1 /* 2 * Low level x86 E820 memory map handling functions. 3 * 4 * The firmware and bootloader passes us the "E820 table", which is the primary 5 * physical memory layout description available about x86 systems. 6 * 7 * The kernel takes the E820 memory layout and optionally modifies it with 8 * quirks and other tweaks, and feeds that into the generic Linux memory 9 * allocation code routines via a platform independent interface (memblock, etc.). 10 */ 11 #include <linux/crash_dump.h> 12 #include <linux/memblock.h> 13 #include <linux/suspend.h> 14 #include <linux/acpi.h> 15 #include <linux/firmware-map.h> 16 #include <linux/sort.h> 17 #include <linux/memory_hotplug.h> 18 19 #include <asm/e820/api.h> 20 #include <asm/setup.h> 21 22 /* 23 * We organize the E820 table into three main data structures: 24 * 25 * - 'e820_table_firmware': the original firmware version passed to us by the 26 * bootloader - not modified by the kernel. It is composed of two parts: 27 * the first 128 E820 memory entries in boot_params.e820_table and the remaining 28 * (if any) entries of the SETUP_E820_EXT nodes. We use this to: 29 * 30 * - inform the user about the firmware's notion of memory layout 31 * via /sys/firmware/memmap 32 * 33 * - the hibernation code uses it to generate a kernel-independent MD5 34 * fingerprint of the physical memory layout of a system. 35 * 36 * - 'e820_table_kexec': a slightly modified (by the kernel) firmware version 37 * passed to us by the bootloader - the major difference between 38 * e820_table_firmware[] and this one is that, the latter marks the setup_data 39 * list created by the EFI boot stub as reserved, so that kexec can reuse the 40 * setup_data information in the second kernel. Besides, e820_table_kexec[] 41 * might also be modified by the kexec itself to fake a mptable. 42 * We use this to: 43 * 44 * - kexec, which is a bootloader in disguise, uses the original E820 45 * layout to pass to the kexec-ed kernel. This way the original kernel 46 * can have a restricted E820 map while the kexec()-ed kexec-kernel 47 * can have access to full memory - etc. 48 * 49 * - 'e820_table': this is the main E820 table that is massaged by the 50 * low level x86 platform code, or modified by boot parameters, before 51 * passed on to higher level MM layers. 52 * 53 * Once the E820 map has been converted to the standard Linux memory layout 54 * information its role stops - modifying it has no effect and does not get 55 * re-propagated. So itsmain role is a temporary bootstrap storage of firmware 56 * specific memory layout data during early bootup. 57 */ 58 static struct e820_table e820_table_init __initdata; 59 static struct e820_table e820_table_kexec_init __initdata; 60 static struct e820_table e820_table_firmware_init __initdata; 61 62 struct e820_table *e820_table __refdata = &e820_table_init; 63 struct e820_table *e820_table_kexec __refdata = &e820_table_kexec_init; 64 struct e820_table *e820_table_firmware __refdata = &e820_table_firmware_init; 65 66 /* For PCI or other memory-mapped resources */ 67 unsigned long pci_mem_start = 0xaeedbabe; 68 #ifdef CONFIG_PCI 69 EXPORT_SYMBOL(pci_mem_start); 70 #endif 71 72 /* 73 * This function checks if any part of the range <start,end> is mapped 74 * with type. 75 */ 76 static bool _e820__mapped_any(struct e820_table *table, 77 u64 start, u64 end, enum e820_type type) 78 { 79 int i; 80 81 for (i = 0; i < table->nr_entries; i++) { 82 struct e820_entry *entry = &table->entries[i]; 83 84 if (type && entry->type != type) 85 continue; 86 if (entry->addr >= end || entry->addr + entry->size <= start) 87 continue; 88 return 1; 89 } 90 return 0; 91 } 92 93 bool e820__mapped_raw_any(u64 start, u64 end, enum e820_type type) 94 { 95 return _e820__mapped_any(e820_table_firmware, start, end, type); 96 } 97 EXPORT_SYMBOL_GPL(e820__mapped_raw_any); 98 99 bool e820__mapped_any(u64 start, u64 end, enum e820_type type) 100 { 101 return _e820__mapped_any(e820_table, start, end, type); 102 } 103 EXPORT_SYMBOL_GPL(e820__mapped_any); 104 105 /* 106 * This function checks if the entire <start,end> range is mapped with 'type'. 107 * 108 * Note: this function only works correctly once the E820 table is sorted and 109 * not-overlapping (at least for the range specified), which is the case normally. 110 */ 111 static struct e820_entry *__e820__mapped_all(u64 start, u64 end, 112 enum e820_type type) 113 { 114 int i; 115 116 for (i = 0; i < e820_table->nr_entries; i++) { 117 struct e820_entry *entry = &e820_table->entries[i]; 118 119 if (type && entry->type != type) 120 continue; 121 122 /* Is the region (part) in overlap with the current region? */ 123 if (entry->addr >= end || entry->addr + entry->size <= start) 124 continue; 125 126 /* 127 * If the region is at the beginning of <start,end> we move 128 * 'start' to the end of the region since it's ok until there 129 */ 130 if (entry->addr <= start) 131 start = entry->addr + entry->size; 132 133 /* 134 * If 'start' is now at or beyond 'end', we're done, full 135 * coverage of the desired range exists: 136 */ 137 if (start >= end) 138 return entry; 139 } 140 141 return NULL; 142 } 143 144 /* 145 * This function checks if the entire range <start,end> is mapped with type. 146 */ 147 bool __init e820__mapped_all(u64 start, u64 end, enum e820_type type) 148 { 149 return __e820__mapped_all(start, end, type); 150 } 151 152 /* 153 * This function returns the type associated with the range <start,end>. 154 */ 155 int e820__get_entry_type(u64 start, u64 end) 156 { 157 struct e820_entry *entry = __e820__mapped_all(start, end, 0); 158 159 return entry ? entry->type : -EINVAL; 160 } 161 162 /* 163 * Add a memory region to the kernel E820 map. 164 */ 165 static void __init __e820__range_add(struct e820_table *table, u64 start, u64 size, enum e820_type type) 166 { 167 int x = table->nr_entries; 168 169 if (x >= ARRAY_SIZE(table->entries)) { 170 pr_err("too many entries; ignoring [mem %#010llx-%#010llx]\n", 171 start, start + size - 1); 172 return; 173 } 174 175 table->entries[x].addr = start; 176 table->entries[x].size = size; 177 table->entries[x].type = type; 178 table->nr_entries++; 179 } 180 181 void __init e820__range_add(u64 start, u64 size, enum e820_type type) 182 { 183 __e820__range_add(e820_table, start, size, type); 184 } 185 186 static void __init e820_print_type(enum e820_type type) 187 { 188 switch (type) { 189 case E820_TYPE_RAM: /* Fall through: */ 190 case E820_TYPE_RESERVED_KERN: pr_cont("usable"); break; 191 case E820_TYPE_RESERVED: pr_cont("reserved"); break; 192 case E820_TYPE_ACPI: pr_cont("ACPI data"); break; 193 case E820_TYPE_NVS: pr_cont("ACPI NVS"); break; 194 case E820_TYPE_UNUSABLE: pr_cont("unusable"); break; 195 case E820_TYPE_PMEM: /* Fall through: */ 196 case E820_TYPE_PRAM: pr_cont("persistent (type %u)", type); break; 197 default: pr_cont("type %u", type); break; 198 } 199 } 200 201 void __init e820__print_table(char *who) 202 { 203 int i; 204 205 for (i = 0; i < e820_table->nr_entries; i++) { 206 pr_info("%s: [mem %#018Lx-%#018Lx] ", 207 who, 208 e820_table->entries[i].addr, 209 e820_table->entries[i].addr + e820_table->entries[i].size - 1); 210 211 e820_print_type(e820_table->entries[i].type); 212 pr_cont("\n"); 213 } 214 } 215 216 /* 217 * Sanitize an E820 map. 218 * 219 * Some E820 layouts include overlapping entries. The following 220 * replaces the original E820 map with a new one, removing overlaps, 221 * and resolving conflicting memory types in favor of highest 222 * numbered type. 223 * 224 * The input parameter 'entries' points to an array of 'struct 225 * e820_entry' which on entry has elements in the range [0, *nr_entries) 226 * valid, and which has space for up to max_nr_entries entries. 227 * On return, the resulting sanitized E820 map entries will be in 228 * overwritten in the same location, starting at 'entries'. 229 * 230 * The integer pointed to by nr_entries must be valid on entry (the 231 * current number of valid entries located at 'entries'). If the 232 * sanitizing succeeds the *nr_entries will be updated with the new 233 * number of valid entries (something no more than max_nr_entries). 234 * 235 * The return value from e820__update_table() is zero if it 236 * successfully 'sanitized' the map entries passed in, and is -1 237 * if it did nothing, which can happen if either of (1) it was 238 * only passed one map entry, or (2) any of the input map entries 239 * were invalid (start + size < start, meaning that the size was 240 * so big the described memory range wrapped around through zero.) 241 * 242 * Visually we're performing the following 243 * (1,2,3,4 = memory types)... 244 * 245 * Sample memory map (w/overlaps): 246 * ____22__________________ 247 * ______________________4_ 248 * ____1111________________ 249 * _44_____________________ 250 * 11111111________________ 251 * ____________________33__ 252 * ___________44___________ 253 * __________33333_________ 254 * ______________22________ 255 * ___________________2222_ 256 * _________111111111______ 257 * _____________________11_ 258 * _________________4______ 259 * 260 * Sanitized equivalent (no overlap): 261 * 1_______________________ 262 * _44_____________________ 263 * ___1____________________ 264 * ____22__________________ 265 * ______11________________ 266 * _________1______________ 267 * __________3_____________ 268 * ___________44___________ 269 * _____________33_________ 270 * _______________2________ 271 * ________________1_______ 272 * _________________4______ 273 * ___________________2____ 274 * ____________________33__ 275 * ______________________4_ 276 */ 277 struct change_member { 278 /* Pointer to the original entry: */ 279 struct e820_entry *entry; 280 /* Address for this change point: */ 281 unsigned long long addr; 282 }; 283 284 static struct change_member change_point_list[2*E820_MAX_ENTRIES] __initdata; 285 static struct change_member *change_point[2*E820_MAX_ENTRIES] __initdata; 286 static struct e820_entry *overlap_list[E820_MAX_ENTRIES] __initdata; 287 static struct e820_entry new_entries[E820_MAX_ENTRIES] __initdata; 288 289 static int __init cpcompare(const void *a, const void *b) 290 { 291 struct change_member * const *app = a, * const *bpp = b; 292 const struct change_member *ap = *app, *bp = *bpp; 293 294 /* 295 * Inputs are pointers to two elements of change_point[]. If their 296 * addresses are not equal, their difference dominates. If the addresses 297 * are equal, then consider one that represents the end of its region 298 * to be greater than one that does not. 299 */ 300 if (ap->addr != bp->addr) 301 return ap->addr > bp->addr ? 1 : -1; 302 303 return (ap->addr != ap->entry->addr) - (bp->addr != bp->entry->addr); 304 } 305 306 int __init e820__update_table(struct e820_table *table) 307 { 308 struct e820_entry *entries = table->entries; 309 u32 max_nr_entries = ARRAY_SIZE(table->entries); 310 enum e820_type current_type, last_type; 311 unsigned long long last_addr; 312 u32 new_nr_entries, overlap_entries; 313 u32 i, chg_idx, chg_nr; 314 315 /* If there's only one memory region, don't bother: */ 316 if (table->nr_entries < 2) 317 return -1; 318 319 BUG_ON(table->nr_entries > max_nr_entries); 320 321 /* Bail out if we find any unreasonable addresses in the map: */ 322 for (i = 0; i < table->nr_entries; i++) { 323 if (entries[i].addr + entries[i].size < entries[i].addr) 324 return -1; 325 } 326 327 /* Create pointers for initial change-point information (for sorting): */ 328 for (i = 0; i < 2 * table->nr_entries; i++) 329 change_point[i] = &change_point_list[i]; 330 331 /* 332 * Record all known change-points (starting and ending addresses), 333 * omitting empty memory regions: 334 */ 335 chg_idx = 0; 336 for (i = 0; i < table->nr_entries; i++) { 337 if (entries[i].size != 0) { 338 change_point[chg_idx]->addr = entries[i].addr; 339 change_point[chg_idx++]->entry = &entries[i]; 340 change_point[chg_idx]->addr = entries[i].addr + entries[i].size; 341 change_point[chg_idx++]->entry = &entries[i]; 342 } 343 } 344 chg_nr = chg_idx; 345 346 /* Sort change-point list by memory addresses (low -> high): */ 347 sort(change_point, chg_nr, sizeof(*change_point), cpcompare, NULL); 348 349 /* Create a new memory map, removing overlaps: */ 350 overlap_entries = 0; /* Number of entries in the overlap table */ 351 new_nr_entries = 0; /* Index for creating new map entries */ 352 last_type = 0; /* Start with undefined memory type */ 353 last_addr = 0; /* Start with 0 as last starting address */ 354 355 /* Loop through change-points, determining effect on the new map: */ 356 for (chg_idx = 0; chg_idx < chg_nr; chg_idx++) { 357 /* Keep track of all overlapping entries */ 358 if (change_point[chg_idx]->addr == change_point[chg_idx]->entry->addr) { 359 /* Add map entry to overlap list (> 1 entry implies an overlap) */ 360 overlap_list[overlap_entries++] = change_point[chg_idx]->entry; 361 } else { 362 /* Remove entry from list (order independent, so swap with last): */ 363 for (i = 0; i < overlap_entries; i++) { 364 if (overlap_list[i] == change_point[chg_idx]->entry) 365 overlap_list[i] = overlap_list[overlap_entries-1]; 366 } 367 overlap_entries--; 368 } 369 /* 370 * If there are overlapping entries, decide which 371 * "type" to use (larger value takes precedence -- 372 * 1=usable, 2,3,4,4+=unusable) 373 */ 374 current_type = 0; 375 for (i = 0; i < overlap_entries; i++) { 376 if (overlap_list[i]->type > current_type) 377 current_type = overlap_list[i]->type; 378 } 379 380 /* Continue building up new map based on this information: */ 381 if (current_type != last_type || current_type == E820_TYPE_PRAM) { 382 if (last_type != 0) { 383 new_entries[new_nr_entries].size = change_point[chg_idx]->addr - last_addr; 384 /* Move forward only if the new size was non-zero: */ 385 if (new_entries[new_nr_entries].size != 0) 386 /* No more space left for new entries? */ 387 if (++new_nr_entries >= max_nr_entries) 388 break; 389 } 390 if (current_type != 0) { 391 new_entries[new_nr_entries].addr = change_point[chg_idx]->addr; 392 new_entries[new_nr_entries].type = current_type; 393 last_addr = change_point[chg_idx]->addr; 394 } 395 last_type = current_type; 396 } 397 } 398 399 /* Copy the new entries into the original location: */ 400 memcpy(entries, new_entries, new_nr_entries*sizeof(*entries)); 401 table->nr_entries = new_nr_entries; 402 403 return 0; 404 } 405 406 static int __init __append_e820_table(struct boot_e820_entry *entries, u32 nr_entries) 407 { 408 struct boot_e820_entry *entry = entries; 409 410 while (nr_entries) { 411 u64 start = entry->addr; 412 u64 size = entry->size; 413 u64 end = start + size - 1; 414 u32 type = entry->type; 415 416 /* Ignore the entry on 64-bit overflow: */ 417 if (start > end && likely(size)) 418 return -1; 419 420 e820__range_add(start, size, type); 421 422 entry++; 423 nr_entries--; 424 } 425 return 0; 426 } 427 428 /* 429 * Copy the BIOS E820 map into a safe place. 430 * 431 * Sanity-check it while we're at it.. 432 * 433 * If we're lucky and live on a modern system, the setup code 434 * will have given us a memory map that we can use to properly 435 * set up memory. If we aren't, we'll fake a memory map. 436 */ 437 static int __init append_e820_table(struct boot_e820_entry *entries, u32 nr_entries) 438 { 439 /* Only one memory region (or negative)? Ignore it */ 440 if (nr_entries < 2) 441 return -1; 442 443 return __append_e820_table(entries, nr_entries); 444 } 445 446 static u64 __init 447 __e820__range_update(struct e820_table *table, u64 start, u64 size, enum e820_type old_type, enum e820_type new_type) 448 { 449 u64 end; 450 unsigned int i; 451 u64 real_updated_size = 0; 452 453 BUG_ON(old_type == new_type); 454 455 if (size > (ULLONG_MAX - start)) 456 size = ULLONG_MAX - start; 457 458 end = start + size; 459 printk(KERN_DEBUG "e820: update [mem %#010Lx-%#010Lx] ", start, end - 1); 460 e820_print_type(old_type); 461 pr_cont(" ==> "); 462 e820_print_type(new_type); 463 pr_cont("\n"); 464 465 for (i = 0; i < table->nr_entries; i++) { 466 struct e820_entry *entry = &table->entries[i]; 467 u64 final_start, final_end; 468 u64 entry_end; 469 470 if (entry->type != old_type) 471 continue; 472 473 entry_end = entry->addr + entry->size; 474 475 /* Completely covered by new range? */ 476 if (entry->addr >= start && entry_end <= end) { 477 entry->type = new_type; 478 real_updated_size += entry->size; 479 continue; 480 } 481 482 /* New range is completely covered? */ 483 if (entry->addr < start && entry_end > end) { 484 __e820__range_add(table, start, size, new_type); 485 __e820__range_add(table, end, entry_end - end, entry->type); 486 entry->size = start - entry->addr; 487 real_updated_size += size; 488 continue; 489 } 490 491 /* Partially covered: */ 492 final_start = max(start, entry->addr); 493 final_end = min(end, entry_end); 494 if (final_start >= final_end) 495 continue; 496 497 __e820__range_add(table, final_start, final_end - final_start, new_type); 498 499 real_updated_size += final_end - final_start; 500 501 /* 502 * Left range could be head or tail, so need to update 503 * its size first: 504 */ 505 entry->size -= final_end - final_start; 506 if (entry->addr < final_start) 507 continue; 508 509 entry->addr = final_end; 510 } 511 return real_updated_size; 512 } 513 514 u64 __init e820__range_update(u64 start, u64 size, enum e820_type old_type, enum e820_type new_type) 515 { 516 return __e820__range_update(e820_table, start, size, old_type, new_type); 517 } 518 519 static u64 __init e820__range_update_kexec(u64 start, u64 size, enum e820_type old_type, enum e820_type new_type) 520 { 521 return __e820__range_update(e820_table_kexec, start, size, old_type, new_type); 522 } 523 524 /* Remove a range of memory from the E820 table: */ 525 u64 __init e820__range_remove(u64 start, u64 size, enum e820_type old_type, bool check_type) 526 { 527 int i; 528 u64 end; 529 u64 real_removed_size = 0; 530 531 if (size > (ULLONG_MAX - start)) 532 size = ULLONG_MAX - start; 533 534 end = start + size; 535 printk(KERN_DEBUG "e820: remove [mem %#010Lx-%#010Lx] ", start, end - 1); 536 if (check_type) 537 e820_print_type(old_type); 538 pr_cont("\n"); 539 540 for (i = 0; i < e820_table->nr_entries; i++) { 541 struct e820_entry *entry = &e820_table->entries[i]; 542 u64 final_start, final_end; 543 u64 entry_end; 544 545 if (check_type && entry->type != old_type) 546 continue; 547 548 entry_end = entry->addr + entry->size; 549 550 /* Completely covered? */ 551 if (entry->addr >= start && entry_end <= end) { 552 real_removed_size += entry->size; 553 memset(entry, 0, sizeof(*entry)); 554 continue; 555 } 556 557 /* Is the new range completely covered? */ 558 if (entry->addr < start && entry_end > end) { 559 e820__range_add(end, entry_end - end, entry->type); 560 entry->size = start - entry->addr; 561 real_removed_size += size; 562 continue; 563 } 564 565 /* Partially covered: */ 566 final_start = max(start, entry->addr); 567 final_end = min(end, entry_end); 568 if (final_start >= final_end) 569 continue; 570 571 real_removed_size += final_end - final_start; 572 573 /* 574 * Left range could be head or tail, so need to update 575 * the size first: 576 */ 577 entry->size -= final_end - final_start; 578 if (entry->addr < final_start) 579 continue; 580 581 entry->addr = final_end; 582 } 583 return real_removed_size; 584 } 585 586 void __init e820__update_table_print(void) 587 { 588 if (e820__update_table(e820_table)) 589 return; 590 591 pr_info("modified physical RAM map:\n"); 592 e820__print_table("modified"); 593 } 594 595 static void __init e820__update_table_kexec(void) 596 { 597 e820__update_table(e820_table_kexec); 598 } 599 600 #define MAX_GAP_END 0x100000000ull 601 602 /* 603 * Search for a gap in the E820 memory space from 0 to MAX_GAP_END (4GB). 604 */ 605 static int __init e820_search_gap(unsigned long *gapstart, unsigned long *gapsize) 606 { 607 unsigned long long last = MAX_GAP_END; 608 int i = e820_table->nr_entries; 609 int found = 0; 610 611 while (--i >= 0) { 612 unsigned long long start = e820_table->entries[i].addr; 613 unsigned long long end = start + e820_table->entries[i].size; 614 615 /* 616 * Since "last" is at most 4GB, we know we'll 617 * fit in 32 bits if this condition is true: 618 */ 619 if (last > end) { 620 unsigned long gap = last - end; 621 622 if (gap >= *gapsize) { 623 *gapsize = gap; 624 *gapstart = end; 625 found = 1; 626 } 627 } 628 if (start < last) 629 last = start; 630 } 631 return found; 632 } 633 634 /* 635 * Search for the biggest gap in the low 32 bits of the E820 636 * memory space. We pass this space to the PCI subsystem, so 637 * that it can assign MMIO resources for hotplug or 638 * unconfigured devices in. 639 * 640 * Hopefully the BIOS let enough space left. 641 */ 642 __init void e820__setup_pci_gap(void) 643 { 644 unsigned long gapstart, gapsize; 645 int found; 646 647 gapsize = 0x400000; 648 found = e820_search_gap(&gapstart, &gapsize); 649 650 if (!found) { 651 #ifdef CONFIG_X86_64 652 gapstart = (max_pfn << PAGE_SHIFT) + 1024*1024; 653 pr_err("Cannot find an available gap in the 32-bit address range\n"); 654 pr_err("PCI devices with unassigned 32-bit BARs may not work!\n"); 655 #else 656 gapstart = 0x10000000; 657 #endif 658 } 659 660 /* 661 * e820__reserve_resources_late() protects stolen RAM already: 662 */ 663 pci_mem_start = gapstart; 664 665 pr_info("[mem %#010lx-%#010lx] available for PCI devices\n", 666 gapstart, gapstart + gapsize - 1); 667 } 668 669 /* 670 * Called late during init, in free_initmem(). 671 * 672 * Initial e820_table and e820_table_kexec are largish __initdata arrays. 673 * 674 * Copy them to a (usually much smaller) dynamically allocated area that is 675 * sized precisely after the number of e820 entries. 676 * 677 * This is done after we've performed all the fixes and tweaks to the tables. 678 * All functions which modify them are __init functions, which won't exist 679 * after free_initmem(). 680 */ 681 __init void e820__reallocate_tables(void) 682 { 683 struct e820_table *n; 684 int size; 685 686 size = offsetof(struct e820_table, entries) + sizeof(struct e820_entry)*e820_table->nr_entries; 687 n = kmemdup(e820_table, size, GFP_KERNEL); 688 BUG_ON(!n); 689 e820_table = n; 690 691 size = offsetof(struct e820_table, entries) + sizeof(struct e820_entry)*e820_table_kexec->nr_entries; 692 n = kmemdup(e820_table_kexec, size, GFP_KERNEL); 693 BUG_ON(!n); 694 e820_table_kexec = n; 695 696 size = offsetof(struct e820_table, entries) + sizeof(struct e820_entry)*e820_table_firmware->nr_entries; 697 n = kmemdup(e820_table_firmware, size, GFP_KERNEL); 698 BUG_ON(!n); 699 e820_table_firmware = n; 700 } 701 702 /* 703 * Because of the small fixed size of struct boot_params, only the first 704 * 128 E820 memory entries are passed to the kernel via boot_params.e820_table, 705 * the remaining (if any) entries are passed via the SETUP_E820_EXT node of 706 * struct setup_data, which is parsed here. 707 */ 708 void __init e820__memory_setup_extended(u64 phys_addr, u32 data_len) 709 { 710 int entries; 711 struct boot_e820_entry *extmap; 712 struct setup_data *sdata; 713 714 sdata = early_memremap(phys_addr, data_len); 715 entries = sdata->len / sizeof(*extmap); 716 extmap = (struct boot_e820_entry *)(sdata->data); 717 718 __append_e820_table(extmap, entries); 719 e820__update_table(e820_table); 720 721 memcpy(e820_table_kexec, e820_table, sizeof(*e820_table_kexec)); 722 memcpy(e820_table_firmware, e820_table, sizeof(*e820_table_firmware)); 723 724 early_memunmap(sdata, data_len); 725 pr_info("extended physical RAM map:\n"); 726 e820__print_table("extended"); 727 } 728 729 /* 730 * Find the ranges of physical addresses that do not correspond to 731 * E820 RAM areas and register the corresponding pages as 'nosave' for 732 * hibernation (32-bit) or software suspend and suspend to RAM (64-bit). 733 * 734 * This function requires the E820 map to be sorted and without any 735 * overlapping entries. 736 */ 737 void __init e820__register_nosave_regions(unsigned long limit_pfn) 738 { 739 int i; 740 unsigned long pfn = 0; 741 742 for (i = 0; i < e820_table->nr_entries; i++) { 743 struct e820_entry *entry = &e820_table->entries[i]; 744 745 if (pfn < PFN_UP(entry->addr)) 746 register_nosave_region(pfn, PFN_UP(entry->addr)); 747 748 pfn = PFN_DOWN(entry->addr + entry->size); 749 750 if (entry->type != E820_TYPE_RAM && entry->type != E820_TYPE_RESERVED_KERN) 751 register_nosave_region(PFN_UP(entry->addr), pfn); 752 753 if (pfn >= limit_pfn) 754 break; 755 } 756 } 757 758 #ifdef CONFIG_ACPI 759 /* 760 * Register ACPI NVS memory regions, so that we can save/restore them during 761 * hibernation and the subsequent resume: 762 */ 763 static int __init e820__register_nvs_regions(void) 764 { 765 int i; 766 767 for (i = 0; i < e820_table->nr_entries; i++) { 768 struct e820_entry *entry = &e820_table->entries[i]; 769 770 if (entry->type == E820_TYPE_NVS) 771 acpi_nvs_register(entry->addr, entry->size); 772 } 773 774 return 0; 775 } 776 core_initcall(e820__register_nvs_regions); 777 #endif 778 779 /* 780 * Allocate the requested number of bytes with the requsted alignment 781 * and return (the physical address) to the caller. Also register this 782 * range in the 'kexec' E820 table as a reserved range. 783 * 784 * This allows kexec to fake a new mptable, as if it came from the real 785 * system. 786 */ 787 u64 __init e820__memblock_alloc_reserved(u64 size, u64 align) 788 { 789 u64 addr; 790 791 addr = memblock_phys_alloc(size, align); 792 if (addr) { 793 e820__range_update_kexec(addr, size, E820_TYPE_RAM, E820_TYPE_RESERVED); 794 pr_info("update e820_table_kexec for e820__memblock_alloc_reserved()\n"); 795 e820__update_table_kexec(); 796 } 797 798 return addr; 799 } 800 801 #ifdef CONFIG_X86_32 802 # ifdef CONFIG_X86_PAE 803 # define MAX_ARCH_PFN (1ULL<<(36-PAGE_SHIFT)) 804 # else 805 # define MAX_ARCH_PFN (1ULL<<(32-PAGE_SHIFT)) 806 # endif 807 #else /* CONFIG_X86_32 */ 808 # define MAX_ARCH_PFN MAXMEM>>PAGE_SHIFT 809 #endif 810 811 /* 812 * Find the highest page frame number we have available 813 */ 814 static unsigned long __init e820_end_pfn(unsigned long limit_pfn, enum e820_type type) 815 { 816 int i; 817 unsigned long last_pfn = 0; 818 unsigned long max_arch_pfn = MAX_ARCH_PFN; 819 820 for (i = 0; i < e820_table->nr_entries; i++) { 821 struct e820_entry *entry = &e820_table->entries[i]; 822 unsigned long start_pfn; 823 unsigned long end_pfn; 824 825 if (entry->type != type) 826 continue; 827 828 start_pfn = entry->addr >> PAGE_SHIFT; 829 end_pfn = (entry->addr + entry->size) >> PAGE_SHIFT; 830 831 if (start_pfn >= limit_pfn) 832 continue; 833 if (end_pfn > limit_pfn) { 834 last_pfn = limit_pfn; 835 break; 836 } 837 if (end_pfn > last_pfn) 838 last_pfn = end_pfn; 839 } 840 841 if (last_pfn > max_arch_pfn) 842 last_pfn = max_arch_pfn; 843 844 pr_info("last_pfn = %#lx max_arch_pfn = %#lx\n", 845 last_pfn, max_arch_pfn); 846 return last_pfn; 847 } 848 849 unsigned long __init e820__end_of_ram_pfn(void) 850 { 851 return e820_end_pfn(MAX_ARCH_PFN, E820_TYPE_RAM); 852 } 853 854 unsigned long __init e820__end_of_low_ram_pfn(void) 855 { 856 return e820_end_pfn(1UL << (32 - PAGE_SHIFT), E820_TYPE_RAM); 857 } 858 859 static void __init early_panic(char *msg) 860 { 861 early_printk(msg); 862 panic(msg); 863 } 864 865 static int userdef __initdata; 866 867 /* The "mem=nopentium" boot option disables 4MB page tables on 32-bit kernels: */ 868 static int __init parse_memopt(char *p) 869 { 870 u64 mem_size; 871 872 if (!p) 873 return -EINVAL; 874 875 if (!strcmp(p, "nopentium")) { 876 #ifdef CONFIG_X86_32 877 setup_clear_cpu_cap(X86_FEATURE_PSE); 878 return 0; 879 #else 880 pr_warn("mem=nopentium ignored! (only supported on x86_32)\n"); 881 return -EINVAL; 882 #endif 883 } 884 885 userdef = 1; 886 mem_size = memparse(p, &p); 887 888 /* Don't remove all memory when getting "mem={invalid}" parameter: */ 889 if (mem_size == 0) 890 return -EINVAL; 891 892 e820__range_remove(mem_size, ULLONG_MAX - mem_size, E820_TYPE_RAM, 1); 893 894 #ifdef CONFIG_MEMORY_HOTPLUG 895 max_mem_size = mem_size; 896 #endif 897 898 return 0; 899 } 900 early_param("mem", parse_memopt); 901 902 static int __init parse_memmap_one(char *p) 903 { 904 char *oldp; 905 u64 start_at, mem_size; 906 907 if (!p) 908 return -EINVAL; 909 910 if (!strncmp(p, "exactmap", 8)) { 911 #ifdef CONFIG_CRASH_DUMP 912 /* 913 * If we are doing a crash dump, we still need to know 914 * the real memory size before the original memory map is 915 * reset. 916 */ 917 saved_max_pfn = e820__end_of_ram_pfn(); 918 #endif 919 e820_table->nr_entries = 0; 920 userdef = 1; 921 return 0; 922 } 923 924 oldp = p; 925 mem_size = memparse(p, &p); 926 if (p == oldp) 927 return -EINVAL; 928 929 userdef = 1; 930 if (*p == '@') { 931 start_at = memparse(p+1, &p); 932 e820__range_add(start_at, mem_size, E820_TYPE_RAM); 933 } else if (*p == '#') { 934 start_at = memparse(p+1, &p); 935 e820__range_add(start_at, mem_size, E820_TYPE_ACPI); 936 } else if (*p == '$') { 937 start_at = memparse(p+1, &p); 938 e820__range_add(start_at, mem_size, E820_TYPE_RESERVED); 939 } else if (*p == '!') { 940 start_at = memparse(p+1, &p); 941 e820__range_add(start_at, mem_size, E820_TYPE_PRAM); 942 } else if (*p == '%') { 943 enum e820_type from = 0, to = 0; 944 945 start_at = memparse(p + 1, &p); 946 if (*p == '-') 947 from = simple_strtoull(p + 1, &p, 0); 948 if (*p == '+') 949 to = simple_strtoull(p + 1, &p, 0); 950 if (*p != '\0') 951 return -EINVAL; 952 if (from && to) 953 e820__range_update(start_at, mem_size, from, to); 954 else if (to) 955 e820__range_add(start_at, mem_size, to); 956 else if (from) 957 e820__range_remove(start_at, mem_size, from, 1); 958 else 959 e820__range_remove(start_at, mem_size, 0, 0); 960 } else { 961 e820__range_remove(mem_size, ULLONG_MAX - mem_size, E820_TYPE_RAM, 1); 962 } 963 964 return *p == '\0' ? 0 : -EINVAL; 965 } 966 967 static int __init parse_memmap_opt(char *str) 968 { 969 while (str) { 970 char *k = strchr(str, ','); 971 972 if (k) 973 *k++ = 0; 974 975 parse_memmap_one(str); 976 str = k; 977 } 978 979 return 0; 980 } 981 early_param("memmap", parse_memmap_opt); 982 983 /* 984 * Reserve all entries from the bootloader's extensible data nodes list, 985 * because if present we are going to use it later on to fetch e820 986 * entries from it: 987 */ 988 void __init e820__reserve_setup_data(void) 989 { 990 struct setup_data *data; 991 u64 pa_data; 992 993 pa_data = boot_params.hdr.setup_data; 994 if (!pa_data) 995 return; 996 997 while (pa_data) { 998 data = early_memremap(pa_data, sizeof(*data)); 999 e820__range_update(pa_data, sizeof(*data)+data->len, E820_TYPE_RAM, E820_TYPE_RESERVED_KERN); 1000 e820__range_update_kexec(pa_data, sizeof(*data)+data->len, E820_TYPE_RAM, E820_TYPE_RESERVED_KERN); 1001 pa_data = data->next; 1002 early_memunmap(data, sizeof(*data)); 1003 } 1004 1005 e820__update_table(e820_table); 1006 e820__update_table(e820_table_kexec); 1007 1008 pr_info("extended physical RAM map:\n"); 1009 e820__print_table("reserve setup_data"); 1010 } 1011 1012 /* 1013 * Called after parse_early_param(), after early parameters (such as mem=) 1014 * have been processed, in which case we already have an E820 table filled in 1015 * via the parameter callback function(s), but it's not sorted and printed yet: 1016 */ 1017 void __init e820__finish_early_params(void) 1018 { 1019 if (userdef) { 1020 if (e820__update_table(e820_table) < 0) 1021 early_panic("Invalid user supplied memory map"); 1022 1023 pr_info("user-defined physical RAM map:\n"); 1024 e820__print_table("user"); 1025 } 1026 } 1027 1028 static const char *__init e820_type_to_string(struct e820_entry *entry) 1029 { 1030 switch (entry->type) { 1031 case E820_TYPE_RESERVED_KERN: /* Fall-through: */ 1032 case E820_TYPE_RAM: return "System RAM"; 1033 case E820_TYPE_ACPI: return "ACPI Tables"; 1034 case E820_TYPE_NVS: return "ACPI Non-volatile Storage"; 1035 case E820_TYPE_UNUSABLE: return "Unusable memory"; 1036 case E820_TYPE_PRAM: return "Persistent Memory (legacy)"; 1037 case E820_TYPE_PMEM: return "Persistent Memory"; 1038 case E820_TYPE_RESERVED: return "Reserved"; 1039 default: return "Unknown E820 type"; 1040 } 1041 } 1042 1043 static unsigned long __init e820_type_to_iomem_type(struct e820_entry *entry) 1044 { 1045 switch (entry->type) { 1046 case E820_TYPE_RESERVED_KERN: /* Fall-through: */ 1047 case E820_TYPE_RAM: return IORESOURCE_SYSTEM_RAM; 1048 case E820_TYPE_ACPI: /* Fall-through: */ 1049 case E820_TYPE_NVS: /* Fall-through: */ 1050 case E820_TYPE_UNUSABLE: /* Fall-through: */ 1051 case E820_TYPE_PRAM: /* Fall-through: */ 1052 case E820_TYPE_PMEM: /* Fall-through: */ 1053 case E820_TYPE_RESERVED: /* Fall-through: */ 1054 default: return IORESOURCE_MEM; 1055 } 1056 } 1057 1058 static unsigned long __init e820_type_to_iores_desc(struct e820_entry *entry) 1059 { 1060 switch (entry->type) { 1061 case E820_TYPE_ACPI: return IORES_DESC_ACPI_TABLES; 1062 case E820_TYPE_NVS: return IORES_DESC_ACPI_NV_STORAGE; 1063 case E820_TYPE_PMEM: return IORES_DESC_PERSISTENT_MEMORY; 1064 case E820_TYPE_PRAM: return IORES_DESC_PERSISTENT_MEMORY_LEGACY; 1065 case E820_TYPE_RESERVED_KERN: /* Fall-through: */ 1066 case E820_TYPE_RAM: /* Fall-through: */ 1067 case E820_TYPE_UNUSABLE: /* Fall-through: */ 1068 case E820_TYPE_RESERVED: /* Fall-through: */ 1069 default: return IORES_DESC_NONE; 1070 } 1071 } 1072 1073 static bool __init do_mark_busy(enum e820_type type, struct resource *res) 1074 { 1075 /* this is the legacy bios/dos rom-shadow + mmio region */ 1076 if (res->start < (1ULL<<20)) 1077 return true; 1078 1079 /* 1080 * Treat persistent memory like device memory, i.e. reserve it 1081 * for exclusive use of a driver 1082 */ 1083 switch (type) { 1084 case E820_TYPE_RESERVED: 1085 case E820_TYPE_PRAM: 1086 case E820_TYPE_PMEM: 1087 return false; 1088 case E820_TYPE_RESERVED_KERN: 1089 case E820_TYPE_RAM: 1090 case E820_TYPE_ACPI: 1091 case E820_TYPE_NVS: 1092 case E820_TYPE_UNUSABLE: 1093 default: 1094 return true; 1095 } 1096 } 1097 1098 /* 1099 * Mark E820 reserved areas as busy for the resource manager: 1100 */ 1101 1102 static struct resource __initdata *e820_res; 1103 1104 void __init e820__reserve_resources(void) 1105 { 1106 int i; 1107 struct resource *res; 1108 u64 end; 1109 1110 res = memblock_alloc(sizeof(*res) * e820_table->nr_entries, 1111 SMP_CACHE_BYTES); 1112 if (!res) 1113 panic("%s: Failed to allocate %zu bytes\n", __func__, 1114 sizeof(*res) * e820_table->nr_entries); 1115 e820_res = res; 1116 1117 for (i = 0; i < e820_table->nr_entries; i++) { 1118 struct e820_entry *entry = e820_table->entries + i; 1119 1120 end = entry->addr + entry->size - 1; 1121 if (end != (resource_size_t)end) { 1122 res++; 1123 continue; 1124 } 1125 res->start = entry->addr; 1126 res->end = end; 1127 res->name = e820_type_to_string(entry); 1128 res->flags = e820_type_to_iomem_type(entry); 1129 res->desc = e820_type_to_iores_desc(entry); 1130 1131 /* 1132 * Don't register the region that could be conflicted with 1133 * PCI device BAR resources and insert them later in 1134 * pcibios_resource_survey(): 1135 */ 1136 if (do_mark_busy(entry->type, res)) { 1137 res->flags |= IORESOURCE_BUSY; 1138 insert_resource(&iomem_resource, res); 1139 } 1140 res++; 1141 } 1142 1143 /* Expose the bootloader-provided memory layout to the sysfs. */ 1144 for (i = 0; i < e820_table_firmware->nr_entries; i++) { 1145 struct e820_entry *entry = e820_table_firmware->entries + i; 1146 1147 firmware_map_add_early(entry->addr, entry->addr + entry->size, e820_type_to_string(entry)); 1148 } 1149 } 1150 1151 /* 1152 * How much should we pad the end of RAM, depending on where it is? 1153 */ 1154 static unsigned long __init ram_alignment(resource_size_t pos) 1155 { 1156 unsigned long mb = pos >> 20; 1157 1158 /* To 64kB in the first megabyte */ 1159 if (!mb) 1160 return 64*1024; 1161 1162 /* To 1MB in the first 16MB */ 1163 if (mb < 16) 1164 return 1024*1024; 1165 1166 /* To 64MB for anything above that */ 1167 return 64*1024*1024; 1168 } 1169 1170 #define MAX_RESOURCE_SIZE ((resource_size_t)-1) 1171 1172 void __init e820__reserve_resources_late(void) 1173 { 1174 int i; 1175 struct resource *res; 1176 1177 res = e820_res; 1178 for (i = 0; i < e820_table->nr_entries; i++) { 1179 if (!res->parent && res->end) 1180 insert_resource_expand_to_fit(&iomem_resource, res); 1181 res++; 1182 } 1183 1184 /* 1185 * Try to bump up RAM regions to reasonable boundaries, to 1186 * avoid stolen RAM: 1187 */ 1188 for (i = 0; i < e820_table->nr_entries; i++) { 1189 struct e820_entry *entry = &e820_table->entries[i]; 1190 u64 start, end; 1191 1192 if (entry->type != E820_TYPE_RAM) 1193 continue; 1194 1195 start = entry->addr + entry->size; 1196 end = round_up(start, ram_alignment(start)) - 1; 1197 if (end > MAX_RESOURCE_SIZE) 1198 end = MAX_RESOURCE_SIZE; 1199 if (start >= end) 1200 continue; 1201 1202 printk(KERN_DEBUG "e820: reserve RAM buffer [mem %#010llx-%#010llx]\n", start, end); 1203 reserve_region_with_split(&iomem_resource, start, end, "RAM buffer"); 1204 } 1205 } 1206 1207 /* 1208 * Pass the firmware (bootloader) E820 map to the kernel and process it: 1209 */ 1210 char *__init e820__memory_setup_default(void) 1211 { 1212 char *who = "BIOS-e820"; 1213 1214 /* 1215 * Try to copy the BIOS-supplied E820-map. 1216 * 1217 * Otherwise fake a memory map; one section from 0k->640k, 1218 * the next section from 1mb->appropriate_mem_k 1219 */ 1220 if (append_e820_table(boot_params.e820_table, boot_params.e820_entries) < 0) { 1221 u64 mem_size; 1222 1223 /* Compare results from other methods and take the one that gives more RAM: */ 1224 if (boot_params.alt_mem_k < boot_params.screen_info.ext_mem_k) { 1225 mem_size = boot_params.screen_info.ext_mem_k; 1226 who = "BIOS-88"; 1227 } else { 1228 mem_size = boot_params.alt_mem_k; 1229 who = "BIOS-e801"; 1230 } 1231 1232 e820_table->nr_entries = 0; 1233 e820__range_add(0, LOWMEMSIZE(), E820_TYPE_RAM); 1234 e820__range_add(HIGH_MEMORY, mem_size << 10, E820_TYPE_RAM); 1235 } 1236 1237 /* We just appended a lot of ranges, sanitize the table: */ 1238 e820__update_table(e820_table); 1239 1240 return who; 1241 } 1242 1243 /* 1244 * Calls e820__memory_setup_default() in essence to pick up the firmware/bootloader 1245 * E820 map - with an optional platform quirk available for virtual platforms 1246 * to override this method of boot environment processing: 1247 */ 1248 void __init e820__memory_setup(void) 1249 { 1250 char *who; 1251 1252 /* This is a firmware interface ABI - make sure we don't break it: */ 1253 BUILD_BUG_ON(sizeof(struct boot_e820_entry) != 20); 1254 1255 who = x86_init.resources.memory_setup(); 1256 1257 memcpy(e820_table_kexec, e820_table, sizeof(*e820_table_kexec)); 1258 memcpy(e820_table_firmware, e820_table, sizeof(*e820_table_firmware)); 1259 1260 pr_info("BIOS-provided physical RAM map:\n"); 1261 e820__print_table(who); 1262 } 1263 1264 void __init e820__memblock_setup(void) 1265 { 1266 int i; 1267 u64 end; 1268 1269 /* 1270 * The bootstrap memblock region count maximum is 128 entries 1271 * (INIT_MEMBLOCK_REGIONS), but EFI might pass us more E820 entries 1272 * than that - so allow memblock resizing. 1273 * 1274 * This is safe, because this call happens pretty late during x86 setup, 1275 * so we know about reserved memory regions already. (This is important 1276 * so that memblock resizing does no stomp over reserved areas.) 1277 */ 1278 memblock_allow_resize(); 1279 1280 for (i = 0; i < e820_table->nr_entries; i++) { 1281 struct e820_entry *entry = &e820_table->entries[i]; 1282 1283 end = entry->addr + entry->size; 1284 if (end != (resource_size_t)end) 1285 continue; 1286 1287 if (entry->type != E820_TYPE_RAM && entry->type != E820_TYPE_RESERVED_KERN) 1288 continue; 1289 1290 memblock_add(entry->addr, entry->size); 1291 } 1292 1293 /* Throw away partial pages: */ 1294 memblock_trim_memory(PAGE_SIZE); 1295 1296 memblock_dump_all(); 1297 } 1298