xref: /openbmc/linux/arch/x86/kernel/dumpstack.c (revision d623f60d)
1 /*
2  *  Copyright (C) 1991, 1992  Linus Torvalds
3  *  Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs
4  */
5 #include <linux/kallsyms.h>
6 #include <linux/kprobes.h>
7 #include <linux/uaccess.h>
8 #include <linux/utsname.h>
9 #include <linux/hardirq.h>
10 #include <linux/kdebug.h>
11 #include <linux/module.h>
12 #include <linux/ptrace.h>
13 #include <linux/sched/debug.h>
14 #include <linux/sched/task_stack.h>
15 #include <linux/ftrace.h>
16 #include <linux/kexec.h>
17 #include <linux/bug.h>
18 #include <linux/nmi.h>
19 #include <linux/sysfs.h>
20 
21 #include <asm/cpu_entry_area.h>
22 #include <asm/stacktrace.h>
23 #include <asm/unwind.h>
24 
25 #define OPCODE_BUFSIZE 64
26 
27 int panic_on_unrecovered_nmi;
28 int panic_on_io_nmi;
29 static int die_counter;
30 
31 static struct pt_regs exec_summary_regs;
32 
33 bool in_task_stack(unsigned long *stack, struct task_struct *task,
34 		   struct stack_info *info)
35 {
36 	unsigned long *begin = task_stack_page(task);
37 	unsigned long *end   = task_stack_page(task) + THREAD_SIZE;
38 
39 	if (stack < begin || stack >= end)
40 		return false;
41 
42 	info->type	= STACK_TYPE_TASK;
43 	info->begin	= begin;
44 	info->end	= end;
45 	info->next_sp	= NULL;
46 
47 	return true;
48 }
49 
50 bool in_entry_stack(unsigned long *stack, struct stack_info *info)
51 {
52 	struct entry_stack *ss = cpu_entry_stack(smp_processor_id());
53 
54 	void *begin = ss;
55 	void *end = ss + 1;
56 
57 	if ((void *)stack < begin || (void *)stack >= end)
58 		return false;
59 
60 	info->type	= STACK_TYPE_ENTRY;
61 	info->begin	= begin;
62 	info->end	= end;
63 	info->next_sp	= NULL;
64 
65 	return true;
66 }
67 
68 static void printk_stack_address(unsigned long address, int reliable,
69 				 char *log_lvl)
70 {
71 	touch_nmi_watchdog();
72 	printk("%s %s%pB\n", log_lvl, reliable ? "" : "? ", (void *)address);
73 }
74 
75 /*
76  * There are a couple of reasons for the 2/3rd prologue, courtesy of Linus:
77  *
78  * In case where we don't have the exact kernel image (which, if we did, we can
79  * simply disassemble and navigate to the RIP), the purpose of the bigger
80  * prologue is to have more context and to be able to correlate the code from
81  * the different toolchains better.
82  *
83  * In addition, it helps in recreating the register allocation of the failing
84  * kernel and thus make sense of the register dump.
85  *
86  * What is more, the additional complication of a variable length insn arch like
87  * x86 warrants having longer byte sequence before rIP so that the disassembler
88  * can "sync" up properly and find instruction boundaries when decoding the
89  * opcode bytes.
90  *
91  * Thus, the 2/3rds prologue and 64 byte OPCODE_BUFSIZE is just a random
92  * guesstimate in attempt to achieve all of the above.
93  */
94 void show_opcodes(u8 *rip, const char *loglvl)
95 {
96 	unsigned int code_prologue = OPCODE_BUFSIZE * 2 / 3;
97 	u8 opcodes[OPCODE_BUFSIZE];
98 	u8 *ip;
99 	int i;
100 
101 	printk("%sCode: ", loglvl);
102 
103 	ip = (u8 *)rip - code_prologue;
104 	if (probe_kernel_read(opcodes, ip, OPCODE_BUFSIZE)) {
105 		pr_cont("Bad RIP value.\n");
106 		return;
107 	}
108 
109 	for (i = 0; i < OPCODE_BUFSIZE; i++, ip++) {
110 		if (ip == rip)
111 			pr_cont("<%02x> ", opcodes[i]);
112 		else
113 			pr_cont("%02x ", opcodes[i]);
114 	}
115 	pr_cont("\n");
116 }
117 
118 void show_ip(struct pt_regs *regs, const char *loglvl)
119 {
120 #ifdef CONFIG_X86_32
121 	printk("%sEIP: %pS\n", loglvl, (void *)regs->ip);
122 #else
123 	printk("%sRIP: %04x:%pS\n", loglvl, (int)regs->cs, (void *)regs->ip);
124 #endif
125 	show_opcodes((u8 *)regs->ip, loglvl);
126 }
127 
128 void show_iret_regs(struct pt_regs *regs)
129 {
130 	show_ip(regs, KERN_DEFAULT);
131 	printk(KERN_DEFAULT "RSP: %04x:%016lx EFLAGS: %08lx", (int)regs->ss,
132 		regs->sp, regs->flags);
133 }
134 
135 static void show_regs_if_on_stack(struct stack_info *info, struct pt_regs *regs,
136 				  bool partial)
137 {
138 	/*
139 	 * These on_stack() checks aren't strictly necessary: the unwind code
140 	 * has already validated the 'regs' pointer.  The checks are done for
141 	 * ordering reasons: if the registers are on the next stack, we don't
142 	 * want to print them out yet.  Otherwise they'll be shown as part of
143 	 * the wrong stack.  Later, when show_trace_log_lvl() switches to the
144 	 * next stack, this function will be called again with the same regs so
145 	 * they can be printed in the right context.
146 	 */
147 	if (!partial && on_stack(info, regs, sizeof(*regs))) {
148 		__show_regs(regs, 0);
149 
150 	} else if (partial && on_stack(info, (void *)regs + IRET_FRAME_OFFSET,
151 				       IRET_FRAME_SIZE)) {
152 		/*
153 		 * When an interrupt or exception occurs in entry code, the
154 		 * full pt_regs might not have been saved yet.  In that case
155 		 * just print the iret frame.
156 		 */
157 		show_iret_regs(regs);
158 	}
159 }
160 
161 void show_trace_log_lvl(struct task_struct *task, struct pt_regs *regs,
162 			unsigned long *stack, char *log_lvl)
163 {
164 	struct unwind_state state;
165 	struct stack_info stack_info = {0};
166 	unsigned long visit_mask = 0;
167 	int graph_idx = 0;
168 	bool partial = false;
169 
170 	printk("%sCall Trace:\n", log_lvl);
171 
172 	unwind_start(&state, task, regs, stack);
173 	stack = stack ? : get_stack_pointer(task, regs);
174 	regs = unwind_get_entry_regs(&state, &partial);
175 
176 	/*
177 	 * Iterate through the stacks, starting with the current stack pointer.
178 	 * Each stack has a pointer to the next one.
179 	 *
180 	 * x86-64 can have several stacks:
181 	 * - task stack
182 	 * - interrupt stack
183 	 * - HW exception stacks (double fault, nmi, debug, mce)
184 	 * - entry stack
185 	 *
186 	 * x86-32 can have up to four stacks:
187 	 * - task stack
188 	 * - softirq stack
189 	 * - hardirq stack
190 	 * - entry stack
191 	 */
192 	for ( ; stack; stack = PTR_ALIGN(stack_info.next_sp, sizeof(long))) {
193 		const char *stack_name;
194 
195 		if (get_stack_info(stack, task, &stack_info, &visit_mask)) {
196 			/*
197 			 * We weren't on a valid stack.  It's possible that
198 			 * we overflowed a valid stack into a guard page.
199 			 * See if the next page up is valid so that we can
200 			 * generate some kind of backtrace if this happens.
201 			 */
202 			stack = (unsigned long *)PAGE_ALIGN((unsigned long)stack);
203 			if (get_stack_info(stack, task, &stack_info, &visit_mask))
204 				break;
205 		}
206 
207 		stack_name = stack_type_name(stack_info.type);
208 		if (stack_name)
209 			printk("%s <%s>\n", log_lvl, stack_name);
210 
211 		if (regs)
212 			show_regs_if_on_stack(&stack_info, regs, partial);
213 
214 		/*
215 		 * Scan the stack, printing any text addresses we find.  At the
216 		 * same time, follow proper stack frames with the unwinder.
217 		 *
218 		 * Addresses found during the scan which are not reported by
219 		 * the unwinder are considered to be additional clues which are
220 		 * sometimes useful for debugging and are prefixed with '?'.
221 		 * This also serves as a failsafe option in case the unwinder
222 		 * goes off in the weeds.
223 		 */
224 		for (; stack < stack_info.end; stack++) {
225 			unsigned long real_addr;
226 			int reliable = 0;
227 			unsigned long addr = READ_ONCE_NOCHECK(*stack);
228 			unsigned long *ret_addr_p =
229 				unwind_get_return_address_ptr(&state);
230 
231 			if (!__kernel_text_address(addr))
232 				continue;
233 
234 			/*
235 			 * Don't print regs->ip again if it was already printed
236 			 * by show_regs_if_on_stack().
237 			 */
238 			if (regs && stack == &regs->ip)
239 				goto next;
240 
241 			if (stack == ret_addr_p)
242 				reliable = 1;
243 
244 			/*
245 			 * When function graph tracing is enabled for a
246 			 * function, its return address on the stack is
247 			 * replaced with the address of an ftrace handler
248 			 * (return_to_handler).  In that case, before printing
249 			 * the "real" address, we want to print the handler
250 			 * address as an "unreliable" hint that function graph
251 			 * tracing was involved.
252 			 */
253 			real_addr = ftrace_graph_ret_addr(task, &graph_idx,
254 							  addr, stack);
255 			if (real_addr != addr)
256 				printk_stack_address(addr, 0, log_lvl);
257 			printk_stack_address(real_addr, reliable, log_lvl);
258 
259 			if (!reliable)
260 				continue;
261 
262 next:
263 			/*
264 			 * Get the next frame from the unwinder.  No need to
265 			 * check for an error: if anything goes wrong, the rest
266 			 * of the addresses will just be printed as unreliable.
267 			 */
268 			unwind_next_frame(&state);
269 
270 			/* if the frame has entry regs, print them */
271 			regs = unwind_get_entry_regs(&state, &partial);
272 			if (regs)
273 				show_regs_if_on_stack(&stack_info, regs, partial);
274 		}
275 
276 		if (stack_name)
277 			printk("%s </%s>\n", log_lvl, stack_name);
278 	}
279 }
280 
281 void show_stack(struct task_struct *task, unsigned long *sp)
282 {
283 	task = task ? : current;
284 
285 	/*
286 	 * Stack frames below this one aren't interesting.  Don't show them
287 	 * if we're printing for %current.
288 	 */
289 	if (!sp && task == current)
290 		sp = get_stack_pointer(current, NULL);
291 
292 	show_trace_log_lvl(task, NULL, sp, KERN_DEFAULT);
293 }
294 
295 void show_stack_regs(struct pt_regs *regs)
296 {
297 	show_trace_log_lvl(current, regs, NULL, KERN_DEFAULT);
298 }
299 
300 static arch_spinlock_t die_lock = __ARCH_SPIN_LOCK_UNLOCKED;
301 static int die_owner = -1;
302 static unsigned int die_nest_count;
303 
304 unsigned long oops_begin(void)
305 {
306 	int cpu;
307 	unsigned long flags;
308 
309 	oops_enter();
310 
311 	/* racy, but better than risking deadlock. */
312 	raw_local_irq_save(flags);
313 	cpu = smp_processor_id();
314 	if (!arch_spin_trylock(&die_lock)) {
315 		if (cpu == die_owner)
316 			/* nested oops. should stop eventually */;
317 		else
318 			arch_spin_lock(&die_lock);
319 	}
320 	die_nest_count++;
321 	die_owner = cpu;
322 	console_verbose();
323 	bust_spinlocks(1);
324 	return flags;
325 }
326 NOKPROBE_SYMBOL(oops_begin);
327 
328 void __noreturn rewind_stack_do_exit(int signr);
329 
330 void oops_end(unsigned long flags, struct pt_regs *regs, int signr)
331 {
332 	if (regs && kexec_should_crash(current))
333 		crash_kexec(regs);
334 
335 	bust_spinlocks(0);
336 	die_owner = -1;
337 	add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
338 	die_nest_count--;
339 	if (!die_nest_count)
340 		/* Nest count reaches zero, release the lock. */
341 		arch_spin_unlock(&die_lock);
342 	raw_local_irq_restore(flags);
343 	oops_exit();
344 
345 	/* Executive summary in case the oops scrolled away */
346 	__show_regs(&exec_summary_regs, true);
347 
348 	if (!signr)
349 		return;
350 	if (in_interrupt())
351 		panic("Fatal exception in interrupt");
352 	if (panic_on_oops)
353 		panic("Fatal exception");
354 
355 	/*
356 	 * We're not going to return, but we might be on an IST stack or
357 	 * have very little stack space left.  Rewind the stack and kill
358 	 * the task.
359 	 */
360 	rewind_stack_do_exit(signr);
361 }
362 NOKPROBE_SYMBOL(oops_end);
363 
364 int __die(const char *str, struct pt_regs *regs, long err)
365 {
366 	/* Save the regs of the first oops for the executive summary later. */
367 	if (!die_counter)
368 		exec_summary_regs = *regs;
369 
370 	printk(KERN_DEFAULT
371 	       "%s: %04lx [#%d]%s%s%s%s%s\n", str, err & 0xffff, ++die_counter,
372 	       IS_ENABLED(CONFIG_PREEMPT) ? " PREEMPT"         : "",
373 	       IS_ENABLED(CONFIG_SMP)     ? " SMP"             : "",
374 	       debug_pagealloc_enabled()  ? " DEBUG_PAGEALLOC" : "",
375 	       IS_ENABLED(CONFIG_KASAN)   ? " KASAN"           : "",
376 	       IS_ENABLED(CONFIG_PAGE_TABLE_ISOLATION) ?
377 	       (boot_cpu_has(X86_FEATURE_PTI) ? " PTI" : " NOPTI") : "");
378 
379 	show_regs(regs);
380 	print_modules();
381 
382 	if (notify_die(DIE_OOPS, str, regs, err,
383 			current->thread.trap_nr, SIGSEGV) == NOTIFY_STOP)
384 		return 1;
385 
386 	return 0;
387 }
388 NOKPROBE_SYMBOL(__die);
389 
390 /*
391  * This is gone through when something in the kernel has done something bad
392  * and is about to be terminated:
393  */
394 void die(const char *str, struct pt_regs *regs, long err)
395 {
396 	unsigned long flags = oops_begin();
397 	int sig = SIGSEGV;
398 
399 	if (__die(str, regs, err))
400 		sig = 0;
401 	oops_end(flags, regs, sig);
402 }
403 
404 void show_regs(struct pt_regs *regs)
405 {
406 	bool all = true;
407 
408 	show_regs_print_info(KERN_DEFAULT);
409 
410 	if (IS_ENABLED(CONFIG_X86_32))
411 		all = !user_mode(regs);
412 
413 	__show_regs(regs, all);
414 
415 	/*
416 	 * When in-kernel, we also print out the stack at the time of the fault..
417 	 */
418 	if (!user_mode(regs))
419 		show_trace_log_lvl(current, regs, NULL, KERN_DEFAULT);
420 }
421