xref: /openbmc/linux/arch/x86/kernel/e820.c (revision 1fa0a7dc)
1 /*
2  * Low level x86 E820 memory map handling functions.
3  *
4  * The firmware and bootloader passes us the "E820 table", which is the primary
5  * physical memory layout description available about x86 systems.
6  *
7  * The kernel takes the E820 memory layout and optionally modifies it with
8  * quirks and other tweaks, and feeds that into the generic Linux memory
9  * allocation code routines via a platform independent interface (memblock, etc.).
10  */
11 #include <linux/crash_dump.h>
12 #include <linux/memblock.h>
13 #include <linux/suspend.h>
14 #include <linux/acpi.h>
15 #include <linux/firmware-map.h>
16 #include <linux/sort.h>
17 #include <linux/memory_hotplug.h>
18 
19 #include <asm/e820/api.h>
20 #include <asm/setup.h>
21 
22 /*
23  * We organize the E820 table into three main data structures:
24  *
25  * - 'e820_table_firmware': the original firmware version passed to us by the
26  *   bootloader - not modified by the kernel. It is composed of two parts:
27  *   the first 128 E820 memory entries in boot_params.e820_table and the remaining
28  *   (if any) entries of the SETUP_E820_EXT nodes. We use this to:
29  *
30  *       - inform the user about the firmware's notion of memory layout
31  *         via /sys/firmware/memmap
32  *
33  *       - the hibernation code uses it to generate a kernel-independent MD5
34  *         fingerprint of the physical memory layout of a system.
35  *
36  * - 'e820_table_kexec': a slightly modified (by the kernel) firmware version
37  *   passed to us by the bootloader - the major difference between
38  *   e820_table_firmware[] and this one is that, the latter marks the setup_data
39  *   list created by the EFI boot stub as reserved, so that kexec can reuse the
40  *   setup_data information in the second kernel. Besides, e820_table_kexec[]
41  *   might also be modified by the kexec itself to fake a mptable.
42  *   We use this to:
43  *
44  *       - kexec, which is a bootloader in disguise, uses the original E820
45  *         layout to pass to the kexec-ed kernel. This way the original kernel
46  *         can have a restricted E820 map while the kexec()-ed kexec-kernel
47  *         can have access to full memory - etc.
48  *
49  * - 'e820_table': this is the main E820 table that is massaged by the
50  *   low level x86 platform code, or modified by boot parameters, before
51  *   passed on to higher level MM layers.
52  *
53  * Once the E820 map has been converted to the standard Linux memory layout
54  * information its role stops - modifying it has no effect and does not get
55  * re-propagated. So itsmain role is a temporary bootstrap storage of firmware
56  * specific memory layout data during early bootup.
57  */
58 static struct e820_table e820_table_init		__initdata;
59 static struct e820_table e820_table_kexec_init		__initdata;
60 static struct e820_table e820_table_firmware_init	__initdata;
61 
62 struct e820_table *e820_table __refdata			= &e820_table_init;
63 struct e820_table *e820_table_kexec __refdata		= &e820_table_kexec_init;
64 struct e820_table *e820_table_firmware __refdata	= &e820_table_firmware_init;
65 
66 /* For PCI or other memory-mapped resources */
67 unsigned long pci_mem_start = 0xaeedbabe;
68 #ifdef CONFIG_PCI
69 EXPORT_SYMBOL(pci_mem_start);
70 #endif
71 
72 /*
73  * This function checks if any part of the range <start,end> is mapped
74  * with type.
75  */
76 static bool _e820__mapped_any(struct e820_table *table,
77 			      u64 start, u64 end, enum e820_type type)
78 {
79 	int i;
80 
81 	for (i = 0; i < table->nr_entries; i++) {
82 		struct e820_entry *entry = &table->entries[i];
83 
84 		if (type && entry->type != type)
85 			continue;
86 		if (entry->addr >= end || entry->addr + entry->size <= start)
87 			continue;
88 		return 1;
89 	}
90 	return 0;
91 }
92 
93 bool e820__mapped_raw_any(u64 start, u64 end, enum e820_type type)
94 {
95 	return _e820__mapped_any(e820_table_firmware, start, end, type);
96 }
97 EXPORT_SYMBOL_GPL(e820__mapped_raw_any);
98 
99 bool e820__mapped_any(u64 start, u64 end, enum e820_type type)
100 {
101 	return _e820__mapped_any(e820_table, start, end, type);
102 }
103 EXPORT_SYMBOL_GPL(e820__mapped_any);
104 
105 /*
106  * This function checks if the entire <start,end> range is mapped with 'type'.
107  *
108  * Note: this function only works correctly once the E820 table is sorted and
109  * not-overlapping (at least for the range specified), which is the case normally.
110  */
111 static struct e820_entry *__e820__mapped_all(u64 start, u64 end,
112 					     enum e820_type type)
113 {
114 	int i;
115 
116 	for (i = 0; i < e820_table->nr_entries; i++) {
117 		struct e820_entry *entry = &e820_table->entries[i];
118 
119 		if (type && entry->type != type)
120 			continue;
121 
122 		/* Is the region (part) in overlap with the current region? */
123 		if (entry->addr >= end || entry->addr + entry->size <= start)
124 			continue;
125 
126 		/*
127 		 * If the region is at the beginning of <start,end> we move
128 		 * 'start' to the end of the region since it's ok until there
129 		 */
130 		if (entry->addr <= start)
131 			start = entry->addr + entry->size;
132 
133 		/*
134 		 * If 'start' is now at or beyond 'end', we're done, full
135 		 * coverage of the desired range exists:
136 		 */
137 		if (start >= end)
138 			return entry;
139 	}
140 
141 	return NULL;
142 }
143 
144 /*
145  * This function checks if the entire range <start,end> is mapped with type.
146  */
147 bool __init e820__mapped_all(u64 start, u64 end, enum e820_type type)
148 {
149 	return __e820__mapped_all(start, end, type);
150 }
151 
152 /*
153  * This function returns the type associated with the range <start,end>.
154  */
155 int e820__get_entry_type(u64 start, u64 end)
156 {
157 	struct e820_entry *entry = __e820__mapped_all(start, end, 0);
158 
159 	return entry ? entry->type : -EINVAL;
160 }
161 
162 /*
163  * Add a memory region to the kernel E820 map.
164  */
165 static void __init __e820__range_add(struct e820_table *table, u64 start, u64 size, enum e820_type type)
166 {
167 	int x = table->nr_entries;
168 
169 	if (x >= ARRAY_SIZE(table->entries)) {
170 		pr_err("too many entries; ignoring [mem %#010llx-%#010llx]\n",
171 		       start, start + size - 1);
172 		return;
173 	}
174 
175 	table->entries[x].addr = start;
176 	table->entries[x].size = size;
177 	table->entries[x].type = type;
178 	table->nr_entries++;
179 }
180 
181 void __init e820__range_add(u64 start, u64 size, enum e820_type type)
182 {
183 	__e820__range_add(e820_table, start, size, type);
184 }
185 
186 static void __init e820_print_type(enum e820_type type)
187 {
188 	switch (type) {
189 	case E820_TYPE_RAM:		/* Fall through: */
190 	case E820_TYPE_RESERVED_KERN:	pr_cont("usable");			break;
191 	case E820_TYPE_RESERVED:	pr_cont("reserved");			break;
192 	case E820_TYPE_ACPI:		pr_cont("ACPI data");			break;
193 	case E820_TYPE_NVS:		pr_cont("ACPI NVS");			break;
194 	case E820_TYPE_UNUSABLE:	pr_cont("unusable");			break;
195 	case E820_TYPE_PMEM:		/* Fall through: */
196 	case E820_TYPE_PRAM:		pr_cont("persistent (type %u)", type);	break;
197 	default:			pr_cont("type %u", type);		break;
198 	}
199 }
200 
201 void __init e820__print_table(char *who)
202 {
203 	int i;
204 
205 	for (i = 0; i < e820_table->nr_entries; i++) {
206 		pr_info("%s: [mem %#018Lx-%#018Lx] ",
207 			who,
208 			e820_table->entries[i].addr,
209 			e820_table->entries[i].addr + e820_table->entries[i].size - 1);
210 
211 		e820_print_type(e820_table->entries[i].type);
212 		pr_cont("\n");
213 	}
214 }
215 
216 /*
217  * Sanitize an E820 map.
218  *
219  * Some E820 layouts include overlapping entries. The following
220  * replaces the original E820 map with a new one, removing overlaps,
221  * and resolving conflicting memory types in favor of highest
222  * numbered type.
223  *
224  * The input parameter 'entries' points to an array of 'struct
225  * e820_entry' which on entry has elements in the range [0, *nr_entries)
226  * valid, and which has space for up to max_nr_entries entries.
227  * On return, the resulting sanitized E820 map entries will be in
228  * overwritten in the same location, starting at 'entries'.
229  *
230  * The integer pointed to by nr_entries must be valid on entry (the
231  * current number of valid entries located at 'entries'). If the
232  * sanitizing succeeds the *nr_entries will be updated with the new
233  * number of valid entries (something no more than max_nr_entries).
234  *
235  * The return value from e820__update_table() is zero if it
236  * successfully 'sanitized' the map entries passed in, and is -1
237  * if it did nothing, which can happen if either of (1) it was
238  * only passed one map entry, or (2) any of the input map entries
239  * were invalid (start + size < start, meaning that the size was
240  * so big the described memory range wrapped around through zero.)
241  *
242  *	Visually we're performing the following
243  *	(1,2,3,4 = memory types)...
244  *
245  *	Sample memory map (w/overlaps):
246  *	   ____22__________________
247  *	   ______________________4_
248  *	   ____1111________________
249  *	   _44_____________________
250  *	   11111111________________
251  *	   ____________________33__
252  *	   ___________44___________
253  *	   __________33333_________
254  *	   ______________22________
255  *	   ___________________2222_
256  *	   _________111111111______
257  *	   _____________________11_
258  *	   _________________4______
259  *
260  *	Sanitized equivalent (no overlap):
261  *	   1_______________________
262  *	   _44_____________________
263  *	   ___1____________________
264  *	   ____22__________________
265  *	   ______11________________
266  *	   _________1______________
267  *	   __________3_____________
268  *	   ___________44___________
269  *	   _____________33_________
270  *	   _______________2________
271  *	   ________________1_______
272  *	   _________________4______
273  *	   ___________________2____
274  *	   ____________________33__
275  *	   ______________________4_
276  */
277 struct change_member {
278 	/* Pointer to the original entry: */
279 	struct e820_entry	*entry;
280 	/* Address for this change point: */
281 	unsigned long long	addr;
282 };
283 
284 static struct change_member	change_point_list[2*E820_MAX_ENTRIES]	__initdata;
285 static struct change_member	*change_point[2*E820_MAX_ENTRIES]	__initdata;
286 static struct e820_entry	*overlap_list[E820_MAX_ENTRIES]		__initdata;
287 static struct e820_entry	new_entries[E820_MAX_ENTRIES]		__initdata;
288 
289 static int __init cpcompare(const void *a, const void *b)
290 {
291 	struct change_member * const *app = a, * const *bpp = b;
292 	const struct change_member *ap = *app, *bp = *bpp;
293 
294 	/*
295 	 * Inputs are pointers to two elements of change_point[].  If their
296 	 * addresses are not equal, their difference dominates.  If the addresses
297 	 * are equal, then consider one that represents the end of its region
298 	 * to be greater than one that does not.
299 	 */
300 	if (ap->addr != bp->addr)
301 		return ap->addr > bp->addr ? 1 : -1;
302 
303 	return (ap->addr != ap->entry->addr) - (bp->addr != bp->entry->addr);
304 }
305 
306 int __init e820__update_table(struct e820_table *table)
307 {
308 	struct e820_entry *entries = table->entries;
309 	u32 max_nr_entries = ARRAY_SIZE(table->entries);
310 	enum e820_type current_type, last_type;
311 	unsigned long long last_addr;
312 	u32 new_nr_entries, overlap_entries;
313 	u32 i, chg_idx, chg_nr;
314 
315 	/* If there's only one memory region, don't bother: */
316 	if (table->nr_entries < 2)
317 		return -1;
318 
319 	BUG_ON(table->nr_entries > max_nr_entries);
320 
321 	/* Bail out if we find any unreasonable addresses in the map: */
322 	for (i = 0; i < table->nr_entries; i++) {
323 		if (entries[i].addr + entries[i].size < entries[i].addr)
324 			return -1;
325 	}
326 
327 	/* Create pointers for initial change-point information (for sorting): */
328 	for (i = 0; i < 2 * table->nr_entries; i++)
329 		change_point[i] = &change_point_list[i];
330 
331 	/*
332 	 * Record all known change-points (starting and ending addresses),
333 	 * omitting empty memory regions:
334 	 */
335 	chg_idx = 0;
336 	for (i = 0; i < table->nr_entries; i++)	{
337 		if (entries[i].size != 0) {
338 			change_point[chg_idx]->addr	= entries[i].addr;
339 			change_point[chg_idx++]->entry	= &entries[i];
340 			change_point[chg_idx]->addr	= entries[i].addr + entries[i].size;
341 			change_point[chg_idx++]->entry	= &entries[i];
342 		}
343 	}
344 	chg_nr = chg_idx;
345 
346 	/* Sort change-point list by memory addresses (low -> high): */
347 	sort(change_point, chg_nr, sizeof(*change_point), cpcompare, NULL);
348 
349 	/* Create a new memory map, removing overlaps: */
350 	overlap_entries = 0;	 /* Number of entries in the overlap table */
351 	new_nr_entries = 0;	 /* Index for creating new map entries */
352 	last_type = 0;		 /* Start with undefined memory type */
353 	last_addr = 0;		 /* Start with 0 as last starting address */
354 
355 	/* Loop through change-points, determining effect on the new map: */
356 	for (chg_idx = 0; chg_idx < chg_nr; chg_idx++) {
357 		/* Keep track of all overlapping entries */
358 		if (change_point[chg_idx]->addr == change_point[chg_idx]->entry->addr) {
359 			/* Add map entry to overlap list (> 1 entry implies an overlap) */
360 			overlap_list[overlap_entries++] = change_point[chg_idx]->entry;
361 		} else {
362 			/* Remove entry from list (order independent, so swap with last): */
363 			for (i = 0; i < overlap_entries; i++) {
364 				if (overlap_list[i] == change_point[chg_idx]->entry)
365 					overlap_list[i] = overlap_list[overlap_entries-1];
366 			}
367 			overlap_entries--;
368 		}
369 		/*
370 		 * If there are overlapping entries, decide which
371 		 * "type" to use (larger value takes precedence --
372 		 * 1=usable, 2,3,4,4+=unusable)
373 		 */
374 		current_type = 0;
375 		for (i = 0; i < overlap_entries; i++) {
376 			if (overlap_list[i]->type > current_type)
377 				current_type = overlap_list[i]->type;
378 		}
379 
380 		/* Continue building up new map based on this information: */
381 		if (current_type != last_type || current_type == E820_TYPE_PRAM) {
382 			if (last_type != 0)	 {
383 				new_entries[new_nr_entries].size = change_point[chg_idx]->addr - last_addr;
384 				/* Move forward only if the new size was non-zero: */
385 				if (new_entries[new_nr_entries].size != 0)
386 					/* No more space left for new entries? */
387 					if (++new_nr_entries >= max_nr_entries)
388 						break;
389 			}
390 			if (current_type != 0)	{
391 				new_entries[new_nr_entries].addr = change_point[chg_idx]->addr;
392 				new_entries[new_nr_entries].type = current_type;
393 				last_addr = change_point[chg_idx]->addr;
394 			}
395 			last_type = current_type;
396 		}
397 	}
398 
399 	/* Copy the new entries into the original location: */
400 	memcpy(entries, new_entries, new_nr_entries*sizeof(*entries));
401 	table->nr_entries = new_nr_entries;
402 
403 	return 0;
404 }
405 
406 static int __init __append_e820_table(struct boot_e820_entry *entries, u32 nr_entries)
407 {
408 	struct boot_e820_entry *entry = entries;
409 
410 	while (nr_entries) {
411 		u64 start = entry->addr;
412 		u64 size = entry->size;
413 		u64 end = start + size - 1;
414 		u32 type = entry->type;
415 
416 		/* Ignore the entry on 64-bit overflow: */
417 		if (start > end && likely(size))
418 			return -1;
419 
420 		e820__range_add(start, size, type);
421 
422 		entry++;
423 		nr_entries--;
424 	}
425 	return 0;
426 }
427 
428 /*
429  * Copy the BIOS E820 map into a safe place.
430  *
431  * Sanity-check it while we're at it..
432  *
433  * If we're lucky and live on a modern system, the setup code
434  * will have given us a memory map that we can use to properly
435  * set up memory.  If we aren't, we'll fake a memory map.
436  */
437 static int __init append_e820_table(struct boot_e820_entry *entries, u32 nr_entries)
438 {
439 	/* Only one memory region (or negative)? Ignore it */
440 	if (nr_entries < 2)
441 		return -1;
442 
443 	return __append_e820_table(entries, nr_entries);
444 }
445 
446 static u64 __init
447 __e820__range_update(struct e820_table *table, u64 start, u64 size, enum e820_type old_type, enum e820_type new_type)
448 {
449 	u64 end;
450 	unsigned int i;
451 	u64 real_updated_size = 0;
452 
453 	BUG_ON(old_type == new_type);
454 
455 	if (size > (ULLONG_MAX - start))
456 		size = ULLONG_MAX - start;
457 
458 	end = start + size;
459 	printk(KERN_DEBUG "e820: update [mem %#010Lx-%#010Lx] ", start, end - 1);
460 	e820_print_type(old_type);
461 	pr_cont(" ==> ");
462 	e820_print_type(new_type);
463 	pr_cont("\n");
464 
465 	for (i = 0; i < table->nr_entries; i++) {
466 		struct e820_entry *entry = &table->entries[i];
467 		u64 final_start, final_end;
468 		u64 entry_end;
469 
470 		if (entry->type != old_type)
471 			continue;
472 
473 		entry_end = entry->addr + entry->size;
474 
475 		/* Completely covered by new range? */
476 		if (entry->addr >= start && entry_end <= end) {
477 			entry->type = new_type;
478 			real_updated_size += entry->size;
479 			continue;
480 		}
481 
482 		/* New range is completely covered? */
483 		if (entry->addr < start && entry_end > end) {
484 			__e820__range_add(table, start, size, new_type);
485 			__e820__range_add(table, end, entry_end - end, entry->type);
486 			entry->size = start - entry->addr;
487 			real_updated_size += size;
488 			continue;
489 		}
490 
491 		/* Partially covered: */
492 		final_start = max(start, entry->addr);
493 		final_end = min(end, entry_end);
494 		if (final_start >= final_end)
495 			continue;
496 
497 		__e820__range_add(table, final_start, final_end - final_start, new_type);
498 
499 		real_updated_size += final_end - final_start;
500 
501 		/*
502 		 * Left range could be head or tail, so need to update
503 		 * its size first:
504 		 */
505 		entry->size -= final_end - final_start;
506 		if (entry->addr < final_start)
507 			continue;
508 
509 		entry->addr = final_end;
510 	}
511 	return real_updated_size;
512 }
513 
514 u64 __init e820__range_update(u64 start, u64 size, enum e820_type old_type, enum e820_type new_type)
515 {
516 	return __e820__range_update(e820_table, start, size, old_type, new_type);
517 }
518 
519 static u64 __init e820__range_update_kexec(u64 start, u64 size, enum e820_type old_type, enum e820_type  new_type)
520 {
521 	return __e820__range_update(e820_table_kexec, start, size, old_type, new_type);
522 }
523 
524 /* Remove a range of memory from the E820 table: */
525 u64 __init e820__range_remove(u64 start, u64 size, enum e820_type old_type, bool check_type)
526 {
527 	int i;
528 	u64 end;
529 	u64 real_removed_size = 0;
530 
531 	if (size > (ULLONG_MAX - start))
532 		size = ULLONG_MAX - start;
533 
534 	end = start + size;
535 	printk(KERN_DEBUG "e820: remove [mem %#010Lx-%#010Lx] ", start, end - 1);
536 	if (check_type)
537 		e820_print_type(old_type);
538 	pr_cont("\n");
539 
540 	for (i = 0; i < e820_table->nr_entries; i++) {
541 		struct e820_entry *entry = &e820_table->entries[i];
542 		u64 final_start, final_end;
543 		u64 entry_end;
544 
545 		if (check_type && entry->type != old_type)
546 			continue;
547 
548 		entry_end = entry->addr + entry->size;
549 
550 		/* Completely covered? */
551 		if (entry->addr >= start && entry_end <= end) {
552 			real_removed_size += entry->size;
553 			memset(entry, 0, sizeof(*entry));
554 			continue;
555 		}
556 
557 		/* Is the new range completely covered? */
558 		if (entry->addr < start && entry_end > end) {
559 			e820__range_add(end, entry_end - end, entry->type);
560 			entry->size = start - entry->addr;
561 			real_removed_size += size;
562 			continue;
563 		}
564 
565 		/* Partially covered: */
566 		final_start = max(start, entry->addr);
567 		final_end = min(end, entry_end);
568 		if (final_start >= final_end)
569 			continue;
570 
571 		real_removed_size += final_end - final_start;
572 
573 		/*
574 		 * Left range could be head or tail, so need to update
575 		 * the size first:
576 		 */
577 		entry->size -= final_end - final_start;
578 		if (entry->addr < final_start)
579 			continue;
580 
581 		entry->addr = final_end;
582 	}
583 	return real_removed_size;
584 }
585 
586 void __init e820__update_table_print(void)
587 {
588 	if (e820__update_table(e820_table))
589 		return;
590 
591 	pr_info("modified physical RAM map:\n");
592 	e820__print_table("modified");
593 }
594 
595 static void __init e820__update_table_kexec(void)
596 {
597 	e820__update_table(e820_table_kexec);
598 }
599 
600 #define MAX_GAP_END 0x100000000ull
601 
602 /*
603  * Search for a gap in the E820 memory space from 0 to MAX_GAP_END (4GB).
604  */
605 static int __init e820_search_gap(unsigned long *gapstart, unsigned long *gapsize)
606 {
607 	unsigned long long last = MAX_GAP_END;
608 	int i = e820_table->nr_entries;
609 	int found = 0;
610 
611 	while (--i >= 0) {
612 		unsigned long long start = e820_table->entries[i].addr;
613 		unsigned long long end = start + e820_table->entries[i].size;
614 
615 		/*
616 		 * Since "last" is at most 4GB, we know we'll
617 		 * fit in 32 bits if this condition is true:
618 		 */
619 		if (last > end) {
620 			unsigned long gap = last - end;
621 
622 			if (gap >= *gapsize) {
623 				*gapsize = gap;
624 				*gapstart = end;
625 				found = 1;
626 			}
627 		}
628 		if (start < last)
629 			last = start;
630 	}
631 	return found;
632 }
633 
634 /*
635  * Search for the biggest gap in the low 32 bits of the E820
636  * memory space. We pass this space to the PCI subsystem, so
637  * that it can assign MMIO resources for hotplug or
638  * unconfigured devices in.
639  *
640  * Hopefully the BIOS let enough space left.
641  */
642 __init void e820__setup_pci_gap(void)
643 {
644 	unsigned long gapstart, gapsize;
645 	int found;
646 
647 	gapsize = 0x400000;
648 	found  = e820_search_gap(&gapstart, &gapsize);
649 
650 	if (!found) {
651 #ifdef CONFIG_X86_64
652 		gapstart = (max_pfn << PAGE_SHIFT) + 1024*1024;
653 		pr_err("Cannot find an available gap in the 32-bit address range\n");
654 		pr_err("PCI devices with unassigned 32-bit BARs may not work!\n");
655 #else
656 		gapstart = 0x10000000;
657 #endif
658 	}
659 
660 	/*
661 	 * e820__reserve_resources_late() protects stolen RAM already:
662 	 */
663 	pci_mem_start = gapstart;
664 
665 	pr_info("[mem %#010lx-%#010lx] available for PCI devices\n",
666 		gapstart, gapstart + gapsize - 1);
667 }
668 
669 /*
670  * Called late during init, in free_initmem().
671  *
672  * Initial e820_table and e820_table_kexec are largish __initdata arrays.
673  *
674  * Copy them to a (usually much smaller) dynamically allocated area that is
675  * sized precisely after the number of e820 entries.
676  *
677  * This is done after we've performed all the fixes and tweaks to the tables.
678  * All functions which modify them are __init functions, which won't exist
679  * after free_initmem().
680  */
681 __init void e820__reallocate_tables(void)
682 {
683 	struct e820_table *n;
684 	int size;
685 
686 	size = offsetof(struct e820_table, entries) + sizeof(struct e820_entry)*e820_table->nr_entries;
687 	n = kmemdup(e820_table, size, GFP_KERNEL);
688 	BUG_ON(!n);
689 	e820_table = n;
690 
691 	size = offsetof(struct e820_table, entries) + sizeof(struct e820_entry)*e820_table_kexec->nr_entries;
692 	n = kmemdup(e820_table_kexec, size, GFP_KERNEL);
693 	BUG_ON(!n);
694 	e820_table_kexec = n;
695 
696 	size = offsetof(struct e820_table, entries) + sizeof(struct e820_entry)*e820_table_firmware->nr_entries;
697 	n = kmemdup(e820_table_firmware, size, GFP_KERNEL);
698 	BUG_ON(!n);
699 	e820_table_firmware = n;
700 }
701 
702 /*
703  * Because of the small fixed size of struct boot_params, only the first
704  * 128 E820 memory entries are passed to the kernel via boot_params.e820_table,
705  * the remaining (if any) entries are passed via the SETUP_E820_EXT node of
706  * struct setup_data, which is parsed here.
707  */
708 void __init e820__memory_setup_extended(u64 phys_addr, u32 data_len)
709 {
710 	int entries;
711 	struct boot_e820_entry *extmap;
712 	struct setup_data *sdata;
713 
714 	sdata = early_memremap(phys_addr, data_len);
715 	entries = sdata->len / sizeof(*extmap);
716 	extmap = (struct boot_e820_entry *)(sdata->data);
717 
718 	__append_e820_table(extmap, entries);
719 	e820__update_table(e820_table);
720 
721 	memcpy(e820_table_kexec, e820_table, sizeof(*e820_table_kexec));
722 	memcpy(e820_table_firmware, e820_table, sizeof(*e820_table_firmware));
723 
724 	early_memunmap(sdata, data_len);
725 	pr_info("extended physical RAM map:\n");
726 	e820__print_table("extended");
727 }
728 
729 /*
730  * Find the ranges of physical addresses that do not correspond to
731  * E820 RAM areas and register the corresponding pages as 'nosave' for
732  * hibernation (32-bit) or software suspend and suspend to RAM (64-bit).
733  *
734  * This function requires the E820 map to be sorted and without any
735  * overlapping entries.
736  */
737 void __init e820__register_nosave_regions(unsigned long limit_pfn)
738 {
739 	int i;
740 	unsigned long pfn = 0;
741 
742 	for (i = 0; i < e820_table->nr_entries; i++) {
743 		struct e820_entry *entry = &e820_table->entries[i];
744 
745 		if (pfn < PFN_UP(entry->addr))
746 			register_nosave_region(pfn, PFN_UP(entry->addr));
747 
748 		pfn = PFN_DOWN(entry->addr + entry->size);
749 
750 		if (entry->type != E820_TYPE_RAM && entry->type != E820_TYPE_RESERVED_KERN)
751 			register_nosave_region(PFN_UP(entry->addr), pfn);
752 
753 		if (pfn >= limit_pfn)
754 			break;
755 	}
756 }
757 
758 #ifdef CONFIG_ACPI
759 /*
760  * Register ACPI NVS memory regions, so that we can save/restore them during
761  * hibernation and the subsequent resume:
762  */
763 static int __init e820__register_nvs_regions(void)
764 {
765 	int i;
766 
767 	for (i = 0; i < e820_table->nr_entries; i++) {
768 		struct e820_entry *entry = &e820_table->entries[i];
769 
770 		if (entry->type == E820_TYPE_NVS)
771 			acpi_nvs_register(entry->addr, entry->size);
772 	}
773 
774 	return 0;
775 }
776 core_initcall(e820__register_nvs_regions);
777 #endif
778 
779 /*
780  * Allocate the requested number of bytes with the requsted alignment
781  * and return (the physical address) to the caller. Also register this
782  * range in the 'kexec' E820 table as a reserved range.
783  *
784  * This allows kexec to fake a new mptable, as if it came from the real
785  * system.
786  */
787 u64 __init e820__memblock_alloc_reserved(u64 size, u64 align)
788 {
789 	u64 addr;
790 
791 	addr = memblock_phys_alloc(size, align);
792 	if (addr) {
793 		e820__range_update_kexec(addr, size, E820_TYPE_RAM, E820_TYPE_RESERVED);
794 		pr_info("update e820_table_kexec for e820__memblock_alloc_reserved()\n");
795 		e820__update_table_kexec();
796 	}
797 
798 	return addr;
799 }
800 
801 #ifdef CONFIG_X86_32
802 # ifdef CONFIG_X86_PAE
803 #  define MAX_ARCH_PFN		(1ULL<<(36-PAGE_SHIFT))
804 # else
805 #  define MAX_ARCH_PFN		(1ULL<<(32-PAGE_SHIFT))
806 # endif
807 #else /* CONFIG_X86_32 */
808 # define MAX_ARCH_PFN MAXMEM>>PAGE_SHIFT
809 #endif
810 
811 /*
812  * Find the highest page frame number we have available
813  */
814 static unsigned long __init e820_end_pfn(unsigned long limit_pfn, enum e820_type type)
815 {
816 	int i;
817 	unsigned long last_pfn = 0;
818 	unsigned long max_arch_pfn = MAX_ARCH_PFN;
819 
820 	for (i = 0; i < e820_table->nr_entries; i++) {
821 		struct e820_entry *entry = &e820_table->entries[i];
822 		unsigned long start_pfn;
823 		unsigned long end_pfn;
824 
825 		if (entry->type != type)
826 			continue;
827 
828 		start_pfn = entry->addr >> PAGE_SHIFT;
829 		end_pfn = (entry->addr + entry->size) >> PAGE_SHIFT;
830 
831 		if (start_pfn >= limit_pfn)
832 			continue;
833 		if (end_pfn > limit_pfn) {
834 			last_pfn = limit_pfn;
835 			break;
836 		}
837 		if (end_pfn > last_pfn)
838 			last_pfn = end_pfn;
839 	}
840 
841 	if (last_pfn > max_arch_pfn)
842 		last_pfn = max_arch_pfn;
843 
844 	pr_info("last_pfn = %#lx max_arch_pfn = %#lx\n",
845 		last_pfn, max_arch_pfn);
846 	return last_pfn;
847 }
848 
849 unsigned long __init e820__end_of_ram_pfn(void)
850 {
851 	return e820_end_pfn(MAX_ARCH_PFN, E820_TYPE_RAM);
852 }
853 
854 unsigned long __init e820__end_of_low_ram_pfn(void)
855 {
856 	return e820_end_pfn(1UL << (32 - PAGE_SHIFT), E820_TYPE_RAM);
857 }
858 
859 static void __init early_panic(char *msg)
860 {
861 	early_printk(msg);
862 	panic(msg);
863 }
864 
865 static int userdef __initdata;
866 
867 /* The "mem=nopentium" boot option disables 4MB page tables on 32-bit kernels: */
868 static int __init parse_memopt(char *p)
869 {
870 	u64 mem_size;
871 
872 	if (!p)
873 		return -EINVAL;
874 
875 	if (!strcmp(p, "nopentium")) {
876 #ifdef CONFIG_X86_32
877 		setup_clear_cpu_cap(X86_FEATURE_PSE);
878 		return 0;
879 #else
880 		pr_warn("mem=nopentium ignored! (only supported on x86_32)\n");
881 		return -EINVAL;
882 #endif
883 	}
884 
885 	userdef = 1;
886 	mem_size = memparse(p, &p);
887 
888 	/* Don't remove all memory when getting "mem={invalid}" parameter: */
889 	if (mem_size == 0)
890 		return -EINVAL;
891 
892 	e820__range_remove(mem_size, ULLONG_MAX - mem_size, E820_TYPE_RAM, 1);
893 
894 #ifdef CONFIG_MEMORY_HOTPLUG
895 	max_mem_size = mem_size;
896 #endif
897 
898 	return 0;
899 }
900 early_param("mem", parse_memopt);
901 
902 static int __init parse_memmap_one(char *p)
903 {
904 	char *oldp;
905 	u64 start_at, mem_size;
906 
907 	if (!p)
908 		return -EINVAL;
909 
910 	if (!strncmp(p, "exactmap", 8)) {
911 #ifdef CONFIG_CRASH_DUMP
912 		/*
913 		 * If we are doing a crash dump, we still need to know
914 		 * the real memory size before the original memory map is
915 		 * reset.
916 		 */
917 		saved_max_pfn = e820__end_of_ram_pfn();
918 #endif
919 		e820_table->nr_entries = 0;
920 		userdef = 1;
921 		return 0;
922 	}
923 
924 	oldp = p;
925 	mem_size = memparse(p, &p);
926 	if (p == oldp)
927 		return -EINVAL;
928 
929 	userdef = 1;
930 	if (*p == '@') {
931 		start_at = memparse(p+1, &p);
932 		e820__range_add(start_at, mem_size, E820_TYPE_RAM);
933 	} else if (*p == '#') {
934 		start_at = memparse(p+1, &p);
935 		e820__range_add(start_at, mem_size, E820_TYPE_ACPI);
936 	} else if (*p == '$') {
937 		start_at = memparse(p+1, &p);
938 		e820__range_add(start_at, mem_size, E820_TYPE_RESERVED);
939 	} else if (*p == '!') {
940 		start_at = memparse(p+1, &p);
941 		e820__range_add(start_at, mem_size, E820_TYPE_PRAM);
942 	} else if (*p == '%') {
943 		enum e820_type from = 0, to = 0;
944 
945 		start_at = memparse(p + 1, &p);
946 		if (*p == '-')
947 			from = simple_strtoull(p + 1, &p, 0);
948 		if (*p == '+')
949 			to = simple_strtoull(p + 1, &p, 0);
950 		if (*p != '\0')
951 			return -EINVAL;
952 		if (from && to)
953 			e820__range_update(start_at, mem_size, from, to);
954 		else if (to)
955 			e820__range_add(start_at, mem_size, to);
956 		else if (from)
957 			e820__range_remove(start_at, mem_size, from, 1);
958 		else
959 			e820__range_remove(start_at, mem_size, 0, 0);
960 	} else {
961 		e820__range_remove(mem_size, ULLONG_MAX - mem_size, E820_TYPE_RAM, 1);
962 	}
963 
964 	return *p == '\0' ? 0 : -EINVAL;
965 }
966 
967 static int __init parse_memmap_opt(char *str)
968 {
969 	while (str) {
970 		char *k = strchr(str, ',');
971 
972 		if (k)
973 			*k++ = 0;
974 
975 		parse_memmap_one(str);
976 		str = k;
977 	}
978 
979 	return 0;
980 }
981 early_param("memmap", parse_memmap_opt);
982 
983 /*
984  * Reserve all entries from the bootloader's extensible data nodes list,
985  * because if present we are going to use it later on to fetch e820
986  * entries from it:
987  */
988 void __init e820__reserve_setup_data(void)
989 {
990 	struct setup_data *data;
991 	u64 pa_data;
992 
993 	pa_data = boot_params.hdr.setup_data;
994 	if (!pa_data)
995 		return;
996 
997 	while (pa_data) {
998 		data = early_memremap(pa_data, sizeof(*data));
999 		e820__range_update(pa_data, sizeof(*data)+data->len, E820_TYPE_RAM, E820_TYPE_RESERVED_KERN);
1000 		e820__range_update_kexec(pa_data, sizeof(*data)+data->len, E820_TYPE_RAM, E820_TYPE_RESERVED_KERN);
1001 		pa_data = data->next;
1002 		early_memunmap(data, sizeof(*data));
1003 	}
1004 
1005 	e820__update_table(e820_table);
1006 	e820__update_table(e820_table_kexec);
1007 
1008 	pr_info("extended physical RAM map:\n");
1009 	e820__print_table("reserve setup_data");
1010 }
1011 
1012 /*
1013  * Called after parse_early_param(), after early parameters (such as mem=)
1014  * have been processed, in which case we already have an E820 table filled in
1015  * via the parameter callback function(s), but it's not sorted and printed yet:
1016  */
1017 void __init e820__finish_early_params(void)
1018 {
1019 	if (userdef) {
1020 		if (e820__update_table(e820_table) < 0)
1021 			early_panic("Invalid user supplied memory map");
1022 
1023 		pr_info("user-defined physical RAM map:\n");
1024 		e820__print_table("user");
1025 	}
1026 }
1027 
1028 static const char *__init e820_type_to_string(struct e820_entry *entry)
1029 {
1030 	switch (entry->type) {
1031 	case E820_TYPE_RESERVED_KERN:	/* Fall-through: */
1032 	case E820_TYPE_RAM:		return "System RAM";
1033 	case E820_TYPE_ACPI:		return "ACPI Tables";
1034 	case E820_TYPE_NVS:		return "ACPI Non-volatile Storage";
1035 	case E820_TYPE_UNUSABLE:	return "Unusable memory";
1036 	case E820_TYPE_PRAM:		return "Persistent Memory (legacy)";
1037 	case E820_TYPE_PMEM:		return "Persistent Memory";
1038 	case E820_TYPE_RESERVED:	return "Reserved";
1039 	default:			return "Unknown E820 type";
1040 	}
1041 }
1042 
1043 static unsigned long __init e820_type_to_iomem_type(struct e820_entry *entry)
1044 {
1045 	switch (entry->type) {
1046 	case E820_TYPE_RESERVED_KERN:	/* Fall-through: */
1047 	case E820_TYPE_RAM:		return IORESOURCE_SYSTEM_RAM;
1048 	case E820_TYPE_ACPI:		/* Fall-through: */
1049 	case E820_TYPE_NVS:		/* Fall-through: */
1050 	case E820_TYPE_UNUSABLE:	/* Fall-through: */
1051 	case E820_TYPE_PRAM:		/* Fall-through: */
1052 	case E820_TYPE_PMEM:		/* Fall-through: */
1053 	case E820_TYPE_RESERVED:	/* Fall-through: */
1054 	default:			return IORESOURCE_MEM;
1055 	}
1056 }
1057 
1058 static unsigned long __init e820_type_to_iores_desc(struct e820_entry *entry)
1059 {
1060 	switch (entry->type) {
1061 	case E820_TYPE_ACPI:		return IORES_DESC_ACPI_TABLES;
1062 	case E820_TYPE_NVS:		return IORES_DESC_ACPI_NV_STORAGE;
1063 	case E820_TYPE_PMEM:		return IORES_DESC_PERSISTENT_MEMORY;
1064 	case E820_TYPE_PRAM:		return IORES_DESC_PERSISTENT_MEMORY_LEGACY;
1065 	case E820_TYPE_RESERVED_KERN:	/* Fall-through: */
1066 	case E820_TYPE_RAM:		/* Fall-through: */
1067 	case E820_TYPE_UNUSABLE:	/* Fall-through: */
1068 	case E820_TYPE_RESERVED:	/* Fall-through: */
1069 	default:			return IORES_DESC_NONE;
1070 	}
1071 }
1072 
1073 static bool __init do_mark_busy(enum e820_type type, struct resource *res)
1074 {
1075 	/* this is the legacy bios/dos rom-shadow + mmio region */
1076 	if (res->start < (1ULL<<20))
1077 		return true;
1078 
1079 	/*
1080 	 * Treat persistent memory like device memory, i.e. reserve it
1081 	 * for exclusive use of a driver
1082 	 */
1083 	switch (type) {
1084 	case E820_TYPE_RESERVED:
1085 	case E820_TYPE_PRAM:
1086 	case E820_TYPE_PMEM:
1087 		return false;
1088 	case E820_TYPE_RESERVED_KERN:
1089 	case E820_TYPE_RAM:
1090 	case E820_TYPE_ACPI:
1091 	case E820_TYPE_NVS:
1092 	case E820_TYPE_UNUSABLE:
1093 	default:
1094 		return true;
1095 	}
1096 }
1097 
1098 /*
1099  * Mark E820 reserved areas as busy for the resource manager:
1100  */
1101 
1102 static struct resource __initdata *e820_res;
1103 
1104 void __init e820__reserve_resources(void)
1105 {
1106 	int i;
1107 	struct resource *res;
1108 	u64 end;
1109 
1110 	res = memblock_alloc(sizeof(*res) * e820_table->nr_entries,
1111 			     SMP_CACHE_BYTES);
1112 	if (!res)
1113 		panic("%s: Failed to allocate %zu bytes\n", __func__,
1114 		      sizeof(*res) * e820_table->nr_entries);
1115 	e820_res = res;
1116 
1117 	for (i = 0; i < e820_table->nr_entries; i++) {
1118 		struct e820_entry *entry = e820_table->entries + i;
1119 
1120 		end = entry->addr + entry->size - 1;
1121 		if (end != (resource_size_t)end) {
1122 			res++;
1123 			continue;
1124 		}
1125 		res->start = entry->addr;
1126 		res->end   = end;
1127 		res->name  = e820_type_to_string(entry);
1128 		res->flags = e820_type_to_iomem_type(entry);
1129 		res->desc  = e820_type_to_iores_desc(entry);
1130 
1131 		/*
1132 		 * Don't register the region that could be conflicted with
1133 		 * PCI device BAR resources and insert them later in
1134 		 * pcibios_resource_survey():
1135 		 */
1136 		if (do_mark_busy(entry->type, res)) {
1137 			res->flags |= IORESOURCE_BUSY;
1138 			insert_resource(&iomem_resource, res);
1139 		}
1140 		res++;
1141 	}
1142 
1143 	/* Expose the bootloader-provided memory layout to the sysfs. */
1144 	for (i = 0; i < e820_table_firmware->nr_entries; i++) {
1145 		struct e820_entry *entry = e820_table_firmware->entries + i;
1146 
1147 		firmware_map_add_early(entry->addr, entry->addr + entry->size, e820_type_to_string(entry));
1148 	}
1149 }
1150 
1151 /*
1152  * How much should we pad the end of RAM, depending on where it is?
1153  */
1154 static unsigned long __init ram_alignment(resource_size_t pos)
1155 {
1156 	unsigned long mb = pos >> 20;
1157 
1158 	/* To 64kB in the first megabyte */
1159 	if (!mb)
1160 		return 64*1024;
1161 
1162 	/* To 1MB in the first 16MB */
1163 	if (mb < 16)
1164 		return 1024*1024;
1165 
1166 	/* To 64MB for anything above that */
1167 	return 64*1024*1024;
1168 }
1169 
1170 #define MAX_RESOURCE_SIZE ((resource_size_t)-1)
1171 
1172 void __init e820__reserve_resources_late(void)
1173 {
1174 	int i;
1175 	struct resource *res;
1176 
1177 	res = e820_res;
1178 	for (i = 0; i < e820_table->nr_entries; i++) {
1179 		if (!res->parent && res->end)
1180 			insert_resource_expand_to_fit(&iomem_resource, res);
1181 		res++;
1182 	}
1183 
1184 	/*
1185 	 * Try to bump up RAM regions to reasonable boundaries, to
1186 	 * avoid stolen RAM:
1187 	 */
1188 	for (i = 0; i < e820_table->nr_entries; i++) {
1189 		struct e820_entry *entry = &e820_table->entries[i];
1190 		u64 start, end;
1191 
1192 		if (entry->type != E820_TYPE_RAM)
1193 			continue;
1194 
1195 		start = entry->addr + entry->size;
1196 		end = round_up(start, ram_alignment(start)) - 1;
1197 		if (end > MAX_RESOURCE_SIZE)
1198 			end = MAX_RESOURCE_SIZE;
1199 		if (start >= end)
1200 			continue;
1201 
1202 		printk(KERN_DEBUG "e820: reserve RAM buffer [mem %#010llx-%#010llx]\n", start, end);
1203 		reserve_region_with_split(&iomem_resource, start, end, "RAM buffer");
1204 	}
1205 }
1206 
1207 /*
1208  * Pass the firmware (bootloader) E820 map to the kernel and process it:
1209  */
1210 char *__init e820__memory_setup_default(void)
1211 {
1212 	char *who = "BIOS-e820";
1213 
1214 	/*
1215 	 * Try to copy the BIOS-supplied E820-map.
1216 	 *
1217 	 * Otherwise fake a memory map; one section from 0k->640k,
1218 	 * the next section from 1mb->appropriate_mem_k
1219 	 */
1220 	if (append_e820_table(boot_params.e820_table, boot_params.e820_entries) < 0) {
1221 		u64 mem_size;
1222 
1223 		/* Compare results from other methods and take the one that gives more RAM: */
1224 		if (boot_params.alt_mem_k < boot_params.screen_info.ext_mem_k) {
1225 			mem_size = boot_params.screen_info.ext_mem_k;
1226 			who = "BIOS-88";
1227 		} else {
1228 			mem_size = boot_params.alt_mem_k;
1229 			who = "BIOS-e801";
1230 		}
1231 
1232 		e820_table->nr_entries = 0;
1233 		e820__range_add(0, LOWMEMSIZE(), E820_TYPE_RAM);
1234 		e820__range_add(HIGH_MEMORY, mem_size << 10, E820_TYPE_RAM);
1235 	}
1236 
1237 	/* We just appended a lot of ranges, sanitize the table: */
1238 	e820__update_table(e820_table);
1239 
1240 	return who;
1241 }
1242 
1243 /*
1244  * Calls e820__memory_setup_default() in essence to pick up the firmware/bootloader
1245  * E820 map - with an optional platform quirk available for virtual platforms
1246  * to override this method of boot environment processing:
1247  */
1248 void __init e820__memory_setup(void)
1249 {
1250 	char *who;
1251 
1252 	/* This is a firmware interface ABI - make sure we don't break it: */
1253 	BUILD_BUG_ON(sizeof(struct boot_e820_entry) != 20);
1254 
1255 	who = x86_init.resources.memory_setup();
1256 
1257 	memcpy(e820_table_kexec, e820_table, sizeof(*e820_table_kexec));
1258 	memcpy(e820_table_firmware, e820_table, sizeof(*e820_table_firmware));
1259 
1260 	pr_info("BIOS-provided physical RAM map:\n");
1261 	e820__print_table(who);
1262 }
1263 
1264 void __init e820__memblock_setup(void)
1265 {
1266 	int i;
1267 	u64 end;
1268 
1269 	/*
1270 	 * The bootstrap memblock region count maximum is 128 entries
1271 	 * (INIT_MEMBLOCK_REGIONS), but EFI might pass us more E820 entries
1272 	 * than that - so allow memblock resizing.
1273 	 *
1274 	 * This is safe, because this call happens pretty late during x86 setup,
1275 	 * so we know about reserved memory regions already. (This is important
1276 	 * so that memblock resizing does no stomp over reserved areas.)
1277 	 */
1278 	memblock_allow_resize();
1279 
1280 	for (i = 0; i < e820_table->nr_entries; i++) {
1281 		struct e820_entry *entry = &e820_table->entries[i];
1282 
1283 		end = entry->addr + entry->size;
1284 		if (end != (resource_size_t)end)
1285 			continue;
1286 
1287 		if (entry->type != E820_TYPE_RAM && entry->type != E820_TYPE_RESERVED_KERN)
1288 			continue;
1289 
1290 		memblock_add(entry->addr, entry->size);
1291 	}
1292 
1293 	/* Throw away partial pages: */
1294 	memblock_trim_memory(PAGE_SIZE);
1295 
1296 	memblock_dump_all();
1297 }
1298