xref: /openbmc/linux/arch/x86/kernel/dumpstack.c (revision 11a163f2)
1 /*
2  *  Copyright (C) 1991, 1992  Linus Torvalds
3  *  Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs
4  */
5 #include <linux/kallsyms.h>
6 #include <linux/kprobes.h>
7 #include <linux/uaccess.h>
8 #include <linux/utsname.h>
9 #include <linux/hardirq.h>
10 #include <linux/kdebug.h>
11 #include <linux/module.h>
12 #include <linux/ptrace.h>
13 #include <linux/sched/debug.h>
14 #include <linux/sched/task_stack.h>
15 #include <linux/ftrace.h>
16 #include <linux/kexec.h>
17 #include <linux/bug.h>
18 #include <linux/nmi.h>
19 #include <linux/sysfs.h>
20 #include <linux/kasan.h>
21 
22 #include <asm/cpu_entry_area.h>
23 #include <asm/stacktrace.h>
24 #include <asm/unwind.h>
25 
26 int panic_on_unrecovered_nmi;
27 int panic_on_io_nmi;
28 static int die_counter;
29 
30 static struct pt_regs exec_summary_regs;
31 
32 bool noinstr in_task_stack(unsigned long *stack, struct task_struct *task,
33 			   struct stack_info *info)
34 {
35 	unsigned long *begin = task_stack_page(task);
36 	unsigned long *end   = task_stack_page(task) + THREAD_SIZE;
37 
38 	if (stack < begin || stack >= end)
39 		return false;
40 
41 	info->type	= STACK_TYPE_TASK;
42 	info->begin	= begin;
43 	info->end	= end;
44 	info->next_sp	= NULL;
45 
46 	return true;
47 }
48 
49 /* Called from get_stack_info_noinstr - so must be noinstr too */
50 bool noinstr in_entry_stack(unsigned long *stack, struct stack_info *info)
51 {
52 	struct entry_stack *ss = cpu_entry_stack(smp_processor_id());
53 
54 	void *begin = ss;
55 	void *end = ss + 1;
56 
57 	if ((void *)stack < begin || (void *)stack >= end)
58 		return false;
59 
60 	info->type	= STACK_TYPE_ENTRY;
61 	info->begin	= begin;
62 	info->end	= end;
63 	info->next_sp	= NULL;
64 
65 	return true;
66 }
67 
68 static void printk_stack_address(unsigned long address, int reliable,
69 				 const char *log_lvl)
70 {
71 	touch_nmi_watchdog();
72 	printk("%s %s%pB\n", log_lvl, reliable ? "" : "? ", (void *)address);
73 }
74 
75 static int copy_code(struct pt_regs *regs, u8 *buf, unsigned long src,
76 		     unsigned int nbytes)
77 {
78 	if (!user_mode(regs))
79 		return copy_from_kernel_nofault(buf, (u8 *)src, nbytes);
80 
81 	/*
82 	 * Make sure userspace isn't trying to trick us into dumping kernel
83 	 * memory by pointing the userspace instruction pointer at it.
84 	 */
85 	if (__chk_range_not_ok(src, nbytes, TASK_SIZE_MAX))
86 		return -EINVAL;
87 
88 	return copy_from_user_nmi(buf, (void __user *)src, nbytes);
89 }
90 
91 /*
92  * There are a couple of reasons for the 2/3rd prologue, courtesy of Linus:
93  *
94  * In case where we don't have the exact kernel image (which, if we did, we can
95  * simply disassemble and navigate to the RIP), the purpose of the bigger
96  * prologue is to have more context and to be able to correlate the code from
97  * the different toolchains better.
98  *
99  * In addition, it helps in recreating the register allocation of the failing
100  * kernel and thus make sense of the register dump.
101  *
102  * What is more, the additional complication of a variable length insn arch like
103  * x86 warrants having longer byte sequence before rIP so that the disassembler
104  * can "sync" up properly and find instruction boundaries when decoding the
105  * opcode bytes.
106  *
107  * Thus, the 2/3rds prologue and 64 byte OPCODE_BUFSIZE is just a random
108  * guesstimate in attempt to achieve all of the above.
109  */
110 void show_opcodes(struct pt_regs *regs, const char *loglvl)
111 {
112 #define PROLOGUE_SIZE 42
113 #define EPILOGUE_SIZE 21
114 #define OPCODE_BUFSIZE (PROLOGUE_SIZE + 1 + EPILOGUE_SIZE)
115 	u8 opcodes[OPCODE_BUFSIZE];
116 	unsigned long prologue = regs->ip - PROLOGUE_SIZE;
117 
118 	if (copy_code(regs, opcodes, prologue, sizeof(opcodes))) {
119 		printk("%sCode: Unable to access opcode bytes at RIP 0x%lx.\n",
120 		       loglvl, prologue);
121 	} else {
122 		printk("%sCode: %" __stringify(PROLOGUE_SIZE) "ph <%02x> %"
123 		       __stringify(EPILOGUE_SIZE) "ph\n", loglvl, opcodes,
124 		       opcodes[PROLOGUE_SIZE], opcodes + PROLOGUE_SIZE + 1);
125 	}
126 }
127 
128 void show_ip(struct pt_regs *regs, const char *loglvl)
129 {
130 #ifdef CONFIG_X86_32
131 	printk("%sEIP: %pS\n", loglvl, (void *)regs->ip);
132 #else
133 	printk("%sRIP: %04x:%pS\n", loglvl, (int)regs->cs, (void *)regs->ip);
134 #endif
135 	show_opcodes(regs, loglvl);
136 }
137 
138 void show_iret_regs(struct pt_regs *regs, const char *log_lvl)
139 {
140 	show_ip(regs, log_lvl);
141 	printk("%sRSP: %04x:%016lx EFLAGS: %08lx", log_lvl, (int)regs->ss,
142 		regs->sp, regs->flags);
143 }
144 
145 static void show_regs_if_on_stack(struct stack_info *info, struct pt_regs *regs,
146 				  bool partial, const char *log_lvl)
147 {
148 	/*
149 	 * These on_stack() checks aren't strictly necessary: the unwind code
150 	 * has already validated the 'regs' pointer.  The checks are done for
151 	 * ordering reasons: if the registers are on the next stack, we don't
152 	 * want to print them out yet.  Otherwise they'll be shown as part of
153 	 * the wrong stack.  Later, when show_trace_log_lvl() switches to the
154 	 * next stack, this function will be called again with the same regs so
155 	 * they can be printed in the right context.
156 	 */
157 	if (!partial && on_stack(info, regs, sizeof(*regs))) {
158 		__show_regs(regs, SHOW_REGS_SHORT, log_lvl);
159 
160 	} else if (partial && on_stack(info, (void *)regs + IRET_FRAME_OFFSET,
161 				       IRET_FRAME_SIZE)) {
162 		/*
163 		 * When an interrupt or exception occurs in entry code, the
164 		 * full pt_regs might not have been saved yet.  In that case
165 		 * just print the iret frame.
166 		 */
167 		show_iret_regs(regs, log_lvl);
168 	}
169 }
170 
171 void show_trace_log_lvl(struct task_struct *task, struct pt_regs *regs,
172 			unsigned long *stack, const char *log_lvl)
173 {
174 	struct unwind_state state;
175 	struct stack_info stack_info = {0};
176 	unsigned long visit_mask = 0;
177 	int graph_idx = 0;
178 	bool partial = false;
179 
180 	printk("%sCall Trace:\n", log_lvl);
181 
182 	unwind_start(&state, task, regs, stack);
183 	stack = stack ? : get_stack_pointer(task, regs);
184 	regs = unwind_get_entry_regs(&state, &partial);
185 
186 	/*
187 	 * Iterate through the stacks, starting with the current stack pointer.
188 	 * Each stack has a pointer to the next one.
189 	 *
190 	 * x86-64 can have several stacks:
191 	 * - task stack
192 	 * - interrupt stack
193 	 * - HW exception stacks (double fault, nmi, debug, mce)
194 	 * - entry stack
195 	 *
196 	 * x86-32 can have up to four stacks:
197 	 * - task stack
198 	 * - softirq stack
199 	 * - hardirq stack
200 	 * - entry stack
201 	 */
202 	for ( ; stack; stack = PTR_ALIGN(stack_info.next_sp, sizeof(long))) {
203 		const char *stack_name;
204 
205 		if (get_stack_info(stack, task, &stack_info, &visit_mask)) {
206 			/*
207 			 * We weren't on a valid stack.  It's possible that
208 			 * we overflowed a valid stack into a guard page.
209 			 * See if the next page up is valid so that we can
210 			 * generate some kind of backtrace if this happens.
211 			 */
212 			stack = (unsigned long *)PAGE_ALIGN((unsigned long)stack);
213 			if (get_stack_info(stack, task, &stack_info, &visit_mask))
214 				break;
215 		}
216 
217 		stack_name = stack_type_name(stack_info.type);
218 		if (stack_name)
219 			printk("%s <%s>\n", log_lvl, stack_name);
220 
221 		if (regs)
222 			show_regs_if_on_stack(&stack_info, regs, partial, log_lvl);
223 
224 		/*
225 		 * Scan the stack, printing any text addresses we find.  At the
226 		 * same time, follow proper stack frames with the unwinder.
227 		 *
228 		 * Addresses found during the scan which are not reported by
229 		 * the unwinder are considered to be additional clues which are
230 		 * sometimes useful for debugging and are prefixed with '?'.
231 		 * This also serves as a failsafe option in case the unwinder
232 		 * goes off in the weeds.
233 		 */
234 		for (; stack < stack_info.end; stack++) {
235 			unsigned long real_addr;
236 			int reliable = 0;
237 			unsigned long addr = READ_ONCE_NOCHECK(*stack);
238 			unsigned long *ret_addr_p =
239 				unwind_get_return_address_ptr(&state);
240 
241 			if (!__kernel_text_address(addr))
242 				continue;
243 
244 			/*
245 			 * Don't print regs->ip again if it was already printed
246 			 * by show_regs_if_on_stack().
247 			 */
248 			if (regs && stack == &regs->ip)
249 				goto next;
250 
251 			if (stack == ret_addr_p)
252 				reliable = 1;
253 
254 			/*
255 			 * When function graph tracing is enabled for a
256 			 * function, its return address on the stack is
257 			 * replaced with the address of an ftrace handler
258 			 * (return_to_handler).  In that case, before printing
259 			 * the "real" address, we want to print the handler
260 			 * address as an "unreliable" hint that function graph
261 			 * tracing was involved.
262 			 */
263 			real_addr = ftrace_graph_ret_addr(task, &graph_idx,
264 							  addr, stack);
265 			if (real_addr != addr)
266 				printk_stack_address(addr, 0, log_lvl);
267 			printk_stack_address(real_addr, reliable, log_lvl);
268 
269 			if (!reliable)
270 				continue;
271 
272 next:
273 			/*
274 			 * Get the next frame from the unwinder.  No need to
275 			 * check for an error: if anything goes wrong, the rest
276 			 * of the addresses will just be printed as unreliable.
277 			 */
278 			unwind_next_frame(&state);
279 
280 			/* if the frame has entry regs, print them */
281 			regs = unwind_get_entry_regs(&state, &partial);
282 			if (regs)
283 				show_regs_if_on_stack(&stack_info, regs, partial, log_lvl);
284 		}
285 
286 		if (stack_name)
287 			printk("%s </%s>\n", log_lvl, stack_name);
288 	}
289 }
290 
291 void show_stack(struct task_struct *task, unsigned long *sp,
292 		       const char *loglvl)
293 {
294 	task = task ? : current;
295 
296 	/*
297 	 * Stack frames below this one aren't interesting.  Don't show them
298 	 * if we're printing for %current.
299 	 */
300 	if (!sp && task == current)
301 		sp = get_stack_pointer(current, NULL);
302 
303 	show_trace_log_lvl(task, NULL, sp, loglvl);
304 }
305 
306 void show_stack_regs(struct pt_regs *regs)
307 {
308 	show_trace_log_lvl(current, regs, NULL, KERN_DEFAULT);
309 }
310 
311 static arch_spinlock_t die_lock = __ARCH_SPIN_LOCK_UNLOCKED;
312 static int die_owner = -1;
313 static unsigned int die_nest_count;
314 
315 unsigned long oops_begin(void)
316 {
317 	int cpu;
318 	unsigned long flags;
319 
320 	oops_enter();
321 
322 	/* racy, but better than risking deadlock. */
323 	raw_local_irq_save(flags);
324 	cpu = smp_processor_id();
325 	if (!arch_spin_trylock(&die_lock)) {
326 		if (cpu == die_owner)
327 			/* nested oops. should stop eventually */;
328 		else
329 			arch_spin_lock(&die_lock);
330 	}
331 	die_nest_count++;
332 	die_owner = cpu;
333 	console_verbose();
334 	bust_spinlocks(1);
335 	return flags;
336 }
337 NOKPROBE_SYMBOL(oops_begin);
338 
339 void __noreturn rewind_stack_do_exit(int signr);
340 
341 void oops_end(unsigned long flags, struct pt_regs *regs, int signr)
342 {
343 	if (regs && kexec_should_crash(current))
344 		crash_kexec(regs);
345 
346 	bust_spinlocks(0);
347 	die_owner = -1;
348 	add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
349 	die_nest_count--;
350 	if (!die_nest_count)
351 		/* Nest count reaches zero, release the lock. */
352 		arch_spin_unlock(&die_lock);
353 	raw_local_irq_restore(flags);
354 	oops_exit();
355 
356 	/* Executive summary in case the oops scrolled away */
357 	__show_regs(&exec_summary_regs, SHOW_REGS_ALL, KERN_DEFAULT);
358 
359 	if (!signr)
360 		return;
361 	if (in_interrupt())
362 		panic("Fatal exception in interrupt");
363 	if (panic_on_oops)
364 		panic("Fatal exception");
365 
366 	/*
367 	 * We're not going to return, but we might be on an IST stack or
368 	 * have very little stack space left.  Rewind the stack and kill
369 	 * the task.
370 	 * Before we rewind the stack, we have to tell KASAN that we're going to
371 	 * reuse the task stack and that existing poisons are invalid.
372 	 */
373 	kasan_unpoison_task_stack(current);
374 	rewind_stack_do_exit(signr);
375 }
376 NOKPROBE_SYMBOL(oops_end);
377 
378 static void __die_header(const char *str, struct pt_regs *regs, long err)
379 {
380 	const char *pr = "";
381 
382 	/* Save the regs of the first oops for the executive summary later. */
383 	if (!die_counter)
384 		exec_summary_regs = *regs;
385 
386 	if (IS_ENABLED(CONFIG_PREEMPTION))
387 		pr = IS_ENABLED(CONFIG_PREEMPT_RT) ? " PREEMPT_RT" : " PREEMPT";
388 
389 	printk(KERN_DEFAULT
390 	       "%s: %04lx [#%d]%s%s%s%s%s\n", str, err & 0xffff, ++die_counter,
391 	       pr,
392 	       IS_ENABLED(CONFIG_SMP)     ? " SMP"             : "",
393 	       debug_pagealloc_enabled()  ? " DEBUG_PAGEALLOC" : "",
394 	       IS_ENABLED(CONFIG_KASAN)   ? " KASAN"           : "",
395 	       IS_ENABLED(CONFIG_PAGE_TABLE_ISOLATION) ?
396 	       (boot_cpu_has(X86_FEATURE_PTI) ? " PTI" : " NOPTI") : "");
397 }
398 NOKPROBE_SYMBOL(__die_header);
399 
400 static int __die_body(const char *str, struct pt_regs *regs, long err)
401 {
402 	show_regs(regs);
403 	print_modules();
404 
405 	if (notify_die(DIE_OOPS, str, regs, err,
406 			current->thread.trap_nr, SIGSEGV) == NOTIFY_STOP)
407 		return 1;
408 
409 	return 0;
410 }
411 NOKPROBE_SYMBOL(__die_body);
412 
413 int __die(const char *str, struct pt_regs *regs, long err)
414 {
415 	__die_header(str, regs, err);
416 	return __die_body(str, regs, err);
417 }
418 NOKPROBE_SYMBOL(__die);
419 
420 /*
421  * This is gone through when something in the kernel has done something bad
422  * and is about to be terminated:
423  */
424 void die(const char *str, struct pt_regs *regs, long err)
425 {
426 	unsigned long flags = oops_begin();
427 	int sig = SIGSEGV;
428 
429 	if (__die(str, regs, err))
430 		sig = 0;
431 	oops_end(flags, regs, sig);
432 }
433 
434 void die_addr(const char *str, struct pt_regs *regs, long err, long gp_addr)
435 {
436 	unsigned long flags = oops_begin();
437 	int sig = SIGSEGV;
438 
439 	__die_header(str, regs, err);
440 	if (gp_addr)
441 		kasan_non_canonical_hook(gp_addr);
442 	if (__die_body(str, regs, err))
443 		sig = 0;
444 	oops_end(flags, regs, sig);
445 }
446 
447 void show_regs(struct pt_regs *regs)
448 {
449 	enum show_regs_mode print_kernel_regs;
450 
451 	show_regs_print_info(KERN_DEFAULT);
452 
453 	print_kernel_regs = user_mode(regs) ? SHOW_REGS_USER : SHOW_REGS_ALL;
454 	__show_regs(regs, print_kernel_regs, KERN_DEFAULT);
455 
456 	/*
457 	 * When in-kernel, we also print out the stack at the time of the fault..
458 	 */
459 	if (!user_mode(regs))
460 		show_trace_log_lvl(current, regs, NULL, KERN_DEFAULT);
461 }
462