xref: /openbmc/linux/arch/x86/kernel/e820.c (revision 2ef5a7f1)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Low level x86 E820 memory map handling functions.
4  *
5  * The firmware and bootloader passes us the "E820 table", which is the primary
6  * physical memory layout description available about x86 systems.
7  *
8  * The kernel takes the E820 memory layout and optionally modifies it with
9  * quirks and other tweaks, and feeds that into the generic Linux memory
10  * allocation code routines via a platform independent interface (memblock, etc.).
11  */
12 #include <linux/crash_dump.h>
13 #include <linux/memblock.h>
14 #include <linux/suspend.h>
15 #include <linux/acpi.h>
16 #include <linux/firmware-map.h>
17 #include <linux/sort.h>
18 #include <linux/memory_hotplug.h>
19 
20 #include <asm/e820/api.h>
21 #include <asm/setup.h>
22 
23 /*
24  * We organize the E820 table into three main data structures:
25  *
26  * - 'e820_table_firmware': the original firmware version passed to us by the
27  *   bootloader - not modified by the kernel. It is composed of two parts:
28  *   the first 128 E820 memory entries in boot_params.e820_table and the remaining
29  *   (if any) entries of the SETUP_E820_EXT nodes. We use this to:
30  *
31  *       - inform the user about the firmware's notion of memory layout
32  *         via /sys/firmware/memmap
33  *
34  *       - the hibernation code uses it to generate a kernel-independent MD5
35  *         fingerprint of the physical memory layout of a system.
36  *
37  * - 'e820_table_kexec': a slightly modified (by the kernel) firmware version
38  *   passed to us by the bootloader - the major difference between
39  *   e820_table_firmware[] and this one is that, the latter marks the setup_data
40  *   list created by the EFI boot stub as reserved, so that kexec can reuse the
41  *   setup_data information in the second kernel. Besides, e820_table_kexec[]
42  *   might also be modified by the kexec itself to fake a mptable.
43  *   We use this to:
44  *
45  *       - kexec, which is a bootloader in disguise, uses the original E820
46  *         layout to pass to the kexec-ed kernel. This way the original kernel
47  *         can have a restricted E820 map while the kexec()-ed kexec-kernel
48  *         can have access to full memory - etc.
49  *
50  * - 'e820_table': this is the main E820 table that is massaged by the
51  *   low level x86 platform code, or modified by boot parameters, before
52  *   passed on to higher level MM layers.
53  *
54  * Once the E820 map has been converted to the standard Linux memory layout
55  * information its role stops - modifying it has no effect and does not get
56  * re-propagated. So itsmain role is a temporary bootstrap storage of firmware
57  * specific memory layout data during early bootup.
58  */
59 static struct e820_table e820_table_init		__initdata;
60 static struct e820_table e820_table_kexec_init		__initdata;
61 static struct e820_table e820_table_firmware_init	__initdata;
62 
63 struct e820_table *e820_table __refdata			= &e820_table_init;
64 struct e820_table *e820_table_kexec __refdata		= &e820_table_kexec_init;
65 struct e820_table *e820_table_firmware __refdata	= &e820_table_firmware_init;
66 
67 /* For PCI or other memory-mapped resources */
68 unsigned long pci_mem_start = 0xaeedbabe;
69 #ifdef CONFIG_PCI
70 EXPORT_SYMBOL(pci_mem_start);
71 #endif
72 
73 /*
74  * This function checks if any part of the range <start,end> is mapped
75  * with type.
76  */
77 static bool _e820__mapped_any(struct e820_table *table,
78 			      u64 start, u64 end, enum e820_type type)
79 {
80 	int i;
81 
82 	for (i = 0; i < table->nr_entries; i++) {
83 		struct e820_entry *entry = &table->entries[i];
84 
85 		if (type && entry->type != type)
86 			continue;
87 		if (entry->addr >= end || entry->addr + entry->size <= start)
88 			continue;
89 		return true;
90 	}
91 	return false;
92 }
93 
94 bool e820__mapped_raw_any(u64 start, u64 end, enum e820_type type)
95 {
96 	return _e820__mapped_any(e820_table_firmware, start, end, type);
97 }
98 EXPORT_SYMBOL_GPL(e820__mapped_raw_any);
99 
100 bool e820__mapped_any(u64 start, u64 end, enum e820_type type)
101 {
102 	return _e820__mapped_any(e820_table, start, end, type);
103 }
104 EXPORT_SYMBOL_GPL(e820__mapped_any);
105 
106 /*
107  * This function checks if the entire <start,end> range is mapped with 'type'.
108  *
109  * Note: this function only works correctly once the E820 table is sorted and
110  * not-overlapping (at least for the range specified), which is the case normally.
111  */
112 static struct e820_entry *__e820__mapped_all(u64 start, u64 end,
113 					     enum e820_type type)
114 {
115 	int i;
116 
117 	for (i = 0; i < e820_table->nr_entries; i++) {
118 		struct e820_entry *entry = &e820_table->entries[i];
119 
120 		if (type && entry->type != type)
121 			continue;
122 
123 		/* Is the region (part) in overlap with the current region? */
124 		if (entry->addr >= end || entry->addr + entry->size <= start)
125 			continue;
126 
127 		/*
128 		 * If the region is at the beginning of <start,end> we move
129 		 * 'start' to the end of the region since it's ok until there
130 		 */
131 		if (entry->addr <= start)
132 			start = entry->addr + entry->size;
133 
134 		/*
135 		 * If 'start' is now at or beyond 'end', we're done, full
136 		 * coverage of the desired range exists:
137 		 */
138 		if (start >= end)
139 			return entry;
140 	}
141 
142 	return NULL;
143 }
144 
145 /*
146  * This function checks if the entire range <start,end> is mapped with type.
147  */
148 bool __init e820__mapped_all(u64 start, u64 end, enum e820_type type)
149 {
150 	return __e820__mapped_all(start, end, type);
151 }
152 
153 /*
154  * This function returns the type associated with the range <start,end>.
155  */
156 int e820__get_entry_type(u64 start, u64 end)
157 {
158 	struct e820_entry *entry = __e820__mapped_all(start, end, 0);
159 
160 	return entry ? entry->type : -EINVAL;
161 }
162 
163 /*
164  * Add a memory region to the kernel E820 map.
165  */
166 static void __init __e820__range_add(struct e820_table *table, u64 start, u64 size, enum e820_type type)
167 {
168 	int x = table->nr_entries;
169 
170 	if (x >= ARRAY_SIZE(table->entries)) {
171 		pr_err("too many entries; ignoring [mem %#010llx-%#010llx]\n",
172 		       start, start + size - 1);
173 		return;
174 	}
175 
176 	table->entries[x].addr = start;
177 	table->entries[x].size = size;
178 	table->entries[x].type = type;
179 	table->nr_entries++;
180 }
181 
182 void __init e820__range_add(u64 start, u64 size, enum e820_type type)
183 {
184 	__e820__range_add(e820_table, start, size, type);
185 }
186 
187 static void __init e820_print_type(enum e820_type type)
188 {
189 	switch (type) {
190 	case E820_TYPE_RAM:		/* Fall through: */
191 	case E820_TYPE_RESERVED_KERN:	pr_cont("usable");			break;
192 	case E820_TYPE_RESERVED:	pr_cont("reserved");			break;
193 	case E820_TYPE_ACPI:		pr_cont("ACPI data");			break;
194 	case E820_TYPE_NVS:		pr_cont("ACPI NVS");			break;
195 	case E820_TYPE_UNUSABLE:	pr_cont("unusable");			break;
196 	case E820_TYPE_PMEM:		/* Fall through: */
197 	case E820_TYPE_PRAM:		pr_cont("persistent (type %u)", type);	break;
198 	default:			pr_cont("type %u", type);		break;
199 	}
200 }
201 
202 void __init e820__print_table(char *who)
203 {
204 	int i;
205 
206 	for (i = 0; i < e820_table->nr_entries; i++) {
207 		pr_info("%s: [mem %#018Lx-%#018Lx] ",
208 			who,
209 			e820_table->entries[i].addr,
210 			e820_table->entries[i].addr + e820_table->entries[i].size - 1);
211 
212 		e820_print_type(e820_table->entries[i].type);
213 		pr_cont("\n");
214 	}
215 }
216 
217 /*
218  * Sanitize an E820 map.
219  *
220  * Some E820 layouts include overlapping entries. The following
221  * replaces the original E820 map with a new one, removing overlaps,
222  * and resolving conflicting memory types in favor of highest
223  * numbered type.
224  *
225  * The input parameter 'entries' points to an array of 'struct
226  * e820_entry' which on entry has elements in the range [0, *nr_entries)
227  * valid, and which has space for up to max_nr_entries entries.
228  * On return, the resulting sanitized E820 map entries will be in
229  * overwritten in the same location, starting at 'entries'.
230  *
231  * The integer pointed to by nr_entries must be valid on entry (the
232  * current number of valid entries located at 'entries'). If the
233  * sanitizing succeeds the *nr_entries will be updated with the new
234  * number of valid entries (something no more than max_nr_entries).
235  *
236  * The return value from e820__update_table() is zero if it
237  * successfully 'sanitized' the map entries passed in, and is -1
238  * if it did nothing, which can happen if either of (1) it was
239  * only passed one map entry, or (2) any of the input map entries
240  * were invalid (start + size < start, meaning that the size was
241  * so big the described memory range wrapped around through zero.)
242  *
243  *	Visually we're performing the following
244  *	(1,2,3,4 = memory types)...
245  *
246  *	Sample memory map (w/overlaps):
247  *	   ____22__________________
248  *	   ______________________4_
249  *	   ____1111________________
250  *	   _44_____________________
251  *	   11111111________________
252  *	   ____________________33__
253  *	   ___________44___________
254  *	   __________33333_________
255  *	   ______________22________
256  *	   ___________________2222_
257  *	   _________111111111______
258  *	   _____________________11_
259  *	   _________________4______
260  *
261  *	Sanitized equivalent (no overlap):
262  *	   1_______________________
263  *	   _44_____________________
264  *	   ___1____________________
265  *	   ____22__________________
266  *	   ______11________________
267  *	   _________1______________
268  *	   __________3_____________
269  *	   ___________44___________
270  *	   _____________33_________
271  *	   _______________2________
272  *	   ________________1_______
273  *	   _________________4______
274  *	   ___________________2____
275  *	   ____________________33__
276  *	   ______________________4_
277  */
278 struct change_member {
279 	/* Pointer to the original entry: */
280 	struct e820_entry	*entry;
281 	/* Address for this change point: */
282 	unsigned long long	addr;
283 };
284 
285 static struct change_member	change_point_list[2*E820_MAX_ENTRIES]	__initdata;
286 static struct change_member	*change_point[2*E820_MAX_ENTRIES]	__initdata;
287 static struct e820_entry	*overlap_list[E820_MAX_ENTRIES]		__initdata;
288 static struct e820_entry	new_entries[E820_MAX_ENTRIES]		__initdata;
289 
290 static int __init cpcompare(const void *a, const void *b)
291 {
292 	struct change_member * const *app = a, * const *bpp = b;
293 	const struct change_member *ap = *app, *bp = *bpp;
294 
295 	/*
296 	 * Inputs are pointers to two elements of change_point[].  If their
297 	 * addresses are not equal, their difference dominates.  If the addresses
298 	 * are equal, then consider one that represents the end of its region
299 	 * to be greater than one that does not.
300 	 */
301 	if (ap->addr != bp->addr)
302 		return ap->addr > bp->addr ? 1 : -1;
303 
304 	return (ap->addr != ap->entry->addr) - (bp->addr != bp->entry->addr);
305 }
306 
307 int __init e820__update_table(struct e820_table *table)
308 {
309 	struct e820_entry *entries = table->entries;
310 	u32 max_nr_entries = ARRAY_SIZE(table->entries);
311 	enum e820_type current_type, last_type;
312 	unsigned long long last_addr;
313 	u32 new_nr_entries, overlap_entries;
314 	u32 i, chg_idx, chg_nr;
315 
316 	/* If there's only one memory region, don't bother: */
317 	if (table->nr_entries < 2)
318 		return -1;
319 
320 	BUG_ON(table->nr_entries > max_nr_entries);
321 
322 	/* Bail out if we find any unreasonable addresses in the map: */
323 	for (i = 0; i < table->nr_entries; i++) {
324 		if (entries[i].addr + entries[i].size < entries[i].addr)
325 			return -1;
326 	}
327 
328 	/* Create pointers for initial change-point information (for sorting): */
329 	for (i = 0; i < 2 * table->nr_entries; i++)
330 		change_point[i] = &change_point_list[i];
331 
332 	/*
333 	 * Record all known change-points (starting and ending addresses),
334 	 * omitting empty memory regions:
335 	 */
336 	chg_idx = 0;
337 	for (i = 0; i < table->nr_entries; i++)	{
338 		if (entries[i].size != 0) {
339 			change_point[chg_idx]->addr	= entries[i].addr;
340 			change_point[chg_idx++]->entry	= &entries[i];
341 			change_point[chg_idx]->addr	= entries[i].addr + entries[i].size;
342 			change_point[chg_idx++]->entry	= &entries[i];
343 		}
344 	}
345 	chg_nr = chg_idx;
346 
347 	/* Sort change-point list by memory addresses (low -> high): */
348 	sort(change_point, chg_nr, sizeof(*change_point), cpcompare, NULL);
349 
350 	/* Create a new memory map, removing overlaps: */
351 	overlap_entries = 0;	 /* Number of entries in the overlap table */
352 	new_nr_entries = 0;	 /* Index for creating new map entries */
353 	last_type = 0;		 /* Start with undefined memory type */
354 	last_addr = 0;		 /* Start with 0 as last starting address */
355 
356 	/* Loop through change-points, determining effect on the new map: */
357 	for (chg_idx = 0; chg_idx < chg_nr; chg_idx++) {
358 		/* Keep track of all overlapping entries */
359 		if (change_point[chg_idx]->addr == change_point[chg_idx]->entry->addr) {
360 			/* Add map entry to overlap list (> 1 entry implies an overlap) */
361 			overlap_list[overlap_entries++] = change_point[chg_idx]->entry;
362 		} else {
363 			/* Remove entry from list (order independent, so swap with last): */
364 			for (i = 0; i < overlap_entries; i++) {
365 				if (overlap_list[i] == change_point[chg_idx]->entry)
366 					overlap_list[i] = overlap_list[overlap_entries-1];
367 			}
368 			overlap_entries--;
369 		}
370 		/*
371 		 * If there are overlapping entries, decide which
372 		 * "type" to use (larger value takes precedence --
373 		 * 1=usable, 2,3,4,4+=unusable)
374 		 */
375 		current_type = 0;
376 		for (i = 0; i < overlap_entries; i++) {
377 			if (overlap_list[i]->type > current_type)
378 				current_type = overlap_list[i]->type;
379 		}
380 
381 		/* Continue building up new map based on this information: */
382 		if (current_type != last_type || current_type == E820_TYPE_PRAM) {
383 			if (last_type != 0)	 {
384 				new_entries[new_nr_entries].size = change_point[chg_idx]->addr - last_addr;
385 				/* Move forward only if the new size was non-zero: */
386 				if (new_entries[new_nr_entries].size != 0)
387 					/* No more space left for new entries? */
388 					if (++new_nr_entries >= max_nr_entries)
389 						break;
390 			}
391 			if (current_type != 0)	{
392 				new_entries[new_nr_entries].addr = change_point[chg_idx]->addr;
393 				new_entries[new_nr_entries].type = current_type;
394 				last_addr = change_point[chg_idx]->addr;
395 			}
396 			last_type = current_type;
397 		}
398 	}
399 
400 	/* Copy the new entries into the original location: */
401 	memcpy(entries, new_entries, new_nr_entries*sizeof(*entries));
402 	table->nr_entries = new_nr_entries;
403 
404 	return 0;
405 }
406 
407 static int __init __append_e820_table(struct boot_e820_entry *entries, u32 nr_entries)
408 {
409 	struct boot_e820_entry *entry = entries;
410 
411 	while (nr_entries) {
412 		u64 start = entry->addr;
413 		u64 size = entry->size;
414 		u64 end = start + size - 1;
415 		u32 type = entry->type;
416 
417 		/* Ignore the entry on 64-bit overflow: */
418 		if (start > end && likely(size))
419 			return -1;
420 
421 		e820__range_add(start, size, type);
422 
423 		entry++;
424 		nr_entries--;
425 	}
426 	return 0;
427 }
428 
429 /*
430  * Copy the BIOS E820 map into a safe place.
431  *
432  * Sanity-check it while we're at it..
433  *
434  * If we're lucky and live on a modern system, the setup code
435  * will have given us a memory map that we can use to properly
436  * set up memory.  If we aren't, we'll fake a memory map.
437  */
438 static int __init append_e820_table(struct boot_e820_entry *entries, u32 nr_entries)
439 {
440 	/* Only one memory region (or negative)? Ignore it */
441 	if (nr_entries < 2)
442 		return -1;
443 
444 	return __append_e820_table(entries, nr_entries);
445 }
446 
447 static u64 __init
448 __e820__range_update(struct e820_table *table, u64 start, u64 size, enum e820_type old_type, enum e820_type new_type)
449 {
450 	u64 end;
451 	unsigned int i;
452 	u64 real_updated_size = 0;
453 
454 	BUG_ON(old_type == new_type);
455 
456 	if (size > (ULLONG_MAX - start))
457 		size = ULLONG_MAX - start;
458 
459 	end = start + size;
460 	printk(KERN_DEBUG "e820: update [mem %#010Lx-%#010Lx] ", start, end - 1);
461 	e820_print_type(old_type);
462 	pr_cont(" ==> ");
463 	e820_print_type(new_type);
464 	pr_cont("\n");
465 
466 	for (i = 0; i < table->nr_entries; i++) {
467 		struct e820_entry *entry = &table->entries[i];
468 		u64 final_start, final_end;
469 		u64 entry_end;
470 
471 		if (entry->type != old_type)
472 			continue;
473 
474 		entry_end = entry->addr + entry->size;
475 
476 		/* Completely covered by new range? */
477 		if (entry->addr >= start && entry_end <= end) {
478 			entry->type = new_type;
479 			real_updated_size += entry->size;
480 			continue;
481 		}
482 
483 		/* New range is completely covered? */
484 		if (entry->addr < start && entry_end > end) {
485 			__e820__range_add(table, start, size, new_type);
486 			__e820__range_add(table, end, entry_end - end, entry->type);
487 			entry->size = start - entry->addr;
488 			real_updated_size += size;
489 			continue;
490 		}
491 
492 		/* Partially covered: */
493 		final_start = max(start, entry->addr);
494 		final_end = min(end, entry_end);
495 		if (final_start >= final_end)
496 			continue;
497 
498 		__e820__range_add(table, final_start, final_end - final_start, new_type);
499 
500 		real_updated_size += final_end - final_start;
501 
502 		/*
503 		 * Left range could be head or tail, so need to update
504 		 * its size first:
505 		 */
506 		entry->size -= final_end - final_start;
507 		if (entry->addr < final_start)
508 			continue;
509 
510 		entry->addr = final_end;
511 	}
512 	return real_updated_size;
513 }
514 
515 u64 __init e820__range_update(u64 start, u64 size, enum e820_type old_type, enum e820_type new_type)
516 {
517 	return __e820__range_update(e820_table, start, size, old_type, new_type);
518 }
519 
520 static u64 __init e820__range_update_kexec(u64 start, u64 size, enum e820_type old_type, enum e820_type  new_type)
521 {
522 	return __e820__range_update(e820_table_kexec, start, size, old_type, new_type);
523 }
524 
525 /* Remove a range of memory from the E820 table: */
526 u64 __init e820__range_remove(u64 start, u64 size, enum e820_type old_type, bool check_type)
527 {
528 	int i;
529 	u64 end;
530 	u64 real_removed_size = 0;
531 
532 	if (size > (ULLONG_MAX - start))
533 		size = ULLONG_MAX - start;
534 
535 	end = start + size;
536 	printk(KERN_DEBUG "e820: remove [mem %#010Lx-%#010Lx] ", start, end - 1);
537 	if (check_type)
538 		e820_print_type(old_type);
539 	pr_cont("\n");
540 
541 	for (i = 0; i < e820_table->nr_entries; i++) {
542 		struct e820_entry *entry = &e820_table->entries[i];
543 		u64 final_start, final_end;
544 		u64 entry_end;
545 
546 		if (check_type && entry->type != old_type)
547 			continue;
548 
549 		entry_end = entry->addr + entry->size;
550 
551 		/* Completely covered? */
552 		if (entry->addr >= start && entry_end <= end) {
553 			real_removed_size += entry->size;
554 			memset(entry, 0, sizeof(*entry));
555 			continue;
556 		}
557 
558 		/* Is the new range completely covered? */
559 		if (entry->addr < start && entry_end > end) {
560 			e820__range_add(end, entry_end - end, entry->type);
561 			entry->size = start - entry->addr;
562 			real_removed_size += size;
563 			continue;
564 		}
565 
566 		/* Partially covered: */
567 		final_start = max(start, entry->addr);
568 		final_end = min(end, entry_end);
569 		if (final_start >= final_end)
570 			continue;
571 
572 		real_removed_size += final_end - final_start;
573 
574 		/*
575 		 * Left range could be head or tail, so need to update
576 		 * the size first:
577 		 */
578 		entry->size -= final_end - final_start;
579 		if (entry->addr < final_start)
580 			continue;
581 
582 		entry->addr = final_end;
583 	}
584 	return real_removed_size;
585 }
586 
587 void __init e820__update_table_print(void)
588 {
589 	if (e820__update_table(e820_table))
590 		return;
591 
592 	pr_info("modified physical RAM map:\n");
593 	e820__print_table("modified");
594 }
595 
596 static void __init e820__update_table_kexec(void)
597 {
598 	e820__update_table(e820_table_kexec);
599 }
600 
601 #define MAX_GAP_END 0x100000000ull
602 
603 /*
604  * Search for a gap in the E820 memory space from 0 to MAX_GAP_END (4GB).
605  */
606 static int __init e820_search_gap(unsigned long *gapstart, unsigned long *gapsize)
607 {
608 	unsigned long long last = MAX_GAP_END;
609 	int i = e820_table->nr_entries;
610 	int found = 0;
611 
612 	while (--i >= 0) {
613 		unsigned long long start = e820_table->entries[i].addr;
614 		unsigned long long end = start + e820_table->entries[i].size;
615 
616 		/*
617 		 * Since "last" is at most 4GB, we know we'll
618 		 * fit in 32 bits if this condition is true:
619 		 */
620 		if (last > end) {
621 			unsigned long gap = last - end;
622 
623 			if (gap >= *gapsize) {
624 				*gapsize = gap;
625 				*gapstart = end;
626 				found = 1;
627 			}
628 		}
629 		if (start < last)
630 			last = start;
631 	}
632 	return found;
633 }
634 
635 /*
636  * Search for the biggest gap in the low 32 bits of the E820
637  * memory space. We pass this space to the PCI subsystem, so
638  * that it can assign MMIO resources for hotplug or
639  * unconfigured devices in.
640  *
641  * Hopefully the BIOS let enough space left.
642  */
643 __init void e820__setup_pci_gap(void)
644 {
645 	unsigned long gapstart, gapsize;
646 	int found;
647 
648 	gapsize = 0x400000;
649 	found  = e820_search_gap(&gapstart, &gapsize);
650 
651 	if (!found) {
652 #ifdef CONFIG_X86_64
653 		gapstart = (max_pfn << PAGE_SHIFT) + 1024*1024;
654 		pr_err("Cannot find an available gap in the 32-bit address range\n");
655 		pr_err("PCI devices with unassigned 32-bit BARs may not work!\n");
656 #else
657 		gapstart = 0x10000000;
658 #endif
659 	}
660 
661 	/*
662 	 * e820__reserve_resources_late() protects stolen RAM already:
663 	 */
664 	pci_mem_start = gapstart;
665 
666 	pr_info("[mem %#010lx-%#010lx] available for PCI devices\n",
667 		gapstart, gapstart + gapsize - 1);
668 }
669 
670 /*
671  * Called late during init, in free_initmem().
672  *
673  * Initial e820_table and e820_table_kexec are largish __initdata arrays.
674  *
675  * Copy them to a (usually much smaller) dynamically allocated area that is
676  * sized precisely after the number of e820 entries.
677  *
678  * This is done after we've performed all the fixes and tweaks to the tables.
679  * All functions which modify them are __init functions, which won't exist
680  * after free_initmem().
681  */
682 __init void e820__reallocate_tables(void)
683 {
684 	struct e820_table *n;
685 	int size;
686 
687 	size = offsetof(struct e820_table, entries) + sizeof(struct e820_entry)*e820_table->nr_entries;
688 	n = kmemdup(e820_table, size, GFP_KERNEL);
689 	BUG_ON(!n);
690 	e820_table = n;
691 
692 	size = offsetof(struct e820_table, entries) + sizeof(struct e820_entry)*e820_table_kexec->nr_entries;
693 	n = kmemdup(e820_table_kexec, size, GFP_KERNEL);
694 	BUG_ON(!n);
695 	e820_table_kexec = n;
696 
697 	size = offsetof(struct e820_table, entries) + sizeof(struct e820_entry)*e820_table_firmware->nr_entries;
698 	n = kmemdup(e820_table_firmware, size, GFP_KERNEL);
699 	BUG_ON(!n);
700 	e820_table_firmware = n;
701 }
702 
703 /*
704  * Because of the small fixed size of struct boot_params, only the first
705  * 128 E820 memory entries are passed to the kernel via boot_params.e820_table,
706  * the remaining (if any) entries are passed via the SETUP_E820_EXT node of
707  * struct setup_data, which is parsed here.
708  */
709 void __init e820__memory_setup_extended(u64 phys_addr, u32 data_len)
710 {
711 	int entries;
712 	struct boot_e820_entry *extmap;
713 	struct setup_data *sdata;
714 
715 	sdata = early_memremap(phys_addr, data_len);
716 	entries = sdata->len / sizeof(*extmap);
717 	extmap = (struct boot_e820_entry *)(sdata->data);
718 
719 	__append_e820_table(extmap, entries);
720 	e820__update_table(e820_table);
721 
722 	memcpy(e820_table_kexec, e820_table, sizeof(*e820_table_kexec));
723 	memcpy(e820_table_firmware, e820_table, sizeof(*e820_table_firmware));
724 
725 	early_memunmap(sdata, data_len);
726 	pr_info("extended physical RAM map:\n");
727 	e820__print_table("extended");
728 }
729 
730 /*
731  * Find the ranges of physical addresses that do not correspond to
732  * E820 RAM areas and register the corresponding pages as 'nosave' for
733  * hibernation (32-bit) or software suspend and suspend to RAM (64-bit).
734  *
735  * This function requires the E820 map to be sorted and without any
736  * overlapping entries.
737  */
738 void __init e820__register_nosave_regions(unsigned long limit_pfn)
739 {
740 	int i;
741 	unsigned long pfn = 0;
742 
743 	for (i = 0; i < e820_table->nr_entries; i++) {
744 		struct e820_entry *entry = &e820_table->entries[i];
745 
746 		if (pfn < PFN_UP(entry->addr))
747 			register_nosave_region(pfn, PFN_UP(entry->addr));
748 
749 		pfn = PFN_DOWN(entry->addr + entry->size);
750 
751 		if (entry->type != E820_TYPE_RAM && entry->type != E820_TYPE_RESERVED_KERN)
752 			register_nosave_region(PFN_UP(entry->addr), pfn);
753 
754 		if (pfn >= limit_pfn)
755 			break;
756 	}
757 }
758 
759 #ifdef CONFIG_ACPI
760 /*
761  * Register ACPI NVS memory regions, so that we can save/restore them during
762  * hibernation and the subsequent resume:
763  */
764 static int __init e820__register_nvs_regions(void)
765 {
766 	int i;
767 
768 	for (i = 0; i < e820_table->nr_entries; i++) {
769 		struct e820_entry *entry = &e820_table->entries[i];
770 
771 		if (entry->type == E820_TYPE_NVS)
772 			acpi_nvs_register(entry->addr, entry->size);
773 	}
774 
775 	return 0;
776 }
777 core_initcall(e820__register_nvs_regions);
778 #endif
779 
780 /*
781  * Allocate the requested number of bytes with the requsted alignment
782  * and return (the physical address) to the caller. Also register this
783  * range in the 'kexec' E820 table as a reserved range.
784  *
785  * This allows kexec to fake a new mptable, as if it came from the real
786  * system.
787  */
788 u64 __init e820__memblock_alloc_reserved(u64 size, u64 align)
789 {
790 	u64 addr;
791 
792 	addr = memblock_phys_alloc(size, align);
793 	if (addr) {
794 		e820__range_update_kexec(addr, size, E820_TYPE_RAM, E820_TYPE_RESERVED);
795 		pr_info("update e820_table_kexec for e820__memblock_alloc_reserved()\n");
796 		e820__update_table_kexec();
797 	}
798 
799 	return addr;
800 }
801 
802 #ifdef CONFIG_X86_32
803 # ifdef CONFIG_X86_PAE
804 #  define MAX_ARCH_PFN		(1ULL<<(36-PAGE_SHIFT))
805 # else
806 #  define MAX_ARCH_PFN		(1ULL<<(32-PAGE_SHIFT))
807 # endif
808 #else /* CONFIG_X86_32 */
809 # define MAX_ARCH_PFN MAXMEM>>PAGE_SHIFT
810 #endif
811 
812 /*
813  * Find the highest page frame number we have available
814  */
815 static unsigned long __init e820_end_pfn(unsigned long limit_pfn, enum e820_type type)
816 {
817 	int i;
818 	unsigned long last_pfn = 0;
819 	unsigned long max_arch_pfn = MAX_ARCH_PFN;
820 
821 	for (i = 0; i < e820_table->nr_entries; i++) {
822 		struct e820_entry *entry = &e820_table->entries[i];
823 		unsigned long start_pfn;
824 		unsigned long end_pfn;
825 
826 		if (entry->type != type)
827 			continue;
828 
829 		start_pfn = entry->addr >> PAGE_SHIFT;
830 		end_pfn = (entry->addr + entry->size) >> PAGE_SHIFT;
831 
832 		if (start_pfn >= limit_pfn)
833 			continue;
834 		if (end_pfn > limit_pfn) {
835 			last_pfn = limit_pfn;
836 			break;
837 		}
838 		if (end_pfn > last_pfn)
839 			last_pfn = end_pfn;
840 	}
841 
842 	if (last_pfn > max_arch_pfn)
843 		last_pfn = max_arch_pfn;
844 
845 	pr_info("last_pfn = %#lx max_arch_pfn = %#lx\n",
846 		last_pfn, max_arch_pfn);
847 	return last_pfn;
848 }
849 
850 unsigned long __init e820__end_of_ram_pfn(void)
851 {
852 	return e820_end_pfn(MAX_ARCH_PFN, E820_TYPE_RAM);
853 }
854 
855 unsigned long __init e820__end_of_low_ram_pfn(void)
856 {
857 	return e820_end_pfn(1UL << (32 - PAGE_SHIFT), E820_TYPE_RAM);
858 }
859 
860 static void __init early_panic(char *msg)
861 {
862 	early_printk(msg);
863 	panic(msg);
864 }
865 
866 static int userdef __initdata;
867 
868 /* The "mem=nopentium" boot option disables 4MB page tables on 32-bit kernels: */
869 static int __init parse_memopt(char *p)
870 {
871 	u64 mem_size;
872 
873 	if (!p)
874 		return -EINVAL;
875 
876 	if (!strcmp(p, "nopentium")) {
877 #ifdef CONFIG_X86_32
878 		setup_clear_cpu_cap(X86_FEATURE_PSE);
879 		return 0;
880 #else
881 		pr_warn("mem=nopentium ignored! (only supported on x86_32)\n");
882 		return -EINVAL;
883 #endif
884 	}
885 
886 	userdef = 1;
887 	mem_size = memparse(p, &p);
888 
889 	/* Don't remove all memory when getting "mem={invalid}" parameter: */
890 	if (mem_size == 0)
891 		return -EINVAL;
892 
893 	e820__range_remove(mem_size, ULLONG_MAX - mem_size, E820_TYPE_RAM, 1);
894 
895 #ifdef CONFIG_MEMORY_HOTPLUG
896 	max_mem_size = mem_size;
897 #endif
898 
899 	return 0;
900 }
901 early_param("mem", parse_memopt);
902 
903 static int __init parse_memmap_one(char *p)
904 {
905 	char *oldp;
906 	u64 start_at, mem_size;
907 
908 	if (!p)
909 		return -EINVAL;
910 
911 	if (!strncmp(p, "exactmap", 8)) {
912 #ifdef CONFIG_CRASH_DUMP
913 		/*
914 		 * If we are doing a crash dump, we still need to know
915 		 * the real memory size before the original memory map is
916 		 * reset.
917 		 */
918 		saved_max_pfn = e820__end_of_ram_pfn();
919 #endif
920 		e820_table->nr_entries = 0;
921 		userdef = 1;
922 		return 0;
923 	}
924 
925 	oldp = p;
926 	mem_size = memparse(p, &p);
927 	if (p == oldp)
928 		return -EINVAL;
929 
930 	userdef = 1;
931 	if (*p == '@') {
932 		start_at = memparse(p+1, &p);
933 		e820__range_add(start_at, mem_size, E820_TYPE_RAM);
934 	} else if (*p == '#') {
935 		start_at = memparse(p+1, &p);
936 		e820__range_add(start_at, mem_size, E820_TYPE_ACPI);
937 	} else if (*p == '$') {
938 		start_at = memparse(p+1, &p);
939 		e820__range_add(start_at, mem_size, E820_TYPE_RESERVED);
940 	} else if (*p == '!') {
941 		start_at = memparse(p+1, &p);
942 		e820__range_add(start_at, mem_size, E820_TYPE_PRAM);
943 	} else if (*p == '%') {
944 		enum e820_type from = 0, to = 0;
945 
946 		start_at = memparse(p + 1, &p);
947 		if (*p == '-')
948 			from = simple_strtoull(p + 1, &p, 0);
949 		if (*p == '+')
950 			to = simple_strtoull(p + 1, &p, 0);
951 		if (*p != '\0')
952 			return -EINVAL;
953 		if (from && to)
954 			e820__range_update(start_at, mem_size, from, to);
955 		else if (to)
956 			e820__range_add(start_at, mem_size, to);
957 		else if (from)
958 			e820__range_remove(start_at, mem_size, from, 1);
959 		else
960 			e820__range_remove(start_at, mem_size, 0, 0);
961 	} else {
962 		e820__range_remove(mem_size, ULLONG_MAX - mem_size, E820_TYPE_RAM, 1);
963 	}
964 
965 	return *p == '\0' ? 0 : -EINVAL;
966 }
967 
968 static int __init parse_memmap_opt(char *str)
969 {
970 	while (str) {
971 		char *k = strchr(str, ',');
972 
973 		if (k)
974 			*k++ = 0;
975 
976 		parse_memmap_one(str);
977 		str = k;
978 	}
979 
980 	return 0;
981 }
982 early_param("memmap", parse_memmap_opt);
983 
984 /*
985  * Reserve all entries from the bootloader's extensible data nodes list,
986  * because if present we are going to use it later on to fetch e820
987  * entries from it:
988  */
989 void __init e820__reserve_setup_data(void)
990 {
991 	struct setup_data *data;
992 	u64 pa_data;
993 
994 	pa_data = boot_params.hdr.setup_data;
995 	if (!pa_data)
996 		return;
997 
998 	while (pa_data) {
999 		data = early_memremap(pa_data, sizeof(*data));
1000 		e820__range_update(pa_data, sizeof(*data)+data->len, E820_TYPE_RAM, E820_TYPE_RESERVED_KERN);
1001 		e820__range_update_kexec(pa_data, sizeof(*data)+data->len, E820_TYPE_RAM, E820_TYPE_RESERVED_KERN);
1002 		pa_data = data->next;
1003 		early_memunmap(data, sizeof(*data));
1004 	}
1005 
1006 	e820__update_table(e820_table);
1007 	e820__update_table(e820_table_kexec);
1008 
1009 	pr_info("extended physical RAM map:\n");
1010 	e820__print_table("reserve setup_data");
1011 }
1012 
1013 /*
1014  * Called after parse_early_param(), after early parameters (such as mem=)
1015  * have been processed, in which case we already have an E820 table filled in
1016  * via the parameter callback function(s), but it's not sorted and printed yet:
1017  */
1018 void __init e820__finish_early_params(void)
1019 {
1020 	if (userdef) {
1021 		if (e820__update_table(e820_table) < 0)
1022 			early_panic("Invalid user supplied memory map");
1023 
1024 		pr_info("user-defined physical RAM map:\n");
1025 		e820__print_table("user");
1026 	}
1027 }
1028 
1029 static const char *__init e820_type_to_string(struct e820_entry *entry)
1030 {
1031 	switch (entry->type) {
1032 	case E820_TYPE_RESERVED_KERN:	/* Fall-through: */
1033 	case E820_TYPE_RAM:		return "System RAM";
1034 	case E820_TYPE_ACPI:		return "ACPI Tables";
1035 	case E820_TYPE_NVS:		return "ACPI Non-volatile Storage";
1036 	case E820_TYPE_UNUSABLE:	return "Unusable memory";
1037 	case E820_TYPE_PRAM:		return "Persistent Memory (legacy)";
1038 	case E820_TYPE_PMEM:		return "Persistent Memory";
1039 	case E820_TYPE_RESERVED:	return "Reserved";
1040 	default:			return "Unknown E820 type";
1041 	}
1042 }
1043 
1044 static unsigned long __init e820_type_to_iomem_type(struct e820_entry *entry)
1045 {
1046 	switch (entry->type) {
1047 	case E820_TYPE_RESERVED_KERN:	/* Fall-through: */
1048 	case E820_TYPE_RAM:		return IORESOURCE_SYSTEM_RAM;
1049 	case E820_TYPE_ACPI:		/* Fall-through: */
1050 	case E820_TYPE_NVS:		/* Fall-through: */
1051 	case E820_TYPE_UNUSABLE:	/* Fall-through: */
1052 	case E820_TYPE_PRAM:		/* Fall-through: */
1053 	case E820_TYPE_PMEM:		/* Fall-through: */
1054 	case E820_TYPE_RESERVED:	/* Fall-through: */
1055 	default:			return IORESOURCE_MEM;
1056 	}
1057 }
1058 
1059 static unsigned long __init e820_type_to_iores_desc(struct e820_entry *entry)
1060 {
1061 	switch (entry->type) {
1062 	case E820_TYPE_ACPI:		return IORES_DESC_ACPI_TABLES;
1063 	case E820_TYPE_NVS:		return IORES_DESC_ACPI_NV_STORAGE;
1064 	case E820_TYPE_PMEM:		return IORES_DESC_PERSISTENT_MEMORY;
1065 	case E820_TYPE_PRAM:		return IORES_DESC_PERSISTENT_MEMORY_LEGACY;
1066 	case E820_TYPE_RESERVED:	return IORES_DESC_RESERVED;
1067 	case E820_TYPE_RESERVED_KERN:	/* Fall-through: */
1068 	case E820_TYPE_RAM:		/* Fall-through: */
1069 	case E820_TYPE_UNUSABLE:	/* Fall-through: */
1070 	default:			return IORES_DESC_NONE;
1071 	}
1072 }
1073 
1074 static bool __init do_mark_busy(enum e820_type type, struct resource *res)
1075 {
1076 	/* this is the legacy bios/dos rom-shadow + mmio region */
1077 	if (res->start < (1ULL<<20))
1078 		return true;
1079 
1080 	/*
1081 	 * Treat persistent memory like device memory, i.e. reserve it
1082 	 * for exclusive use of a driver
1083 	 */
1084 	switch (type) {
1085 	case E820_TYPE_RESERVED:
1086 	case E820_TYPE_PRAM:
1087 	case E820_TYPE_PMEM:
1088 		return false;
1089 	case E820_TYPE_RESERVED_KERN:
1090 	case E820_TYPE_RAM:
1091 	case E820_TYPE_ACPI:
1092 	case E820_TYPE_NVS:
1093 	case E820_TYPE_UNUSABLE:
1094 	default:
1095 		return true;
1096 	}
1097 }
1098 
1099 /*
1100  * Mark E820 reserved areas as busy for the resource manager:
1101  */
1102 
1103 static struct resource __initdata *e820_res;
1104 
1105 void __init e820__reserve_resources(void)
1106 {
1107 	int i;
1108 	struct resource *res;
1109 	u64 end;
1110 
1111 	res = memblock_alloc(sizeof(*res) * e820_table->nr_entries,
1112 			     SMP_CACHE_BYTES);
1113 	if (!res)
1114 		panic("%s: Failed to allocate %zu bytes\n", __func__,
1115 		      sizeof(*res) * e820_table->nr_entries);
1116 	e820_res = res;
1117 
1118 	for (i = 0; i < e820_table->nr_entries; i++) {
1119 		struct e820_entry *entry = e820_table->entries + i;
1120 
1121 		end = entry->addr + entry->size - 1;
1122 		if (end != (resource_size_t)end) {
1123 			res++;
1124 			continue;
1125 		}
1126 		res->start = entry->addr;
1127 		res->end   = end;
1128 		res->name  = e820_type_to_string(entry);
1129 		res->flags = e820_type_to_iomem_type(entry);
1130 		res->desc  = e820_type_to_iores_desc(entry);
1131 
1132 		/*
1133 		 * Don't register the region that could be conflicted with
1134 		 * PCI device BAR resources and insert them later in
1135 		 * pcibios_resource_survey():
1136 		 */
1137 		if (do_mark_busy(entry->type, res)) {
1138 			res->flags |= IORESOURCE_BUSY;
1139 			insert_resource(&iomem_resource, res);
1140 		}
1141 		res++;
1142 	}
1143 
1144 	/* Expose the bootloader-provided memory layout to the sysfs. */
1145 	for (i = 0; i < e820_table_firmware->nr_entries; i++) {
1146 		struct e820_entry *entry = e820_table_firmware->entries + i;
1147 
1148 		firmware_map_add_early(entry->addr, entry->addr + entry->size, e820_type_to_string(entry));
1149 	}
1150 }
1151 
1152 /*
1153  * How much should we pad the end of RAM, depending on where it is?
1154  */
1155 static unsigned long __init ram_alignment(resource_size_t pos)
1156 {
1157 	unsigned long mb = pos >> 20;
1158 
1159 	/* To 64kB in the first megabyte */
1160 	if (!mb)
1161 		return 64*1024;
1162 
1163 	/* To 1MB in the first 16MB */
1164 	if (mb < 16)
1165 		return 1024*1024;
1166 
1167 	/* To 64MB for anything above that */
1168 	return 64*1024*1024;
1169 }
1170 
1171 #define MAX_RESOURCE_SIZE ((resource_size_t)-1)
1172 
1173 void __init e820__reserve_resources_late(void)
1174 {
1175 	int i;
1176 	struct resource *res;
1177 
1178 	res = e820_res;
1179 	for (i = 0; i < e820_table->nr_entries; i++) {
1180 		if (!res->parent && res->end)
1181 			insert_resource_expand_to_fit(&iomem_resource, res);
1182 		res++;
1183 	}
1184 
1185 	/*
1186 	 * Try to bump up RAM regions to reasonable boundaries, to
1187 	 * avoid stolen RAM:
1188 	 */
1189 	for (i = 0; i < e820_table->nr_entries; i++) {
1190 		struct e820_entry *entry = &e820_table->entries[i];
1191 		u64 start, end;
1192 
1193 		if (entry->type != E820_TYPE_RAM)
1194 			continue;
1195 
1196 		start = entry->addr + entry->size;
1197 		end = round_up(start, ram_alignment(start)) - 1;
1198 		if (end > MAX_RESOURCE_SIZE)
1199 			end = MAX_RESOURCE_SIZE;
1200 		if (start >= end)
1201 			continue;
1202 
1203 		printk(KERN_DEBUG "e820: reserve RAM buffer [mem %#010llx-%#010llx]\n", start, end);
1204 		reserve_region_with_split(&iomem_resource, start, end, "RAM buffer");
1205 	}
1206 }
1207 
1208 /*
1209  * Pass the firmware (bootloader) E820 map to the kernel and process it:
1210  */
1211 char *__init e820__memory_setup_default(void)
1212 {
1213 	char *who = "BIOS-e820";
1214 
1215 	/*
1216 	 * Try to copy the BIOS-supplied E820-map.
1217 	 *
1218 	 * Otherwise fake a memory map; one section from 0k->640k,
1219 	 * the next section from 1mb->appropriate_mem_k
1220 	 */
1221 	if (append_e820_table(boot_params.e820_table, boot_params.e820_entries) < 0) {
1222 		u64 mem_size;
1223 
1224 		/* Compare results from other methods and take the one that gives more RAM: */
1225 		if (boot_params.alt_mem_k < boot_params.screen_info.ext_mem_k) {
1226 			mem_size = boot_params.screen_info.ext_mem_k;
1227 			who = "BIOS-88";
1228 		} else {
1229 			mem_size = boot_params.alt_mem_k;
1230 			who = "BIOS-e801";
1231 		}
1232 
1233 		e820_table->nr_entries = 0;
1234 		e820__range_add(0, LOWMEMSIZE(), E820_TYPE_RAM);
1235 		e820__range_add(HIGH_MEMORY, mem_size << 10, E820_TYPE_RAM);
1236 	}
1237 
1238 	/* We just appended a lot of ranges, sanitize the table: */
1239 	e820__update_table(e820_table);
1240 
1241 	return who;
1242 }
1243 
1244 /*
1245  * Calls e820__memory_setup_default() in essence to pick up the firmware/bootloader
1246  * E820 map - with an optional platform quirk available for virtual platforms
1247  * to override this method of boot environment processing:
1248  */
1249 void __init e820__memory_setup(void)
1250 {
1251 	char *who;
1252 
1253 	/* This is a firmware interface ABI - make sure we don't break it: */
1254 	BUILD_BUG_ON(sizeof(struct boot_e820_entry) != 20);
1255 
1256 	who = x86_init.resources.memory_setup();
1257 
1258 	memcpy(e820_table_kexec, e820_table, sizeof(*e820_table_kexec));
1259 	memcpy(e820_table_firmware, e820_table, sizeof(*e820_table_firmware));
1260 
1261 	pr_info("BIOS-provided physical RAM map:\n");
1262 	e820__print_table(who);
1263 }
1264 
1265 void __init e820__memblock_setup(void)
1266 {
1267 	int i;
1268 	u64 end;
1269 
1270 	/*
1271 	 * The bootstrap memblock region count maximum is 128 entries
1272 	 * (INIT_MEMBLOCK_REGIONS), but EFI might pass us more E820 entries
1273 	 * than that - so allow memblock resizing.
1274 	 *
1275 	 * This is safe, because this call happens pretty late during x86 setup,
1276 	 * so we know about reserved memory regions already. (This is important
1277 	 * so that memblock resizing does no stomp over reserved areas.)
1278 	 */
1279 	memblock_allow_resize();
1280 
1281 	for (i = 0; i < e820_table->nr_entries; i++) {
1282 		struct e820_entry *entry = &e820_table->entries[i];
1283 
1284 		end = entry->addr + entry->size;
1285 		if (end != (resource_size_t)end)
1286 			continue;
1287 
1288 		if (entry->type != E820_TYPE_RAM && entry->type != E820_TYPE_RESERVED_KERN)
1289 			continue;
1290 
1291 		memblock_add(entry->addr, entry->size);
1292 	}
1293 
1294 	/* Throw away partial pages: */
1295 	memblock_trim_memory(PAGE_SIZE);
1296 
1297 	memblock_dump_all();
1298 }
1299