xref: /openbmc/linux/arch/x86/kernel/e820.c (revision 4da722ca)
1 /*
2  * Low level x86 E820 memory map handling functions.
3  *
4  * The firmware and bootloader passes us the "E820 table", which is the primary
5  * physical memory layout description available about x86 systems.
6  *
7  * The kernel takes the E820 memory layout and optionally modifies it with
8  * quirks and other tweaks, and feeds that into the generic Linux memory
9  * allocation code routines via a platform independent interface (memblock, etc.).
10  */
11 #include <linux/crash_dump.h>
12 #include <linux/bootmem.h>
13 #include <linux/suspend.h>
14 #include <linux/acpi.h>
15 #include <linux/firmware-map.h>
16 #include <linux/memblock.h>
17 #include <linux/sort.h>
18 
19 #include <asm/e820/api.h>
20 #include <asm/setup.h>
21 
22 /*
23  * We organize the E820 table into three main data structures:
24  *
25  * - 'e820_table_firmware': the original firmware version passed to us by the
26  *   bootloader - not modified by the kernel. It is composed of two parts:
27  *   the first 128 E820 memory entries in boot_params.e820_table and the remaining
28  *   (if any) entries of the SETUP_E820_EXT nodes. We use this to:
29  *
30  *       - inform the user about the firmware's notion of memory layout
31  *         via /sys/firmware/memmap
32  *
33  *       - the hibernation code uses it to generate a kernel-independent MD5
34  *         fingerprint of the physical memory layout of a system.
35  *
36  * - 'e820_table_kexec': a slightly modified (by the kernel) firmware version
37  *   passed to us by the bootloader - the major difference between
38  *   e820_table_firmware[] and this one is that, the latter marks the setup_data
39  *   list created by the EFI boot stub as reserved, so that kexec can reuse the
40  *   setup_data information in the second kernel. Besides, e820_table_kexec[]
41  *   might also be modified by the kexec itself to fake a mptable.
42  *   We use this to:
43  *
44  *       - kexec, which is a bootloader in disguise, uses the original E820
45  *         layout to pass to the kexec-ed kernel. This way the original kernel
46  *         can have a restricted E820 map while the kexec()-ed kexec-kernel
47  *         can have access to full memory - etc.
48  *
49  * - 'e820_table': this is the main E820 table that is massaged by the
50  *   low level x86 platform code, or modified by boot parameters, before
51  *   passed on to higher level MM layers.
52  *
53  * Once the E820 map has been converted to the standard Linux memory layout
54  * information its role stops - modifying it has no effect and does not get
55  * re-propagated. So itsmain role is a temporary bootstrap storage of firmware
56  * specific memory layout data during early bootup.
57  */
58 static struct e820_table e820_table_init		__initdata;
59 static struct e820_table e820_table_kexec_init		__initdata;
60 static struct e820_table e820_table_firmware_init	__initdata;
61 
62 struct e820_table *e820_table __refdata			= &e820_table_init;
63 struct e820_table *e820_table_kexec __refdata		= &e820_table_kexec_init;
64 struct e820_table *e820_table_firmware __refdata	= &e820_table_firmware_init;
65 
66 /* For PCI or other memory-mapped resources */
67 unsigned long pci_mem_start = 0xaeedbabe;
68 #ifdef CONFIG_PCI
69 EXPORT_SYMBOL(pci_mem_start);
70 #endif
71 
72 /*
73  * This function checks if any part of the range <start,end> is mapped
74  * with type.
75  */
76 bool e820__mapped_any(u64 start, u64 end, enum e820_type type)
77 {
78 	int i;
79 
80 	for (i = 0; i < e820_table->nr_entries; i++) {
81 		struct e820_entry *entry = &e820_table->entries[i];
82 
83 		if (type && entry->type != type)
84 			continue;
85 		if (entry->addr >= end || entry->addr + entry->size <= start)
86 			continue;
87 		return 1;
88 	}
89 	return 0;
90 }
91 EXPORT_SYMBOL_GPL(e820__mapped_any);
92 
93 /*
94  * This function checks if the entire <start,end> range is mapped with 'type'.
95  *
96  * Note: this function only works correctly once the E820 table is sorted and
97  * not-overlapping (at least for the range specified), which is the case normally.
98  */
99 bool __init e820__mapped_all(u64 start, u64 end, enum e820_type type)
100 {
101 	int i;
102 
103 	for (i = 0; i < e820_table->nr_entries; i++) {
104 		struct e820_entry *entry = &e820_table->entries[i];
105 
106 		if (type && entry->type != type)
107 			continue;
108 
109 		/* Is the region (part) in overlap with the current region? */
110 		if (entry->addr >= end || entry->addr + entry->size <= start)
111 			continue;
112 
113 		/*
114 		 * If the region is at the beginning of <start,end> we move
115 		 * 'start' to the end of the region since it's ok until there
116 		 */
117 		if (entry->addr <= start)
118 			start = entry->addr + entry->size;
119 
120 		/*
121 		 * If 'start' is now at or beyond 'end', we're done, full
122 		 * coverage of the desired range exists:
123 		 */
124 		if (start >= end)
125 			return 1;
126 	}
127 	return 0;
128 }
129 
130 /*
131  * Add a memory region to the kernel E820 map.
132  */
133 static void __init __e820__range_add(struct e820_table *table, u64 start, u64 size, enum e820_type type)
134 {
135 	int x = table->nr_entries;
136 
137 	if (x >= ARRAY_SIZE(table->entries)) {
138 		pr_err("e820: too many entries; ignoring [mem %#010llx-%#010llx]\n", start, start + size - 1);
139 		return;
140 	}
141 
142 	table->entries[x].addr = start;
143 	table->entries[x].size = size;
144 	table->entries[x].type = type;
145 	table->nr_entries++;
146 }
147 
148 void __init e820__range_add(u64 start, u64 size, enum e820_type type)
149 {
150 	__e820__range_add(e820_table, start, size, type);
151 }
152 
153 static void __init e820_print_type(enum e820_type type)
154 {
155 	switch (type) {
156 	case E820_TYPE_RAM:		/* Fall through: */
157 	case E820_TYPE_RESERVED_KERN:	pr_cont("usable");			break;
158 	case E820_TYPE_RESERVED:	pr_cont("reserved");			break;
159 	case E820_TYPE_ACPI:		pr_cont("ACPI data");			break;
160 	case E820_TYPE_NVS:		pr_cont("ACPI NVS");			break;
161 	case E820_TYPE_UNUSABLE:	pr_cont("unusable");			break;
162 	case E820_TYPE_PMEM:		/* Fall through: */
163 	case E820_TYPE_PRAM:		pr_cont("persistent (type %u)", type);	break;
164 	default:			pr_cont("type %u", type);		break;
165 	}
166 }
167 
168 void __init e820__print_table(char *who)
169 {
170 	int i;
171 
172 	for (i = 0; i < e820_table->nr_entries; i++) {
173 		pr_info("%s: [mem %#018Lx-%#018Lx] ", who,
174 		       e820_table->entries[i].addr,
175 		       e820_table->entries[i].addr + e820_table->entries[i].size - 1);
176 
177 		e820_print_type(e820_table->entries[i].type);
178 		pr_cont("\n");
179 	}
180 }
181 
182 /*
183  * Sanitize an E820 map.
184  *
185  * Some E820 layouts include overlapping entries. The following
186  * replaces the original E820 map with a new one, removing overlaps,
187  * and resolving conflicting memory types in favor of highest
188  * numbered type.
189  *
190  * The input parameter 'entries' points to an array of 'struct
191  * e820_entry' which on entry has elements in the range [0, *nr_entries)
192  * valid, and which has space for up to max_nr_entries entries.
193  * On return, the resulting sanitized E820 map entries will be in
194  * overwritten in the same location, starting at 'entries'.
195  *
196  * The integer pointed to by nr_entries must be valid on entry (the
197  * current number of valid entries located at 'entries'). If the
198  * sanitizing succeeds the *nr_entries will be updated with the new
199  * number of valid entries (something no more than max_nr_entries).
200  *
201  * The return value from e820__update_table() is zero if it
202  * successfully 'sanitized' the map entries passed in, and is -1
203  * if it did nothing, which can happen if either of (1) it was
204  * only passed one map entry, or (2) any of the input map entries
205  * were invalid (start + size < start, meaning that the size was
206  * so big the described memory range wrapped around through zero.)
207  *
208  *	Visually we're performing the following
209  *	(1,2,3,4 = memory types)...
210  *
211  *	Sample memory map (w/overlaps):
212  *	   ____22__________________
213  *	   ______________________4_
214  *	   ____1111________________
215  *	   _44_____________________
216  *	   11111111________________
217  *	   ____________________33__
218  *	   ___________44___________
219  *	   __________33333_________
220  *	   ______________22________
221  *	   ___________________2222_
222  *	   _________111111111______
223  *	   _____________________11_
224  *	   _________________4______
225  *
226  *	Sanitized equivalent (no overlap):
227  *	   1_______________________
228  *	   _44_____________________
229  *	   ___1____________________
230  *	   ____22__________________
231  *	   ______11________________
232  *	   _________1______________
233  *	   __________3_____________
234  *	   ___________44___________
235  *	   _____________33_________
236  *	   _______________2________
237  *	   ________________1_______
238  *	   _________________4______
239  *	   ___________________2____
240  *	   ____________________33__
241  *	   ______________________4_
242  */
243 struct change_member {
244 	/* Pointer to the original entry: */
245 	struct e820_entry	*entry;
246 	/* Address for this change point: */
247 	unsigned long long	addr;
248 };
249 
250 static struct change_member	change_point_list[2*E820_MAX_ENTRIES]	__initdata;
251 static struct change_member	*change_point[2*E820_MAX_ENTRIES]	__initdata;
252 static struct e820_entry	*overlap_list[E820_MAX_ENTRIES]		__initdata;
253 static struct e820_entry	new_entries[E820_MAX_ENTRIES]		__initdata;
254 
255 static int __init cpcompare(const void *a, const void *b)
256 {
257 	struct change_member * const *app = a, * const *bpp = b;
258 	const struct change_member *ap = *app, *bp = *bpp;
259 
260 	/*
261 	 * Inputs are pointers to two elements of change_point[].  If their
262 	 * addresses are not equal, their difference dominates.  If the addresses
263 	 * are equal, then consider one that represents the end of its region
264 	 * to be greater than one that does not.
265 	 */
266 	if (ap->addr != bp->addr)
267 		return ap->addr > bp->addr ? 1 : -1;
268 
269 	return (ap->addr != ap->entry->addr) - (bp->addr != bp->entry->addr);
270 }
271 
272 int __init e820__update_table(struct e820_table *table)
273 {
274 	struct e820_entry *entries = table->entries;
275 	u32 max_nr_entries = ARRAY_SIZE(table->entries);
276 	enum e820_type current_type, last_type;
277 	unsigned long long last_addr;
278 	u32 new_nr_entries, overlap_entries;
279 	u32 i, chg_idx, chg_nr;
280 
281 	/* If there's only one memory region, don't bother: */
282 	if (table->nr_entries < 2)
283 		return -1;
284 
285 	BUG_ON(table->nr_entries > max_nr_entries);
286 
287 	/* Bail out if we find any unreasonable addresses in the map: */
288 	for (i = 0; i < table->nr_entries; i++) {
289 		if (entries[i].addr + entries[i].size < entries[i].addr)
290 			return -1;
291 	}
292 
293 	/* Create pointers for initial change-point information (for sorting): */
294 	for (i = 0; i < 2 * table->nr_entries; i++)
295 		change_point[i] = &change_point_list[i];
296 
297 	/*
298 	 * Record all known change-points (starting and ending addresses),
299 	 * omitting empty memory regions:
300 	 */
301 	chg_idx = 0;
302 	for (i = 0; i < table->nr_entries; i++)	{
303 		if (entries[i].size != 0) {
304 			change_point[chg_idx]->addr	= entries[i].addr;
305 			change_point[chg_idx++]->entry	= &entries[i];
306 			change_point[chg_idx]->addr	= entries[i].addr + entries[i].size;
307 			change_point[chg_idx++]->entry	= &entries[i];
308 		}
309 	}
310 	chg_nr = chg_idx;
311 
312 	/* Sort change-point list by memory addresses (low -> high): */
313 	sort(change_point, chg_nr, sizeof(*change_point), cpcompare, NULL);
314 
315 	/* Create a new memory map, removing overlaps: */
316 	overlap_entries = 0;	 /* Number of entries in the overlap table */
317 	new_nr_entries = 0;	 /* Index for creating new map entries */
318 	last_type = 0;		 /* Start with undefined memory type */
319 	last_addr = 0;		 /* Start with 0 as last starting address */
320 
321 	/* Loop through change-points, determining effect on the new map: */
322 	for (chg_idx = 0; chg_idx < chg_nr; chg_idx++) {
323 		/* Keep track of all overlapping entries */
324 		if (change_point[chg_idx]->addr == change_point[chg_idx]->entry->addr) {
325 			/* Add map entry to overlap list (> 1 entry implies an overlap) */
326 			overlap_list[overlap_entries++] = change_point[chg_idx]->entry;
327 		} else {
328 			/* Remove entry from list (order independent, so swap with last): */
329 			for (i = 0; i < overlap_entries; i++) {
330 				if (overlap_list[i] == change_point[chg_idx]->entry)
331 					overlap_list[i] = overlap_list[overlap_entries-1];
332 			}
333 			overlap_entries--;
334 		}
335 		/*
336 		 * If there are overlapping entries, decide which
337 		 * "type" to use (larger value takes precedence --
338 		 * 1=usable, 2,3,4,4+=unusable)
339 		 */
340 		current_type = 0;
341 		for (i = 0; i < overlap_entries; i++) {
342 			if (overlap_list[i]->type > current_type)
343 				current_type = overlap_list[i]->type;
344 		}
345 
346 		/* Continue building up new map based on this information: */
347 		if (current_type != last_type || current_type == E820_TYPE_PRAM) {
348 			if (last_type != 0)	 {
349 				new_entries[new_nr_entries].size = change_point[chg_idx]->addr - last_addr;
350 				/* Move forward only if the new size was non-zero: */
351 				if (new_entries[new_nr_entries].size != 0)
352 					/* No more space left for new entries? */
353 					if (++new_nr_entries >= max_nr_entries)
354 						break;
355 			}
356 			if (current_type != 0)	{
357 				new_entries[new_nr_entries].addr = change_point[chg_idx]->addr;
358 				new_entries[new_nr_entries].type = current_type;
359 				last_addr = change_point[chg_idx]->addr;
360 			}
361 			last_type = current_type;
362 		}
363 	}
364 
365 	/* Copy the new entries into the original location: */
366 	memcpy(entries, new_entries, new_nr_entries*sizeof(*entries));
367 	table->nr_entries = new_nr_entries;
368 
369 	return 0;
370 }
371 
372 static int __init __append_e820_table(struct boot_e820_entry *entries, u32 nr_entries)
373 {
374 	struct boot_e820_entry *entry = entries;
375 
376 	while (nr_entries) {
377 		u64 start = entry->addr;
378 		u64 size = entry->size;
379 		u64 end = start + size - 1;
380 		u32 type = entry->type;
381 
382 		/* Ignore the entry on 64-bit overflow: */
383 		if (start > end && likely(size))
384 			return -1;
385 
386 		e820__range_add(start, size, type);
387 
388 		entry++;
389 		nr_entries--;
390 	}
391 	return 0;
392 }
393 
394 /*
395  * Copy the BIOS E820 map into a safe place.
396  *
397  * Sanity-check it while we're at it..
398  *
399  * If we're lucky and live on a modern system, the setup code
400  * will have given us a memory map that we can use to properly
401  * set up memory.  If we aren't, we'll fake a memory map.
402  */
403 static int __init append_e820_table(struct boot_e820_entry *entries, u32 nr_entries)
404 {
405 	/* Only one memory region (or negative)? Ignore it */
406 	if (nr_entries < 2)
407 		return -1;
408 
409 	return __append_e820_table(entries, nr_entries);
410 }
411 
412 static u64 __init
413 __e820__range_update(struct e820_table *table, u64 start, u64 size, enum e820_type old_type, enum e820_type new_type)
414 {
415 	u64 end;
416 	unsigned int i;
417 	u64 real_updated_size = 0;
418 
419 	BUG_ON(old_type == new_type);
420 
421 	if (size > (ULLONG_MAX - start))
422 		size = ULLONG_MAX - start;
423 
424 	end = start + size;
425 	printk(KERN_DEBUG "e820: update [mem %#010Lx-%#010Lx] ", start, end - 1);
426 	e820_print_type(old_type);
427 	pr_cont(" ==> ");
428 	e820_print_type(new_type);
429 	pr_cont("\n");
430 
431 	for (i = 0; i < table->nr_entries; i++) {
432 		struct e820_entry *entry = &table->entries[i];
433 		u64 final_start, final_end;
434 		u64 entry_end;
435 
436 		if (entry->type != old_type)
437 			continue;
438 
439 		entry_end = entry->addr + entry->size;
440 
441 		/* Completely covered by new range? */
442 		if (entry->addr >= start && entry_end <= end) {
443 			entry->type = new_type;
444 			real_updated_size += entry->size;
445 			continue;
446 		}
447 
448 		/* New range is completely covered? */
449 		if (entry->addr < start && entry_end > end) {
450 			__e820__range_add(table, start, size, new_type);
451 			__e820__range_add(table, end, entry_end - end, entry->type);
452 			entry->size = start - entry->addr;
453 			real_updated_size += size;
454 			continue;
455 		}
456 
457 		/* Partially covered: */
458 		final_start = max(start, entry->addr);
459 		final_end = min(end, entry_end);
460 		if (final_start >= final_end)
461 			continue;
462 
463 		__e820__range_add(table, final_start, final_end - final_start, new_type);
464 
465 		real_updated_size += final_end - final_start;
466 
467 		/*
468 		 * Left range could be head or tail, so need to update
469 		 * its size first:
470 		 */
471 		entry->size -= final_end - final_start;
472 		if (entry->addr < final_start)
473 			continue;
474 
475 		entry->addr = final_end;
476 	}
477 	return real_updated_size;
478 }
479 
480 u64 __init e820__range_update(u64 start, u64 size, enum e820_type old_type, enum e820_type new_type)
481 {
482 	return __e820__range_update(e820_table, start, size, old_type, new_type);
483 }
484 
485 static u64 __init e820__range_update_kexec(u64 start, u64 size, enum e820_type old_type, enum e820_type  new_type)
486 {
487 	return __e820__range_update(e820_table_kexec, start, size, old_type, new_type);
488 }
489 
490 /* Remove a range of memory from the E820 table: */
491 u64 __init e820__range_remove(u64 start, u64 size, enum e820_type old_type, bool check_type)
492 {
493 	int i;
494 	u64 end;
495 	u64 real_removed_size = 0;
496 
497 	if (size > (ULLONG_MAX - start))
498 		size = ULLONG_MAX - start;
499 
500 	end = start + size;
501 	printk(KERN_DEBUG "e820: remove [mem %#010Lx-%#010Lx] ", start, end - 1);
502 	if (check_type)
503 		e820_print_type(old_type);
504 	pr_cont("\n");
505 
506 	for (i = 0; i < e820_table->nr_entries; i++) {
507 		struct e820_entry *entry = &e820_table->entries[i];
508 		u64 final_start, final_end;
509 		u64 entry_end;
510 
511 		if (check_type && entry->type != old_type)
512 			continue;
513 
514 		entry_end = entry->addr + entry->size;
515 
516 		/* Completely covered? */
517 		if (entry->addr >= start && entry_end <= end) {
518 			real_removed_size += entry->size;
519 			memset(entry, 0, sizeof(*entry));
520 			continue;
521 		}
522 
523 		/* Is the new range completely covered? */
524 		if (entry->addr < start && entry_end > end) {
525 			e820__range_add(end, entry_end - end, entry->type);
526 			entry->size = start - entry->addr;
527 			real_removed_size += size;
528 			continue;
529 		}
530 
531 		/* Partially covered: */
532 		final_start = max(start, entry->addr);
533 		final_end = min(end, entry_end);
534 		if (final_start >= final_end)
535 			continue;
536 
537 		real_removed_size += final_end - final_start;
538 
539 		/*
540 		 * Left range could be head or tail, so need to update
541 		 * the size first:
542 		 */
543 		entry->size -= final_end - final_start;
544 		if (entry->addr < final_start)
545 			continue;
546 
547 		entry->addr = final_end;
548 	}
549 	return real_removed_size;
550 }
551 
552 void __init e820__update_table_print(void)
553 {
554 	if (e820__update_table(e820_table))
555 		return;
556 
557 	pr_info("e820: modified physical RAM map:\n");
558 	e820__print_table("modified");
559 }
560 
561 static void __init e820__update_table_kexec(void)
562 {
563 	e820__update_table(e820_table_kexec);
564 }
565 
566 #define MAX_GAP_END 0x100000000ull
567 
568 /*
569  * Search for a gap in the E820 memory space from 0 to MAX_GAP_END (4GB).
570  */
571 static int __init e820_search_gap(unsigned long *gapstart, unsigned long *gapsize)
572 {
573 	unsigned long long last = MAX_GAP_END;
574 	int i = e820_table->nr_entries;
575 	int found = 0;
576 
577 	while (--i >= 0) {
578 		unsigned long long start = e820_table->entries[i].addr;
579 		unsigned long long end = start + e820_table->entries[i].size;
580 
581 		/*
582 		 * Since "last" is at most 4GB, we know we'll
583 		 * fit in 32 bits if this condition is true:
584 		 */
585 		if (last > end) {
586 			unsigned long gap = last - end;
587 
588 			if (gap >= *gapsize) {
589 				*gapsize = gap;
590 				*gapstart = end;
591 				found = 1;
592 			}
593 		}
594 		if (start < last)
595 			last = start;
596 	}
597 	return found;
598 }
599 
600 /*
601  * Search for the biggest gap in the low 32 bits of the E820
602  * memory space. We pass this space to the PCI subsystem, so
603  * that it can assign MMIO resources for hotplug or
604  * unconfigured devices in.
605  *
606  * Hopefully the BIOS let enough space left.
607  */
608 __init void e820__setup_pci_gap(void)
609 {
610 	unsigned long gapstart, gapsize;
611 	int found;
612 
613 	gapsize = 0x400000;
614 	found  = e820_search_gap(&gapstart, &gapsize);
615 
616 	if (!found) {
617 #ifdef CONFIG_X86_64
618 		gapstart = (max_pfn << PAGE_SHIFT) + 1024*1024;
619 		pr_err(
620 			"e820: Cannot find an available gap in the 32-bit address range\n"
621 			"e820: PCI devices with unassigned 32-bit BARs may not work!\n");
622 #else
623 		gapstart = 0x10000000;
624 #endif
625 	}
626 
627 	/*
628 	 * e820__reserve_resources_late() protects stolen RAM already:
629 	 */
630 	pci_mem_start = gapstart;
631 
632 	pr_info("e820: [mem %#010lx-%#010lx] available for PCI devices\n", gapstart, gapstart + gapsize - 1);
633 }
634 
635 /*
636  * Called late during init, in free_initmem().
637  *
638  * Initial e820_table and e820_table_kexec are largish __initdata arrays.
639  *
640  * Copy them to a (usually much smaller) dynamically allocated area that is
641  * sized precisely after the number of e820 entries.
642  *
643  * This is done after we've performed all the fixes and tweaks to the tables.
644  * All functions which modify them are __init functions, which won't exist
645  * after free_initmem().
646  */
647 __init void e820__reallocate_tables(void)
648 {
649 	struct e820_table *n;
650 	int size;
651 
652 	size = offsetof(struct e820_table, entries) + sizeof(struct e820_entry)*e820_table->nr_entries;
653 	n = kmalloc(size, GFP_KERNEL);
654 	BUG_ON(!n);
655 	memcpy(n, e820_table, size);
656 	e820_table = n;
657 
658 	size = offsetof(struct e820_table, entries) + sizeof(struct e820_entry)*e820_table_kexec->nr_entries;
659 	n = kmalloc(size, GFP_KERNEL);
660 	BUG_ON(!n);
661 	memcpy(n, e820_table_kexec, size);
662 	e820_table_kexec = n;
663 
664 	size = offsetof(struct e820_table, entries) + sizeof(struct e820_entry)*e820_table_firmware->nr_entries;
665 	n = kmalloc(size, GFP_KERNEL);
666 	BUG_ON(!n);
667 	memcpy(n, e820_table_firmware, size);
668 	e820_table_firmware = n;
669 }
670 
671 /*
672  * Because of the small fixed size of struct boot_params, only the first
673  * 128 E820 memory entries are passed to the kernel via boot_params.e820_table,
674  * the remaining (if any) entries are passed via the SETUP_E820_EXT node of
675  * struct setup_data, which is parsed here.
676  */
677 void __init e820__memory_setup_extended(u64 phys_addr, u32 data_len)
678 {
679 	int entries;
680 	struct boot_e820_entry *extmap;
681 	struct setup_data *sdata;
682 
683 	sdata = early_memremap(phys_addr, data_len);
684 	entries = sdata->len / sizeof(*extmap);
685 	extmap = (struct boot_e820_entry *)(sdata->data);
686 
687 	__append_e820_table(extmap, entries);
688 	e820__update_table(e820_table);
689 
690 	memcpy(e820_table_kexec, e820_table, sizeof(*e820_table_kexec));
691 	memcpy(e820_table_firmware, e820_table, sizeof(*e820_table_firmware));
692 
693 	early_memunmap(sdata, data_len);
694 	pr_info("e820: extended physical RAM map:\n");
695 	e820__print_table("extended");
696 }
697 
698 /*
699  * Find the ranges of physical addresses that do not correspond to
700  * E820 RAM areas and register the corresponding pages as 'nosave' for
701  * hibernation (32-bit) or software suspend and suspend to RAM (64-bit).
702  *
703  * This function requires the E820 map to be sorted and without any
704  * overlapping entries.
705  */
706 void __init e820__register_nosave_regions(unsigned long limit_pfn)
707 {
708 	int i;
709 	unsigned long pfn = 0;
710 
711 	for (i = 0; i < e820_table->nr_entries; i++) {
712 		struct e820_entry *entry = &e820_table->entries[i];
713 
714 		if (pfn < PFN_UP(entry->addr))
715 			register_nosave_region(pfn, PFN_UP(entry->addr));
716 
717 		pfn = PFN_DOWN(entry->addr + entry->size);
718 
719 		if (entry->type != E820_TYPE_RAM && entry->type != E820_TYPE_RESERVED_KERN)
720 			register_nosave_region(PFN_UP(entry->addr), pfn);
721 
722 		if (pfn >= limit_pfn)
723 			break;
724 	}
725 }
726 
727 #ifdef CONFIG_ACPI
728 /*
729  * Register ACPI NVS memory regions, so that we can save/restore them during
730  * hibernation and the subsequent resume:
731  */
732 static int __init e820__register_nvs_regions(void)
733 {
734 	int i;
735 
736 	for (i = 0; i < e820_table->nr_entries; i++) {
737 		struct e820_entry *entry = &e820_table->entries[i];
738 
739 		if (entry->type == E820_TYPE_NVS)
740 			acpi_nvs_register(entry->addr, entry->size);
741 	}
742 
743 	return 0;
744 }
745 core_initcall(e820__register_nvs_regions);
746 #endif
747 
748 /*
749  * Allocate the requested number of bytes with the requsted alignment
750  * and return (the physical address) to the caller. Also register this
751  * range in the 'kexec' E820 table as a reserved range.
752  *
753  * This allows kexec to fake a new mptable, as if it came from the real
754  * system.
755  */
756 u64 __init e820__memblock_alloc_reserved(u64 size, u64 align)
757 {
758 	u64 addr;
759 
760 	addr = __memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE);
761 	if (addr) {
762 		e820__range_update_kexec(addr, size, E820_TYPE_RAM, E820_TYPE_RESERVED);
763 		pr_info("e820: update e820_table_kexec for e820__memblock_alloc_reserved()\n");
764 		e820__update_table_kexec();
765 	}
766 
767 	return addr;
768 }
769 
770 #ifdef CONFIG_X86_32
771 # ifdef CONFIG_X86_PAE
772 #  define MAX_ARCH_PFN		(1ULL<<(36-PAGE_SHIFT))
773 # else
774 #  define MAX_ARCH_PFN		(1ULL<<(32-PAGE_SHIFT))
775 # endif
776 #else /* CONFIG_X86_32 */
777 # define MAX_ARCH_PFN MAXMEM>>PAGE_SHIFT
778 #endif
779 
780 /*
781  * Find the highest page frame number we have available
782  */
783 static unsigned long __init e820_end_pfn(unsigned long limit_pfn, enum e820_type type)
784 {
785 	int i;
786 	unsigned long last_pfn = 0;
787 	unsigned long max_arch_pfn = MAX_ARCH_PFN;
788 
789 	for (i = 0; i < e820_table->nr_entries; i++) {
790 		struct e820_entry *entry = &e820_table->entries[i];
791 		unsigned long start_pfn;
792 		unsigned long end_pfn;
793 
794 		if (entry->type != type)
795 			continue;
796 
797 		start_pfn = entry->addr >> PAGE_SHIFT;
798 		end_pfn = (entry->addr + entry->size) >> PAGE_SHIFT;
799 
800 		if (start_pfn >= limit_pfn)
801 			continue;
802 		if (end_pfn > limit_pfn) {
803 			last_pfn = limit_pfn;
804 			break;
805 		}
806 		if (end_pfn > last_pfn)
807 			last_pfn = end_pfn;
808 	}
809 
810 	if (last_pfn > max_arch_pfn)
811 		last_pfn = max_arch_pfn;
812 
813 	pr_info("e820: last_pfn = %#lx max_arch_pfn = %#lx\n",
814 			 last_pfn, max_arch_pfn);
815 	return last_pfn;
816 }
817 
818 unsigned long __init e820__end_of_ram_pfn(void)
819 {
820 	return e820_end_pfn(MAX_ARCH_PFN, E820_TYPE_RAM);
821 }
822 
823 unsigned long __init e820__end_of_low_ram_pfn(void)
824 {
825 	return e820_end_pfn(1UL << (32 - PAGE_SHIFT), E820_TYPE_RAM);
826 }
827 
828 static void __init early_panic(char *msg)
829 {
830 	early_printk(msg);
831 	panic(msg);
832 }
833 
834 static int userdef __initdata;
835 
836 /* The "mem=nopentium" boot option disables 4MB page tables on 32-bit kernels: */
837 static int __init parse_memopt(char *p)
838 {
839 	u64 mem_size;
840 
841 	if (!p)
842 		return -EINVAL;
843 
844 	if (!strcmp(p, "nopentium")) {
845 #ifdef CONFIG_X86_32
846 		setup_clear_cpu_cap(X86_FEATURE_PSE);
847 		return 0;
848 #else
849 		pr_warn("mem=nopentium ignored! (only supported on x86_32)\n");
850 		return -EINVAL;
851 #endif
852 	}
853 
854 	userdef = 1;
855 	mem_size = memparse(p, &p);
856 
857 	/* Don't remove all memory when getting "mem={invalid}" parameter: */
858 	if (mem_size == 0)
859 		return -EINVAL;
860 
861 	e820__range_remove(mem_size, ULLONG_MAX - mem_size, E820_TYPE_RAM, 1);
862 
863 	return 0;
864 }
865 early_param("mem", parse_memopt);
866 
867 static int __init parse_memmap_one(char *p)
868 {
869 	char *oldp;
870 	u64 start_at, mem_size;
871 
872 	if (!p)
873 		return -EINVAL;
874 
875 	if (!strncmp(p, "exactmap", 8)) {
876 #ifdef CONFIG_CRASH_DUMP
877 		/*
878 		 * If we are doing a crash dump, we still need to know
879 		 * the real memory size before the original memory map is
880 		 * reset.
881 		 */
882 		saved_max_pfn = e820__end_of_ram_pfn();
883 #endif
884 		e820_table->nr_entries = 0;
885 		userdef = 1;
886 		return 0;
887 	}
888 
889 	oldp = p;
890 	mem_size = memparse(p, &p);
891 	if (p == oldp)
892 		return -EINVAL;
893 
894 	userdef = 1;
895 	if (*p == '@') {
896 		start_at = memparse(p+1, &p);
897 		e820__range_add(start_at, mem_size, E820_TYPE_RAM);
898 	} else if (*p == '#') {
899 		start_at = memparse(p+1, &p);
900 		e820__range_add(start_at, mem_size, E820_TYPE_ACPI);
901 	} else if (*p == '$') {
902 		start_at = memparse(p+1, &p);
903 		e820__range_add(start_at, mem_size, E820_TYPE_RESERVED);
904 	} else if (*p == '!') {
905 		start_at = memparse(p+1, &p);
906 		e820__range_add(start_at, mem_size, E820_TYPE_PRAM);
907 	} else {
908 		e820__range_remove(mem_size, ULLONG_MAX - mem_size, E820_TYPE_RAM, 1);
909 	}
910 
911 	return *p == '\0' ? 0 : -EINVAL;
912 }
913 
914 static int __init parse_memmap_opt(char *str)
915 {
916 	while (str) {
917 		char *k = strchr(str, ',');
918 
919 		if (k)
920 			*k++ = 0;
921 
922 		parse_memmap_one(str);
923 		str = k;
924 	}
925 
926 	return 0;
927 }
928 early_param("memmap", parse_memmap_opt);
929 
930 /*
931  * Reserve all entries from the bootloader's extensible data nodes list,
932  * because if present we are going to use it later on to fetch e820
933  * entries from it:
934  */
935 void __init e820__reserve_setup_data(void)
936 {
937 	struct setup_data *data;
938 	u64 pa_data;
939 
940 	pa_data = boot_params.hdr.setup_data;
941 	if (!pa_data)
942 		return;
943 
944 	while (pa_data) {
945 		data = early_memremap(pa_data, sizeof(*data));
946 		e820__range_update(pa_data, sizeof(*data)+data->len, E820_TYPE_RAM, E820_TYPE_RESERVED_KERN);
947 		e820__range_update_kexec(pa_data, sizeof(*data)+data->len, E820_TYPE_RAM, E820_TYPE_RESERVED_KERN);
948 		pa_data = data->next;
949 		early_memunmap(data, sizeof(*data));
950 	}
951 
952 	e820__update_table(e820_table);
953 	e820__update_table(e820_table_kexec);
954 
955 	pr_info("extended physical RAM map:\n");
956 	e820__print_table("reserve setup_data");
957 }
958 
959 /*
960  * Called after parse_early_param(), after early parameters (such as mem=)
961  * have been processed, in which case we already have an E820 table filled in
962  * via the parameter callback function(s), but it's not sorted and printed yet:
963  */
964 void __init e820__finish_early_params(void)
965 {
966 	if (userdef) {
967 		if (e820__update_table(e820_table) < 0)
968 			early_panic("Invalid user supplied memory map");
969 
970 		pr_info("e820: user-defined physical RAM map:\n");
971 		e820__print_table("user");
972 	}
973 }
974 
975 static const char *__init e820_type_to_string(struct e820_entry *entry)
976 {
977 	switch (entry->type) {
978 	case E820_TYPE_RESERVED_KERN:	/* Fall-through: */
979 	case E820_TYPE_RAM:		return "System RAM";
980 	case E820_TYPE_ACPI:		return "ACPI Tables";
981 	case E820_TYPE_NVS:		return "ACPI Non-volatile Storage";
982 	case E820_TYPE_UNUSABLE:	return "Unusable memory";
983 	case E820_TYPE_PRAM:		return "Persistent Memory (legacy)";
984 	case E820_TYPE_PMEM:		return "Persistent Memory";
985 	case E820_TYPE_RESERVED:	return "Reserved";
986 	default:			return "Unknown E820 type";
987 	}
988 }
989 
990 static unsigned long __init e820_type_to_iomem_type(struct e820_entry *entry)
991 {
992 	switch (entry->type) {
993 	case E820_TYPE_RESERVED_KERN:	/* Fall-through: */
994 	case E820_TYPE_RAM:		return IORESOURCE_SYSTEM_RAM;
995 	case E820_TYPE_ACPI:		/* Fall-through: */
996 	case E820_TYPE_NVS:		/* Fall-through: */
997 	case E820_TYPE_UNUSABLE:	/* Fall-through: */
998 	case E820_TYPE_PRAM:		/* Fall-through: */
999 	case E820_TYPE_PMEM:		/* Fall-through: */
1000 	case E820_TYPE_RESERVED:	/* Fall-through: */
1001 	default:			return IORESOURCE_MEM;
1002 	}
1003 }
1004 
1005 static unsigned long __init e820_type_to_iores_desc(struct e820_entry *entry)
1006 {
1007 	switch (entry->type) {
1008 	case E820_TYPE_ACPI:		return IORES_DESC_ACPI_TABLES;
1009 	case E820_TYPE_NVS:		return IORES_DESC_ACPI_NV_STORAGE;
1010 	case E820_TYPE_PMEM:		return IORES_DESC_PERSISTENT_MEMORY;
1011 	case E820_TYPE_PRAM:		return IORES_DESC_PERSISTENT_MEMORY_LEGACY;
1012 	case E820_TYPE_RESERVED_KERN:	/* Fall-through: */
1013 	case E820_TYPE_RAM:		/* Fall-through: */
1014 	case E820_TYPE_UNUSABLE:	/* Fall-through: */
1015 	case E820_TYPE_RESERVED:	/* Fall-through: */
1016 	default:			return IORES_DESC_NONE;
1017 	}
1018 }
1019 
1020 static bool __init do_mark_busy(enum e820_type type, struct resource *res)
1021 {
1022 	/* this is the legacy bios/dos rom-shadow + mmio region */
1023 	if (res->start < (1ULL<<20))
1024 		return true;
1025 
1026 	/*
1027 	 * Treat persistent memory like device memory, i.e. reserve it
1028 	 * for exclusive use of a driver
1029 	 */
1030 	switch (type) {
1031 	case E820_TYPE_RESERVED:
1032 	case E820_TYPE_PRAM:
1033 	case E820_TYPE_PMEM:
1034 		return false;
1035 	case E820_TYPE_RESERVED_KERN:
1036 	case E820_TYPE_RAM:
1037 	case E820_TYPE_ACPI:
1038 	case E820_TYPE_NVS:
1039 	case E820_TYPE_UNUSABLE:
1040 	default:
1041 		return true;
1042 	}
1043 }
1044 
1045 /*
1046  * Mark E820 reserved areas as busy for the resource manager:
1047  */
1048 
1049 static struct resource __initdata *e820_res;
1050 
1051 void __init e820__reserve_resources(void)
1052 {
1053 	int i;
1054 	struct resource *res;
1055 	u64 end;
1056 
1057 	res = alloc_bootmem(sizeof(*res) * e820_table->nr_entries);
1058 	e820_res = res;
1059 
1060 	for (i = 0; i < e820_table->nr_entries; i++) {
1061 		struct e820_entry *entry = e820_table->entries + i;
1062 
1063 		end = entry->addr + entry->size - 1;
1064 		if (end != (resource_size_t)end) {
1065 			res++;
1066 			continue;
1067 		}
1068 		res->start = entry->addr;
1069 		res->end   = end;
1070 		res->name  = e820_type_to_string(entry);
1071 		res->flags = e820_type_to_iomem_type(entry);
1072 		res->desc  = e820_type_to_iores_desc(entry);
1073 
1074 		/*
1075 		 * Don't register the region that could be conflicted with
1076 		 * PCI device BAR resources and insert them later in
1077 		 * pcibios_resource_survey():
1078 		 */
1079 		if (do_mark_busy(entry->type, res)) {
1080 			res->flags |= IORESOURCE_BUSY;
1081 			insert_resource(&iomem_resource, res);
1082 		}
1083 		res++;
1084 	}
1085 
1086 	/* Expose the bootloader-provided memory layout to the sysfs. */
1087 	for (i = 0; i < e820_table_firmware->nr_entries; i++) {
1088 		struct e820_entry *entry = e820_table_firmware->entries + i;
1089 
1090 		firmware_map_add_early(entry->addr, entry->addr + entry->size, e820_type_to_string(entry));
1091 	}
1092 }
1093 
1094 /*
1095  * How much should we pad the end of RAM, depending on where it is?
1096  */
1097 static unsigned long __init ram_alignment(resource_size_t pos)
1098 {
1099 	unsigned long mb = pos >> 20;
1100 
1101 	/* To 64kB in the first megabyte */
1102 	if (!mb)
1103 		return 64*1024;
1104 
1105 	/* To 1MB in the first 16MB */
1106 	if (mb < 16)
1107 		return 1024*1024;
1108 
1109 	/* To 64MB for anything above that */
1110 	return 64*1024*1024;
1111 }
1112 
1113 #define MAX_RESOURCE_SIZE ((resource_size_t)-1)
1114 
1115 void __init e820__reserve_resources_late(void)
1116 {
1117 	int i;
1118 	struct resource *res;
1119 
1120 	res = e820_res;
1121 	for (i = 0; i < e820_table->nr_entries; i++) {
1122 		if (!res->parent && res->end)
1123 			insert_resource_expand_to_fit(&iomem_resource, res);
1124 		res++;
1125 	}
1126 
1127 	/*
1128 	 * Try to bump up RAM regions to reasonable boundaries, to
1129 	 * avoid stolen RAM:
1130 	 */
1131 	for (i = 0; i < e820_table->nr_entries; i++) {
1132 		struct e820_entry *entry = &e820_table->entries[i];
1133 		u64 start, end;
1134 
1135 		if (entry->type != E820_TYPE_RAM)
1136 			continue;
1137 
1138 		start = entry->addr + entry->size;
1139 		end = round_up(start, ram_alignment(start)) - 1;
1140 		if (end > MAX_RESOURCE_SIZE)
1141 			end = MAX_RESOURCE_SIZE;
1142 		if (start >= end)
1143 			continue;
1144 
1145 		printk(KERN_DEBUG "e820: reserve RAM buffer [mem %#010llx-%#010llx]\n", start, end);
1146 		reserve_region_with_split(&iomem_resource, start, end, "RAM buffer");
1147 	}
1148 }
1149 
1150 /*
1151  * Pass the firmware (bootloader) E820 map to the kernel and process it:
1152  */
1153 char *__init e820__memory_setup_default(void)
1154 {
1155 	char *who = "BIOS-e820";
1156 
1157 	/*
1158 	 * Try to copy the BIOS-supplied E820-map.
1159 	 *
1160 	 * Otherwise fake a memory map; one section from 0k->640k,
1161 	 * the next section from 1mb->appropriate_mem_k
1162 	 */
1163 	if (append_e820_table(boot_params.e820_table, boot_params.e820_entries) < 0) {
1164 		u64 mem_size;
1165 
1166 		/* Compare results from other methods and take the one that gives more RAM: */
1167 		if (boot_params.alt_mem_k < boot_params.screen_info.ext_mem_k) {
1168 			mem_size = boot_params.screen_info.ext_mem_k;
1169 			who = "BIOS-88";
1170 		} else {
1171 			mem_size = boot_params.alt_mem_k;
1172 			who = "BIOS-e801";
1173 		}
1174 
1175 		e820_table->nr_entries = 0;
1176 		e820__range_add(0, LOWMEMSIZE(), E820_TYPE_RAM);
1177 		e820__range_add(HIGH_MEMORY, mem_size << 10, E820_TYPE_RAM);
1178 	}
1179 
1180 	/* We just appended a lot of ranges, sanitize the table: */
1181 	e820__update_table(e820_table);
1182 
1183 	return who;
1184 }
1185 
1186 /*
1187  * Calls e820__memory_setup_default() in essence to pick up the firmware/bootloader
1188  * E820 map - with an optional platform quirk available for virtual platforms
1189  * to override this method of boot environment processing:
1190  */
1191 void __init e820__memory_setup(void)
1192 {
1193 	char *who;
1194 
1195 	/* This is a firmware interface ABI - make sure we don't break it: */
1196 	BUILD_BUG_ON(sizeof(struct boot_e820_entry) != 20);
1197 
1198 	who = x86_init.resources.memory_setup();
1199 
1200 	memcpy(e820_table_kexec, e820_table, sizeof(*e820_table_kexec));
1201 	memcpy(e820_table_firmware, e820_table, sizeof(*e820_table_firmware));
1202 
1203 	pr_info("e820: BIOS-provided physical RAM map:\n");
1204 	e820__print_table(who);
1205 }
1206 
1207 void __init e820__memblock_setup(void)
1208 {
1209 	int i;
1210 	u64 end;
1211 
1212 	/*
1213 	 * The bootstrap memblock region count maximum is 128 entries
1214 	 * (INIT_MEMBLOCK_REGIONS), but EFI might pass us more E820 entries
1215 	 * than that - so allow memblock resizing.
1216 	 *
1217 	 * This is safe, because this call happens pretty late during x86 setup,
1218 	 * so we know about reserved memory regions already. (This is important
1219 	 * so that memblock resizing does no stomp over reserved areas.)
1220 	 */
1221 	memblock_allow_resize();
1222 
1223 	for (i = 0; i < e820_table->nr_entries; i++) {
1224 		struct e820_entry *entry = &e820_table->entries[i];
1225 
1226 		end = entry->addr + entry->size;
1227 		if (end != (resource_size_t)end)
1228 			continue;
1229 
1230 		if (entry->type != E820_TYPE_RAM && entry->type != E820_TYPE_RESERVED_KERN)
1231 			continue;
1232 
1233 		memblock_add(entry->addr, entry->size);
1234 	}
1235 
1236 	/* Throw away partial pages: */
1237 	memblock_trim_memory(PAGE_SIZE);
1238 
1239 	memblock_dump_all();
1240 }
1241