xref: /openbmc/linux/arch/x86/kernel/e820.c (revision 545e4006)
1 /*
2  * Handle the memory map.
3  * The functions here do the job until bootmem takes over.
4  *
5  *  Getting sanitize_e820_map() in sync with i386 version by applying change:
6  *  -  Provisions for empty E820 memory regions (reported by certain BIOSes).
7  *     Alex Achenbach <xela@slit.de>, December 2002.
8  *  Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
9  *
10  */
11 #include <linux/kernel.h>
12 #include <linux/types.h>
13 #include <linux/init.h>
14 #include <linux/bootmem.h>
15 #include <linux/ioport.h>
16 #include <linux/string.h>
17 #include <linux/kexec.h>
18 #include <linux/module.h>
19 #include <linux/mm.h>
20 #include <linux/pfn.h>
21 #include <linux/suspend.h>
22 #include <linux/firmware-map.h>
23 
24 #include <asm/pgtable.h>
25 #include <asm/page.h>
26 #include <asm/e820.h>
27 #include <asm/proto.h>
28 #include <asm/setup.h>
29 #include <asm/trampoline.h>
30 
31 /*
32  * The e820 map is the map that gets modified e.g. with command line parameters
33  * and that is also registered with modifications in the kernel resource tree
34  * with the iomem_resource as parent.
35  *
36  * The e820_saved is directly saved after the BIOS-provided memory map is
37  * copied. It doesn't get modified afterwards. It's registered for the
38  * /sys/firmware/memmap interface.
39  *
40  * That memory map is not modified and is used as base for kexec. The kexec'd
41  * kernel should get the same memory map as the firmware provides. Then the
42  * user can e.g. boot the original kernel with mem=1G while still booting the
43  * next kernel with full memory.
44  */
45 struct e820map e820;
46 struct e820map e820_saved;
47 
48 /* For PCI or other memory-mapped resources */
49 unsigned long pci_mem_start = 0xaeedbabe;
50 #ifdef CONFIG_PCI
51 EXPORT_SYMBOL(pci_mem_start);
52 #endif
53 
54 /*
55  * This function checks if any part of the range <start,end> is mapped
56  * with type.
57  */
58 int
59 e820_any_mapped(u64 start, u64 end, unsigned type)
60 {
61 	int i;
62 
63 	for (i = 0; i < e820.nr_map; i++) {
64 		struct e820entry *ei = &e820.map[i];
65 
66 		if (type && ei->type != type)
67 			continue;
68 		if (ei->addr >= end || ei->addr + ei->size <= start)
69 			continue;
70 		return 1;
71 	}
72 	return 0;
73 }
74 EXPORT_SYMBOL_GPL(e820_any_mapped);
75 
76 /*
77  * This function checks if the entire range <start,end> is mapped with type.
78  *
79  * Note: this function only works correct if the e820 table is sorted and
80  * not-overlapping, which is the case
81  */
82 int __init e820_all_mapped(u64 start, u64 end, unsigned type)
83 {
84 	int i;
85 
86 	for (i = 0; i < e820.nr_map; i++) {
87 		struct e820entry *ei = &e820.map[i];
88 
89 		if (type && ei->type != type)
90 			continue;
91 		/* is the region (part) in overlap with the current region ?*/
92 		if (ei->addr >= end || ei->addr + ei->size <= start)
93 			continue;
94 
95 		/* if the region is at the beginning of <start,end> we move
96 		 * start to the end of the region since it's ok until there
97 		 */
98 		if (ei->addr <= start)
99 			start = ei->addr + ei->size;
100 		/*
101 		 * if start is now at or beyond end, we're done, full
102 		 * coverage
103 		 */
104 		if (start >= end)
105 			return 1;
106 	}
107 	return 0;
108 }
109 
110 /*
111  * Add a memory region to the kernel e820 map.
112  */
113 void __init e820_add_region(u64 start, u64 size, int type)
114 {
115 	int x = e820.nr_map;
116 
117 	if (x == ARRAY_SIZE(e820.map)) {
118 		printk(KERN_ERR "Ooops! Too many entries in the memory map!\n");
119 		return;
120 	}
121 
122 	e820.map[x].addr = start;
123 	e820.map[x].size = size;
124 	e820.map[x].type = type;
125 	e820.nr_map++;
126 }
127 
128 void __init e820_print_map(char *who)
129 {
130 	int i;
131 
132 	for (i = 0; i < e820.nr_map; i++) {
133 		printk(KERN_INFO " %s: %016Lx - %016Lx ", who,
134 		       (unsigned long long) e820.map[i].addr,
135 		       (unsigned long long)
136 		       (e820.map[i].addr + e820.map[i].size));
137 		switch (e820.map[i].type) {
138 		case E820_RAM:
139 		case E820_RESERVED_KERN:
140 			printk(KERN_CONT "(usable)\n");
141 			break;
142 		case E820_RESERVED:
143 			printk(KERN_CONT "(reserved)\n");
144 			break;
145 		case E820_ACPI:
146 			printk(KERN_CONT "(ACPI data)\n");
147 			break;
148 		case E820_NVS:
149 			printk(KERN_CONT "(ACPI NVS)\n");
150 			break;
151 		default:
152 			printk(KERN_CONT "type %u\n", e820.map[i].type);
153 			break;
154 		}
155 	}
156 }
157 
158 /*
159  * Sanitize the BIOS e820 map.
160  *
161  * Some e820 responses include overlapping entries. The following
162  * replaces the original e820 map with a new one, removing overlaps,
163  * and resolving conflicting memory types in favor of highest
164  * numbered type.
165  *
166  * The input parameter biosmap points to an array of 'struct
167  * e820entry' which on entry has elements in the range [0, *pnr_map)
168  * valid, and which has space for up to max_nr_map entries.
169  * On return, the resulting sanitized e820 map entries will be in
170  * overwritten in the same location, starting at biosmap.
171  *
172  * The integer pointed to by pnr_map must be valid on entry (the
173  * current number of valid entries located at biosmap) and will
174  * be updated on return, with the new number of valid entries
175  * (something no more than max_nr_map.)
176  *
177  * The return value from sanitize_e820_map() is zero if it
178  * successfully 'sanitized' the map entries passed in, and is -1
179  * if it did nothing, which can happen if either of (1) it was
180  * only passed one map entry, or (2) any of the input map entries
181  * were invalid (start + size < start, meaning that the size was
182  * so big the described memory range wrapped around through zero.)
183  *
184  *	Visually we're performing the following
185  *	(1,2,3,4 = memory types)...
186  *
187  *	Sample memory map (w/overlaps):
188  *	   ____22__________________
189  *	   ______________________4_
190  *	   ____1111________________
191  *	   _44_____________________
192  *	   11111111________________
193  *	   ____________________33__
194  *	   ___________44___________
195  *	   __________33333_________
196  *	   ______________22________
197  *	   ___________________2222_
198  *	   _________111111111______
199  *	   _____________________11_
200  *	   _________________4______
201  *
202  *	Sanitized equivalent (no overlap):
203  *	   1_______________________
204  *	   _44_____________________
205  *	   ___1____________________
206  *	   ____22__________________
207  *	   ______11________________
208  *	   _________1______________
209  *	   __________3_____________
210  *	   ___________44___________
211  *	   _____________33_________
212  *	   _______________2________
213  *	   ________________1_______
214  *	   _________________4______
215  *	   ___________________2____
216  *	   ____________________33__
217  *	   ______________________4_
218  */
219 
220 int __init sanitize_e820_map(struct e820entry *biosmap, int max_nr_map,
221 				int *pnr_map)
222 {
223 	struct change_member {
224 		struct e820entry *pbios; /* pointer to original bios entry */
225 		unsigned long long addr; /* address for this change point */
226 	};
227 	static struct change_member change_point_list[2*E820_X_MAX] __initdata;
228 	static struct change_member *change_point[2*E820_X_MAX] __initdata;
229 	static struct e820entry *overlap_list[E820_X_MAX] __initdata;
230 	static struct e820entry new_bios[E820_X_MAX] __initdata;
231 	struct change_member *change_tmp;
232 	unsigned long current_type, last_type;
233 	unsigned long long last_addr;
234 	int chgidx, still_changing;
235 	int overlap_entries;
236 	int new_bios_entry;
237 	int old_nr, new_nr, chg_nr;
238 	int i;
239 
240 	/* if there's only one memory region, don't bother */
241 	if (*pnr_map < 2)
242 		return -1;
243 
244 	old_nr = *pnr_map;
245 	BUG_ON(old_nr > max_nr_map);
246 
247 	/* bail out if we find any unreasonable addresses in bios map */
248 	for (i = 0; i < old_nr; i++)
249 		if (biosmap[i].addr + biosmap[i].size < biosmap[i].addr)
250 			return -1;
251 
252 	/* create pointers for initial change-point information (for sorting) */
253 	for (i = 0; i < 2 * old_nr; i++)
254 		change_point[i] = &change_point_list[i];
255 
256 	/* record all known change-points (starting and ending addresses),
257 	   omitting those that are for empty memory regions */
258 	chgidx = 0;
259 	for (i = 0; i < old_nr; i++)	{
260 		if (biosmap[i].size != 0) {
261 			change_point[chgidx]->addr = biosmap[i].addr;
262 			change_point[chgidx++]->pbios = &biosmap[i];
263 			change_point[chgidx]->addr = biosmap[i].addr +
264 				biosmap[i].size;
265 			change_point[chgidx++]->pbios = &biosmap[i];
266 		}
267 	}
268 	chg_nr = chgidx;
269 
270 	/* sort change-point list by memory addresses (low -> high) */
271 	still_changing = 1;
272 	while (still_changing)	{
273 		still_changing = 0;
274 		for (i = 1; i < chg_nr; i++)  {
275 			unsigned long long curaddr, lastaddr;
276 			unsigned long long curpbaddr, lastpbaddr;
277 
278 			curaddr = change_point[i]->addr;
279 			lastaddr = change_point[i - 1]->addr;
280 			curpbaddr = change_point[i]->pbios->addr;
281 			lastpbaddr = change_point[i - 1]->pbios->addr;
282 
283 			/*
284 			 * swap entries, when:
285 			 *
286 			 * curaddr > lastaddr or
287 			 * curaddr == lastaddr and curaddr == curpbaddr and
288 			 * lastaddr != lastpbaddr
289 			 */
290 			if (curaddr < lastaddr ||
291 			    (curaddr == lastaddr && curaddr == curpbaddr &&
292 			     lastaddr != lastpbaddr)) {
293 				change_tmp = change_point[i];
294 				change_point[i] = change_point[i-1];
295 				change_point[i-1] = change_tmp;
296 				still_changing = 1;
297 			}
298 		}
299 	}
300 
301 	/* create a new bios memory map, removing overlaps */
302 	overlap_entries = 0;	 /* number of entries in the overlap table */
303 	new_bios_entry = 0;	 /* index for creating new bios map entries */
304 	last_type = 0;		 /* start with undefined memory type */
305 	last_addr = 0;		 /* start with 0 as last starting address */
306 
307 	/* loop through change-points, determining affect on the new bios map */
308 	for (chgidx = 0; chgidx < chg_nr; chgidx++) {
309 		/* keep track of all overlapping bios entries */
310 		if (change_point[chgidx]->addr ==
311 		    change_point[chgidx]->pbios->addr) {
312 			/*
313 			 * add map entry to overlap list (> 1 entry
314 			 * implies an overlap)
315 			 */
316 			overlap_list[overlap_entries++] =
317 				change_point[chgidx]->pbios;
318 		} else {
319 			/*
320 			 * remove entry from list (order independent,
321 			 * so swap with last)
322 			 */
323 			for (i = 0; i < overlap_entries; i++) {
324 				if (overlap_list[i] ==
325 				    change_point[chgidx]->pbios)
326 					overlap_list[i] =
327 						overlap_list[overlap_entries-1];
328 			}
329 			overlap_entries--;
330 		}
331 		/*
332 		 * if there are overlapping entries, decide which
333 		 * "type" to use (larger value takes precedence --
334 		 * 1=usable, 2,3,4,4+=unusable)
335 		 */
336 		current_type = 0;
337 		for (i = 0; i < overlap_entries; i++)
338 			if (overlap_list[i]->type > current_type)
339 				current_type = overlap_list[i]->type;
340 		/*
341 		 * continue building up new bios map based on this
342 		 * information
343 		 */
344 		if (current_type != last_type)	{
345 			if (last_type != 0)	 {
346 				new_bios[new_bios_entry].size =
347 					change_point[chgidx]->addr - last_addr;
348 				/*
349 				 * move forward only if the new size
350 				 * was non-zero
351 				 */
352 				if (new_bios[new_bios_entry].size != 0)
353 					/*
354 					 * no more space left for new
355 					 * bios entries ?
356 					 */
357 					if (++new_bios_entry >= max_nr_map)
358 						break;
359 			}
360 			if (current_type != 0)	{
361 				new_bios[new_bios_entry].addr =
362 					change_point[chgidx]->addr;
363 				new_bios[new_bios_entry].type = current_type;
364 				last_addr = change_point[chgidx]->addr;
365 			}
366 			last_type = current_type;
367 		}
368 	}
369 	/* retain count for new bios entries */
370 	new_nr = new_bios_entry;
371 
372 	/* copy new bios mapping into original location */
373 	memcpy(biosmap, new_bios, new_nr * sizeof(struct e820entry));
374 	*pnr_map = new_nr;
375 
376 	return 0;
377 }
378 
379 static int __init __append_e820_map(struct e820entry *biosmap, int nr_map)
380 {
381 	while (nr_map) {
382 		u64 start = biosmap->addr;
383 		u64 size = biosmap->size;
384 		u64 end = start + size;
385 		u32 type = biosmap->type;
386 
387 		/* Overflow in 64 bits? Ignore the memory map. */
388 		if (start > end)
389 			return -1;
390 
391 		e820_add_region(start, size, type);
392 
393 		biosmap++;
394 		nr_map--;
395 	}
396 	return 0;
397 }
398 
399 /*
400  * Copy the BIOS e820 map into a safe place.
401  *
402  * Sanity-check it while we're at it..
403  *
404  * If we're lucky and live on a modern system, the setup code
405  * will have given us a memory map that we can use to properly
406  * set up memory.  If we aren't, we'll fake a memory map.
407  */
408 static int __init append_e820_map(struct e820entry *biosmap, int nr_map)
409 {
410 	/* Only one memory region (or negative)? Ignore it */
411 	if (nr_map < 2)
412 		return -1;
413 
414 	return __append_e820_map(biosmap, nr_map);
415 }
416 
417 static u64 __init e820_update_range_map(struct e820map *e820x, u64 start,
418 					u64 size, unsigned old_type,
419 					unsigned new_type)
420 {
421 	int i;
422 	u64 real_updated_size = 0;
423 
424 	BUG_ON(old_type == new_type);
425 
426 	if (size > (ULLONG_MAX - start))
427 		size = ULLONG_MAX - start;
428 
429 	for (i = 0; i < e820.nr_map; i++) {
430 		struct e820entry *ei = &e820x->map[i];
431 		u64 final_start, final_end;
432 		if (ei->type != old_type)
433 			continue;
434 		/* totally covered? */
435 		if (ei->addr >= start &&
436 		    (ei->addr + ei->size) <= (start + size)) {
437 			ei->type = new_type;
438 			real_updated_size += ei->size;
439 			continue;
440 		}
441 		/* partially covered */
442 		final_start = max(start, ei->addr);
443 		final_end = min(start + size, ei->addr + ei->size);
444 		if (final_start >= final_end)
445 			continue;
446 		e820_add_region(final_start, final_end - final_start,
447 					 new_type);
448 		real_updated_size += final_end - final_start;
449 
450 		ei->size -= final_end - final_start;
451 		if (ei->addr < final_start)
452 			continue;
453 		ei->addr = final_end;
454 	}
455 	return real_updated_size;
456 }
457 
458 u64 __init e820_update_range(u64 start, u64 size, unsigned old_type,
459 			     unsigned new_type)
460 {
461 	return e820_update_range_map(&e820, start, size, old_type, new_type);
462 }
463 
464 static u64 __init e820_update_range_saved(u64 start, u64 size,
465 					  unsigned old_type, unsigned new_type)
466 {
467 	return e820_update_range_map(&e820_saved, start, size, old_type,
468 				     new_type);
469 }
470 
471 /* make e820 not cover the range */
472 u64 __init e820_remove_range(u64 start, u64 size, unsigned old_type,
473 			     int checktype)
474 {
475 	int i;
476 	u64 real_removed_size = 0;
477 
478 	if (size > (ULLONG_MAX - start))
479 		size = ULLONG_MAX - start;
480 
481 	for (i = 0; i < e820.nr_map; i++) {
482 		struct e820entry *ei = &e820.map[i];
483 		u64 final_start, final_end;
484 
485 		if (checktype && ei->type != old_type)
486 			continue;
487 		/* totally covered? */
488 		if (ei->addr >= start &&
489 		    (ei->addr + ei->size) <= (start + size)) {
490 			real_removed_size += ei->size;
491 			memset(ei, 0, sizeof(struct e820entry));
492 			continue;
493 		}
494 		/* partially covered */
495 		final_start = max(start, ei->addr);
496 		final_end = min(start + size, ei->addr + ei->size);
497 		if (final_start >= final_end)
498 			continue;
499 		real_removed_size += final_end - final_start;
500 
501 		ei->size -= final_end - final_start;
502 		if (ei->addr < final_start)
503 			continue;
504 		ei->addr = final_end;
505 	}
506 	return real_removed_size;
507 }
508 
509 void __init update_e820(void)
510 {
511 	int nr_map;
512 
513 	nr_map = e820.nr_map;
514 	if (sanitize_e820_map(e820.map, ARRAY_SIZE(e820.map), &nr_map))
515 		return;
516 	e820.nr_map = nr_map;
517 	printk(KERN_INFO "modified physical RAM map:\n");
518 	e820_print_map("modified");
519 }
520 static void __init update_e820_saved(void)
521 {
522 	int nr_map;
523 
524 	nr_map = e820_saved.nr_map;
525 	if (sanitize_e820_map(e820_saved.map, ARRAY_SIZE(e820_saved.map), &nr_map))
526 		return;
527 	e820_saved.nr_map = nr_map;
528 }
529 #define MAX_GAP_END 0x100000000ull
530 /*
531  * Search for a gap in the e820 memory space from start_addr to end_addr.
532  */
533 __init int e820_search_gap(unsigned long *gapstart, unsigned long *gapsize,
534 		unsigned long start_addr, unsigned long long end_addr)
535 {
536 	unsigned long long last;
537 	int i = e820.nr_map;
538 	int found = 0;
539 
540 	last = (end_addr && end_addr < MAX_GAP_END) ? end_addr : MAX_GAP_END;
541 
542 	while (--i >= 0) {
543 		unsigned long long start = e820.map[i].addr;
544 		unsigned long long end = start + e820.map[i].size;
545 
546 		if (end < start_addr)
547 			continue;
548 
549 		/*
550 		 * Since "last" is at most 4GB, we know we'll
551 		 * fit in 32 bits if this condition is true
552 		 */
553 		if (last > end) {
554 			unsigned long gap = last - end;
555 
556 			if (gap >= *gapsize) {
557 				*gapsize = gap;
558 				*gapstart = end;
559 				found = 1;
560 			}
561 		}
562 		if (start < last)
563 			last = start;
564 	}
565 	return found;
566 }
567 
568 /*
569  * Search for the biggest gap in the low 32 bits of the e820
570  * memory space.  We pass this space to PCI to assign MMIO resources
571  * for hotplug or unconfigured devices in.
572  * Hopefully the BIOS let enough space left.
573  */
574 __init void e820_setup_gap(void)
575 {
576 	unsigned long gapstart, gapsize, round;
577 	int found;
578 
579 	gapstart = 0x10000000;
580 	gapsize = 0x400000;
581 	found  = e820_search_gap(&gapstart, &gapsize, 0, MAX_GAP_END);
582 
583 #ifdef CONFIG_X86_64
584 	if (!found) {
585 		gapstart = (max_pfn << PAGE_SHIFT) + 1024*1024;
586 		printk(KERN_ERR "PCI: Warning: Cannot find a gap in the 32bit "
587 		       "address range\n"
588 		       KERN_ERR "PCI: Unassigned devices with 32bit resource "
589 		       "registers may break!\n");
590 	}
591 #endif
592 
593 	/*
594 	 * See how much we want to round up: start off with
595 	 * rounding to the next 1MB area.
596 	 */
597 	round = 0x100000;
598 	while ((gapsize >> 4) > round)
599 		round += round;
600 	/* Fun with two's complement */
601 	pci_mem_start = (gapstart + round) & -round;
602 
603 	printk(KERN_INFO
604 	       "Allocating PCI resources starting at %lx (gap: %lx:%lx)\n",
605 	       pci_mem_start, gapstart, gapsize);
606 }
607 
608 /**
609  * Because of the size limitation of struct boot_params, only first
610  * 128 E820 memory entries are passed to kernel via
611  * boot_params.e820_map, others are passed via SETUP_E820_EXT node of
612  * linked list of struct setup_data, which is parsed here.
613  */
614 void __init parse_e820_ext(struct setup_data *sdata, unsigned long pa_data)
615 {
616 	u32 map_len;
617 	int entries;
618 	struct e820entry *extmap;
619 
620 	entries = sdata->len / sizeof(struct e820entry);
621 	map_len = sdata->len + sizeof(struct setup_data);
622 	if (map_len > PAGE_SIZE)
623 		sdata = early_ioremap(pa_data, map_len);
624 	extmap = (struct e820entry *)(sdata->data);
625 	__append_e820_map(extmap, entries);
626 	sanitize_e820_map(e820.map, ARRAY_SIZE(e820.map), &e820.nr_map);
627 	if (map_len > PAGE_SIZE)
628 		early_iounmap(sdata, map_len);
629 	printk(KERN_INFO "extended physical RAM map:\n");
630 	e820_print_map("extended");
631 }
632 
633 #if defined(CONFIG_X86_64) || \
634 	(defined(CONFIG_X86_32) && defined(CONFIG_HIBERNATION))
635 /**
636  * Find the ranges of physical addresses that do not correspond to
637  * e820 RAM areas and mark the corresponding pages as nosave for
638  * hibernation (32 bit) or software suspend and suspend to RAM (64 bit).
639  *
640  * This function requires the e820 map to be sorted and without any
641  * overlapping entries and assumes the first e820 area to be RAM.
642  */
643 void __init e820_mark_nosave_regions(unsigned long limit_pfn)
644 {
645 	int i;
646 	unsigned long pfn;
647 
648 	pfn = PFN_DOWN(e820.map[0].addr + e820.map[0].size);
649 	for (i = 1; i < e820.nr_map; i++) {
650 		struct e820entry *ei = &e820.map[i];
651 
652 		if (pfn < PFN_UP(ei->addr))
653 			register_nosave_region(pfn, PFN_UP(ei->addr));
654 
655 		pfn = PFN_DOWN(ei->addr + ei->size);
656 		if (ei->type != E820_RAM && ei->type != E820_RESERVED_KERN)
657 			register_nosave_region(PFN_UP(ei->addr), pfn);
658 
659 		if (pfn >= limit_pfn)
660 			break;
661 	}
662 }
663 #endif
664 
665 /*
666  * Early reserved memory areas.
667  */
668 #define MAX_EARLY_RES 20
669 
670 struct early_res {
671 	u64 start, end;
672 	char name[16];
673 	char overlap_ok;
674 };
675 static struct early_res early_res[MAX_EARLY_RES] __initdata = {
676 	{ 0, PAGE_SIZE, "BIOS data page" },	/* BIOS data page */
677 #if defined(CONFIG_X86_64) && defined(CONFIG_X86_TRAMPOLINE)
678 	{ TRAMPOLINE_BASE, TRAMPOLINE_BASE + 2 * PAGE_SIZE, "TRAMPOLINE" },
679 #endif
680 #if defined(CONFIG_X86_32) && defined(CONFIG_SMP)
681 	/*
682 	 * But first pinch a few for the stack/trampoline stuff
683 	 * FIXME: Don't need the extra page at 4K, but need to fix
684 	 * trampoline before removing it. (see the GDT stuff)
685 	 */
686 	{ PAGE_SIZE, PAGE_SIZE + PAGE_SIZE, "EX TRAMPOLINE" },
687 	/*
688 	 * Has to be in very low memory so we can execute
689 	 * real-mode AP code.
690 	 */
691 	{ TRAMPOLINE_BASE, TRAMPOLINE_BASE + PAGE_SIZE, "TRAMPOLINE" },
692 #endif
693 	{}
694 };
695 
696 static int __init find_overlapped_early(u64 start, u64 end)
697 {
698 	int i;
699 	struct early_res *r;
700 
701 	for (i = 0; i < MAX_EARLY_RES && early_res[i].end; i++) {
702 		r = &early_res[i];
703 		if (end > r->start && start < r->end)
704 			break;
705 	}
706 
707 	return i;
708 }
709 
710 /*
711  * Drop the i-th range from the early reservation map,
712  * by copying any higher ranges down one over it, and
713  * clearing what had been the last slot.
714  */
715 static void __init drop_range(int i)
716 {
717 	int j;
718 
719 	for (j = i + 1; j < MAX_EARLY_RES && early_res[j].end; j++)
720 		;
721 
722 	memmove(&early_res[i], &early_res[i + 1],
723 	       (j - 1 - i) * sizeof(struct early_res));
724 
725 	early_res[j - 1].end = 0;
726 }
727 
728 /*
729  * Split any existing ranges that:
730  *  1) are marked 'overlap_ok', and
731  *  2) overlap with the stated range [start, end)
732  * into whatever portion (if any) of the existing range is entirely
733  * below or entirely above the stated range.  Drop the portion
734  * of the existing range that overlaps with the stated range,
735  * which will allow the caller of this routine to then add that
736  * stated range without conflicting with any existing range.
737  */
738 static void __init drop_overlaps_that_are_ok(u64 start, u64 end)
739 {
740 	int i;
741 	struct early_res *r;
742 	u64 lower_start, lower_end;
743 	u64 upper_start, upper_end;
744 	char name[16];
745 
746 	for (i = 0; i < MAX_EARLY_RES && early_res[i].end; i++) {
747 		r = &early_res[i];
748 
749 		/* Continue past non-overlapping ranges */
750 		if (end <= r->start || start >= r->end)
751 			continue;
752 
753 		/*
754 		 * Leave non-ok overlaps as is; let caller
755 		 * panic "Overlapping early reservations"
756 		 * when it hits this overlap.
757 		 */
758 		if (!r->overlap_ok)
759 			return;
760 
761 		/*
762 		 * We have an ok overlap.  We will drop it from the early
763 		 * reservation map, and add back in any non-overlapping
764 		 * portions (lower or upper) as separate, overlap_ok,
765 		 * non-overlapping ranges.
766 		 */
767 
768 		/* 1. Note any non-overlapping (lower or upper) ranges. */
769 		strncpy(name, r->name, sizeof(name) - 1);
770 
771 		lower_start = lower_end = 0;
772 		upper_start = upper_end = 0;
773 		if (r->start < start) {
774 		 	lower_start = r->start;
775 			lower_end = start;
776 		}
777 		if (r->end > end) {
778 			upper_start = end;
779 			upper_end = r->end;
780 		}
781 
782 		/* 2. Drop the original ok overlapping range */
783 		drop_range(i);
784 
785 		i--;		/* resume for-loop on copied down entry */
786 
787 		/* 3. Add back in any non-overlapping ranges. */
788 		if (lower_end)
789 			reserve_early_overlap_ok(lower_start, lower_end, name);
790 		if (upper_end)
791 			reserve_early_overlap_ok(upper_start, upper_end, name);
792 	}
793 }
794 
795 static void __init __reserve_early(u64 start, u64 end, char *name,
796 						int overlap_ok)
797 {
798 	int i;
799 	struct early_res *r;
800 
801 	i = find_overlapped_early(start, end);
802 	if (i >= MAX_EARLY_RES)
803 		panic("Too many early reservations");
804 	r = &early_res[i];
805 	if (r->end)
806 		panic("Overlapping early reservations "
807 		      "%llx-%llx %s to %llx-%llx %s\n",
808 		      start, end - 1, name?name:"", r->start,
809 		      r->end - 1, r->name);
810 	r->start = start;
811 	r->end = end;
812 	r->overlap_ok = overlap_ok;
813 	if (name)
814 		strncpy(r->name, name, sizeof(r->name) - 1);
815 }
816 
817 /*
818  * A few early reservtations come here.
819  *
820  * The 'overlap_ok' in the name of this routine does -not- mean it
821  * is ok for these reservations to overlap an earlier reservation.
822  * Rather it means that it is ok for subsequent reservations to
823  * overlap this one.
824  *
825  * Use this entry point to reserve early ranges when you are doing
826  * so out of "Paranoia", reserving perhaps more memory than you need,
827  * just in case, and don't mind a subsequent overlapping reservation
828  * that is known to be needed.
829  *
830  * The drop_overlaps_that_are_ok() call here isn't really needed.
831  * It would be needed if we had two colliding 'overlap_ok'
832  * reservations, so that the second such would not panic on the
833  * overlap with the first.  We don't have any such as of this
834  * writing, but might as well tolerate such if it happens in
835  * the future.
836  */
837 void __init reserve_early_overlap_ok(u64 start, u64 end, char *name)
838 {
839 	drop_overlaps_that_are_ok(start, end);
840 	__reserve_early(start, end, name, 1);
841 }
842 
843 /*
844  * Most early reservations come here.
845  *
846  * We first have drop_overlaps_that_are_ok() drop any pre-existing
847  * 'overlap_ok' ranges, so that we can then reserve this memory
848  * range without risk of panic'ing on an overlapping overlap_ok
849  * early reservation.
850  */
851 void __init reserve_early(u64 start, u64 end, char *name)
852 {
853 	drop_overlaps_that_are_ok(start, end);
854 	__reserve_early(start, end, name, 0);
855 }
856 
857 void __init free_early(u64 start, u64 end)
858 {
859 	struct early_res *r;
860 	int i;
861 
862 	i = find_overlapped_early(start, end);
863 	r = &early_res[i];
864 	if (i >= MAX_EARLY_RES || r->end != end || r->start != start)
865 		panic("free_early on not reserved area: %llx-%llx!",
866 			 start, end - 1);
867 
868 	drop_range(i);
869 }
870 
871 void __init early_res_to_bootmem(u64 start, u64 end)
872 {
873 	int i, count;
874 	u64 final_start, final_end;
875 
876 	count  = 0;
877 	for (i = 0; i < MAX_EARLY_RES && early_res[i].end; i++)
878 		count++;
879 
880 	printk(KERN_INFO "(%d early reservations) ==> bootmem [%010llx - %010llx]\n",
881 			 count, start, end);
882 	for (i = 0; i < count; i++) {
883 		struct early_res *r = &early_res[i];
884 		printk(KERN_INFO "  #%d [%010llx - %010llx] %16s", i,
885 			r->start, r->end, r->name);
886 		final_start = max(start, r->start);
887 		final_end = min(end, r->end);
888 		if (final_start >= final_end) {
889 			printk(KERN_CONT "\n");
890 			continue;
891 		}
892 		printk(KERN_CONT " ==> [%010llx - %010llx]\n",
893 			final_start, final_end);
894 		reserve_bootmem_generic(final_start, final_end - final_start,
895 				BOOTMEM_DEFAULT);
896 	}
897 }
898 
899 /* Check for already reserved areas */
900 static inline int __init bad_addr(u64 *addrp, u64 size, u64 align)
901 {
902 	int i;
903 	u64 addr = *addrp;
904 	int changed = 0;
905 	struct early_res *r;
906 again:
907 	i = find_overlapped_early(addr, addr + size);
908 	r = &early_res[i];
909 	if (i < MAX_EARLY_RES && r->end) {
910 		*addrp = addr = round_up(r->end, align);
911 		changed = 1;
912 		goto again;
913 	}
914 	return changed;
915 }
916 
917 /* Check for already reserved areas */
918 static inline int __init bad_addr_size(u64 *addrp, u64 *sizep, u64 align)
919 {
920 	int i;
921 	u64 addr = *addrp, last;
922 	u64 size = *sizep;
923 	int changed = 0;
924 again:
925 	last = addr + size;
926 	for (i = 0; i < MAX_EARLY_RES && early_res[i].end; i++) {
927 		struct early_res *r = &early_res[i];
928 		if (last > r->start && addr < r->start) {
929 			size = r->start - addr;
930 			changed = 1;
931 			goto again;
932 		}
933 		if (last > r->end && addr < r->end) {
934 			addr = round_up(r->end, align);
935 			size = last - addr;
936 			changed = 1;
937 			goto again;
938 		}
939 		if (last <= r->end && addr >= r->start) {
940 			(*sizep)++;
941 			return 0;
942 		}
943 	}
944 	if (changed) {
945 		*addrp = addr;
946 		*sizep = size;
947 	}
948 	return changed;
949 }
950 
951 /*
952  * Find a free area with specified alignment in a specific range.
953  */
954 u64 __init find_e820_area(u64 start, u64 end, u64 size, u64 align)
955 {
956 	int i;
957 
958 	for (i = 0; i < e820.nr_map; i++) {
959 		struct e820entry *ei = &e820.map[i];
960 		u64 addr, last;
961 		u64 ei_last;
962 
963 		if (ei->type != E820_RAM)
964 			continue;
965 		addr = round_up(ei->addr, align);
966 		ei_last = ei->addr + ei->size;
967 		if (addr < start)
968 			addr = round_up(start, align);
969 		if (addr >= ei_last)
970 			continue;
971 		while (bad_addr(&addr, size, align) && addr+size <= ei_last)
972 			;
973 		last = addr + size;
974 		if (last > ei_last)
975 			continue;
976 		if (last > end)
977 			continue;
978 		return addr;
979 	}
980 	return -1ULL;
981 }
982 
983 /*
984  * Find next free range after *start
985  */
986 u64 __init find_e820_area_size(u64 start, u64 *sizep, u64 align)
987 {
988 	int i;
989 
990 	for (i = 0; i < e820.nr_map; i++) {
991 		struct e820entry *ei = &e820.map[i];
992 		u64 addr, last;
993 		u64 ei_last;
994 
995 		if (ei->type != E820_RAM)
996 			continue;
997 		addr = round_up(ei->addr, align);
998 		ei_last = ei->addr + ei->size;
999 		if (addr < start)
1000 			addr = round_up(start, align);
1001 		if (addr >= ei_last)
1002 			continue;
1003 		*sizep = ei_last - addr;
1004 		while (bad_addr_size(&addr, sizep, align) &&
1005 			addr + *sizep <= ei_last)
1006 			;
1007 		last = addr + *sizep;
1008 		if (last > ei_last)
1009 			continue;
1010 		return addr;
1011 	}
1012 	return -1UL;
1013 
1014 }
1015 
1016 /*
1017  * pre allocated 4k and reserved it in e820
1018  */
1019 u64 __init early_reserve_e820(u64 startt, u64 sizet, u64 align)
1020 {
1021 	u64 size = 0;
1022 	u64 addr;
1023 	u64 start;
1024 
1025 	start = startt;
1026 	while (size < sizet)
1027 		start = find_e820_area_size(start, &size, align);
1028 
1029 	if (size < sizet)
1030 		return 0;
1031 
1032 	addr = round_down(start + size - sizet, align);
1033 	e820_update_range(addr, sizet, E820_RAM, E820_RESERVED);
1034 	e820_update_range_saved(addr, sizet, E820_RAM, E820_RESERVED);
1035 	printk(KERN_INFO "update e820 for early_reserve_e820\n");
1036 	update_e820();
1037 	update_e820_saved();
1038 
1039 	return addr;
1040 }
1041 
1042 #ifdef CONFIG_X86_32
1043 # ifdef CONFIG_X86_PAE
1044 #  define MAX_ARCH_PFN		(1ULL<<(36-PAGE_SHIFT))
1045 # else
1046 #  define MAX_ARCH_PFN		(1ULL<<(32-PAGE_SHIFT))
1047 # endif
1048 #else /* CONFIG_X86_32 */
1049 # define MAX_ARCH_PFN MAXMEM>>PAGE_SHIFT
1050 #endif
1051 
1052 /*
1053  * Find the highest page frame number we have available
1054  */
1055 static unsigned long __init e820_end_pfn(unsigned long limit_pfn, unsigned type)
1056 {
1057 	int i;
1058 	unsigned long last_pfn = 0;
1059 	unsigned long max_arch_pfn = MAX_ARCH_PFN;
1060 
1061 	for (i = 0; i < e820.nr_map; i++) {
1062 		struct e820entry *ei = &e820.map[i];
1063 		unsigned long start_pfn;
1064 		unsigned long end_pfn;
1065 
1066 		if (ei->type != type)
1067 			continue;
1068 
1069 		start_pfn = ei->addr >> PAGE_SHIFT;
1070 		end_pfn = (ei->addr + ei->size) >> PAGE_SHIFT;
1071 
1072 		if (start_pfn >= limit_pfn)
1073 			continue;
1074 		if (end_pfn > limit_pfn) {
1075 			last_pfn = limit_pfn;
1076 			break;
1077 		}
1078 		if (end_pfn > last_pfn)
1079 			last_pfn = end_pfn;
1080 	}
1081 
1082 	if (last_pfn > max_arch_pfn)
1083 		last_pfn = max_arch_pfn;
1084 
1085 	printk(KERN_INFO "last_pfn = %#lx max_arch_pfn = %#lx\n",
1086 			 last_pfn, max_arch_pfn);
1087 	return last_pfn;
1088 }
1089 unsigned long __init e820_end_of_ram_pfn(void)
1090 {
1091 	return e820_end_pfn(MAX_ARCH_PFN, E820_RAM);
1092 }
1093 
1094 unsigned long __init e820_end_of_low_ram_pfn(void)
1095 {
1096 	return e820_end_pfn(1UL<<(32 - PAGE_SHIFT), E820_RAM);
1097 }
1098 /*
1099  * Finds an active region in the address range from start_pfn to last_pfn and
1100  * returns its range in ei_startpfn and ei_endpfn for the e820 entry.
1101  */
1102 int __init e820_find_active_region(const struct e820entry *ei,
1103 				  unsigned long start_pfn,
1104 				  unsigned long last_pfn,
1105 				  unsigned long *ei_startpfn,
1106 				  unsigned long *ei_endpfn)
1107 {
1108 	u64 align = PAGE_SIZE;
1109 
1110 	*ei_startpfn = round_up(ei->addr, align) >> PAGE_SHIFT;
1111 	*ei_endpfn = round_down(ei->addr + ei->size, align) >> PAGE_SHIFT;
1112 
1113 	/* Skip map entries smaller than a page */
1114 	if (*ei_startpfn >= *ei_endpfn)
1115 		return 0;
1116 
1117 	/* Skip if map is outside the node */
1118 	if (ei->type != E820_RAM || *ei_endpfn <= start_pfn ||
1119 				    *ei_startpfn >= last_pfn)
1120 		return 0;
1121 
1122 	/* Check for overlaps */
1123 	if (*ei_startpfn < start_pfn)
1124 		*ei_startpfn = start_pfn;
1125 	if (*ei_endpfn > last_pfn)
1126 		*ei_endpfn = last_pfn;
1127 
1128 	return 1;
1129 }
1130 
1131 /* Walk the e820 map and register active regions within a node */
1132 void __init e820_register_active_regions(int nid, unsigned long start_pfn,
1133 					 unsigned long last_pfn)
1134 {
1135 	unsigned long ei_startpfn;
1136 	unsigned long ei_endpfn;
1137 	int i;
1138 
1139 	for (i = 0; i < e820.nr_map; i++)
1140 		if (e820_find_active_region(&e820.map[i],
1141 					    start_pfn, last_pfn,
1142 					    &ei_startpfn, &ei_endpfn))
1143 			add_active_range(nid, ei_startpfn, ei_endpfn);
1144 }
1145 
1146 /*
1147  * Find the hole size (in bytes) in the memory range.
1148  * @start: starting address of the memory range to scan
1149  * @end: ending address of the memory range to scan
1150  */
1151 u64 __init e820_hole_size(u64 start, u64 end)
1152 {
1153 	unsigned long start_pfn = start >> PAGE_SHIFT;
1154 	unsigned long last_pfn = end >> PAGE_SHIFT;
1155 	unsigned long ei_startpfn, ei_endpfn, ram = 0;
1156 	int i;
1157 
1158 	for (i = 0; i < e820.nr_map; i++) {
1159 		if (e820_find_active_region(&e820.map[i],
1160 					    start_pfn, last_pfn,
1161 					    &ei_startpfn, &ei_endpfn))
1162 			ram += ei_endpfn - ei_startpfn;
1163 	}
1164 	return end - start - ((u64)ram << PAGE_SHIFT);
1165 }
1166 
1167 static void early_panic(char *msg)
1168 {
1169 	early_printk(msg);
1170 	panic(msg);
1171 }
1172 
1173 static int userdef __initdata;
1174 
1175 /* "mem=nopentium" disables the 4MB page tables. */
1176 static int __init parse_memopt(char *p)
1177 {
1178 	u64 mem_size;
1179 
1180 	if (!p)
1181 		return -EINVAL;
1182 
1183 #ifdef CONFIG_X86_32
1184 	if (!strcmp(p, "nopentium")) {
1185 		setup_clear_cpu_cap(X86_FEATURE_PSE);
1186 		return 0;
1187 	}
1188 #endif
1189 
1190 	userdef = 1;
1191 	mem_size = memparse(p, &p);
1192 	e820_remove_range(mem_size, ULLONG_MAX - mem_size, E820_RAM, 1);
1193 
1194 	return 0;
1195 }
1196 early_param("mem", parse_memopt);
1197 
1198 static int __init parse_memmap_opt(char *p)
1199 {
1200 	char *oldp;
1201 	u64 start_at, mem_size;
1202 
1203 	if (!p)
1204 		return -EINVAL;
1205 
1206 	if (!strcmp(p, "exactmap")) {
1207 #ifdef CONFIG_CRASH_DUMP
1208 		/*
1209 		 * If we are doing a crash dump, we still need to know
1210 		 * the real mem size before original memory map is
1211 		 * reset.
1212 		 */
1213 		saved_max_pfn = e820_end_of_ram_pfn();
1214 #endif
1215 		e820.nr_map = 0;
1216 		userdef = 1;
1217 		return 0;
1218 	}
1219 
1220 	oldp = p;
1221 	mem_size = memparse(p, &p);
1222 	if (p == oldp)
1223 		return -EINVAL;
1224 
1225 	userdef = 1;
1226 	if (*p == '@') {
1227 		start_at = memparse(p+1, &p);
1228 		e820_add_region(start_at, mem_size, E820_RAM);
1229 	} else if (*p == '#') {
1230 		start_at = memparse(p+1, &p);
1231 		e820_add_region(start_at, mem_size, E820_ACPI);
1232 	} else if (*p == '$') {
1233 		start_at = memparse(p+1, &p);
1234 		e820_add_region(start_at, mem_size, E820_RESERVED);
1235 	} else
1236 		e820_remove_range(mem_size, ULLONG_MAX - mem_size, E820_RAM, 1);
1237 
1238 	return *p == '\0' ? 0 : -EINVAL;
1239 }
1240 early_param("memmap", parse_memmap_opt);
1241 
1242 void __init finish_e820_parsing(void)
1243 {
1244 	if (userdef) {
1245 		int nr = e820.nr_map;
1246 
1247 		if (sanitize_e820_map(e820.map, ARRAY_SIZE(e820.map), &nr) < 0)
1248 			early_panic("Invalid user supplied memory map");
1249 		e820.nr_map = nr;
1250 
1251 		printk(KERN_INFO "user-defined physical RAM map:\n");
1252 		e820_print_map("user");
1253 	}
1254 }
1255 
1256 static inline const char *e820_type_to_string(int e820_type)
1257 {
1258 	switch (e820_type) {
1259 	case E820_RESERVED_KERN:
1260 	case E820_RAM:	return "System RAM";
1261 	case E820_ACPI:	return "ACPI Tables";
1262 	case E820_NVS:	return "ACPI Non-volatile Storage";
1263 	default:	return "reserved";
1264 	}
1265 }
1266 
1267 /*
1268  * Mark e820 reserved areas as busy for the resource manager.
1269  */
1270 void __init e820_reserve_resources(void)
1271 {
1272 	int i;
1273 	struct resource *res;
1274 	u64 end;
1275 
1276 	res = alloc_bootmem_low(sizeof(struct resource) * e820.nr_map);
1277 	for (i = 0; i < e820.nr_map; i++) {
1278 		end = e820.map[i].addr + e820.map[i].size - 1;
1279 #ifndef CONFIG_RESOURCES_64BIT
1280 		if (end > 0x100000000ULL) {
1281 			res++;
1282 			continue;
1283 		}
1284 #endif
1285 		res->name = e820_type_to_string(e820.map[i].type);
1286 		res->start = e820.map[i].addr;
1287 		res->end = end;
1288 
1289 		res->flags = IORESOURCE_MEM | IORESOURCE_BUSY;
1290 		insert_resource(&iomem_resource, res);
1291 		res++;
1292 	}
1293 
1294 	for (i = 0; i < e820_saved.nr_map; i++) {
1295 		struct e820entry *entry = &e820_saved.map[i];
1296 		firmware_map_add_early(entry->addr,
1297 			entry->addr + entry->size - 1,
1298 			e820_type_to_string(entry->type));
1299 	}
1300 }
1301 
1302 char *__init default_machine_specific_memory_setup(void)
1303 {
1304 	char *who = "BIOS-e820";
1305 	int new_nr;
1306 	/*
1307 	 * Try to copy the BIOS-supplied E820-map.
1308 	 *
1309 	 * Otherwise fake a memory map; one section from 0k->640k,
1310 	 * the next section from 1mb->appropriate_mem_k
1311 	 */
1312 	new_nr = boot_params.e820_entries;
1313 	sanitize_e820_map(boot_params.e820_map,
1314 			ARRAY_SIZE(boot_params.e820_map),
1315 			&new_nr);
1316 	boot_params.e820_entries = new_nr;
1317 	if (append_e820_map(boot_params.e820_map, boot_params.e820_entries)
1318 	  < 0) {
1319 		u64 mem_size;
1320 
1321 		/* compare results from other methods and take the greater */
1322 		if (boot_params.alt_mem_k
1323 		    < boot_params.screen_info.ext_mem_k) {
1324 			mem_size = boot_params.screen_info.ext_mem_k;
1325 			who = "BIOS-88";
1326 		} else {
1327 			mem_size = boot_params.alt_mem_k;
1328 			who = "BIOS-e801";
1329 		}
1330 
1331 		e820.nr_map = 0;
1332 		e820_add_region(0, LOWMEMSIZE(), E820_RAM);
1333 		e820_add_region(HIGH_MEMORY, mem_size << 10, E820_RAM);
1334 	}
1335 
1336 	/* In case someone cares... */
1337 	return who;
1338 }
1339 
1340 char *__init __attribute__((weak)) machine_specific_memory_setup(void)
1341 {
1342 	if (x86_quirks->arch_memory_setup) {
1343 		char *who = x86_quirks->arch_memory_setup();
1344 
1345 		if (who)
1346 			return who;
1347 	}
1348 	return default_machine_specific_memory_setup();
1349 }
1350 
1351 /* Overridden in paravirt.c if CONFIG_PARAVIRT */
1352 char * __init __attribute__((weak)) memory_setup(void)
1353 {
1354 	return machine_specific_memory_setup();
1355 }
1356 
1357 void __init setup_memory_map(void)
1358 {
1359 	char *who;
1360 
1361 	who = memory_setup();
1362 	memcpy(&e820_saved, &e820, sizeof(struct e820map));
1363 	printk(KERN_INFO "BIOS-provided physical RAM map:\n");
1364 	e820_print_map(who);
1365 }
1366