1 /* 2 * Architecture specific (i386/x86_64) functions for kexec based crash dumps. 3 * 4 * Created by: Hariprasad Nellitheertha (hari@in.ibm.com) 5 * 6 * Copyright (C) IBM Corporation, 2004. All rights reserved. 7 * Copyright (C) Red Hat Inc., 2014. All rights reserved. 8 * Authors: 9 * Vivek Goyal <vgoyal@redhat.com> 10 * 11 */ 12 13 #define pr_fmt(fmt) "kexec: " fmt 14 15 #include <linux/types.h> 16 #include <linux/kernel.h> 17 #include <linux/smp.h> 18 #include <linux/reboot.h> 19 #include <linux/kexec.h> 20 #include <linux/delay.h> 21 #include <linux/elf.h> 22 #include <linux/elfcore.h> 23 #include <linux/module.h> 24 #include <linux/slab.h> 25 #include <linux/vmalloc.h> 26 27 #include <asm/processor.h> 28 #include <asm/hardirq.h> 29 #include <asm/nmi.h> 30 #include <asm/hw_irq.h> 31 #include <asm/apic.h> 32 #include <asm/io_apic.h> 33 #include <asm/hpet.h> 34 #include <linux/kdebug.h> 35 #include <asm/cpu.h> 36 #include <asm/reboot.h> 37 #include <asm/virtext.h> 38 #include <asm/intel_pt.h> 39 40 /* Alignment required for elf header segment */ 41 #define ELF_CORE_HEADER_ALIGN 4096 42 43 /* This primarily represents number of split ranges due to exclusion */ 44 #define CRASH_MAX_RANGES 16 45 46 struct crash_mem_range { 47 u64 start, end; 48 }; 49 50 struct crash_mem { 51 unsigned int nr_ranges; 52 struct crash_mem_range ranges[CRASH_MAX_RANGES]; 53 }; 54 55 /* Misc data about ram ranges needed to prepare elf headers */ 56 struct crash_elf_data { 57 struct kimage *image; 58 /* 59 * Total number of ram ranges we have after various adjustments for 60 * GART, crash reserved region etc. 61 */ 62 unsigned int max_nr_ranges; 63 unsigned long gart_start, gart_end; 64 65 /* Pointer to elf header */ 66 void *ehdr; 67 /* Pointer to next phdr */ 68 void *bufp; 69 struct crash_mem mem; 70 }; 71 72 /* Used while preparing memory map entries for second kernel */ 73 struct crash_memmap_data { 74 struct boot_params *params; 75 /* Type of memory */ 76 unsigned int type; 77 }; 78 79 /* 80 * This is used to VMCLEAR all VMCSs loaded on the 81 * processor. And when loading kvm_intel module, the 82 * callback function pointer will be assigned. 83 * 84 * protected by rcu. 85 */ 86 crash_vmclear_fn __rcu *crash_vmclear_loaded_vmcss = NULL; 87 EXPORT_SYMBOL_GPL(crash_vmclear_loaded_vmcss); 88 unsigned long crash_zero_bytes; 89 90 static inline void cpu_crash_vmclear_loaded_vmcss(void) 91 { 92 crash_vmclear_fn *do_vmclear_operation = NULL; 93 94 rcu_read_lock(); 95 do_vmclear_operation = rcu_dereference(crash_vmclear_loaded_vmcss); 96 if (do_vmclear_operation) 97 do_vmclear_operation(); 98 rcu_read_unlock(); 99 } 100 101 #if defined(CONFIG_SMP) && defined(CONFIG_X86_LOCAL_APIC) 102 103 static void kdump_nmi_callback(int cpu, struct pt_regs *regs) 104 { 105 #ifdef CONFIG_X86_32 106 struct pt_regs fixed_regs; 107 108 if (!user_mode(regs)) { 109 crash_fixup_ss_esp(&fixed_regs, regs); 110 regs = &fixed_regs; 111 } 112 #endif 113 crash_save_cpu(regs, cpu); 114 115 /* 116 * VMCLEAR VMCSs loaded on all cpus if needed. 117 */ 118 cpu_crash_vmclear_loaded_vmcss(); 119 120 /* Disable VMX or SVM if needed. 121 * 122 * We need to disable virtualization on all CPUs. 123 * Having VMX or SVM enabled on any CPU may break rebooting 124 * after the kdump kernel has finished its task. 125 */ 126 cpu_emergency_vmxoff(); 127 cpu_emergency_svm_disable(); 128 129 /* 130 * Disable Intel PT to stop its logging 131 */ 132 cpu_emergency_stop_pt(); 133 134 disable_local_APIC(); 135 } 136 137 static void kdump_nmi_shootdown_cpus(void) 138 { 139 nmi_shootdown_cpus(kdump_nmi_callback); 140 141 disable_local_APIC(); 142 } 143 144 #else 145 static void kdump_nmi_shootdown_cpus(void) 146 { 147 /* There are no cpus to shootdown */ 148 } 149 #endif 150 151 void native_machine_crash_shutdown(struct pt_regs *regs) 152 { 153 /* This function is only called after the system 154 * has panicked or is otherwise in a critical state. 155 * The minimum amount of code to allow a kexec'd kernel 156 * to run successfully needs to happen here. 157 * 158 * In practice this means shooting down the other cpus in 159 * an SMP system. 160 */ 161 /* The kernel is broken so disable interrupts */ 162 local_irq_disable(); 163 164 kdump_nmi_shootdown_cpus(); 165 166 /* 167 * VMCLEAR VMCSs loaded on this cpu if needed. 168 */ 169 cpu_crash_vmclear_loaded_vmcss(); 170 171 /* Booting kdump kernel with VMX or SVM enabled won't work, 172 * because (among other limitations) we can't disable paging 173 * with the virt flags. 174 */ 175 cpu_emergency_vmxoff(); 176 cpu_emergency_svm_disable(); 177 178 /* 179 * Disable Intel PT to stop its logging 180 */ 181 cpu_emergency_stop_pt(); 182 183 #ifdef CONFIG_X86_IO_APIC 184 /* Prevent crash_kexec() from deadlocking on ioapic_lock. */ 185 ioapic_zap_locks(); 186 disable_IO_APIC(); 187 #endif 188 lapic_shutdown(); 189 #ifdef CONFIG_HPET_TIMER 190 hpet_disable(); 191 #endif 192 crash_save_cpu(regs, safe_smp_processor_id()); 193 } 194 195 #ifdef CONFIG_KEXEC_FILE 196 static int get_nr_ram_ranges_callback(u64 start, u64 end, void *arg) 197 { 198 unsigned int *nr_ranges = arg; 199 200 (*nr_ranges)++; 201 return 0; 202 } 203 204 static int get_gart_ranges_callback(u64 start, u64 end, void *arg) 205 { 206 struct crash_elf_data *ced = arg; 207 208 ced->gart_start = start; 209 ced->gart_end = end; 210 211 /* Not expecting more than 1 gart aperture */ 212 return 1; 213 } 214 215 216 /* Gather all the required information to prepare elf headers for ram regions */ 217 static void fill_up_crash_elf_data(struct crash_elf_data *ced, 218 struct kimage *image) 219 { 220 unsigned int nr_ranges = 0; 221 222 ced->image = image; 223 224 walk_system_ram_res(0, -1, &nr_ranges, 225 get_nr_ram_ranges_callback); 226 227 ced->max_nr_ranges = nr_ranges; 228 229 /* 230 * We don't create ELF headers for GART aperture as an attempt 231 * to dump this memory in second kernel leads to hang/crash. 232 * If gart aperture is present, one needs to exclude that region 233 * and that could lead to need of extra phdr. 234 */ 235 walk_iomem_res("GART", IORESOURCE_MEM, 0, -1, 236 ced, get_gart_ranges_callback); 237 238 /* 239 * If we have gart region, excluding that could potentially split 240 * a memory range, resulting in extra header. Account for that. 241 */ 242 if (ced->gart_end) 243 ced->max_nr_ranges++; 244 245 /* Exclusion of crash region could split memory ranges */ 246 ced->max_nr_ranges++; 247 248 /* If crashk_low_res is not 0, another range split possible */ 249 if (crashk_low_res.end) 250 ced->max_nr_ranges++; 251 } 252 253 static int exclude_mem_range(struct crash_mem *mem, 254 unsigned long long mstart, unsigned long long mend) 255 { 256 int i, j; 257 unsigned long long start, end; 258 struct crash_mem_range temp_range = {0, 0}; 259 260 for (i = 0; i < mem->nr_ranges; i++) { 261 start = mem->ranges[i].start; 262 end = mem->ranges[i].end; 263 264 if (mstart > end || mend < start) 265 continue; 266 267 /* Truncate any area outside of range */ 268 if (mstart < start) 269 mstart = start; 270 if (mend > end) 271 mend = end; 272 273 /* Found completely overlapping range */ 274 if (mstart == start && mend == end) { 275 mem->ranges[i].start = 0; 276 mem->ranges[i].end = 0; 277 if (i < mem->nr_ranges - 1) { 278 /* Shift rest of the ranges to left */ 279 for (j = i; j < mem->nr_ranges - 1; j++) { 280 mem->ranges[j].start = 281 mem->ranges[j+1].start; 282 mem->ranges[j].end = 283 mem->ranges[j+1].end; 284 } 285 } 286 mem->nr_ranges--; 287 return 0; 288 } 289 290 if (mstart > start && mend < end) { 291 /* Split original range */ 292 mem->ranges[i].end = mstart - 1; 293 temp_range.start = mend + 1; 294 temp_range.end = end; 295 } else if (mstart != start) 296 mem->ranges[i].end = mstart - 1; 297 else 298 mem->ranges[i].start = mend + 1; 299 break; 300 } 301 302 /* If a split happend, add the split to array */ 303 if (!temp_range.end) 304 return 0; 305 306 /* Split happened */ 307 if (i == CRASH_MAX_RANGES - 1) { 308 pr_err("Too many crash ranges after split\n"); 309 return -ENOMEM; 310 } 311 312 /* Location where new range should go */ 313 j = i + 1; 314 if (j < mem->nr_ranges) { 315 /* Move over all ranges one slot towards the end */ 316 for (i = mem->nr_ranges - 1; i >= j; i--) 317 mem->ranges[i + 1] = mem->ranges[i]; 318 } 319 320 mem->ranges[j].start = temp_range.start; 321 mem->ranges[j].end = temp_range.end; 322 mem->nr_ranges++; 323 return 0; 324 } 325 326 /* 327 * Look for any unwanted ranges between mstart, mend and remove them. This 328 * might lead to split and split ranges are put in ced->mem.ranges[] array 329 */ 330 static int elf_header_exclude_ranges(struct crash_elf_data *ced, 331 unsigned long long mstart, unsigned long long mend) 332 { 333 struct crash_mem *cmem = &ced->mem; 334 int ret = 0; 335 336 memset(cmem->ranges, 0, sizeof(cmem->ranges)); 337 338 cmem->ranges[0].start = mstart; 339 cmem->ranges[0].end = mend; 340 cmem->nr_ranges = 1; 341 342 /* Exclude crashkernel region */ 343 ret = exclude_mem_range(cmem, crashk_res.start, crashk_res.end); 344 if (ret) 345 return ret; 346 347 if (crashk_low_res.end) { 348 ret = exclude_mem_range(cmem, crashk_low_res.start, crashk_low_res.end); 349 if (ret) 350 return ret; 351 } 352 353 /* Exclude GART region */ 354 if (ced->gart_end) { 355 ret = exclude_mem_range(cmem, ced->gart_start, ced->gart_end); 356 if (ret) 357 return ret; 358 } 359 360 return ret; 361 } 362 363 static int prepare_elf64_ram_headers_callback(u64 start, u64 end, void *arg) 364 { 365 struct crash_elf_data *ced = arg; 366 Elf64_Ehdr *ehdr; 367 Elf64_Phdr *phdr; 368 unsigned long mstart, mend; 369 struct kimage *image = ced->image; 370 struct crash_mem *cmem; 371 int ret, i; 372 373 ehdr = ced->ehdr; 374 375 /* Exclude unwanted mem ranges */ 376 ret = elf_header_exclude_ranges(ced, start, end); 377 if (ret) 378 return ret; 379 380 /* Go through all the ranges in ced->mem.ranges[] and prepare phdr */ 381 cmem = &ced->mem; 382 383 for (i = 0; i < cmem->nr_ranges; i++) { 384 mstart = cmem->ranges[i].start; 385 mend = cmem->ranges[i].end; 386 387 phdr = ced->bufp; 388 ced->bufp += sizeof(Elf64_Phdr); 389 390 phdr->p_type = PT_LOAD; 391 phdr->p_flags = PF_R|PF_W|PF_X; 392 phdr->p_offset = mstart; 393 394 /* 395 * If a range matches backup region, adjust offset to backup 396 * segment. 397 */ 398 if (mstart == image->arch.backup_src_start && 399 (mend - mstart + 1) == image->arch.backup_src_sz) 400 phdr->p_offset = image->arch.backup_load_addr; 401 402 phdr->p_paddr = mstart; 403 phdr->p_vaddr = (unsigned long long) __va(mstart); 404 phdr->p_filesz = phdr->p_memsz = mend - mstart + 1; 405 phdr->p_align = 0; 406 ehdr->e_phnum++; 407 pr_debug("Crash PT_LOAD elf header. phdr=%p vaddr=0x%llx, paddr=0x%llx, sz=0x%llx e_phnum=%d p_offset=0x%llx\n", 408 phdr, phdr->p_vaddr, phdr->p_paddr, phdr->p_filesz, 409 ehdr->e_phnum, phdr->p_offset); 410 } 411 412 return ret; 413 } 414 415 static int prepare_elf64_headers(struct crash_elf_data *ced, 416 void **addr, unsigned long *sz) 417 { 418 Elf64_Ehdr *ehdr; 419 Elf64_Phdr *phdr; 420 unsigned long nr_cpus = num_possible_cpus(), nr_phdr, elf_sz; 421 unsigned char *buf, *bufp; 422 unsigned int cpu; 423 unsigned long long notes_addr; 424 int ret; 425 426 /* extra phdr for vmcoreinfo elf note */ 427 nr_phdr = nr_cpus + 1; 428 nr_phdr += ced->max_nr_ranges; 429 430 /* 431 * kexec-tools creates an extra PT_LOAD phdr for kernel text mapping 432 * area on x86_64 (ffffffff80000000 - ffffffffa0000000). 433 * I think this is required by tools like gdb. So same physical 434 * memory will be mapped in two elf headers. One will contain kernel 435 * text virtual addresses and other will have __va(physical) addresses. 436 */ 437 438 nr_phdr++; 439 elf_sz = sizeof(Elf64_Ehdr) + nr_phdr * sizeof(Elf64_Phdr); 440 elf_sz = ALIGN(elf_sz, ELF_CORE_HEADER_ALIGN); 441 442 buf = vzalloc(elf_sz); 443 if (!buf) 444 return -ENOMEM; 445 446 bufp = buf; 447 ehdr = (Elf64_Ehdr *)bufp; 448 bufp += sizeof(Elf64_Ehdr); 449 memcpy(ehdr->e_ident, ELFMAG, SELFMAG); 450 ehdr->e_ident[EI_CLASS] = ELFCLASS64; 451 ehdr->e_ident[EI_DATA] = ELFDATA2LSB; 452 ehdr->e_ident[EI_VERSION] = EV_CURRENT; 453 ehdr->e_ident[EI_OSABI] = ELF_OSABI; 454 memset(ehdr->e_ident + EI_PAD, 0, EI_NIDENT - EI_PAD); 455 ehdr->e_type = ET_CORE; 456 ehdr->e_machine = ELF_ARCH; 457 ehdr->e_version = EV_CURRENT; 458 ehdr->e_phoff = sizeof(Elf64_Ehdr); 459 ehdr->e_ehsize = sizeof(Elf64_Ehdr); 460 ehdr->e_phentsize = sizeof(Elf64_Phdr); 461 462 /* Prepare one phdr of type PT_NOTE for each present cpu */ 463 for_each_present_cpu(cpu) { 464 phdr = (Elf64_Phdr *)bufp; 465 bufp += sizeof(Elf64_Phdr); 466 phdr->p_type = PT_NOTE; 467 notes_addr = per_cpu_ptr_to_phys(per_cpu_ptr(crash_notes, cpu)); 468 phdr->p_offset = phdr->p_paddr = notes_addr; 469 phdr->p_filesz = phdr->p_memsz = sizeof(note_buf_t); 470 (ehdr->e_phnum)++; 471 } 472 473 /* Prepare one PT_NOTE header for vmcoreinfo */ 474 phdr = (Elf64_Phdr *)bufp; 475 bufp += sizeof(Elf64_Phdr); 476 phdr->p_type = PT_NOTE; 477 phdr->p_offset = phdr->p_paddr = paddr_vmcoreinfo_note(); 478 phdr->p_filesz = phdr->p_memsz = sizeof(vmcoreinfo_note); 479 (ehdr->e_phnum)++; 480 481 #ifdef CONFIG_X86_64 482 /* Prepare PT_LOAD type program header for kernel text region */ 483 phdr = (Elf64_Phdr *)bufp; 484 bufp += sizeof(Elf64_Phdr); 485 phdr->p_type = PT_LOAD; 486 phdr->p_flags = PF_R|PF_W|PF_X; 487 phdr->p_vaddr = (Elf64_Addr)_text; 488 phdr->p_filesz = phdr->p_memsz = _end - _text; 489 phdr->p_offset = phdr->p_paddr = __pa_symbol(_text); 490 (ehdr->e_phnum)++; 491 #endif 492 493 /* Prepare PT_LOAD headers for system ram chunks. */ 494 ced->ehdr = ehdr; 495 ced->bufp = bufp; 496 ret = walk_system_ram_res(0, -1, ced, 497 prepare_elf64_ram_headers_callback); 498 if (ret < 0) 499 return ret; 500 501 *addr = buf; 502 *sz = elf_sz; 503 return 0; 504 } 505 506 /* Prepare elf headers. Return addr and size */ 507 static int prepare_elf_headers(struct kimage *image, void **addr, 508 unsigned long *sz) 509 { 510 struct crash_elf_data *ced; 511 int ret; 512 513 ced = kzalloc(sizeof(*ced), GFP_KERNEL); 514 if (!ced) 515 return -ENOMEM; 516 517 fill_up_crash_elf_data(ced, image); 518 519 /* By default prepare 64bit headers */ 520 ret = prepare_elf64_headers(ced, addr, sz); 521 kfree(ced); 522 return ret; 523 } 524 525 static int add_e820_entry(struct boot_params *params, struct e820entry *entry) 526 { 527 unsigned int nr_e820_entries; 528 529 nr_e820_entries = params->e820_entries; 530 if (nr_e820_entries >= E820MAX) 531 return 1; 532 533 memcpy(¶ms->e820_map[nr_e820_entries], entry, 534 sizeof(struct e820entry)); 535 params->e820_entries++; 536 return 0; 537 } 538 539 static int memmap_entry_callback(u64 start, u64 end, void *arg) 540 { 541 struct crash_memmap_data *cmd = arg; 542 struct boot_params *params = cmd->params; 543 struct e820entry ei; 544 545 ei.addr = start; 546 ei.size = end - start + 1; 547 ei.type = cmd->type; 548 add_e820_entry(params, &ei); 549 550 return 0; 551 } 552 553 static int memmap_exclude_ranges(struct kimage *image, struct crash_mem *cmem, 554 unsigned long long mstart, 555 unsigned long long mend) 556 { 557 unsigned long start, end; 558 int ret = 0; 559 560 cmem->ranges[0].start = mstart; 561 cmem->ranges[0].end = mend; 562 cmem->nr_ranges = 1; 563 564 /* Exclude Backup region */ 565 start = image->arch.backup_load_addr; 566 end = start + image->arch.backup_src_sz - 1; 567 ret = exclude_mem_range(cmem, start, end); 568 if (ret) 569 return ret; 570 571 /* Exclude elf header region */ 572 start = image->arch.elf_load_addr; 573 end = start + image->arch.elf_headers_sz - 1; 574 return exclude_mem_range(cmem, start, end); 575 } 576 577 /* Prepare memory map for crash dump kernel */ 578 int crash_setup_memmap_entries(struct kimage *image, struct boot_params *params) 579 { 580 int i, ret = 0; 581 unsigned long flags; 582 struct e820entry ei; 583 struct crash_memmap_data cmd; 584 struct crash_mem *cmem; 585 586 cmem = vzalloc(sizeof(struct crash_mem)); 587 if (!cmem) 588 return -ENOMEM; 589 590 memset(&cmd, 0, sizeof(struct crash_memmap_data)); 591 cmd.params = params; 592 593 /* Add first 640K segment */ 594 ei.addr = image->arch.backup_src_start; 595 ei.size = image->arch.backup_src_sz; 596 ei.type = E820_RAM; 597 add_e820_entry(params, &ei); 598 599 /* Add ACPI tables */ 600 cmd.type = E820_ACPI; 601 flags = IORESOURCE_MEM | IORESOURCE_BUSY; 602 walk_iomem_res("ACPI Tables", flags, 0, -1, &cmd, 603 memmap_entry_callback); 604 605 /* Add ACPI Non-volatile Storage */ 606 cmd.type = E820_NVS; 607 walk_iomem_res("ACPI Non-volatile Storage", flags, 0, -1, &cmd, 608 memmap_entry_callback); 609 610 /* Add crashk_low_res region */ 611 if (crashk_low_res.end) { 612 ei.addr = crashk_low_res.start; 613 ei.size = crashk_low_res.end - crashk_low_res.start + 1; 614 ei.type = E820_RAM; 615 add_e820_entry(params, &ei); 616 } 617 618 /* Exclude some ranges from crashk_res and add rest to memmap */ 619 ret = memmap_exclude_ranges(image, cmem, crashk_res.start, 620 crashk_res.end); 621 if (ret) 622 goto out; 623 624 for (i = 0; i < cmem->nr_ranges; i++) { 625 ei.size = cmem->ranges[i].end - cmem->ranges[i].start + 1; 626 627 /* If entry is less than a page, skip it */ 628 if (ei.size < PAGE_SIZE) 629 continue; 630 ei.addr = cmem->ranges[i].start; 631 ei.type = E820_RAM; 632 add_e820_entry(params, &ei); 633 } 634 635 out: 636 vfree(cmem); 637 return ret; 638 } 639 640 static int determine_backup_region(u64 start, u64 end, void *arg) 641 { 642 struct kimage *image = arg; 643 644 image->arch.backup_src_start = start; 645 image->arch.backup_src_sz = end - start + 1; 646 647 /* Expecting only one range for backup region */ 648 return 1; 649 } 650 651 int crash_load_segments(struct kimage *image) 652 { 653 unsigned long src_start, src_sz, elf_sz; 654 void *elf_addr; 655 int ret; 656 657 /* 658 * Determine and load a segment for backup area. First 640K RAM 659 * region is backup source 660 */ 661 662 ret = walk_system_ram_res(KEXEC_BACKUP_SRC_START, KEXEC_BACKUP_SRC_END, 663 image, determine_backup_region); 664 665 /* Zero or postive return values are ok */ 666 if (ret < 0) 667 return ret; 668 669 src_start = image->arch.backup_src_start; 670 src_sz = image->arch.backup_src_sz; 671 672 /* Add backup segment. */ 673 if (src_sz) { 674 /* 675 * Ideally there is no source for backup segment. This is 676 * copied in purgatory after crash. Just add a zero filled 677 * segment for now to make sure checksum logic works fine. 678 */ 679 ret = kexec_add_buffer(image, (char *)&crash_zero_bytes, 680 sizeof(crash_zero_bytes), src_sz, 681 PAGE_SIZE, 0, -1, 0, 682 &image->arch.backup_load_addr); 683 if (ret) 684 return ret; 685 pr_debug("Loaded backup region at 0x%lx backup_start=0x%lx memsz=0x%lx\n", 686 image->arch.backup_load_addr, src_start, src_sz); 687 } 688 689 /* Prepare elf headers and add a segment */ 690 ret = prepare_elf_headers(image, &elf_addr, &elf_sz); 691 if (ret) 692 return ret; 693 694 image->arch.elf_headers = elf_addr; 695 image->arch.elf_headers_sz = elf_sz; 696 697 ret = kexec_add_buffer(image, (char *)elf_addr, elf_sz, elf_sz, 698 ELF_CORE_HEADER_ALIGN, 0, -1, 0, 699 &image->arch.elf_load_addr); 700 if (ret) { 701 vfree((void *)image->arch.elf_headers); 702 return ret; 703 } 704 pr_debug("Loaded ELF headers at 0x%lx bufsz=0x%lx memsz=0x%lx\n", 705 image->arch.elf_load_addr, elf_sz, elf_sz); 706 707 return ret; 708 } 709 #endif /* CONFIG_KEXEC_FILE */ 710