1 /* 2 * Low level x86 E820 memory map handling functions. 3 * 4 * The firmware and bootloader passes us the "E820 table", which is the primary 5 * physical memory layout description available about x86 systems. 6 * 7 * The kernel takes the E820 memory layout and optionally modifies it with 8 * quirks and other tweaks, and feeds that into the generic Linux memory 9 * allocation code routines via a platform independent interface (memblock, etc.). 10 */ 11 #include <linux/crash_dump.h> 12 #include <linux/bootmem.h> 13 #include <linux/suspend.h> 14 #include <linux/acpi.h> 15 #include <linux/firmware-map.h> 16 #include <linux/memblock.h> 17 #include <linux/sort.h> 18 19 #include <asm/e820/api.h> 20 #include <asm/setup.h> 21 22 /* 23 * We organize the E820 table into three main data structures: 24 * 25 * - 'e820_table_firmware': the original firmware version passed to us by the 26 * bootloader - not modified by the kernel. It is composed of two parts: 27 * the first 128 E820 memory entries in boot_params.e820_table and the remaining 28 * (if any) entries of the SETUP_E820_EXT nodes. We use this to: 29 * 30 * - inform the user about the firmware's notion of memory layout 31 * via /sys/firmware/memmap 32 * 33 * - the hibernation code uses it to generate a kernel-independent MD5 34 * fingerprint of the physical memory layout of a system. 35 * 36 * - 'e820_table_kexec': a slightly modified (by the kernel) firmware version 37 * passed to us by the bootloader - the major difference between 38 * e820_table_firmware[] and this one is that, the latter marks the setup_data 39 * list created by the EFI boot stub as reserved, so that kexec can reuse the 40 * setup_data information in the second kernel. Besides, e820_table_kexec[] 41 * might also be modified by the kexec itself to fake a mptable. 42 * We use this to: 43 * 44 * - kexec, which is a bootloader in disguise, uses the original E820 45 * layout to pass to the kexec-ed kernel. This way the original kernel 46 * can have a restricted E820 map while the kexec()-ed kexec-kernel 47 * can have access to full memory - etc. 48 * 49 * - 'e820_table': this is the main E820 table that is massaged by the 50 * low level x86 platform code, or modified by boot parameters, before 51 * passed on to higher level MM layers. 52 * 53 * Once the E820 map has been converted to the standard Linux memory layout 54 * information its role stops - modifying it has no effect and does not get 55 * re-propagated. So itsmain role is a temporary bootstrap storage of firmware 56 * specific memory layout data during early bootup. 57 */ 58 static struct e820_table e820_table_init __initdata; 59 static struct e820_table e820_table_kexec_init __initdata; 60 static struct e820_table e820_table_firmware_init __initdata; 61 62 struct e820_table *e820_table __refdata = &e820_table_init; 63 struct e820_table *e820_table_kexec __refdata = &e820_table_kexec_init; 64 struct e820_table *e820_table_firmware __refdata = &e820_table_firmware_init; 65 66 /* For PCI or other memory-mapped resources */ 67 unsigned long pci_mem_start = 0xaeedbabe; 68 #ifdef CONFIG_PCI 69 EXPORT_SYMBOL(pci_mem_start); 70 #endif 71 72 /* 73 * This function checks if any part of the range <start,end> is mapped 74 * with type. 75 */ 76 bool e820__mapped_any(u64 start, u64 end, enum e820_type type) 77 { 78 int i; 79 80 for (i = 0; i < e820_table->nr_entries; i++) { 81 struct e820_entry *entry = &e820_table->entries[i]; 82 83 if (type && entry->type != type) 84 continue; 85 if (entry->addr >= end || entry->addr + entry->size <= start) 86 continue; 87 return 1; 88 } 89 return 0; 90 } 91 EXPORT_SYMBOL_GPL(e820__mapped_any); 92 93 /* 94 * This function checks if the entire <start,end> range is mapped with 'type'. 95 * 96 * Note: this function only works correctly once the E820 table is sorted and 97 * not-overlapping (at least for the range specified), which is the case normally. 98 */ 99 static struct e820_entry *__e820__mapped_all(u64 start, u64 end, 100 enum e820_type type) 101 { 102 int i; 103 104 for (i = 0; i < e820_table->nr_entries; i++) { 105 struct e820_entry *entry = &e820_table->entries[i]; 106 107 if (type && entry->type != type) 108 continue; 109 110 /* Is the region (part) in overlap with the current region? */ 111 if (entry->addr >= end || entry->addr + entry->size <= start) 112 continue; 113 114 /* 115 * If the region is at the beginning of <start,end> we move 116 * 'start' to the end of the region since it's ok until there 117 */ 118 if (entry->addr <= start) 119 start = entry->addr + entry->size; 120 121 /* 122 * If 'start' is now at or beyond 'end', we're done, full 123 * coverage of the desired range exists: 124 */ 125 if (start >= end) 126 return entry; 127 } 128 129 return NULL; 130 } 131 132 /* 133 * This function checks if the entire range <start,end> is mapped with type. 134 */ 135 bool __init e820__mapped_all(u64 start, u64 end, enum e820_type type) 136 { 137 return __e820__mapped_all(start, end, type); 138 } 139 140 /* 141 * This function returns the type associated with the range <start,end>. 142 */ 143 int e820__get_entry_type(u64 start, u64 end) 144 { 145 struct e820_entry *entry = __e820__mapped_all(start, end, 0); 146 147 return entry ? entry->type : -EINVAL; 148 } 149 150 /* 151 * Add a memory region to the kernel E820 map. 152 */ 153 static void __init __e820__range_add(struct e820_table *table, u64 start, u64 size, enum e820_type type) 154 { 155 int x = table->nr_entries; 156 157 if (x >= ARRAY_SIZE(table->entries)) { 158 pr_err("too many entries; ignoring [mem %#010llx-%#010llx]\n", 159 start, start + size - 1); 160 return; 161 } 162 163 table->entries[x].addr = start; 164 table->entries[x].size = size; 165 table->entries[x].type = type; 166 table->nr_entries++; 167 } 168 169 void __init e820__range_add(u64 start, u64 size, enum e820_type type) 170 { 171 __e820__range_add(e820_table, start, size, type); 172 } 173 174 static void __init e820_print_type(enum e820_type type) 175 { 176 switch (type) { 177 case E820_TYPE_RAM: /* Fall through: */ 178 case E820_TYPE_RESERVED_KERN: pr_cont("usable"); break; 179 case E820_TYPE_RESERVED: pr_cont("reserved"); break; 180 case E820_TYPE_ACPI: pr_cont("ACPI data"); break; 181 case E820_TYPE_NVS: pr_cont("ACPI NVS"); break; 182 case E820_TYPE_UNUSABLE: pr_cont("unusable"); break; 183 case E820_TYPE_PMEM: /* Fall through: */ 184 case E820_TYPE_PRAM: pr_cont("persistent (type %u)", type); break; 185 default: pr_cont("type %u", type); break; 186 } 187 } 188 189 void __init e820__print_table(char *who) 190 { 191 int i; 192 193 for (i = 0; i < e820_table->nr_entries; i++) { 194 pr_info("%s: [mem %#018Lx-%#018Lx] ", 195 who, 196 e820_table->entries[i].addr, 197 e820_table->entries[i].addr + e820_table->entries[i].size - 1); 198 199 e820_print_type(e820_table->entries[i].type); 200 pr_cont("\n"); 201 } 202 } 203 204 /* 205 * Sanitize an E820 map. 206 * 207 * Some E820 layouts include overlapping entries. The following 208 * replaces the original E820 map with a new one, removing overlaps, 209 * and resolving conflicting memory types in favor of highest 210 * numbered type. 211 * 212 * The input parameter 'entries' points to an array of 'struct 213 * e820_entry' which on entry has elements in the range [0, *nr_entries) 214 * valid, and which has space for up to max_nr_entries entries. 215 * On return, the resulting sanitized E820 map entries will be in 216 * overwritten in the same location, starting at 'entries'. 217 * 218 * The integer pointed to by nr_entries must be valid on entry (the 219 * current number of valid entries located at 'entries'). If the 220 * sanitizing succeeds the *nr_entries will be updated with the new 221 * number of valid entries (something no more than max_nr_entries). 222 * 223 * The return value from e820__update_table() is zero if it 224 * successfully 'sanitized' the map entries passed in, and is -1 225 * if it did nothing, which can happen if either of (1) it was 226 * only passed one map entry, or (2) any of the input map entries 227 * were invalid (start + size < start, meaning that the size was 228 * so big the described memory range wrapped around through zero.) 229 * 230 * Visually we're performing the following 231 * (1,2,3,4 = memory types)... 232 * 233 * Sample memory map (w/overlaps): 234 * ____22__________________ 235 * ______________________4_ 236 * ____1111________________ 237 * _44_____________________ 238 * 11111111________________ 239 * ____________________33__ 240 * ___________44___________ 241 * __________33333_________ 242 * ______________22________ 243 * ___________________2222_ 244 * _________111111111______ 245 * _____________________11_ 246 * _________________4______ 247 * 248 * Sanitized equivalent (no overlap): 249 * 1_______________________ 250 * _44_____________________ 251 * ___1____________________ 252 * ____22__________________ 253 * ______11________________ 254 * _________1______________ 255 * __________3_____________ 256 * ___________44___________ 257 * _____________33_________ 258 * _______________2________ 259 * ________________1_______ 260 * _________________4______ 261 * ___________________2____ 262 * ____________________33__ 263 * ______________________4_ 264 */ 265 struct change_member { 266 /* Pointer to the original entry: */ 267 struct e820_entry *entry; 268 /* Address for this change point: */ 269 unsigned long long addr; 270 }; 271 272 static struct change_member change_point_list[2*E820_MAX_ENTRIES] __initdata; 273 static struct change_member *change_point[2*E820_MAX_ENTRIES] __initdata; 274 static struct e820_entry *overlap_list[E820_MAX_ENTRIES] __initdata; 275 static struct e820_entry new_entries[E820_MAX_ENTRIES] __initdata; 276 277 static int __init cpcompare(const void *a, const void *b) 278 { 279 struct change_member * const *app = a, * const *bpp = b; 280 const struct change_member *ap = *app, *bp = *bpp; 281 282 /* 283 * Inputs are pointers to two elements of change_point[]. If their 284 * addresses are not equal, their difference dominates. If the addresses 285 * are equal, then consider one that represents the end of its region 286 * to be greater than one that does not. 287 */ 288 if (ap->addr != bp->addr) 289 return ap->addr > bp->addr ? 1 : -1; 290 291 return (ap->addr != ap->entry->addr) - (bp->addr != bp->entry->addr); 292 } 293 294 int __init e820__update_table(struct e820_table *table) 295 { 296 struct e820_entry *entries = table->entries; 297 u32 max_nr_entries = ARRAY_SIZE(table->entries); 298 enum e820_type current_type, last_type; 299 unsigned long long last_addr; 300 u32 new_nr_entries, overlap_entries; 301 u32 i, chg_idx, chg_nr; 302 303 /* If there's only one memory region, don't bother: */ 304 if (table->nr_entries < 2) 305 return -1; 306 307 BUG_ON(table->nr_entries > max_nr_entries); 308 309 /* Bail out if we find any unreasonable addresses in the map: */ 310 for (i = 0; i < table->nr_entries; i++) { 311 if (entries[i].addr + entries[i].size < entries[i].addr) 312 return -1; 313 } 314 315 /* Create pointers for initial change-point information (for sorting): */ 316 for (i = 0; i < 2 * table->nr_entries; i++) 317 change_point[i] = &change_point_list[i]; 318 319 /* 320 * Record all known change-points (starting and ending addresses), 321 * omitting empty memory regions: 322 */ 323 chg_idx = 0; 324 for (i = 0; i < table->nr_entries; i++) { 325 if (entries[i].size != 0) { 326 change_point[chg_idx]->addr = entries[i].addr; 327 change_point[chg_idx++]->entry = &entries[i]; 328 change_point[chg_idx]->addr = entries[i].addr + entries[i].size; 329 change_point[chg_idx++]->entry = &entries[i]; 330 } 331 } 332 chg_nr = chg_idx; 333 334 /* Sort change-point list by memory addresses (low -> high): */ 335 sort(change_point, chg_nr, sizeof(*change_point), cpcompare, NULL); 336 337 /* Create a new memory map, removing overlaps: */ 338 overlap_entries = 0; /* Number of entries in the overlap table */ 339 new_nr_entries = 0; /* Index for creating new map entries */ 340 last_type = 0; /* Start with undefined memory type */ 341 last_addr = 0; /* Start with 0 as last starting address */ 342 343 /* Loop through change-points, determining effect on the new map: */ 344 for (chg_idx = 0; chg_idx < chg_nr; chg_idx++) { 345 /* Keep track of all overlapping entries */ 346 if (change_point[chg_idx]->addr == change_point[chg_idx]->entry->addr) { 347 /* Add map entry to overlap list (> 1 entry implies an overlap) */ 348 overlap_list[overlap_entries++] = change_point[chg_idx]->entry; 349 } else { 350 /* Remove entry from list (order independent, so swap with last): */ 351 for (i = 0; i < overlap_entries; i++) { 352 if (overlap_list[i] == change_point[chg_idx]->entry) 353 overlap_list[i] = overlap_list[overlap_entries-1]; 354 } 355 overlap_entries--; 356 } 357 /* 358 * If there are overlapping entries, decide which 359 * "type" to use (larger value takes precedence -- 360 * 1=usable, 2,3,4,4+=unusable) 361 */ 362 current_type = 0; 363 for (i = 0; i < overlap_entries; i++) { 364 if (overlap_list[i]->type > current_type) 365 current_type = overlap_list[i]->type; 366 } 367 368 /* Continue building up new map based on this information: */ 369 if (current_type != last_type || current_type == E820_TYPE_PRAM) { 370 if (last_type != 0) { 371 new_entries[new_nr_entries].size = change_point[chg_idx]->addr - last_addr; 372 /* Move forward only if the new size was non-zero: */ 373 if (new_entries[new_nr_entries].size != 0) 374 /* No more space left for new entries? */ 375 if (++new_nr_entries >= max_nr_entries) 376 break; 377 } 378 if (current_type != 0) { 379 new_entries[new_nr_entries].addr = change_point[chg_idx]->addr; 380 new_entries[new_nr_entries].type = current_type; 381 last_addr = change_point[chg_idx]->addr; 382 } 383 last_type = current_type; 384 } 385 } 386 387 /* Copy the new entries into the original location: */ 388 memcpy(entries, new_entries, new_nr_entries*sizeof(*entries)); 389 table->nr_entries = new_nr_entries; 390 391 return 0; 392 } 393 394 static int __init __append_e820_table(struct boot_e820_entry *entries, u32 nr_entries) 395 { 396 struct boot_e820_entry *entry = entries; 397 398 while (nr_entries) { 399 u64 start = entry->addr; 400 u64 size = entry->size; 401 u64 end = start + size - 1; 402 u32 type = entry->type; 403 404 /* Ignore the entry on 64-bit overflow: */ 405 if (start > end && likely(size)) 406 return -1; 407 408 e820__range_add(start, size, type); 409 410 entry++; 411 nr_entries--; 412 } 413 return 0; 414 } 415 416 /* 417 * Copy the BIOS E820 map into a safe place. 418 * 419 * Sanity-check it while we're at it.. 420 * 421 * If we're lucky and live on a modern system, the setup code 422 * will have given us a memory map that we can use to properly 423 * set up memory. If we aren't, we'll fake a memory map. 424 */ 425 static int __init append_e820_table(struct boot_e820_entry *entries, u32 nr_entries) 426 { 427 /* Only one memory region (or negative)? Ignore it */ 428 if (nr_entries < 2) 429 return -1; 430 431 return __append_e820_table(entries, nr_entries); 432 } 433 434 static u64 __init 435 __e820__range_update(struct e820_table *table, u64 start, u64 size, enum e820_type old_type, enum e820_type new_type) 436 { 437 u64 end; 438 unsigned int i; 439 u64 real_updated_size = 0; 440 441 BUG_ON(old_type == new_type); 442 443 if (size > (ULLONG_MAX - start)) 444 size = ULLONG_MAX - start; 445 446 end = start + size; 447 printk(KERN_DEBUG "e820: update [mem %#010Lx-%#010Lx] ", start, end - 1); 448 e820_print_type(old_type); 449 pr_cont(" ==> "); 450 e820_print_type(new_type); 451 pr_cont("\n"); 452 453 for (i = 0; i < table->nr_entries; i++) { 454 struct e820_entry *entry = &table->entries[i]; 455 u64 final_start, final_end; 456 u64 entry_end; 457 458 if (entry->type != old_type) 459 continue; 460 461 entry_end = entry->addr + entry->size; 462 463 /* Completely covered by new range? */ 464 if (entry->addr >= start && entry_end <= end) { 465 entry->type = new_type; 466 real_updated_size += entry->size; 467 continue; 468 } 469 470 /* New range is completely covered? */ 471 if (entry->addr < start && entry_end > end) { 472 __e820__range_add(table, start, size, new_type); 473 __e820__range_add(table, end, entry_end - end, entry->type); 474 entry->size = start - entry->addr; 475 real_updated_size += size; 476 continue; 477 } 478 479 /* Partially covered: */ 480 final_start = max(start, entry->addr); 481 final_end = min(end, entry_end); 482 if (final_start >= final_end) 483 continue; 484 485 __e820__range_add(table, final_start, final_end - final_start, new_type); 486 487 real_updated_size += final_end - final_start; 488 489 /* 490 * Left range could be head or tail, so need to update 491 * its size first: 492 */ 493 entry->size -= final_end - final_start; 494 if (entry->addr < final_start) 495 continue; 496 497 entry->addr = final_end; 498 } 499 return real_updated_size; 500 } 501 502 u64 __init e820__range_update(u64 start, u64 size, enum e820_type old_type, enum e820_type new_type) 503 { 504 return __e820__range_update(e820_table, start, size, old_type, new_type); 505 } 506 507 static u64 __init e820__range_update_kexec(u64 start, u64 size, enum e820_type old_type, enum e820_type new_type) 508 { 509 return __e820__range_update(e820_table_kexec, start, size, old_type, new_type); 510 } 511 512 /* Remove a range of memory from the E820 table: */ 513 u64 __init e820__range_remove(u64 start, u64 size, enum e820_type old_type, bool check_type) 514 { 515 int i; 516 u64 end; 517 u64 real_removed_size = 0; 518 519 if (size > (ULLONG_MAX - start)) 520 size = ULLONG_MAX - start; 521 522 end = start + size; 523 printk(KERN_DEBUG "e820: remove [mem %#010Lx-%#010Lx] ", start, end - 1); 524 if (check_type) 525 e820_print_type(old_type); 526 pr_cont("\n"); 527 528 for (i = 0; i < e820_table->nr_entries; i++) { 529 struct e820_entry *entry = &e820_table->entries[i]; 530 u64 final_start, final_end; 531 u64 entry_end; 532 533 if (check_type && entry->type != old_type) 534 continue; 535 536 entry_end = entry->addr + entry->size; 537 538 /* Completely covered? */ 539 if (entry->addr >= start && entry_end <= end) { 540 real_removed_size += entry->size; 541 memset(entry, 0, sizeof(*entry)); 542 continue; 543 } 544 545 /* Is the new range completely covered? */ 546 if (entry->addr < start && entry_end > end) { 547 e820__range_add(end, entry_end - end, entry->type); 548 entry->size = start - entry->addr; 549 real_removed_size += size; 550 continue; 551 } 552 553 /* Partially covered: */ 554 final_start = max(start, entry->addr); 555 final_end = min(end, entry_end); 556 if (final_start >= final_end) 557 continue; 558 559 real_removed_size += final_end - final_start; 560 561 /* 562 * Left range could be head or tail, so need to update 563 * the size first: 564 */ 565 entry->size -= final_end - final_start; 566 if (entry->addr < final_start) 567 continue; 568 569 entry->addr = final_end; 570 } 571 return real_removed_size; 572 } 573 574 void __init e820__update_table_print(void) 575 { 576 if (e820__update_table(e820_table)) 577 return; 578 579 pr_info("modified physical RAM map:\n"); 580 e820__print_table("modified"); 581 } 582 583 static void __init e820__update_table_kexec(void) 584 { 585 e820__update_table(e820_table_kexec); 586 } 587 588 #define MAX_GAP_END 0x100000000ull 589 590 /* 591 * Search for a gap in the E820 memory space from 0 to MAX_GAP_END (4GB). 592 */ 593 static int __init e820_search_gap(unsigned long *gapstart, unsigned long *gapsize) 594 { 595 unsigned long long last = MAX_GAP_END; 596 int i = e820_table->nr_entries; 597 int found = 0; 598 599 while (--i >= 0) { 600 unsigned long long start = e820_table->entries[i].addr; 601 unsigned long long end = start + e820_table->entries[i].size; 602 603 /* 604 * Since "last" is at most 4GB, we know we'll 605 * fit in 32 bits if this condition is true: 606 */ 607 if (last > end) { 608 unsigned long gap = last - end; 609 610 if (gap >= *gapsize) { 611 *gapsize = gap; 612 *gapstart = end; 613 found = 1; 614 } 615 } 616 if (start < last) 617 last = start; 618 } 619 return found; 620 } 621 622 /* 623 * Search for the biggest gap in the low 32 bits of the E820 624 * memory space. We pass this space to the PCI subsystem, so 625 * that it can assign MMIO resources for hotplug or 626 * unconfigured devices in. 627 * 628 * Hopefully the BIOS let enough space left. 629 */ 630 __init void e820__setup_pci_gap(void) 631 { 632 unsigned long gapstart, gapsize; 633 int found; 634 635 gapsize = 0x400000; 636 found = e820_search_gap(&gapstart, &gapsize); 637 638 if (!found) { 639 #ifdef CONFIG_X86_64 640 gapstart = (max_pfn << PAGE_SHIFT) + 1024*1024; 641 pr_err("Cannot find an available gap in the 32-bit address range\n"); 642 pr_err("PCI devices with unassigned 32-bit BARs may not work!\n"); 643 #else 644 gapstart = 0x10000000; 645 #endif 646 } 647 648 /* 649 * e820__reserve_resources_late() protects stolen RAM already: 650 */ 651 pci_mem_start = gapstart; 652 653 pr_info("[mem %#010lx-%#010lx] available for PCI devices\n", 654 gapstart, gapstart + gapsize - 1); 655 } 656 657 /* 658 * Called late during init, in free_initmem(). 659 * 660 * Initial e820_table and e820_table_kexec are largish __initdata arrays. 661 * 662 * Copy them to a (usually much smaller) dynamically allocated area that is 663 * sized precisely after the number of e820 entries. 664 * 665 * This is done after we've performed all the fixes and tweaks to the tables. 666 * All functions which modify them are __init functions, which won't exist 667 * after free_initmem(). 668 */ 669 __init void e820__reallocate_tables(void) 670 { 671 struct e820_table *n; 672 int size; 673 674 size = offsetof(struct e820_table, entries) + sizeof(struct e820_entry)*e820_table->nr_entries; 675 n = kmalloc(size, GFP_KERNEL); 676 BUG_ON(!n); 677 memcpy(n, e820_table, size); 678 e820_table = n; 679 680 size = offsetof(struct e820_table, entries) + sizeof(struct e820_entry)*e820_table_kexec->nr_entries; 681 n = kmalloc(size, GFP_KERNEL); 682 BUG_ON(!n); 683 memcpy(n, e820_table_kexec, size); 684 e820_table_kexec = n; 685 686 size = offsetof(struct e820_table, entries) + sizeof(struct e820_entry)*e820_table_firmware->nr_entries; 687 n = kmalloc(size, GFP_KERNEL); 688 BUG_ON(!n); 689 memcpy(n, e820_table_firmware, size); 690 e820_table_firmware = n; 691 } 692 693 /* 694 * Because of the small fixed size of struct boot_params, only the first 695 * 128 E820 memory entries are passed to the kernel via boot_params.e820_table, 696 * the remaining (if any) entries are passed via the SETUP_E820_EXT node of 697 * struct setup_data, which is parsed here. 698 */ 699 void __init e820__memory_setup_extended(u64 phys_addr, u32 data_len) 700 { 701 int entries; 702 struct boot_e820_entry *extmap; 703 struct setup_data *sdata; 704 705 sdata = early_memremap(phys_addr, data_len); 706 entries = sdata->len / sizeof(*extmap); 707 extmap = (struct boot_e820_entry *)(sdata->data); 708 709 __append_e820_table(extmap, entries); 710 e820__update_table(e820_table); 711 712 memcpy(e820_table_kexec, e820_table, sizeof(*e820_table_kexec)); 713 memcpy(e820_table_firmware, e820_table, sizeof(*e820_table_firmware)); 714 715 early_memunmap(sdata, data_len); 716 pr_info("extended physical RAM map:\n"); 717 e820__print_table("extended"); 718 } 719 720 /* 721 * Find the ranges of physical addresses that do not correspond to 722 * E820 RAM areas and register the corresponding pages as 'nosave' for 723 * hibernation (32-bit) or software suspend and suspend to RAM (64-bit). 724 * 725 * This function requires the E820 map to be sorted and without any 726 * overlapping entries. 727 */ 728 void __init e820__register_nosave_regions(unsigned long limit_pfn) 729 { 730 int i; 731 unsigned long pfn = 0; 732 733 for (i = 0; i < e820_table->nr_entries; i++) { 734 struct e820_entry *entry = &e820_table->entries[i]; 735 736 if (pfn < PFN_UP(entry->addr)) 737 register_nosave_region(pfn, PFN_UP(entry->addr)); 738 739 pfn = PFN_DOWN(entry->addr + entry->size); 740 741 if (entry->type != E820_TYPE_RAM && entry->type != E820_TYPE_RESERVED_KERN) 742 register_nosave_region(PFN_UP(entry->addr), pfn); 743 744 if (pfn >= limit_pfn) 745 break; 746 } 747 } 748 749 #ifdef CONFIG_ACPI 750 /* 751 * Register ACPI NVS memory regions, so that we can save/restore them during 752 * hibernation and the subsequent resume: 753 */ 754 static int __init e820__register_nvs_regions(void) 755 { 756 int i; 757 758 for (i = 0; i < e820_table->nr_entries; i++) { 759 struct e820_entry *entry = &e820_table->entries[i]; 760 761 if (entry->type == E820_TYPE_NVS) 762 acpi_nvs_register(entry->addr, entry->size); 763 } 764 765 return 0; 766 } 767 core_initcall(e820__register_nvs_regions); 768 #endif 769 770 /* 771 * Allocate the requested number of bytes with the requsted alignment 772 * and return (the physical address) to the caller. Also register this 773 * range in the 'kexec' E820 table as a reserved range. 774 * 775 * This allows kexec to fake a new mptable, as if it came from the real 776 * system. 777 */ 778 u64 __init e820__memblock_alloc_reserved(u64 size, u64 align) 779 { 780 u64 addr; 781 782 addr = __memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE); 783 if (addr) { 784 e820__range_update_kexec(addr, size, E820_TYPE_RAM, E820_TYPE_RESERVED); 785 pr_info("update e820_table_kexec for e820__memblock_alloc_reserved()\n"); 786 e820__update_table_kexec(); 787 } 788 789 return addr; 790 } 791 792 #ifdef CONFIG_X86_32 793 # ifdef CONFIG_X86_PAE 794 # define MAX_ARCH_PFN (1ULL<<(36-PAGE_SHIFT)) 795 # else 796 # define MAX_ARCH_PFN (1ULL<<(32-PAGE_SHIFT)) 797 # endif 798 #else /* CONFIG_X86_32 */ 799 # define MAX_ARCH_PFN MAXMEM>>PAGE_SHIFT 800 #endif 801 802 /* 803 * Find the highest page frame number we have available 804 */ 805 static unsigned long __init e820_end_pfn(unsigned long limit_pfn, enum e820_type type) 806 { 807 int i; 808 unsigned long last_pfn = 0; 809 unsigned long max_arch_pfn = MAX_ARCH_PFN; 810 811 for (i = 0; i < e820_table->nr_entries; i++) { 812 struct e820_entry *entry = &e820_table->entries[i]; 813 unsigned long start_pfn; 814 unsigned long end_pfn; 815 816 if (entry->type != type) 817 continue; 818 819 start_pfn = entry->addr >> PAGE_SHIFT; 820 end_pfn = (entry->addr + entry->size) >> PAGE_SHIFT; 821 822 if (start_pfn >= limit_pfn) 823 continue; 824 if (end_pfn > limit_pfn) { 825 last_pfn = limit_pfn; 826 break; 827 } 828 if (end_pfn > last_pfn) 829 last_pfn = end_pfn; 830 } 831 832 if (last_pfn > max_arch_pfn) 833 last_pfn = max_arch_pfn; 834 835 pr_info("last_pfn = %#lx max_arch_pfn = %#lx\n", 836 last_pfn, max_arch_pfn); 837 return last_pfn; 838 } 839 840 unsigned long __init e820__end_of_ram_pfn(void) 841 { 842 return e820_end_pfn(MAX_ARCH_PFN, E820_TYPE_RAM); 843 } 844 845 unsigned long __init e820__end_of_low_ram_pfn(void) 846 { 847 return e820_end_pfn(1UL << (32 - PAGE_SHIFT), E820_TYPE_RAM); 848 } 849 850 static void __init early_panic(char *msg) 851 { 852 early_printk(msg); 853 panic(msg); 854 } 855 856 static int userdef __initdata; 857 858 /* The "mem=nopentium" boot option disables 4MB page tables on 32-bit kernels: */ 859 static int __init parse_memopt(char *p) 860 { 861 u64 mem_size; 862 863 if (!p) 864 return -EINVAL; 865 866 if (!strcmp(p, "nopentium")) { 867 #ifdef CONFIG_X86_32 868 setup_clear_cpu_cap(X86_FEATURE_PSE); 869 return 0; 870 #else 871 pr_warn("mem=nopentium ignored! (only supported on x86_32)\n"); 872 return -EINVAL; 873 #endif 874 } 875 876 userdef = 1; 877 mem_size = memparse(p, &p); 878 879 /* Don't remove all memory when getting "mem={invalid}" parameter: */ 880 if (mem_size == 0) 881 return -EINVAL; 882 883 e820__range_remove(mem_size, ULLONG_MAX - mem_size, E820_TYPE_RAM, 1); 884 885 return 0; 886 } 887 early_param("mem", parse_memopt); 888 889 static int __init parse_memmap_one(char *p) 890 { 891 char *oldp; 892 u64 start_at, mem_size; 893 894 if (!p) 895 return -EINVAL; 896 897 if (!strncmp(p, "exactmap", 8)) { 898 #ifdef CONFIG_CRASH_DUMP 899 /* 900 * If we are doing a crash dump, we still need to know 901 * the real memory size before the original memory map is 902 * reset. 903 */ 904 saved_max_pfn = e820__end_of_ram_pfn(); 905 #endif 906 e820_table->nr_entries = 0; 907 userdef = 1; 908 return 0; 909 } 910 911 oldp = p; 912 mem_size = memparse(p, &p); 913 if (p == oldp) 914 return -EINVAL; 915 916 userdef = 1; 917 if (*p == '@') { 918 start_at = memparse(p+1, &p); 919 e820__range_add(start_at, mem_size, E820_TYPE_RAM); 920 } else if (*p == '#') { 921 start_at = memparse(p+1, &p); 922 e820__range_add(start_at, mem_size, E820_TYPE_ACPI); 923 } else if (*p == '$') { 924 start_at = memparse(p+1, &p); 925 e820__range_add(start_at, mem_size, E820_TYPE_RESERVED); 926 } else if (*p == '!') { 927 start_at = memparse(p+1, &p); 928 e820__range_add(start_at, mem_size, E820_TYPE_PRAM); 929 } else if (*p == '%') { 930 enum e820_type from = 0, to = 0; 931 932 start_at = memparse(p + 1, &p); 933 if (*p == '-') 934 from = simple_strtoull(p + 1, &p, 0); 935 if (*p == '+') 936 to = simple_strtoull(p + 1, &p, 0); 937 if (*p != '\0') 938 return -EINVAL; 939 if (from && to) 940 e820__range_update(start_at, mem_size, from, to); 941 else if (to) 942 e820__range_add(start_at, mem_size, to); 943 else if (from) 944 e820__range_remove(start_at, mem_size, from, 1); 945 else 946 e820__range_remove(start_at, mem_size, 0, 0); 947 } else { 948 e820__range_remove(mem_size, ULLONG_MAX - mem_size, E820_TYPE_RAM, 1); 949 } 950 951 return *p == '\0' ? 0 : -EINVAL; 952 } 953 954 static int __init parse_memmap_opt(char *str) 955 { 956 while (str) { 957 char *k = strchr(str, ','); 958 959 if (k) 960 *k++ = 0; 961 962 parse_memmap_one(str); 963 str = k; 964 } 965 966 return 0; 967 } 968 early_param("memmap", parse_memmap_opt); 969 970 /* 971 * Reserve all entries from the bootloader's extensible data nodes list, 972 * because if present we are going to use it later on to fetch e820 973 * entries from it: 974 */ 975 void __init e820__reserve_setup_data(void) 976 { 977 struct setup_data *data; 978 u64 pa_data; 979 980 pa_data = boot_params.hdr.setup_data; 981 if (!pa_data) 982 return; 983 984 while (pa_data) { 985 data = early_memremap(pa_data, sizeof(*data)); 986 e820__range_update(pa_data, sizeof(*data)+data->len, E820_TYPE_RAM, E820_TYPE_RESERVED_KERN); 987 e820__range_update_kexec(pa_data, sizeof(*data)+data->len, E820_TYPE_RAM, E820_TYPE_RESERVED_KERN); 988 pa_data = data->next; 989 early_memunmap(data, sizeof(*data)); 990 } 991 992 e820__update_table(e820_table); 993 e820__update_table(e820_table_kexec); 994 995 pr_info("extended physical RAM map:\n"); 996 e820__print_table("reserve setup_data"); 997 } 998 999 /* 1000 * Called after parse_early_param(), after early parameters (such as mem=) 1001 * have been processed, in which case we already have an E820 table filled in 1002 * via the parameter callback function(s), but it's not sorted and printed yet: 1003 */ 1004 void __init e820__finish_early_params(void) 1005 { 1006 if (userdef) { 1007 if (e820__update_table(e820_table) < 0) 1008 early_panic("Invalid user supplied memory map"); 1009 1010 pr_info("user-defined physical RAM map:\n"); 1011 e820__print_table("user"); 1012 } 1013 } 1014 1015 static const char *__init e820_type_to_string(struct e820_entry *entry) 1016 { 1017 switch (entry->type) { 1018 case E820_TYPE_RESERVED_KERN: /* Fall-through: */ 1019 case E820_TYPE_RAM: return "System RAM"; 1020 case E820_TYPE_ACPI: return "ACPI Tables"; 1021 case E820_TYPE_NVS: return "ACPI Non-volatile Storage"; 1022 case E820_TYPE_UNUSABLE: return "Unusable memory"; 1023 case E820_TYPE_PRAM: return "Persistent Memory (legacy)"; 1024 case E820_TYPE_PMEM: return "Persistent Memory"; 1025 case E820_TYPE_RESERVED: return "Reserved"; 1026 default: return "Unknown E820 type"; 1027 } 1028 } 1029 1030 static unsigned long __init e820_type_to_iomem_type(struct e820_entry *entry) 1031 { 1032 switch (entry->type) { 1033 case E820_TYPE_RESERVED_KERN: /* Fall-through: */ 1034 case E820_TYPE_RAM: return IORESOURCE_SYSTEM_RAM; 1035 case E820_TYPE_ACPI: /* Fall-through: */ 1036 case E820_TYPE_NVS: /* Fall-through: */ 1037 case E820_TYPE_UNUSABLE: /* Fall-through: */ 1038 case E820_TYPE_PRAM: /* Fall-through: */ 1039 case E820_TYPE_PMEM: /* Fall-through: */ 1040 case E820_TYPE_RESERVED: /* Fall-through: */ 1041 default: return IORESOURCE_MEM; 1042 } 1043 } 1044 1045 static unsigned long __init e820_type_to_iores_desc(struct e820_entry *entry) 1046 { 1047 switch (entry->type) { 1048 case E820_TYPE_ACPI: return IORES_DESC_ACPI_TABLES; 1049 case E820_TYPE_NVS: return IORES_DESC_ACPI_NV_STORAGE; 1050 case E820_TYPE_PMEM: return IORES_DESC_PERSISTENT_MEMORY; 1051 case E820_TYPE_PRAM: return IORES_DESC_PERSISTENT_MEMORY_LEGACY; 1052 case E820_TYPE_RESERVED_KERN: /* Fall-through: */ 1053 case E820_TYPE_RAM: /* Fall-through: */ 1054 case E820_TYPE_UNUSABLE: /* Fall-through: */ 1055 case E820_TYPE_RESERVED: /* Fall-through: */ 1056 default: return IORES_DESC_NONE; 1057 } 1058 } 1059 1060 static bool __init do_mark_busy(enum e820_type type, struct resource *res) 1061 { 1062 /* this is the legacy bios/dos rom-shadow + mmio region */ 1063 if (res->start < (1ULL<<20)) 1064 return true; 1065 1066 /* 1067 * Treat persistent memory like device memory, i.e. reserve it 1068 * for exclusive use of a driver 1069 */ 1070 switch (type) { 1071 case E820_TYPE_RESERVED: 1072 case E820_TYPE_PRAM: 1073 case E820_TYPE_PMEM: 1074 return false; 1075 case E820_TYPE_RESERVED_KERN: 1076 case E820_TYPE_RAM: 1077 case E820_TYPE_ACPI: 1078 case E820_TYPE_NVS: 1079 case E820_TYPE_UNUSABLE: 1080 default: 1081 return true; 1082 } 1083 } 1084 1085 /* 1086 * Mark E820 reserved areas as busy for the resource manager: 1087 */ 1088 1089 static struct resource __initdata *e820_res; 1090 1091 void __init e820__reserve_resources(void) 1092 { 1093 int i; 1094 struct resource *res; 1095 u64 end; 1096 1097 res = alloc_bootmem(sizeof(*res) * e820_table->nr_entries); 1098 e820_res = res; 1099 1100 for (i = 0; i < e820_table->nr_entries; i++) { 1101 struct e820_entry *entry = e820_table->entries + i; 1102 1103 end = entry->addr + entry->size - 1; 1104 if (end != (resource_size_t)end) { 1105 res++; 1106 continue; 1107 } 1108 res->start = entry->addr; 1109 res->end = end; 1110 res->name = e820_type_to_string(entry); 1111 res->flags = e820_type_to_iomem_type(entry); 1112 res->desc = e820_type_to_iores_desc(entry); 1113 1114 /* 1115 * Don't register the region that could be conflicted with 1116 * PCI device BAR resources and insert them later in 1117 * pcibios_resource_survey(): 1118 */ 1119 if (do_mark_busy(entry->type, res)) { 1120 res->flags |= IORESOURCE_BUSY; 1121 insert_resource(&iomem_resource, res); 1122 } 1123 res++; 1124 } 1125 1126 /* Expose the bootloader-provided memory layout to the sysfs. */ 1127 for (i = 0; i < e820_table_firmware->nr_entries; i++) { 1128 struct e820_entry *entry = e820_table_firmware->entries + i; 1129 1130 firmware_map_add_early(entry->addr, entry->addr + entry->size, e820_type_to_string(entry)); 1131 } 1132 } 1133 1134 /* 1135 * How much should we pad the end of RAM, depending on where it is? 1136 */ 1137 static unsigned long __init ram_alignment(resource_size_t pos) 1138 { 1139 unsigned long mb = pos >> 20; 1140 1141 /* To 64kB in the first megabyte */ 1142 if (!mb) 1143 return 64*1024; 1144 1145 /* To 1MB in the first 16MB */ 1146 if (mb < 16) 1147 return 1024*1024; 1148 1149 /* To 64MB for anything above that */ 1150 return 64*1024*1024; 1151 } 1152 1153 #define MAX_RESOURCE_SIZE ((resource_size_t)-1) 1154 1155 void __init e820__reserve_resources_late(void) 1156 { 1157 int i; 1158 struct resource *res; 1159 1160 res = e820_res; 1161 for (i = 0; i < e820_table->nr_entries; i++) { 1162 if (!res->parent && res->end) 1163 insert_resource_expand_to_fit(&iomem_resource, res); 1164 res++; 1165 } 1166 1167 /* 1168 * Try to bump up RAM regions to reasonable boundaries, to 1169 * avoid stolen RAM: 1170 */ 1171 for (i = 0; i < e820_table->nr_entries; i++) { 1172 struct e820_entry *entry = &e820_table->entries[i]; 1173 u64 start, end; 1174 1175 if (entry->type != E820_TYPE_RAM) 1176 continue; 1177 1178 start = entry->addr + entry->size; 1179 end = round_up(start, ram_alignment(start)) - 1; 1180 if (end > MAX_RESOURCE_SIZE) 1181 end = MAX_RESOURCE_SIZE; 1182 if (start >= end) 1183 continue; 1184 1185 printk(KERN_DEBUG "e820: reserve RAM buffer [mem %#010llx-%#010llx]\n", start, end); 1186 reserve_region_with_split(&iomem_resource, start, end, "RAM buffer"); 1187 } 1188 } 1189 1190 /* 1191 * Pass the firmware (bootloader) E820 map to the kernel and process it: 1192 */ 1193 char *__init e820__memory_setup_default(void) 1194 { 1195 char *who = "BIOS-e820"; 1196 1197 /* 1198 * Try to copy the BIOS-supplied E820-map. 1199 * 1200 * Otherwise fake a memory map; one section from 0k->640k, 1201 * the next section from 1mb->appropriate_mem_k 1202 */ 1203 if (append_e820_table(boot_params.e820_table, boot_params.e820_entries) < 0) { 1204 u64 mem_size; 1205 1206 /* Compare results from other methods and take the one that gives more RAM: */ 1207 if (boot_params.alt_mem_k < boot_params.screen_info.ext_mem_k) { 1208 mem_size = boot_params.screen_info.ext_mem_k; 1209 who = "BIOS-88"; 1210 } else { 1211 mem_size = boot_params.alt_mem_k; 1212 who = "BIOS-e801"; 1213 } 1214 1215 e820_table->nr_entries = 0; 1216 e820__range_add(0, LOWMEMSIZE(), E820_TYPE_RAM); 1217 e820__range_add(HIGH_MEMORY, mem_size << 10, E820_TYPE_RAM); 1218 } 1219 1220 /* We just appended a lot of ranges, sanitize the table: */ 1221 e820__update_table(e820_table); 1222 1223 return who; 1224 } 1225 1226 /* 1227 * Calls e820__memory_setup_default() in essence to pick up the firmware/bootloader 1228 * E820 map - with an optional platform quirk available for virtual platforms 1229 * to override this method of boot environment processing: 1230 */ 1231 void __init e820__memory_setup(void) 1232 { 1233 char *who; 1234 1235 /* This is a firmware interface ABI - make sure we don't break it: */ 1236 BUILD_BUG_ON(sizeof(struct boot_e820_entry) != 20); 1237 1238 who = x86_init.resources.memory_setup(); 1239 1240 memcpy(e820_table_kexec, e820_table, sizeof(*e820_table_kexec)); 1241 memcpy(e820_table_firmware, e820_table, sizeof(*e820_table_firmware)); 1242 1243 pr_info("BIOS-provided physical RAM map:\n"); 1244 e820__print_table(who); 1245 } 1246 1247 void __init e820__memblock_setup(void) 1248 { 1249 int i; 1250 u64 end; 1251 u64 addr = 0; 1252 1253 /* 1254 * The bootstrap memblock region count maximum is 128 entries 1255 * (INIT_MEMBLOCK_REGIONS), but EFI might pass us more E820 entries 1256 * than that - so allow memblock resizing. 1257 * 1258 * This is safe, because this call happens pretty late during x86 setup, 1259 * so we know about reserved memory regions already. (This is important 1260 * so that memblock resizing does no stomp over reserved areas.) 1261 */ 1262 memblock_allow_resize(); 1263 1264 for (i = 0; i < e820_table->nr_entries; i++) { 1265 struct e820_entry *entry = &e820_table->entries[i]; 1266 1267 end = entry->addr + entry->size; 1268 if (addr < entry->addr) 1269 memblock_reserve(addr, entry->addr - addr); 1270 addr = end; 1271 if (end != (resource_size_t)end) 1272 continue; 1273 1274 /* 1275 * all !E820_TYPE_RAM ranges (including gap ranges) are put 1276 * into memblock.reserved to make sure that struct pages in 1277 * such regions are not left uninitialized after bootup. 1278 */ 1279 if (entry->type != E820_TYPE_RAM && entry->type != E820_TYPE_RESERVED_KERN) 1280 memblock_reserve(entry->addr, entry->size); 1281 else 1282 memblock_add(entry->addr, entry->size); 1283 } 1284 1285 /* Throw away partial pages: */ 1286 memblock_trim_memory(PAGE_SIZE); 1287 1288 memblock_dump_all(); 1289 } 1290