR 649 "PCI: Warning: Cannot find a gap in the 32bit address range\n" 650 "PCI: Unassigned devices with 32bit resource registers may break!\n"); 651 } 652 #endif 653 654 /* 655 * e820_reserve_resources_late protect stolen RAM already 656 */ 657 pci_mem_start = gapstart; 658 659 printk(KERN_INFO 660 "Allocating PCI resources starting at %lx (gap: %lx:%lx)\n", 661 pci_mem_start, gapstart, gapsize); 662 } 663 664 /** 665 * Because of the size limitation of struct boot_params, only first 666 * 128 E820 memory entries are passed to kernel via 667 * boot_params.e820_map, others are passed via SETUP_E820_EXT node of 668 * linked list of struct setup_data, which is parsed here. 669 */ 670 void __init parse_e820_ext(struct setup_data *sdata) 671 { 672 int entries; 673 struct e820entry *extmap; 674 675 entries = sdata->len / sizeof(struct e820entry); 676 extmap = (struct e820entry *)(sdata->data); 677 __append_e820_map(extmap, entries); 678 sanitize_e820_map(e820.map, ARRAY_SIZE(e820.map), &e820.nr_map); 679 printk(KERN_INFO "extended physical RAM map:\n"); 680 e820_print_map("extended"); 681 } 682 683 #if defined(CONFIG_X86_64) || \ 684 (defined(CONFIG_X86_32) && defined(CONFIG_HIBERNATION)) 685 /** 686 * Find the ranges of physical addresses that do not correspond to 687 * e820 RAM areas and mark the corresponding pages as nosave for 688 * hibernation (32 bit) or software suspend and suspend to RAM (64 bit). 689 * 690 * This function requires the e820 map to be sorted and without any 691 * overlapping entries and assumes the first e820 area to be RAM. 692 */ 693 void __init e820_mark_nosave_regions(unsigned long limit_pfn) 694 { 695 int i; 696 unsigned long pfn; 697 698 pfn = PFN_DOWN(e820.map[0].addr + e820.map[0].size); 699 for (i = 1; i < e820.nr_map; i++) { 700 struct e820entry *ei = &e820.map[i]; 701 702 if (pfn < PFN_UP(ei->addr)) 703 register_nosave_region(pfn, PFN_UP(ei->addr)); 704 705 pfn = PFN_DOWN(ei->addr + ei->size); 706 if (ei->type != E820_RAM && ei->type != E820_RESERVED_KERN) 707 register_nosave_region(PFN_UP(ei->addr), pfn); 708 709 if (pfn >= limit_pfn) 710 break; 711 } 712 } 713 #endif 714 715 #ifdef CONFIG_HIBERNATION 716 /** 717 * Mark ACPI NVS memory region, so that we can save/restore it during 718 * hibernation and the subsequent resume. 719 */ 720 static int __init e820_mark_nvs_memory(void) 721 { 722 int i; 723 724 for (i = 0; i < e820.nr_map; i++) { 725 struct e820entry *ei = &e820.map[i]; 726 727 if (ei->type == E820_NVS) 728 suspend_nvs_register(ei->addr, ei->size); 729 } 730 731 return 0; 732 } 733 core_initcall(e820_mark_nvs_memory); 734 #endif 735 736 /* 737 * pre allocated 4k and reserved it in memblock and e820_saved 738 */ 739 u64 __init early_reserve_e820(u64 startt, u64 sizet, u64 align) 740 { 741 u64 size = 0; 742 u64 addr; 743 u64 start; 744 745 for (start = startt; ; start += size) { 746 start = memblock_x86_find_in_range_size(start, &size, align); 747 if (start == MEMBLOCK_ERROR) 748 return 0; 749 if (size >= sizet) 750 break; 751 } 752 753 #ifdef CONFIG_X86_32 754 if (start >= MAXMEM) 755 return 0; 756 if (start + size > MAXMEM) 757 size = MAXMEM - start; 758 #endif 759 760 addr = round_down(start + size - sizet, align); 761 if (addr < start) 762 return 0; 763 memblock_x86_reserve_range(addr, addr + sizet, "new next"); 764 e820_update_range_saved(addr, sizet, E820_RAM, E820_RESERVED); 765 printk(KERN_INFO "update e820_saved for early_reserve_e820\n"); 766 update_e820_saved(); 767 768 return addr; 769 } 770 771 #ifdef CONFIG_X86_32 772 # ifdef CONFIG_X86_PAE 773 # define MAX_ARCH_PFN (1ULL<<(36-PAGE_SHIFT)) 774 # else 775 # define MAX_ARCH_PFN (1ULL<<(32-PAGE_SHIFT)) 776 # endif 777 #else /* CONFIG_X86_32 */ 778 # define MAX_ARCH_PFN MAXMEM>>PAGE_SHIFT 779 #endif 780 781 /* 782 * Find the highest page frame number we have available 783 */ 784 static unsigned long __init e820_end_pfn(unsigned long limit_pfn, unsigned type) 785 { 786 int i; 787 unsigned long last_pfn = 0; 788 unsigned long max_arch_pfn = MAX_ARCH_PFN; 789 790 for (i = 0; i < e820.nr_map; i++) { 791 struct e820entry *ei = &e820.map[i]; 792 unsigned long start_pfn; 793 unsigned long end_pfn; 794 795 if (ei->type != type) 796 continue; 797 798 start_pfn = ei->addr >> PAGE_SHIFT; 799 end_pfn = (ei->addr + ei->size) >> PAGE_SHIFT; 800 801 if (start_pfn >= limit_pfn) 802 continue; 803 if (end_pfn > limit_pfn) { 804 last_pfn = limit_pfn; 805 break; 806 } 807 if (end_pfn > last_pfn) 808 last_pfn = end_pfn; 809 } 810 811 if (last_pfn > max_arch_pfn) 812 last_pfn = max_arch_pfn; 813 814 printk(KERN_INFO "last_pfn = %#lx max_arch_pfn = %#lx\n", 815 last_pfn, max_arch_pfn); 816 return last_pfn; 817 } 818 unsigned long __init e820_end_of_ram_pfn(void) 819 { 820 return e820_end_pfn(MAX_ARCH_PFN, E820_RAM); 821 } 822 823 unsigned long __init e820_end_of_low_ram_pfn(void) 824 { 825 return e820_end_pfn(1UL<<(32 - PAGE_SHIFT), E820_RAM); 826 } 827 828 static void early_panic(char *msg) 829 { 830 early_printk(msg); 831 panic(msg); 832 } 833 834 static int userdef __initdata; 835 836 /* "mem=nopentium" disables the 4MB page tables. */ 837 static int __init parse_memopt(char *p) 838 { 839 u64 mem_size; 840 841 if (!p) 842 return -EINVAL; 843 844 if (!strcmp(p, "nopentium")) { 845 #ifdef CONFIG_X86_32 846 setup_clear_cpu_cap(X86_FEATURE_PSE); 847 return 0; 848 #else 849 printk(KERN_WARNING "mem=nopentium ignored! (only supported on x86_32)\n"); 850 return -EINVAL; 851 #endif 852 } 853 854 userdef = 1; 855 mem_size = memparse(p, &p); 856 /* don't remove all of memory when handling "mem={invalid}" param */ 857 if (mem_size == 0) 858 return -EINVAL; 859 e820_remove_range(mem_size, ULLONG_MAX - mem_size, E820_RAM, 1); 860 861 return 0; 862 } 863 early_param("mem", parse_memopt); 864 865 static int __init parse_memmap_opt(char *p) 866 { 867 char *oldp; 868 u64 start_at, mem_size; 869 870 if (!p) 871 return -EINVAL; 872 873 if (!strncmp(p, "exactmap", 8)) { 874 #ifdef CONFIG_CRASH_DUMP 875 /* 876 * If we are doing a crash dump, we still need to know 877 * the real mem size before original memory map is 878 * reset. 879 */ 880 saved_max_pfn = e820_end_of_ram_pfn(); 881 #endif 882 e820.nr_map = 0; 883 userdef = 1; 884 return 0; 885 } 886 887 oldp = p; 888 mem_size = memparse(p, &p); 889 if (p == oldp) 890 return -EINVAL; 891 892 userdef = 1; 893 if (*p == '@') { 894 start_at = memparse(p+1, &p); 895 e820_add_region(start_at, mem_size, E820_RAM); 896 } else if (*p == '#') { 897 start_at = memparse(p+1, &p); 898 e820_add_region(start_at, mem_size, E820_ACPI); 899 } else if (*p == '$') { 900 start_at = memparse(p+1, &p); 901 e820_add_region(start_at, mem_size, E820_RESERVED); 902 } else 903 e820_remove_range(mem_size, ULLONG_MAX - mem_size, E820_RAM, 1); 904 905 return *p == '\0' ? 0 : -EINVAL; 906 } 907 early_param("memmap", parse_memmap_opt); 908 909 void __init finish_e820_parsing(void) 910 { 911 if (userdef) { 912 u32 nr = e820.nr_map; 913 914 if (sanitize_e820_map(e820.map, ARRAY_SIZE(e820.map), &nr) < 0) 915 early_panic("Invalid user supplied memory map"); 916 e820.nr_map = nr; 917 918 printk(KERN_INFO "user-defined physical RAM map:\n"); 919 e820_print_map("user"); 920 } 921 } 922 923 static inline const char *e820_type_to_string(int e820_type) 924 { 925 switch (e820_type) { 926 case E820_RESERVED_KERN: 927 case E820_RAM: return "System RAM"; 928 case E820_ACPI: return "ACPI Tables"; 929 case E820_NVS: return "ACPI Non-volatile Storage"; 930 case E820_UNUSABLE: return "Unusable memory"; 931 default: return "reserved"; 932 } 933 } 934 935 /* 936 * Mark e820 reserved areas as busy for the resource manager. 937 */ 938 static struct resource __initdata *e820_res; 939 void __init e820_reserve_resources(void) 940 { 941 int i; 942 struct resource *res; 943 u64 end; 944 945 res = alloc_bootmem(sizeof(struct resource) * e820.nr_map); 946 e820_res = res; 947 for (i = 0; i < e820.nr_map; i++) { 948 end = e820.map[i].addr + e820.map[i].size - 1; 949 if (end != (resource_size_t)end) { 950 res++; 951 continue; 952 } 953 res->name = e820_type_to_string(e820.map[i].type); 954 res->start = e820.map[i].addr; 955 res->end = end; 956 957 res->flags = IORESOURCE_MEM; 958 959 /* 960 * don't register the region that could be conflicted with 961 * pci device BAR resource and insert them later in 962 * pcibios_resource_survey() 963 */ 964 if (e820.map[i].type != E820_RESERVED || res->start < (1ULL<<20)) { 965 res->flags |= IORESOURCE_BUSY; 966 insert_resource(&iomem_resource, res); 967 } 968 res++; 969 } 970 971 for (i = 0; i < e820_saved.nr_map; i++) { 972 struct e820entry *entry = &e820_saved.map[i]; 973 firmware_map_add_early(entry->addr, 974 entry->addr + entry->size - 1, 975 e820_type_to_string(entry->type)); 976 } 977 } 978 979 /* How much should we pad RAM ending depending on where it is? */ 980 static unsigned long ram_alignment(resource_size_t pos) 981 { 982 unsigned long mb = pos >> 20; 983 984 /* To 64kB in the first megabyte */ 985 if (!mb) 986 return 64*1024; 987 988 /* To 1MB in the first 16MB */ 989 if (mb < 16) 990 return 1024*1024; 991 992 /* To 64MB for anything above that */ 993 return 64*1024*1024; 994 } 995 996 #define MAX_RESOURCE_SIZE ((resource_size_t)-1) 997 998 void __init e820_reserve_resources_late(void) 999 { 1000 int i; 1001 struct resource *res; 1002 1003 res = e820_res; 1004 for (i = 0; i < e820.nr_map; i++) { 1005 if (!res->parent && res->end) 1006 insert_resource_expand_to_fit(&iomem_resource, res); 1007 res++; 1008 } 1009 1010 /* 1011 * Try to bump up RAM regions to reasonable boundaries to 1012 * avoid stolen RAM: 1013 */ 1014 for (i = 0; i < e820.nr_map; i++) { 1015 struct e820entry *entry = &e820.map[i]; 1016 u64 start, end; 1017 1018 if (entry->type != E820_RAM) 1019 continue; 1020 start = entry->addr + entry->size; 1021 end = round_up(start, ram_alignment(start)) - 1; 1022 if (end > MAX_RESOURCE_SIZE) 1023 end = MAX_RESOURCE_SIZE; 1024 if (start >= end) 1025 continue; 1026 printk(KERN_DEBUG "reserve RAM buffer: %016llx - %016llx ", 1027 start, end); 1028 reserve_region_with_split(&iomem_resource, start, end, 1029 "RAM buffer"); 1030 } 1031 } 1032 1033 char *__init default_machine_specific_memory_setup(void) 1034 { 1035 char *who = "BIOS-e820"; 1036 u32 new_nr; 1037 /* 1038 * Try to copy the BIOS-supplied E820-map. 1039 * 1040 * Otherwise fake a memory map; one section from 0k->640k, 1041 * the next section from 1mb->appropriate_mem_k 1042 */ 1043 new_nr = boot_params.e820_entries; 1044 sanitize_e820_map(boot_params.e820_map, 1045 ARRAY_SIZE(boot_params.e820_map), 1046 &new_nr); 1047 boot_params.e820_entries = new_nr; 1048 if (append_e820_map(boot_params.e820_map, boot_params.e820_entries) 1049 < 0) { 1050 u64 mem_size; 1051 1052 /* compare results from other methods and take the greater */ 1053 if (boot_params.alt_mem_k 1054 < boot_params.screen_info.ext_mem_k) { 1055 mem_size = boot_params.screen_info.ext_mem_k; 1056 who = "BIOS-88"; 1057 } else { 1058 mem_size = boot_params.alt_mem_k; 1059 who = "BIOS-e801"; 1060 } 1061 1062 e820.nr_map = 0; 1063 e820_add_region(0, LOWMEMSIZE(), E820_RAM); 1064 e820_add_region(HIGH_MEMORY, mem_size << 10, E820_RAM); 1065 } 1066 1067 /* In case someone cares... */ 1068 return who; 1069 } 1070 1071 void __init setup_memory_map(void) 1072 { 1073 char *who; 1074 1075 who = x86_init.resources.memory_setup(); 1076 memcpy(&e820_saved, &e820, sizeof(struct e820map)); 1077 printk(KERN_INFO "BIOS-provided physical RAM map:\n"); 1078 e820_print_map(who); 1079 } 1080 1081 void __init memblock_x86_fill(void) 1082 { 1083 int i; 1084 u64 end; 1085 1086 /* 1087 * EFI may have more than 128 entries 1088 * We are safe to enable resizing, beause memblock_x86_fill() 1089 * is rather later for x86 1090 */ 1091 memblock_can_resize = 1; 1092 1093 for (i = 0; i < e820.nr_map; i++) { 1094 struct e820entry *ei = &e820.map[i]; 1095 1096 end = ei->addr + ei->size; 1097 if (end != (resource_size_t)end) 1098 continue; 1099 1100 if (ei->type != E820_RAM && ei->type != E820_RESERVED_KERN) 1101 continue; 1102 1103 memblock_add(ei->addr, ei->size); 1104 } 1105 1106 memblock_analyze(); 1107 memblock_dump_all(); 1108 } 1109 1110 void __init memblock_find_dma_reserve(void) 1111 { 1112 #ifdef CONFIG_X86_64 1113 u64 free_size_pfn; 1114 u64 mem_size_pfn; 1115 /* 1116 * need to find out used area below MAX_DMA_PFN 1117 * need to use memblock to get free size in [0, MAX_DMA_PFN] 1118 * at first, and assume boot_mem will not take below MAX_DMA_PFN 1119 */ 1120 mem_size_pfn = memblock_x86_memory_in_range(0, MAX_DMA_PFN << PAGE_SHIFT) >> PAGE_SHIFT; 1121 free_size_pfn = memblock_x86_free_memory_in_range(0, MAX_DMA_PFN << PAGE_SHIFT) >> PAGE_SHIFT; 1122 set_dma_reserve(mem_size_pfn - free_size_pfn); 1123 #endif 1124 } 1125