xref: /openbmc/linux/arch/x86/kernel/crash.c (revision fff74a93)
1 /*
2  * Architecture specific (i386/x86_64) functions for kexec based crash dumps.
3  *
4  * Created by: Hariprasad Nellitheertha (hari@in.ibm.com)
5  *
6  * Copyright (C) IBM Corporation, 2004. All rights reserved.
7  * Copyright (C) Red Hat Inc., 2014. All rights reserved.
8  * Authors:
9  *      Vivek Goyal <vgoyal@redhat.com>
10  *
11  */
12 
13 #define pr_fmt(fmt)	"kexec: " fmt
14 
15 #include <linux/types.h>
16 #include <linux/kernel.h>
17 #include <linux/smp.h>
18 #include <linux/reboot.h>
19 #include <linux/kexec.h>
20 #include <linux/delay.h>
21 #include <linux/elf.h>
22 #include <linux/elfcore.h>
23 #include <linux/module.h>
24 #include <linux/slab.h>
25 
26 #include <asm/processor.h>
27 #include <asm/hardirq.h>
28 #include <asm/nmi.h>
29 #include <asm/hw_irq.h>
30 #include <asm/apic.h>
31 #include <asm/hpet.h>
32 #include <linux/kdebug.h>
33 #include <asm/cpu.h>
34 #include <asm/reboot.h>
35 #include <asm/virtext.h>
36 
37 /* Alignment required for elf header segment */
38 #define ELF_CORE_HEADER_ALIGN   4096
39 
40 /* This primarily represents number of split ranges due to exclusion */
41 #define CRASH_MAX_RANGES	16
42 
43 struct crash_mem_range {
44 	u64 start, end;
45 };
46 
47 struct crash_mem {
48 	unsigned int nr_ranges;
49 	struct crash_mem_range ranges[CRASH_MAX_RANGES];
50 };
51 
52 /* Misc data about ram ranges needed to prepare elf headers */
53 struct crash_elf_data {
54 	struct kimage *image;
55 	/*
56 	 * Total number of ram ranges we have after various adjustments for
57 	 * GART, crash reserved region etc.
58 	 */
59 	unsigned int max_nr_ranges;
60 	unsigned long gart_start, gart_end;
61 
62 	/* Pointer to elf header */
63 	void *ehdr;
64 	/* Pointer to next phdr */
65 	void *bufp;
66 	struct crash_mem mem;
67 };
68 
69 /* Used while preparing memory map entries for second kernel */
70 struct crash_memmap_data {
71 	struct boot_params *params;
72 	/* Type of memory */
73 	unsigned int type;
74 };
75 
76 int in_crash_kexec;
77 
78 /*
79  * This is used to VMCLEAR all VMCSs loaded on the
80  * processor. And when loading kvm_intel module, the
81  * callback function pointer will be assigned.
82  *
83  * protected by rcu.
84  */
85 crash_vmclear_fn __rcu *crash_vmclear_loaded_vmcss = NULL;
86 EXPORT_SYMBOL_GPL(crash_vmclear_loaded_vmcss);
87 unsigned long crash_zero_bytes;
88 
89 static inline void cpu_crash_vmclear_loaded_vmcss(void)
90 {
91 	crash_vmclear_fn *do_vmclear_operation = NULL;
92 
93 	rcu_read_lock();
94 	do_vmclear_operation = rcu_dereference(crash_vmclear_loaded_vmcss);
95 	if (do_vmclear_operation)
96 		do_vmclear_operation();
97 	rcu_read_unlock();
98 }
99 
100 #if defined(CONFIG_SMP) && defined(CONFIG_X86_LOCAL_APIC)
101 
102 static void kdump_nmi_callback(int cpu, struct pt_regs *regs)
103 {
104 #ifdef CONFIG_X86_32
105 	struct pt_regs fixed_regs;
106 
107 	if (!user_mode_vm(regs)) {
108 		crash_fixup_ss_esp(&fixed_regs, regs);
109 		regs = &fixed_regs;
110 	}
111 #endif
112 	crash_save_cpu(regs, cpu);
113 
114 	/*
115 	 * VMCLEAR VMCSs loaded on all cpus if needed.
116 	 */
117 	cpu_crash_vmclear_loaded_vmcss();
118 
119 	/* Disable VMX or SVM if needed.
120 	 *
121 	 * We need to disable virtualization on all CPUs.
122 	 * Having VMX or SVM enabled on any CPU may break rebooting
123 	 * after the kdump kernel has finished its task.
124 	 */
125 	cpu_emergency_vmxoff();
126 	cpu_emergency_svm_disable();
127 
128 	disable_local_APIC();
129 }
130 
131 static void kdump_nmi_shootdown_cpus(void)
132 {
133 	in_crash_kexec = 1;
134 	nmi_shootdown_cpus(kdump_nmi_callback);
135 
136 	disable_local_APIC();
137 }
138 
139 #else
140 static void kdump_nmi_shootdown_cpus(void)
141 {
142 	/* There are no cpus to shootdown */
143 }
144 #endif
145 
146 void native_machine_crash_shutdown(struct pt_regs *regs)
147 {
148 	/* This function is only called after the system
149 	 * has panicked or is otherwise in a critical state.
150 	 * The minimum amount of code to allow a kexec'd kernel
151 	 * to run successfully needs to happen here.
152 	 *
153 	 * In practice this means shooting down the other cpus in
154 	 * an SMP system.
155 	 */
156 	/* The kernel is broken so disable interrupts */
157 	local_irq_disable();
158 
159 	kdump_nmi_shootdown_cpus();
160 
161 	/*
162 	 * VMCLEAR VMCSs loaded on this cpu if needed.
163 	 */
164 	cpu_crash_vmclear_loaded_vmcss();
165 
166 	/* Booting kdump kernel with VMX or SVM enabled won't work,
167 	 * because (among other limitations) we can't disable paging
168 	 * with the virt flags.
169 	 */
170 	cpu_emergency_vmxoff();
171 	cpu_emergency_svm_disable();
172 
173 #ifdef CONFIG_X86_IO_APIC
174 	/* Prevent crash_kexec() from deadlocking on ioapic_lock. */
175 	ioapic_zap_locks();
176 	disable_IO_APIC();
177 #endif
178 	lapic_shutdown();
179 #ifdef CONFIG_HPET_TIMER
180 	hpet_disable();
181 #endif
182 	crash_save_cpu(regs, safe_smp_processor_id());
183 }
184 
185 #ifdef CONFIG_X86_64
186 
187 static int get_nr_ram_ranges_callback(unsigned long start_pfn,
188 				unsigned long nr_pfn, void *arg)
189 {
190 	int *nr_ranges = arg;
191 
192 	(*nr_ranges)++;
193 	return 0;
194 }
195 
196 static int get_gart_ranges_callback(u64 start, u64 end, void *arg)
197 {
198 	struct crash_elf_data *ced = arg;
199 
200 	ced->gart_start = start;
201 	ced->gart_end = end;
202 
203 	/* Not expecting more than 1 gart aperture */
204 	return 1;
205 }
206 
207 
208 /* Gather all the required information to prepare elf headers for ram regions */
209 static void fill_up_crash_elf_data(struct crash_elf_data *ced,
210 				   struct kimage *image)
211 {
212 	unsigned int nr_ranges = 0;
213 
214 	ced->image = image;
215 
216 	walk_system_ram_range(0, -1, &nr_ranges,
217 				get_nr_ram_ranges_callback);
218 
219 	ced->max_nr_ranges = nr_ranges;
220 
221 	/*
222 	 * We don't create ELF headers for GART aperture as an attempt
223 	 * to dump this memory in second kernel leads to hang/crash.
224 	 * If gart aperture is present, one needs to exclude that region
225 	 * and that could lead to need of extra phdr.
226 	 */
227 	walk_iomem_res("GART", IORESOURCE_MEM, 0, -1,
228 				ced, get_gart_ranges_callback);
229 
230 	/*
231 	 * If we have gart region, excluding that could potentially split
232 	 * a memory range, resulting in extra header. Account for  that.
233 	 */
234 	if (ced->gart_end)
235 		ced->max_nr_ranges++;
236 
237 	/* Exclusion of crash region could split memory ranges */
238 	ced->max_nr_ranges++;
239 
240 	/* If crashk_low_res is not 0, another range split possible */
241 	if (crashk_low_res.end != 0)
242 		ced->max_nr_ranges++;
243 }
244 
245 static int exclude_mem_range(struct crash_mem *mem,
246 		unsigned long long mstart, unsigned long long mend)
247 {
248 	int i, j;
249 	unsigned long long start, end;
250 	struct crash_mem_range temp_range = {0, 0};
251 
252 	for (i = 0; i < mem->nr_ranges; i++) {
253 		start = mem->ranges[i].start;
254 		end = mem->ranges[i].end;
255 
256 		if (mstart > end || mend < start)
257 			continue;
258 
259 		/* Truncate any area outside of range */
260 		if (mstart < start)
261 			mstart = start;
262 		if (mend > end)
263 			mend = end;
264 
265 		/* Found completely overlapping range */
266 		if (mstart == start && mend == end) {
267 			mem->ranges[i].start = 0;
268 			mem->ranges[i].end = 0;
269 			if (i < mem->nr_ranges - 1) {
270 				/* Shift rest of the ranges to left */
271 				for (j = i; j < mem->nr_ranges - 1; j++) {
272 					mem->ranges[j].start =
273 						mem->ranges[j+1].start;
274 					mem->ranges[j].end =
275 							mem->ranges[j+1].end;
276 				}
277 			}
278 			mem->nr_ranges--;
279 			return 0;
280 		}
281 
282 		if (mstart > start && mend < end) {
283 			/* Split original range */
284 			mem->ranges[i].end = mstart - 1;
285 			temp_range.start = mend + 1;
286 			temp_range.end = end;
287 		} else if (mstart != start)
288 			mem->ranges[i].end = mstart - 1;
289 		else
290 			mem->ranges[i].start = mend + 1;
291 		break;
292 	}
293 
294 	/* If a split happend, add the split to array */
295 	if (!temp_range.end)
296 		return 0;
297 
298 	/* Split happened */
299 	if (i == CRASH_MAX_RANGES - 1) {
300 		pr_err("Too many crash ranges after split\n");
301 		return -ENOMEM;
302 	}
303 
304 	/* Location where new range should go */
305 	j = i + 1;
306 	if (j < mem->nr_ranges) {
307 		/* Move over all ranges one slot towards the end */
308 		for (i = mem->nr_ranges - 1; i >= j; i--)
309 			mem->ranges[i + 1] = mem->ranges[i];
310 	}
311 
312 	mem->ranges[j].start = temp_range.start;
313 	mem->ranges[j].end = temp_range.end;
314 	mem->nr_ranges++;
315 	return 0;
316 }
317 
318 /*
319  * Look for any unwanted ranges between mstart, mend and remove them. This
320  * might lead to split and split ranges are put in ced->mem.ranges[] array
321  */
322 static int elf_header_exclude_ranges(struct crash_elf_data *ced,
323 		unsigned long long mstart, unsigned long long mend)
324 {
325 	struct crash_mem *cmem = &ced->mem;
326 	int ret = 0;
327 
328 	memset(cmem->ranges, 0, sizeof(cmem->ranges));
329 
330 	cmem->ranges[0].start = mstart;
331 	cmem->ranges[0].end = mend;
332 	cmem->nr_ranges = 1;
333 
334 	/* Exclude crashkernel region */
335 	ret = exclude_mem_range(cmem, crashk_res.start, crashk_res.end);
336 	if (ret)
337 		return ret;
338 
339 	ret = exclude_mem_range(cmem, crashk_low_res.start, crashk_low_res.end);
340 	if (ret)
341 		return ret;
342 
343 	/* Exclude GART region */
344 	if (ced->gart_end) {
345 		ret = exclude_mem_range(cmem, ced->gart_start, ced->gart_end);
346 		if (ret)
347 			return ret;
348 	}
349 
350 	return ret;
351 }
352 
353 static int prepare_elf64_ram_headers_callback(u64 start, u64 end, void *arg)
354 {
355 	struct crash_elf_data *ced = arg;
356 	Elf64_Ehdr *ehdr;
357 	Elf64_Phdr *phdr;
358 	unsigned long mstart, mend;
359 	struct kimage *image = ced->image;
360 	struct crash_mem *cmem;
361 	int ret, i;
362 
363 	ehdr = ced->ehdr;
364 
365 	/* Exclude unwanted mem ranges */
366 	ret = elf_header_exclude_ranges(ced, start, end);
367 	if (ret)
368 		return ret;
369 
370 	/* Go through all the ranges in ced->mem.ranges[] and prepare phdr */
371 	cmem = &ced->mem;
372 
373 	for (i = 0; i < cmem->nr_ranges; i++) {
374 		mstart = cmem->ranges[i].start;
375 		mend = cmem->ranges[i].end;
376 
377 		phdr = ced->bufp;
378 		ced->bufp += sizeof(Elf64_Phdr);
379 
380 		phdr->p_type = PT_LOAD;
381 		phdr->p_flags = PF_R|PF_W|PF_X;
382 		phdr->p_offset  = mstart;
383 
384 		/*
385 		 * If a range matches backup region, adjust offset to backup
386 		 * segment.
387 		 */
388 		if (mstart == image->arch.backup_src_start &&
389 		    (mend - mstart + 1) == image->arch.backup_src_sz)
390 			phdr->p_offset = image->arch.backup_load_addr;
391 
392 		phdr->p_paddr = mstart;
393 		phdr->p_vaddr = (unsigned long long) __va(mstart);
394 		phdr->p_filesz = phdr->p_memsz = mend - mstart + 1;
395 		phdr->p_align = 0;
396 		ehdr->e_phnum++;
397 		pr_debug("Crash PT_LOAD elf header. phdr=%p vaddr=0x%llx, paddr=0x%llx, sz=0x%llx e_phnum=%d p_offset=0x%llx\n",
398 			phdr, phdr->p_vaddr, phdr->p_paddr, phdr->p_filesz,
399 			ehdr->e_phnum, phdr->p_offset);
400 	}
401 
402 	return ret;
403 }
404 
405 static int prepare_elf64_headers(struct crash_elf_data *ced,
406 		void **addr, unsigned long *sz)
407 {
408 	Elf64_Ehdr *ehdr;
409 	Elf64_Phdr *phdr;
410 	unsigned long nr_cpus = num_possible_cpus(), nr_phdr, elf_sz;
411 	unsigned char *buf, *bufp;
412 	unsigned int cpu;
413 	unsigned long long notes_addr;
414 	int ret;
415 
416 	/* extra phdr for vmcoreinfo elf note */
417 	nr_phdr = nr_cpus + 1;
418 	nr_phdr += ced->max_nr_ranges;
419 
420 	/*
421 	 * kexec-tools creates an extra PT_LOAD phdr for kernel text mapping
422 	 * area on x86_64 (ffffffff80000000 - ffffffffa0000000).
423 	 * I think this is required by tools like gdb. So same physical
424 	 * memory will be mapped in two elf headers. One will contain kernel
425 	 * text virtual addresses and other will have __va(physical) addresses.
426 	 */
427 
428 	nr_phdr++;
429 	elf_sz = sizeof(Elf64_Ehdr) + nr_phdr * sizeof(Elf64_Phdr);
430 	elf_sz = ALIGN(elf_sz, ELF_CORE_HEADER_ALIGN);
431 
432 	buf = vzalloc(elf_sz);
433 	if (!buf)
434 		return -ENOMEM;
435 
436 	bufp = buf;
437 	ehdr = (Elf64_Ehdr *)bufp;
438 	bufp += sizeof(Elf64_Ehdr);
439 	memcpy(ehdr->e_ident, ELFMAG, SELFMAG);
440 	ehdr->e_ident[EI_CLASS] = ELFCLASS64;
441 	ehdr->e_ident[EI_DATA] = ELFDATA2LSB;
442 	ehdr->e_ident[EI_VERSION] = EV_CURRENT;
443 	ehdr->e_ident[EI_OSABI] = ELF_OSABI;
444 	memset(ehdr->e_ident + EI_PAD, 0, EI_NIDENT - EI_PAD);
445 	ehdr->e_type = ET_CORE;
446 	ehdr->e_machine = ELF_ARCH;
447 	ehdr->e_version = EV_CURRENT;
448 	ehdr->e_phoff = sizeof(Elf64_Ehdr);
449 	ehdr->e_ehsize = sizeof(Elf64_Ehdr);
450 	ehdr->e_phentsize = sizeof(Elf64_Phdr);
451 
452 	/* Prepare one phdr of type PT_NOTE for each present cpu */
453 	for_each_present_cpu(cpu) {
454 		phdr = (Elf64_Phdr *)bufp;
455 		bufp += sizeof(Elf64_Phdr);
456 		phdr->p_type = PT_NOTE;
457 		notes_addr = per_cpu_ptr_to_phys(per_cpu_ptr(crash_notes, cpu));
458 		phdr->p_offset = phdr->p_paddr = notes_addr;
459 		phdr->p_filesz = phdr->p_memsz = sizeof(note_buf_t);
460 		(ehdr->e_phnum)++;
461 	}
462 
463 	/* Prepare one PT_NOTE header for vmcoreinfo */
464 	phdr = (Elf64_Phdr *)bufp;
465 	bufp += sizeof(Elf64_Phdr);
466 	phdr->p_type = PT_NOTE;
467 	phdr->p_offset = phdr->p_paddr = paddr_vmcoreinfo_note();
468 	phdr->p_filesz = phdr->p_memsz = sizeof(vmcoreinfo_note);
469 	(ehdr->e_phnum)++;
470 
471 #ifdef CONFIG_X86_64
472 	/* Prepare PT_LOAD type program header for kernel text region */
473 	phdr = (Elf64_Phdr *)bufp;
474 	bufp += sizeof(Elf64_Phdr);
475 	phdr->p_type = PT_LOAD;
476 	phdr->p_flags = PF_R|PF_W|PF_X;
477 	phdr->p_vaddr = (Elf64_Addr)_text;
478 	phdr->p_filesz = phdr->p_memsz = _end - _text;
479 	phdr->p_offset = phdr->p_paddr = __pa_symbol(_text);
480 	(ehdr->e_phnum)++;
481 #endif
482 
483 	/* Prepare PT_LOAD headers for system ram chunks. */
484 	ced->ehdr = ehdr;
485 	ced->bufp = bufp;
486 	ret = walk_system_ram_res(0, -1, ced,
487 			prepare_elf64_ram_headers_callback);
488 	if (ret < 0)
489 		return ret;
490 
491 	*addr = buf;
492 	*sz = elf_sz;
493 	return 0;
494 }
495 
496 /* Prepare elf headers. Return addr and size */
497 static int prepare_elf_headers(struct kimage *image, void **addr,
498 					unsigned long *sz)
499 {
500 	struct crash_elf_data *ced;
501 	int ret;
502 
503 	ced = kzalloc(sizeof(*ced), GFP_KERNEL);
504 	if (!ced)
505 		return -ENOMEM;
506 
507 	fill_up_crash_elf_data(ced, image);
508 
509 	/* By default prepare 64bit headers */
510 	ret =  prepare_elf64_headers(ced, addr, sz);
511 	kfree(ced);
512 	return ret;
513 }
514 
515 static int add_e820_entry(struct boot_params *params, struct e820entry *entry)
516 {
517 	unsigned int nr_e820_entries;
518 
519 	nr_e820_entries = params->e820_entries;
520 	if (nr_e820_entries >= E820MAX)
521 		return 1;
522 
523 	memcpy(&params->e820_map[nr_e820_entries], entry,
524 			sizeof(struct e820entry));
525 	params->e820_entries++;
526 	return 0;
527 }
528 
529 static int memmap_entry_callback(u64 start, u64 end, void *arg)
530 {
531 	struct crash_memmap_data *cmd = arg;
532 	struct boot_params *params = cmd->params;
533 	struct e820entry ei;
534 
535 	ei.addr = start;
536 	ei.size = end - start + 1;
537 	ei.type = cmd->type;
538 	add_e820_entry(params, &ei);
539 
540 	return 0;
541 }
542 
543 static int memmap_exclude_ranges(struct kimage *image, struct crash_mem *cmem,
544 				 unsigned long long mstart,
545 				 unsigned long long mend)
546 {
547 	unsigned long start, end;
548 	int ret = 0;
549 
550 	cmem->ranges[0].start = mstart;
551 	cmem->ranges[0].end = mend;
552 	cmem->nr_ranges = 1;
553 
554 	/* Exclude Backup region */
555 	start = image->arch.backup_load_addr;
556 	end = start + image->arch.backup_src_sz - 1;
557 	ret = exclude_mem_range(cmem, start, end);
558 	if (ret)
559 		return ret;
560 
561 	/* Exclude elf header region */
562 	start = image->arch.elf_load_addr;
563 	end = start + image->arch.elf_headers_sz - 1;
564 	return exclude_mem_range(cmem, start, end);
565 }
566 
567 /* Prepare memory map for crash dump kernel */
568 int crash_setup_memmap_entries(struct kimage *image, struct boot_params *params)
569 {
570 	int i, ret = 0;
571 	unsigned long flags;
572 	struct e820entry ei;
573 	struct crash_memmap_data cmd;
574 	struct crash_mem *cmem;
575 
576 	cmem = vzalloc(sizeof(struct crash_mem));
577 	if (!cmem)
578 		return -ENOMEM;
579 
580 	memset(&cmd, 0, sizeof(struct crash_memmap_data));
581 	cmd.params = params;
582 
583 	/* Add first 640K segment */
584 	ei.addr = image->arch.backup_src_start;
585 	ei.size = image->arch.backup_src_sz;
586 	ei.type = E820_RAM;
587 	add_e820_entry(params, &ei);
588 
589 	/* Add ACPI tables */
590 	cmd.type = E820_ACPI;
591 	flags = IORESOURCE_MEM | IORESOURCE_BUSY;
592 	walk_iomem_res("ACPI Tables", flags, 0, -1, &cmd,
593 		       memmap_entry_callback);
594 
595 	/* Add ACPI Non-volatile Storage */
596 	cmd.type = E820_NVS;
597 	walk_iomem_res("ACPI Non-volatile Storage", flags, 0, -1, &cmd,
598 			memmap_entry_callback);
599 
600 	/* Add crashk_low_res region */
601 	if (crashk_low_res.end) {
602 		ei.addr = crashk_low_res.start;
603 		ei.size = crashk_low_res.end - crashk_low_res.start + 1;
604 		ei.type = E820_RAM;
605 		add_e820_entry(params, &ei);
606 	}
607 
608 	/* Exclude some ranges from crashk_res and add rest to memmap */
609 	ret = memmap_exclude_ranges(image, cmem, crashk_res.start,
610 						crashk_res.end);
611 	if (ret)
612 		goto out;
613 
614 	for (i = 0; i < cmem->nr_ranges; i++) {
615 		ei.size = cmem->ranges[i].end - cmem->ranges[i].start + 1;
616 
617 		/* If entry is less than a page, skip it */
618 		if (ei.size < PAGE_SIZE)
619 			continue;
620 		ei.addr = cmem->ranges[i].start;
621 		ei.type = E820_RAM;
622 		add_e820_entry(params, &ei);
623 	}
624 
625 out:
626 	vfree(cmem);
627 	return ret;
628 }
629 
630 static int determine_backup_region(u64 start, u64 end, void *arg)
631 {
632 	struct kimage *image = arg;
633 
634 	image->arch.backup_src_start = start;
635 	image->arch.backup_src_sz = end - start + 1;
636 
637 	/* Expecting only one range for backup region */
638 	return 1;
639 }
640 
641 int crash_load_segments(struct kimage *image)
642 {
643 	unsigned long src_start, src_sz, elf_sz;
644 	void *elf_addr;
645 	int ret;
646 
647 	/*
648 	 * Determine and load a segment for backup area. First 640K RAM
649 	 * region is backup source
650 	 */
651 
652 	ret = walk_system_ram_res(KEXEC_BACKUP_SRC_START, KEXEC_BACKUP_SRC_END,
653 				image, determine_backup_region);
654 
655 	/* Zero or postive return values are ok */
656 	if (ret < 0)
657 		return ret;
658 
659 	src_start = image->arch.backup_src_start;
660 	src_sz = image->arch.backup_src_sz;
661 
662 	/* Add backup segment. */
663 	if (src_sz) {
664 		/*
665 		 * Ideally there is no source for backup segment. This is
666 		 * copied in purgatory after crash. Just add a zero filled
667 		 * segment for now to make sure checksum logic works fine.
668 		 */
669 		ret = kexec_add_buffer(image, (char *)&crash_zero_bytes,
670 				       sizeof(crash_zero_bytes), src_sz,
671 				       PAGE_SIZE, 0, -1, 0,
672 				       &image->arch.backup_load_addr);
673 		if (ret)
674 			return ret;
675 		pr_debug("Loaded backup region at 0x%lx backup_start=0x%lx memsz=0x%lx\n",
676 			 image->arch.backup_load_addr, src_start, src_sz);
677 	}
678 
679 	/* Prepare elf headers and add a segment */
680 	ret = prepare_elf_headers(image, &elf_addr, &elf_sz);
681 	if (ret)
682 		return ret;
683 
684 	image->arch.elf_headers = elf_addr;
685 	image->arch.elf_headers_sz = elf_sz;
686 
687 	ret = kexec_add_buffer(image, (char *)elf_addr, elf_sz, elf_sz,
688 			ELF_CORE_HEADER_ALIGN, 0, -1, 0,
689 			&image->arch.elf_load_addr);
690 	if (ret) {
691 		vfree((void *)image->arch.elf_headers);
692 		return ret;
693 	}
694 	pr_debug("Loaded ELF headers at 0x%lx bufsz=0x%lx memsz=0x%lx\n",
695 		 image->arch.elf_load_addr, elf_sz, elf_sz);
696 
697 	return ret;
698 }
699 
700 #endif /* CONFIG_X86_64 */
701