1 /* 2 * Architecture specific (i386/x86_64) functions for kexec based crash dumps. 3 * 4 * Created by: Hariprasad Nellitheertha (hari@in.ibm.com) 5 * 6 * Copyright (C) IBM Corporation, 2004. All rights reserved. 7 * Copyright (C) Red Hat Inc., 2014. All rights reserved. 8 * Authors: 9 * Vivek Goyal <vgoyal@redhat.com> 10 * 11 */ 12 13 #define pr_fmt(fmt) "kexec: " fmt 14 15 #include <linux/types.h> 16 #include <linux/kernel.h> 17 #include <linux/smp.h> 18 #include <linux/reboot.h> 19 #include <linux/kexec.h> 20 #include <linux/delay.h> 21 #include <linux/elf.h> 22 #include <linux/elfcore.h> 23 #include <linux/module.h> 24 #include <linux/slab.h> 25 26 #include <asm/processor.h> 27 #include <asm/hardirq.h> 28 #include <asm/nmi.h> 29 #include <asm/hw_irq.h> 30 #include <asm/apic.h> 31 #include <asm/hpet.h> 32 #include <linux/kdebug.h> 33 #include <asm/cpu.h> 34 #include <asm/reboot.h> 35 #include <asm/virtext.h> 36 37 /* Alignment required for elf header segment */ 38 #define ELF_CORE_HEADER_ALIGN 4096 39 40 /* This primarily represents number of split ranges due to exclusion */ 41 #define CRASH_MAX_RANGES 16 42 43 struct crash_mem_range { 44 u64 start, end; 45 }; 46 47 struct crash_mem { 48 unsigned int nr_ranges; 49 struct crash_mem_range ranges[CRASH_MAX_RANGES]; 50 }; 51 52 /* Misc data about ram ranges needed to prepare elf headers */ 53 struct crash_elf_data { 54 struct kimage *image; 55 /* 56 * Total number of ram ranges we have after various adjustments for 57 * GART, crash reserved region etc. 58 */ 59 unsigned int max_nr_ranges; 60 unsigned long gart_start, gart_end; 61 62 /* Pointer to elf header */ 63 void *ehdr; 64 /* Pointer to next phdr */ 65 void *bufp; 66 struct crash_mem mem; 67 }; 68 69 /* Used while preparing memory map entries for second kernel */ 70 struct crash_memmap_data { 71 struct boot_params *params; 72 /* Type of memory */ 73 unsigned int type; 74 }; 75 76 int in_crash_kexec; 77 78 /* 79 * This is used to VMCLEAR all VMCSs loaded on the 80 * processor. And when loading kvm_intel module, the 81 * callback function pointer will be assigned. 82 * 83 * protected by rcu. 84 */ 85 crash_vmclear_fn __rcu *crash_vmclear_loaded_vmcss = NULL; 86 EXPORT_SYMBOL_GPL(crash_vmclear_loaded_vmcss); 87 unsigned long crash_zero_bytes; 88 89 static inline void cpu_crash_vmclear_loaded_vmcss(void) 90 { 91 crash_vmclear_fn *do_vmclear_operation = NULL; 92 93 rcu_read_lock(); 94 do_vmclear_operation = rcu_dereference(crash_vmclear_loaded_vmcss); 95 if (do_vmclear_operation) 96 do_vmclear_operation(); 97 rcu_read_unlock(); 98 } 99 100 #if defined(CONFIG_SMP) && defined(CONFIG_X86_LOCAL_APIC) 101 102 static void kdump_nmi_callback(int cpu, struct pt_regs *regs) 103 { 104 #ifdef CONFIG_X86_32 105 struct pt_regs fixed_regs; 106 107 if (!user_mode_vm(regs)) { 108 crash_fixup_ss_esp(&fixed_regs, regs); 109 regs = &fixed_regs; 110 } 111 #endif 112 crash_save_cpu(regs, cpu); 113 114 /* 115 * VMCLEAR VMCSs loaded on all cpus if needed. 116 */ 117 cpu_crash_vmclear_loaded_vmcss(); 118 119 /* Disable VMX or SVM if needed. 120 * 121 * We need to disable virtualization on all CPUs. 122 * Having VMX or SVM enabled on any CPU may break rebooting 123 * after the kdump kernel has finished its task. 124 */ 125 cpu_emergency_vmxoff(); 126 cpu_emergency_svm_disable(); 127 128 disable_local_APIC(); 129 } 130 131 static void kdump_nmi_shootdown_cpus(void) 132 { 133 in_crash_kexec = 1; 134 nmi_shootdown_cpus(kdump_nmi_callback); 135 136 disable_local_APIC(); 137 } 138 139 #else 140 static void kdump_nmi_shootdown_cpus(void) 141 { 142 /* There are no cpus to shootdown */ 143 } 144 #endif 145 146 void native_machine_crash_shutdown(struct pt_regs *regs) 147 { 148 /* This function is only called after the system 149 * has panicked or is otherwise in a critical state. 150 * The minimum amount of code to allow a kexec'd kernel 151 * to run successfully needs to happen here. 152 * 153 * In practice this means shooting down the other cpus in 154 * an SMP system. 155 */ 156 /* The kernel is broken so disable interrupts */ 157 local_irq_disable(); 158 159 kdump_nmi_shootdown_cpus(); 160 161 /* 162 * VMCLEAR VMCSs loaded on this cpu if needed. 163 */ 164 cpu_crash_vmclear_loaded_vmcss(); 165 166 /* Booting kdump kernel with VMX or SVM enabled won't work, 167 * because (among other limitations) we can't disable paging 168 * with the virt flags. 169 */ 170 cpu_emergency_vmxoff(); 171 cpu_emergency_svm_disable(); 172 173 #ifdef CONFIG_X86_IO_APIC 174 /* Prevent crash_kexec() from deadlocking on ioapic_lock. */ 175 ioapic_zap_locks(); 176 disable_IO_APIC(); 177 #endif 178 lapic_shutdown(); 179 #ifdef CONFIG_HPET_TIMER 180 hpet_disable(); 181 #endif 182 crash_save_cpu(regs, safe_smp_processor_id()); 183 } 184 185 #ifdef CONFIG_X86_64 186 187 static int get_nr_ram_ranges_callback(unsigned long start_pfn, 188 unsigned long nr_pfn, void *arg) 189 { 190 int *nr_ranges = arg; 191 192 (*nr_ranges)++; 193 return 0; 194 } 195 196 static int get_gart_ranges_callback(u64 start, u64 end, void *arg) 197 { 198 struct crash_elf_data *ced = arg; 199 200 ced->gart_start = start; 201 ced->gart_end = end; 202 203 /* Not expecting more than 1 gart aperture */ 204 return 1; 205 } 206 207 208 /* Gather all the required information to prepare elf headers for ram regions */ 209 static void fill_up_crash_elf_data(struct crash_elf_data *ced, 210 struct kimage *image) 211 { 212 unsigned int nr_ranges = 0; 213 214 ced->image = image; 215 216 walk_system_ram_range(0, -1, &nr_ranges, 217 get_nr_ram_ranges_callback); 218 219 ced->max_nr_ranges = nr_ranges; 220 221 /* 222 * We don't create ELF headers for GART aperture as an attempt 223 * to dump this memory in second kernel leads to hang/crash. 224 * If gart aperture is present, one needs to exclude that region 225 * and that could lead to need of extra phdr. 226 */ 227 walk_iomem_res("GART", IORESOURCE_MEM, 0, -1, 228 ced, get_gart_ranges_callback); 229 230 /* 231 * If we have gart region, excluding that could potentially split 232 * a memory range, resulting in extra header. Account for that. 233 */ 234 if (ced->gart_end) 235 ced->max_nr_ranges++; 236 237 /* Exclusion of crash region could split memory ranges */ 238 ced->max_nr_ranges++; 239 240 /* If crashk_low_res is not 0, another range split possible */ 241 if (crashk_low_res.end != 0) 242 ced->max_nr_ranges++; 243 } 244 245 static int exclude_mem_range(struct crash_mem *mem, 246 unsigned long long mstart, unsigned long long mend) 247 { 248 int i, j; 249 unsigned long long start, end; 250 struct crash_mem_range temp_range = {0, 0}; 251 252 for (i = 0; i < mem->nr_ranges; i++) { 253 start = mem->ranges[i].start; 254 end = mem->ranges[i].end; 255 256 if (mstart > end || mend < start) 257 continue; 258 259 /* Truncate any area outside of range */ 260 if (mstart < start) 261 mstart = start; 262 if (mend > end) 263 mend = end; 264 265 /* Found completely overlapping range */ 266 if (mstart == start && mend == end) { 267 mem->ranges[i].start = 0; 268 mem->ranges[i].end = 0; 269 if (i < mem->nr_ranges - 1) { 270 /* Shift rest of the ranges to left */ 271 for (j = i; j < mem->nr_ranges - 1; j++) { 272 mem->ranges[j].start = 273 mem->ranges[j+1].start; 274 mem->ranges[j].end = 275 mem->ranges[j+1].end; 276 } 277 } 278 mem->nr_ranges--; 279 return 0; 280 } 281 282 if (mstart > start && mend < end) { 283 /* Split original range */ 284 mem->ranges[i].end = mstart - 1; 285 temp_range.start = mend + 1; 286 temp_range.end = end; 287 } else if (mstart != start) 288 mem->ranges[i].end = mstart - 1; 289 else 290 mem->ranges[i].start = mend + 1; 291 break; 292 } 293 294 /* If a split happend, add the split to array */ 295 if (!temp_range.end) 296 return 0; 297 298 /* Split happened */ 299 if (i == CRASH_MAX_RANGES - 1) { 300 pr_err("Too many crash ranges after split\n"); 301 return -ENOMEM; 302 } 303 304 /* Location where new range should go */ 305 j = i + 1; 306 if (j < mem->nr_ranges) { 307 /* Move over all ranges one slot towards the end */ 308 for (i = mem->nr_ranges - 1; i >= j; i--) 309 mem->ranges[i + 1] = mem->ranges[i]; 310 } 311 312 mem->ranges[j].start = temp_range.start; 313 mem->ranges[j].end = temp_range.end; 314 mem->nr_ranges++; 315 return 0; 316 } 317 318 /* 319 * Look for any unwanted ranges between mstart, mend and remove them. This 320 * might lead to split and split ranges are put in ced->mem.ranges[] array 321 */ 322 static int elf_header_exclude_ranges(struct crash_elf_data *ced, 323 unsigned long long mstart, unsigned long long mend) 324 { 325 struct crash_mem *cmem = &ced->mem; 326 int ret = 0; 327 328 memset(cmem->ranges, 0, sizeof(cmem->ranges)); 329 330 cmem->ranges[0].start = mstart; 331 cmem->ranges[0].end = mend; 332 cmem->nr_ranges = 1; 333 334 /* Exclude crashkernel region */ 335 ret = exclude_mem_range(cmem, crashk_res.start, crashk_res.end); 336 if (ret) 337 return ret; 338 339 ret = exclude_mem_range(cmem, crashk_low_res.start, crashk_low_res.end); 340 if (ret) 341 return ret; 342 343 /* Exclude GART region */ 344 if (ced->gart_end) { 345 ret = exclude_mem_range(cmem, ced->gart_start, ced->gart_end); 346 if (ret) 347 return ret; 348 } 349 350 return ret; 351 } 352 353 static int prepare_elf64_ram_headers_callback(u64 start, u64 end, void *arg) 354 { 355 struct crash_elf_data *ced = arg; 356 Elf64_Ehdr *ehdr; 357 Elf64_Phdr *phdr; 358 unsigned long mstart, mend; 359 struct kimage *image = ced->image; 360 struct crash_mem *cmem; 361 int ret, i; 362 363 ehdr = ced->ehdr; 364 365 /* Exclude unwanted mem ranges */ 366 ret = elf_header_exclude_ranges(ced, start, end); 367 if (ret) 368 return ret; 369 370 /* Go through all the ranges in ced->mem.ranges[] and prepare phdr */ 371 cmem = &ced->mem; 372 373 for (i = 0; i < cmem->nr_ranges; i++) { 374 mstart = cmem->ranges[i].start; 375 mend = cmem->ranges[i].end; 376 377 phdr = ced->bufp; 378 ced->bufp += sizeof(Elf64_Phdr); 379 380 phdr->p_type = PT_LOAD; 381 phdr->p_flags = PF_R|PF_W|PF_X; 382 phdr->p_offset = mstart; 383 384 /* 385 * If a range matches backup region, adjust offset to backup 386 * segment. 387 */ 388 if (mstart == image->arch.backup_src_start && 389 (mend - mstart + 1) == image->arch.backup_src_sz) 390 phdr->p_offset = image->arch.backup_load_addr; 391 392 phdr->p_paddr = mstart; 393 phdr->p_vaddr = (unsigned long long) __va(mstart); 394 phdr->p_filesz = phdr->p_memsz = mend - mstart + 1; 395 phdr->p_align = 0; 396 ehdr->e_phnum++; 397 pr_debug("Crash PT_LOAD elf header. phdr=%p vaddr=0x%llx, paddr=0x%llx, sz=0x%llx e_phnum=%d p_offset=0x%llx\n", 398 phdr, phdr->p_vaddr, phdr->p_paddr, phdr->p_filesz, 399 ehdr->e_phnum, phdr->p_offset); 400 } 401 402 return ret; 403 } 404 405 static int prepare_elf64_headers(struct crash_elf_data *ced, 406 void **addr, unsigned long *sz) 407 { 408 Elf64_Ehdr *ehdr; 409 Elf64_Phdr *phdr; 410 unsigned long nr_cpus = num_possible_cpus(), nr_phdr, elf_sz; 411 unsigned char *buf, *bufp; 412 unsigned int cpu; 413 unsigned long long notes_addr; 414 int ret; 415 416 /* extra phdr for vmcoreinfo elf note */ 417 nr_phdr = nr_cpus + 1; 418 nr_phdr += ced->max_nr_ranges; 419 420 /* 421 * kexec-tools creates an extra PT_LOAD phdr for kernel text mapping 422 * area on x86_64 (ffffffff80000000 - ffffffffa0000000). 423 * I think this is required by tools like gdb. So same physical 424 * memory will be mapped in two elf headers. One will contain kernel 425 * text virtual addresses and other will have __va(physical) addresses. 426 */ 427 428 nr_phdr++; 429 elf_sz = sizeof(Elf64_Ehdr) + nr_phdr * sizeof(Elf64_Phdr); 430 elf_sz = ALIGN(elf_sz, ELF_CORE_HEADER_ALIGN); 431 432 buf = vzalloc(elf_sz); 433 if (!buf) 434 return -ENOMEM; 435 436 bufp = buf; 437 ehdr = (Elf64_Ehdr *)bufp; 438 bufp += sizeof(Elf64_Ehdr); 439 memcpy(ehdr->e_ident, ELFMAG, SELFMAG); 440 ehdr->e_ident[EI_CLASS] = ELFCLASS64; 441 ehdr->e_ident[EI_DATA] = ELFDATA2LSB; 442 ehdr->e_ident[EI_VERSION] = EV_CURRENT; 443 ehdr->e_ident[EI_OSABI] = ELF_OSABI; 444 memset(ehdr->e_ident + EI_PAD, 0, EI_NIDENT - EI_PAD); 445 ehdr->e_type = ET_CORE; 446 ehdr->e_machine = ELF_ARCH; 447 ehdr->e_version = EV_CURRENT; 448 ehdr->e_phoff = sizeof(Elf64_Ehdr); 449 ehdr->e_ehsize = sizeof(Elf64_Ehdr); 450 ehdr->e_phentsize = sizeof(Elf64_Phdr); 451 452 /* Prepare one phdr of type PT_NOTE for each present cpu */ 453 for_each_present_cpu(cpu) { 454 phdr = (Elf64_Phdr *)bufp; 455 bufp += sizeof(Elf64_Phdr); 456 phdr->p_type = PT_NOTE; 457 notes_addr = per_cpu_ptr_to_phys(per_cpu_ptr(crash_notes, cpu)); 458 phdr->p_offset = phdr->p_paddr = notes_addr; 459 phdr->p_filesz = phdr->p_memsz = sizeof(note_buf_t); 460 (ehdr->e_phnum)++; 461 } 462 463 /* Prepare one PT_NOTE header for vmcoreinfo */ 464 phdr = (Elf64_Phdr *)bufp; 465 bufp += sizeof(Elf64_Phdr); 466 phdr->p_type = PT_NOTE; 467 phdr->p_offset = phdr->p_paddr = paddr_vmcoreinfo_note(); 468 phdr->p_filesz = phdr->p_memsz = sizeof(vmcoreinfo_note); 469 (ehdr->e_phnum)++; 470 471 #ifdef CONFIG_X86_64 472 /* Prepare PT_LOAD type program header for kernel text region */ 473 phdr = (Elf64_Phdr *)bufp; 474 bufp += sizeof(Elf64_Phdr); 475 phdr->p_type = PT_LOAD; 476 phdr->p_flags = PF_R|PF_W|PF_X; 477 phdr->p_vaddr = (Elf64_Addr)_text; 478 phdr->p_filesz = phdr->p_memsz = _end - _text; 479 phdr->p_offset = phdr->p_paddr = __pa_symbol(_text); 480 (ehdr->e_phnum)++; 481 #endif 482 483 /* Prepare PT_LOAD headers for system ram chunks. */ 484 ced->ehdr = ehdr; 485 ced->bufp = bufp; 486 ret = walk_system_ram_res(0, -1, ced, 487 prepare_elf64_ram_headers_callback); 488 if (ret < 0) 489 return ret; 490 491 *addr = buf; 492 *sz = elf_sz; 493 return 0; 494 } 495 496 /* Prepare elf headers. Return addr and size */ 497 static int prepare_elf_headers(struct kimage *image, void **addr, 498 unsigned long *sz) 499 { 500 struct crash_elf_data *ced; 501 int ret; 502 503 ced = kzalloc(sizeof(*ced), GFP_KERNEL); 504 if (!ced) 505 return -ENOMEM; 506 507 fill_up_crash_elf_data(ced, image); 508 509 /* By default prepare 64bit headers */ 510 ret = prepare_elf64_headers(ced, addr, sz); 511 kfree(ced); 512 return ret; 513 } 514 515 static int add_e820_entry(struct boot_params *params, struct e820entry *entry) 516 { 517 unsigned int nr_e820_entries; 518 519 nr_e820_entries = params->e820_entries; 520 if (nr_e820_entries >= E820MAX) 521 return 1; 522 523 memcpy(¶ms->e820_map[nr_e820_entries], entry, 524 sizeof(struct e820entry)); 525 params->e820_entries++; 526 return 0; 527 } 528 529 static int memmap_entry_callback(u64 start, u64 end, void *arg) 530 { 531 struct crash_memmap_data *cmd = arg; 532 struct boot_params *params = cmd->params; 533 struct e820entry ei; 534 535 ei.addr = start; 536 ei.size = end - start + 1; 537 ei.type = cmd->type; 538 add_e820_entry(params, &ei); 539 540 return 0; 541 } 542 543 static int memmap_exclude_ranges(struct kimage *image, struct crash_mem *cmem, 544 unsigned long long mstart, 545 unsigned long long mend) 546 { 547 unsigned long start, end; 548 int ret = 0; 549 550 cmem->ranges[0].start = mstart; 551 cmem->ranges[0].end = mend; 552 cmem->nr_ranges = 1; 553 554 /* Exclude Backup region */ 555 start = image->arch.backup_load_addr; 556 end = start + image->arch.backup_src_sz - 1; 557 ret = exclude_mem_range(cmem, start, end); 558 if (ret) 559 return ret; 560 561 /* Exclude elf header region */ 562 start = image->arch.elf_load_addr; 563 end = start + image->arch.elf_headers_sz - 1; 564 return exclude_mem_range(cmem, start, end); 565 } 566 567 /* Prepare memory map for crash dump kernel */ 568 int crash_setup_memmap_entries(struct kimage *image, struct boot_params *params) 569 { 570 int i, ret = 0; 571 unsigned long flags; 572 struct e820entry ei; 573 struct crash_memmap_data cmd; 574 struct crash_mem *cmem; 575 576 cmem = vzalloc(sizeof(struct crash_mem)); 577 if (!cmem) 578 return -ENOMEM; 579 580 memset(&cmd, 0, sizeof(struct crash_memmap_data)); 581 cmd.params = params; 582 583 /* Add first 640K segment */ 584 ei.addr = image->arch.backup_src_start; 585 ei.size = image->arch.backup_src_sz; 586 ei.type = E820_RAM; 587 add_e820_entry(params, &ei); 588 589 /* Add ACPI tables */ 590 cmd.type = E820_ACPI; 591 flags = IORESOURCE_MEM | IORESOURCE_BUSY; 592 walk_iomem_res("ACPI Tables", flags, 0, -1, &cmd, 593 memmap_entry_callback); 594 595 /* Add ACPI Non-volatile Storage */ 596 cmd.type = E820_NVS; 597 walk_iomem_res("ACPI Non-volatile Storage", flags, 0, -1, &cmd, 598 memmap_entry_callback); 599 600 /* Add crashk_low_res region */ 601 if (crashk_low_res.end) { 602 ei.addr = crashk_low_res.start; 603 ei.size = crashk_low_res.end - crashk_low_res.start + 1; 604 ei.type = E820_RAM; 605 add_e820_entry(params, &ei); 606 } 607 608 /* Exclude some ranges from crashk_res and add rest to memmap */ 609 ret = memmap_exclude_ranges(image, cmem, crashk_res.start, 610 crashk_res.end); 611 if (ret) 612 goto out; 613 614 for (i = 0; i < cmem->nr_ranges; i++) { 615 ei.size = cmem->ranges[i].end - cmem->ranges[i].start + 1; 616 617 /* If entry is less than a page, skip it */ 618 if (ei.size < PAGE_SIZE) 619 continue; 620 ei.addr = cmem->ranges[i].start; 621 ei.type = E820_RAM; 622 add_e820_entry(params, &ei); 623 } 624 625 out: 626 vfree(cmem); 627 return ret; 628 } 629 630 static int determine_backup_region(u64 start, u64 end, void *arg) 631 { 632 struct kimage *image = arg; 633 634 image->arch.backup_src_start = start; 635 image->arch.backup_src_sz = end - start + 1; 636 637 /* Expecting only one range for backup region */ 638 return 1; 639 } 640 641 int crash_load_segments(struct kimage *image) 642 { 643 unsigned long src_start, src_sz, elf_sz; 644 void *elf_addr; 645 int ret; 646 647 /* 648 * Determine and load a segment for backup area. First 640K RAM 649 * region is backup source 650 */ 651 652 ret = walk_system_ram_res(KEXEC_BACKUP_SRC_START, KEXEC_BACKUP_SRC_END, 653 image, determine_backup_region); 654 655 /* Zero or postive return values are ok */ 656 if (ret < 0) 657 return ret; 658 659 src_start = image->arch.backup_src_start; 660 src_sz = image->arch.backup_src_sz; 661 662 /* Add backup segment. */ 663 if (src_sz) { 664 /* 665 * Ideally there is no source for backup segment. This is 666 * copied in purgatory after crash. Just add a zero filled 667 * segment for now to make sure checksum logic works fine. 668 */ 669 ret = kexec_add_buffer(image, (char *)&crash_zero_bytes, 670 sizeof(crash_zero_bytes), src_sz, 671 PAGE_SIZE, 0, -1, 0, 672 &image->arch.backup_load_addr); 673 if (ret) 674 return ret; 675 pr_debug("Loaded backup region at 0x%lx backup_start=0x%lx memsz=0x%lx\n", 676 image->arch.backup_load_addr, src_start, src_sz); 677 } 678 679 /* Prepare elf headers and add a segment */ 680 ret = prepare_elf_headers(image, &elf_addr, &elf_sz); 681 if (ret) 682 return ret; 683 684 image->arch.elf_headers = elf_addr; 685 image->arch.elf_headers_sz = elf_sz; 686 687 ret = kexec_add_buffer(image, (char *)elf_addr, elf_sz, elf_sz, 688 ELF_CORE_HEADER_ALIGN, 0, -1, 0, 689 &image->arch.elf_load_addr); 690 if (ret) { 691 vfree((void *)image->arch.elf_headers); 692 return ret; 693 } 694 pr_debug("Loaded ELF headers at 0x%lx bufsz=0x%lx memsz=0x%lx\n", 695 image->arch.elf_load_addr, elf_sz, elf_sz); 696 697 return ret; 698 } 699 700 #endif /* CONFIG_X86_64 */ 701