xref: /openbmc/linux/arch/x86/kernel/crash.c (revision b240b419db5d624ce7a5a397d6f62a1a686009ec)
1 /*
2  * Architecture specific (i386/x86_64) functions for kexec based crash dumps.
3  *
4  * Created by: Hariprasad Nellitheertha (hari@in.ibm.com)
5  *
6  * Copyright (C) IBM Corporation, 2004. All rights reserved.
7  * Copyright (C) Red Hat Inc., 2014. All rights reserved.
8  * Authors:
9  *      Vivek Goyal <vgoyal@redhat.com>
10  *
11  */
12 
13 #define pr_fmt(fmt)	"kexec: " fmt
14 
15 #include <linux/types.h>
16 #include <linux/kernel.h>
17 #include <linux/smp.h>
18 #include <linux/reboot.h>
19 #include <linux/kexec.h>
20 #include <linux/delay.h>
21 #include <linux/elf.h>
22 #include <linux/elfcore.h>
23 #include <linux/export.h>
24 #include <linux/slab.h>
25 #include <linux/vmalloc.h>
26 
27 #include <asm/processor.h>
28 #include <asm/hardirq.h>
29 #include <asm/nmi.h>
30 #include <asm/hw_irq.h>
31 #include <asm/apic.h>
32 #include <asm/e820/types.h>
33 #include <asm/io_apic.h>
34 #include <asm/hpet.h>
35 #include <linux/kdebug.h>
36 #include <asm/cpu.h>
37 #include <asm/reboot.h>
38 #include <asm/virtext.h>
39 #include <asm/intel_pt.h>
40 
41 /* Alignment required for elf header segment */
42 #define ELF_CORE_HEADER_ALIGN   4096
43 
44 /* This primarily represents number of split ranges due to exclusion */
45 #define CRASH_MAX_RANGES	16
46 
47 struct crash_mem_range {
48 	u64 start, end;
49 };
50 
51 struct crash_mem {
52 	unsigned int nr_ranges;
53 	struct crash_mem_range ranges[CRASH_MAX_RANGES];
54 };
55 
56 /* Misc data about ram ranges needed to prepare elf headers */
57 struct crash_elf_data {
58 	struct kimage *image;
59 	/*
60 	 * Total number of ram ranges we have after various adjustments for
61 	 * crash reserved region, etc.
62 	 */
63 	unsigned int max_nr_ranges;
64 
65 	/* Pointer to elf header */
66 	void *ehdr;
67 	/* Pointer to next phdr */
68 	void *bufp;
69 	struct crash_mem mem;
70 };
71 
72 /* Used while preparing memory map entries for second kernel */
73 struct crash_memmap_data {
74 	struct boot_params *params;
75 	/* Type of memory */
76 	unsigned int type;
77 };
78 
79 /*
80  * This is used to VMCLEAR all VMCSs loaded on the
81  * processor. And when loading kvm_intel module, the
82  * callback function pointer will be assigned.
83  *
84  * protected by rcu.
85  */
86 crash_vmclear_fn __rcu *crash_vmclear_loaded_vmcss = NULL;
87 EXPORT_SYMBOL_GPL(crash_vmclear_loaded_vmcss);
88 unsigned long crash_zero_bytes;
89 
90 static inline void cpu_crash_vmclear_loaded_vmcss(void)
91 {
92 	crash_vmclear_fn *do_vmclear_operation = NULL;
93 
94 	rcu_read_lock();
95 	do_vmclear_operation = rcu_dereference(crash_vmclear_loaded_vmcss);
96 	if (do_vmclear_operation)
97 		do_vmclear_operation();
98 	rcu_read_unlock();
99 }
100 
101 #if defined(CONFIG_SMP) && defined(CONFIG_X86_LOCAL_APIC)
102 
103 static void kdump_nmi_callback(int cpu, struct pt_regs *regs)
104 {
105 #ifdef CONFIG_X86_32
106 	struct pt_regs fixed_regs;
107 
108 	if (!user_mode(regs)) {
109 		crash_fixup_ss_esp(&fixed_regs, regs);
110 		regs = &fixed_regs;
111 	}
112 #endif
113 	crash_save_cpu(regs, cpu);
114 
115 	/*
116 	 * VMCLEAR VMCSs loaded on all cpus if needed.
117 	 */
118 	cpu_crash_vmclear_loaded_vmcss();
119 
120 	/* Disable VMX or SVM if needed.
121 	 *
122 	 * We need to disable virtualization on all CPUs.
123 	 * Having VMX or SVM enabled on any CPU may break rebooting
124 	 * after the kdump kernel has finished its task.
125 	 */
126 	cpu_emergency_vmxoff();
127 	cpu_emergency_svm_disable();
128 
129 	/*
130 	 * Disable Intel PT to stop its logging
131 	 */
132 	cpu_emergency_stop_pt();
133 
134 	disable_local_APIC();
135 }
136 
137 void kdump_nmi_shootdown_cpus(void)
138 {
139 	nmi_shootdown_cpus(kdump_nmi_callback);
140 
141 	disable_local_APIC();
142 }
143 
144 /* Override the weak function in kernel/panic.c */
145 void crash_smp_send_stop(void)
146 {
147 	static int cpus_stopped;
148 
149 	if (cpus_stopped)
150 		return;
151 
152 	if (smp_ops.crash_stop_other_cpus)
153 		smp_ops.crash_stop_other_cpus();
154 	else
155 		smp_send_stop();
156 
157 	cpus_stopped = 1;
158 }
159 
160 #else
161 void crash_smp_send_stop(void)
162 {
163 	/* There are no cpus to shootdown */
164 }
165 #endif
166 
167 void native_machine_crash_shutdown(struct pt_regs *regs)
168 {
169 	/* This function is only called after the system
170 	 * has panicked or is otherwise in a critical state.
171 	 * The minimum amount of code to allow a kexec'd kernel
172 	 * to run successfully needs to happen here.
173 	 *
174 	 * In practice this means shooting down the other cpus in
175 	 * an SMP system.
176 	 */
177 	/* The kernel is broken so disable interrupts */
178 	local_irq_disable();
179 
180 	crash_smp_send_stop();
181 
182 	/*
183 	 * VMCLEAR VMCSs loaded on this cpu if needed.
184 	 */
185 	cpu_crash_vmclear_loaded_vmcss();
186 
187 	/* Booting kdump kernel with VMX or SVM enabled won't work,
188 	 * because (among other limitations) we can't disable paging
189 	 * with the virt flags.
190 	 */
191 	cpu_emergency_vmxoff();
192 	cpu_emergency_svm_disable();
193 
194 	/*
195 	 * Disable Intel PT to stop its logging
196 	 */
197 	cpu_emergency_stop_pt();
198 
199 #ifdef CONFIG_X86_IO_APIC
200 	/* Prevent crash_kexec() from deadlocking on ioapic_lock. */
201 	ioapic_zap_locks();
202 	clear_IO_APIC();
203 #endif
204 	lapic_shutdown();
205 	restore_boot_irq_mode();
206 #ifdef CONFIG_HPET_TIMER
207 	hpet_disable();
208 #endif
209 	crash_save_cpu(regs, safe_smp_processor_id());
210 }
211 
212 #ifdef CONFIG_KEXEC_FILE
213 static int get_nr_ram_ranges_callback(struct resource *res, void *arg)
214 {
215 	unsigned int *nr_ranges = arg;
216 
217 	(*nr_ranges)++;
218 	return 0;
219 }
220 
221 
222 /* Gather all the required information to prepare elf headers for ram regions */
223 static void fill_up_crash_elf_data(struct crash_elf_data *ced,
224 				   struct kimage *image)
225 {
226 	unsigned int nr_ranges = 0;
227 
228 	ced->image = image;
229 
230 	walk_system_ram_res(0, -1, &nr_ranges,
231 				get_nr_ram_ranges_callback);
232 
233 	ced->max_nr_ranges = nr_ranges;
234 
235 	/* Exclusion of crash region could split memory ranges */
236 	ced->max_nr_ranges++;
237 
238 	/* If crashk_low_res is not 0, another range split possible */
239 	if (crashk_low_res.end)
240 		ced->max_nr_ranges++;
241 }
242 
243 static int exclude_mem_range(struct crash_mem *mem,
244 		unsigned long long mstart, unsigned long long mend)
245 {
246 	int i, j;
247 	unsigned long long start, end;
248 	struct crash_mem_range temp_range = {0, 0};
249 
250 	for (i = 0; i < mem->nr_ranges; i++) {
251 		start = mem->ranges[i].start;
252 		end = mem->ranges[i].end;
253 
254 		if (mstart > end || mend < start)
255 			continue;
256 
257 		/* Truncate any area outside of range */
258 		if (mstart < start)
259 			mstart = start;
260 		if (mend > end)
261 			mend = end;
262 
263 		/* Found completely overlapping range */
264 		if (mstart == start && mend == end) {
265 			mem->ranges[i].start = 0;
266 			mem->ranges[i].end = 0;
267 			if (i < mem->nr_ranges - 1) {
268 				/* Shift rest of the ranges to left */
269 				for (j = i; j < mem->nr_ranges - 1; j++) {
270 					mem->ranges[j].start =
271 						mem->ranges[j+1].start;
272 					mem->ranges[j].end =
273 							mem->ranges[j+1].end;
274 				}
275 			}
276 			mem->nr_ranges--;
277 			return 0;
278 		}
279 
280 		if (mstart > start && mend < end) {
281 			/* Split original range */
282 			mem->ranges[i].end = mstart - 1;
283 			temp_range.start = mend + 1;
284 			temp_range.end = end;
285 		} else if (mstart != start)
286 			mem->ranges[i].end = mstart - 1;
287 		else
288 			mem->ranges[i].start = mend + 1;
289 		break;
290 	}
291 
292 	/* If a split happend, add the split to array */
293 	if (!temp_range.end)
294 		return 0;
295 
296 	/* Split happened */
297 	if (i == CRASH_MAX_RANGES - 1) {
298 		pr_err("Too many crash ranges after split\n");
299 		return -ENOMEM;
300 	}
301 
302 	/* Location where new range should go */
303 	j = i + 1;
304 	if (j < mem->nr_ranges) {
305 		/* Move over all ranges one slot towards the end */
306 		for (i = mem->nr_ranges - 1; i >= j; i--)
307 			mem->ranges[i + 1] = mem->ranges[i];
308 	}
309 
310 	mem->ranges[j].start = temp_range.start;
311 	mem->ranges[j].end = temp_range.end;
312 	mem->nr_ranges++;
313 	return 0;
314 }
315 
316 /*
317  * Look for any unwanted ranges between mstart, mend and remove them. This
318  * might lead to split and split ranges are put in ced->mem.ranges[] array
319  */
320 static int elf_header_exclude_ranges(struct crash_elf_data *ced,
321 		unsigned long long mstart, unsigned long long mend)
322 {
323 	struct crash_mem *cmem = &ced->mem;
324 	int ret = 0;
325 
326 	memset(cmem->ranges, 0, sizeof(cmem->ranges));
327 
328 	cmem->ranges[0].start = mstart;
329 	cmem->ranges[0].end = mend;
330 	cmem->nr_ranges = 1;
331 
332 	/* Exclude crashkernel region */
333 	ret = exclude_mem_range(cmem, crashk_res.start, crashk_res.end);
334 	if (ret)
335 		return ret;
336 
337 	if (crashk_low_res.end) {
338 		ret = exclude_mem_range(cmem, crashk_low_res.start, crashk_low_res.end);
339 		if (ret)
340 			return ret;
341 	}
342 
343 	return ret;
344 }
345 
346 static int prepare_elf64_ram_headers_callback(struct resource *res, void *arg)
347 {
348 	struct crash_elf_data *ced = arg;
349 	Elf64_Ehdr *ehdr;
350 	Elf64_Phdr *phdr;
351 	unsigned long mstart, mend;
352 	struct kimage *image = ced->image;
353 	struct crash_mem *cmem;
354 	int ret, i;
355 
356 	ehdr = ced->ehdr;
357 
358 	/* Exclude unwanted mem ranges */
359 	ret = elf_header_exclude_ranges(ced, res->start, res->end);
360 	if (ret)
361 		return ret;
362 
363 	/* Go through all the ranges in ced->mem.ranges[] and prepare phdr */
364 	cmem = &ced->mem;
365 
366 	for (i = 0; i < cmem->nr_ranges; i++) {
367 		mstart = cmem->ranges[i].start;
368 		mend = cmem->ranges[i].end;
369 
370 		phdr = ced->bufp;
371 		ced->bufp += sizeof(Elf64_Phdr);
372 
373 		phdr->p_type = PT_LOAD;
374 		phdr->p_flags = PF_R|PF_W|PF_X;
375 		phdr->p_offset  = mstart;
376 
377 		/*
378 		 * If a range matches backup region, adjust offset to backup
379 		 * segment.
380 		 */
381 		if (mstart == image->arch.backup_src_start &&
382 		    (mend - mstart + 1) == image->arch.backup_src_sz)
383 			phdr->p_offset = image->arch.backup_load_addr;
384 
385 		phdr->p_paddr = mstart;
386 		phdr->p_vaddr = (unsigned long long) __va(mstart);
387 		phdr->p_filesz = phdr->p_memsz = mend - mstart + 1;
388 		phdr->p_align = 0;
389 		ehdr->e_phnum++;
390 		pr_debug("Crash PT_LOAD elf header. phdr=%p vaddr=0x%llx, paddr=0x%llx, sz=0x%llx e_phnum=%d p_offset=0x%llx\n",
391 			phdr, phdr->p_vaddr, phdr->p_paddr, phdr->p_filesz,
392 			ehdr->e_phnum, phdr->p_offset);
393 	}
394 
395 	return ret;
396 }
397 
398 static int prepare_elf64_headers(struct crash_elf_data *ced,
399 		void **addr, unsigned long *sz)
400 {
401 	Elf64_Ehdr *ehdr;
402 	Elf64_Phdr *phdr;
403 	unsigned long nr_cpus = num_possible_cpus(), nr_phdr, elf_sz;
404 	unsigned char *buf, *bufp;
405 	unsigned int cpu;
406 	unsigned long long notes_addr;
407 	int ret;
408 
409 	/* extra phdr for vmcoreinfo elf note */
410 	nr_phdr = nr_cpus + 1;
411 	nr_phdr += ced->max_nr_ranges;
412 
413 	/*
414 	 * kexec-tools creates an extra PT_LOAD phdr for kernel text mapping
415 	 * area on x86_64 (ffffffff80000000 - ffffffffa0000000).
416 	 * I think this is required by tools like gdb. So same physical
417 	 * memory will be mapped in two elf headers. One will contain kernel
418 	 * text virtual addresses and other will have __va(physical) addresses.
419 	 */
420 
421 	nr_phdr++;
422 	elf_sz = sizeof(Elf64_Ehdr) + nr_phdr * sizeof(Elf64_Phdr);
423 	elf_sz = ALIGN(elf_sz, ELF_CORE_HEADER_ALIGN);
424 
425 	buf = vzalloc(elf_sz);
426 	if (!buf)
427 		return -ENOMEM;
428 
429 	bufp = buf;
430 	ehdr = (Elf64_Ehdr *)bufp;
431 	bufp += sizeof(Elf64_Ehdr);
432 	memcpy(ehdr->e_ident, ELFMAG, SELFMAG);
433 	ehdr->e_ident[EI_CLASS] = ELFCLASS64;
434 	ehdr->e_ident[EI_DATA] = ELFDATA2LSB;
435 	ehdr->e_ident[EI_VERSION] = EV_CURRENT;
436 	ehdr->e_ident[EI_OSABI] = ELF_OSABI;
437 	memset(ehdr->e_ident + EI_PAD, 0, EI_NIDENT - EI_PAD);
438 	ehdr->e_type = ET_CORE;
439 	ehdr->e_machine = ELF_ARCH;
440 	ehdr->e_version = EV_CURRENT;
441 	ehdr->e_phoff = sizeof(Elf64_Ehdr);
442 	ehdr->e_ehsize = sizeof(Elf64_Ehdr);
443 	ehdr->e_phentsize = sizeof(Elf64_Phdr);
444 
445 	/* Prepare one phdr of type PT_NOTE for each present cpu */
446 	for_each_present_cpu(cpu) {
447 		phdr = (Elf64_Phdr *)bufp;
448 		bufp += sizeof(Elf64_Phdr);
449 		phdr->p_type = PT_NOTE;
450 		notes_addr = per_cpu_ptr_to_phys(per_cpu_ptr(crash_notes, cpu));
451 		phdr->p_offset = phdr->p_paddr = notes_addr;
452 		phdr->p_filesz = phdr->p_memsz = sizeof(note_buf_t);
453 		(ehdr->e_phnum)++;
454 	}
455 
456 	/* Prepare one PT_NOTE header for vmcoreinfo */
457 	phdr = (Elf64_Phdr *)bufp;
458 	bufp += sizeof(Elf64_Phdr);
459 	phdr->p_type = PT_NOTE;
460 	phdr->p_offset = phdr->p_paddr = paddr_vmcoreinfo_note();
461 	phdr->p_filesz = phdr->p_memsz = VMCOREINFO_NOTE_SIZE;
462 	(ehdr->e_phnum)++;
463 
464 #ifdef CONFIG_X86_64
465 	/* Prepare PT_LOAD type program header for kernel text region */
466 	phdr = (Elf64_Phdr *)bufp;
467 	bufp += sizeof(Elf64_Phdr);
468 	phdr->p_type = PT_LOAD;
469 	phdr->p_flags = PF_R|PF_W|PF_X;
470 	phdr->p_vaddr = (Elf64_Addr)_text;
471 	phdr->p_filesz = phdr->p_memsz = _end - _text;
472 	phdr->p_offset = phdr->p_paddr = __pa_symbol(_text);
473 	(ehdr->e_phnum)++;
474 #endif
475 
476 	/* Prepare PT_LOAD headers for system ram chunks. */
477 	ced->ehdr = ehdr;
478 	ced->bufp = bufp;
479 	ret = walk_system_ram_res(0, -1, ced,
480 			prepare_elf64_ram_headers_callback);
481 	if (ret < 0)
482 		return ret;
483 
484 	*addr = buf;
485 	*sz = elf_sz;
486 	return 0;
487 }
488 
489 /* Prepare elf headers. Return addr and size */
490 static int prepare_elf_headers(struct kimage *image, void **addr,
491 					unsigned long *sz)
492 {
493 	struct crash_elf_data *ced;
494 	int ret;
495 
496 	ced = kzalloc(sizeof(*ced), GFP_KERNEL);
497 	if (!ced)
498 		return -ENOMEM;
499 
500 	fill_up_crash_elf_data(ced, image);
501 
502 	/* By default prepare 64bit headers */
503 	ret =  prepare_elf64_headers(ced, addr, sz);
504 	kfree(ced);
505 	return ret;
506 }
507 
508 static int add_e820_entry(struct boot_params *params, struct e820_entry *entry)
509 {
510 	unsigned int nr_e820_entries;
511 
512 	nr_e820_entries = params->e820_entries;
513 	if (nr_e820_entries >= E820_MAX_ENTRIES_ZEROPAGE)
514 		return 1;
515 
516 	memcpy(&params->e820_table[nr_e820_entries], entry,
517 			sizeof(struct e820_entry));
518 	params->e820_entries++;
519 	return 0;
520 }
521 
522 static int memmap_entry_callback(struct resource *res, void *arg)
523 {
524 	struct crash_memmap_data *cmd = arg;
525 	struct boot_params *params = cmd->params;
526 	struct e820_entry ei;
527 
528 	ei.addr = res->start;
529 	ei.size = resource_size(res);
530 	ei.type = cmd->type;
531 	add_e820_entry(params, &ei);
532 
533 	return 0;
534 }
535 
536 static int memmap_exclude_ranges(struct kimage *image, struct crash_mem *cmem,
537 				 unsigned long long mstart,
538 				 unsigned long long mend)
539 {
540 	unsigned long start, end;
541 	int ret = 0;
542 
543 	cmem->ranges[0].start = mstart;
544 	cmem->ranges[0].end = mend;
545 	cmem->nr_ranges = 1;
546 
547 	/* Exclude Backup region */
548 	start = image->arch.backup_load_addr;
549 	end = start + image->arch.backup_src_sz - 1;
550 	ret = exclude_mem_range(cmem, start, end);
551 	if (ret)
552 		return ret;
553 
554 	/* Exclude elf header region */
555 	start = image->arch.elf_load_addr;
556 	end = start + image->arch.elf_headers_sz - 1;
557 	return exclude_mem_range(cmem, start, end);
558 }
559 
560 /* Prepare memory map for crash dump kernel */
561 int crash_setup_memmap_entries(struct kimage *image, struct boot_params *params)
562 {
563 	int i, ret = 0;
564 	unsigned long flags;
565 	struct e820_entry ei;
566 	struct crash_memmap_data cmd;
567 	struct crash_mem *cmem;
568 
569 	cmem = vzalloc(sizeof(struct crash_mem));
570 	if (!cmem)
571 		return -ENOMEM;
572 
573 	memset(&cmd, 0, sizeof(struct crash_memmap_data));
574 	cmd.params = params;
575 
576 	/* Add first 640K segment */
577 	ei.addr = image->arch.backup_src_start;
578 	ei.size = image->arch.backup_src_sz;
579 	ei.type = E820_TYPE_RAM;
580 	add_e820_entry(params, &ei);
581 
582 	/* Add ACPI tables */
583 	cmd.type = E820_TYPE_ACPI;
584 	flags = IORESOURCE_MEM | IORESOURCE_BUSY;
585 	walk_iomem_res_desc(IORES_DESC_ACPI_TABLES, flags, 0, -1, &cmd,
586 		       memmap_entry_callback);
587 
588 	/* Add ACPI Non-volatile Storage */
589 	cmd.type = E820_TYPE_NVS;
590 	walk_iomem_res_desc(IORES_DESC_ACPI_NV_STORAGE, flags, 0, -1, &cmd,
591 			memmap_entry_callback);
592 
593 	/* Add crashk_low_res region */
594 	if (crashk_low_res.end) {
595 		ei.addr = crashk_low_res.start;
596 		ei.size = crashk_low_res.end - crashk_low_res.start + 1;
597 		ei.type = E820_TYPE_RAM;
598 		add_e820_entry(params, &ei);
599 	}
600 
601 	/* Exclude some ranges from crashk_res and add rest to memmap */
602 	ret = memmap_exclude_ranges(image, cmem, crashk_res.start,
603 						crashk_res.end);
604 	if (ret)
605 		goto out;
606 
607 	for (i = 0; i < cmem->nr_ranges; i++) {
608 		ei.size = cmem->ranges[i].end - cmem->ranges[i].start + 1;
609 
610 		/* If entry is less than a page, skip it */
611 		if (ei.size < PAGE_SIZE)
612 			continue;
613 		ei.addr = cmem->ranges[i].start;
614 		ei.type = E820_TYPE_RAM;
615 		add_e820_entry(params, &ei);
616 	}
617 
618 out:
619 	vfree(cmem);
620 	return ret;
621 }
622 
623 static int determine_backup_region(struct resource *res, void *arg)
624 {
625 	struct kimage *image = arg;
626 
627 	image->arch.backup_src_start = res->start;
628 	image->arch.backup_src_sz = resource_size(res);
629 
630 	/* Expecting only one range for backup region */
631 	return 1;
632 }
633 
634 int crash_load_segments(struct kimage *image)
635 {
636 	int ret;
637 	struct kexec_buf kbuf = { .image = image, .buf_min = 0,
638 				  .buf_max = ULONG_MAX, .top_down = false };
639 
640 	/*
641 	 * Determine and load a segment for backup area. First 640K RAM
642 	 * region is backup source
643 	 */
644 
645 	ret = walk_system_ram_res(KEXEC_BACKUP_SRC_START, KEXEC_BACKUP_SRC_END,
646 				image, determine_backup_region);
647 
648 	/* Zero or postive return values are ok */
649 	if (ret < 0)
650 		return ret;
651 
652 	/* Add backup segment. */
653 	if (image->arch.backup_src_sz) {
654 		kbuf.buffer = &crash_zero_bytes;
655 		kbuf.bufsz = sizeof(crash_zero_bytes);
656 		kbuf.memsz = image->arch.backup_src_sz;
657 		kbuf.buf_align = PAGE_SIZE;
658 		/*
659 		 * Ideally there is no source for backup segment. This is
660 		 * copied in purgatory after crash. Just add a zero filled
661 		 * segment for now to make sure checksum logic works fine.
662 		 */
663 		ret = kexec_add_buffer(&kbuf);
664 		if (ret)
665 			return ret;
666 		image->arch.backup_load_addr = kbuf.mem;
667 		pr_debug("Loaded backup region at 0x%lx backup_start=0x%lx memsz=0x%lx\n",
668 			 image->arch.backup_load_addr,
669 			 image->arch.backup_src_start, kbuf.memsz);
670 	}
671 
672 	/* Prepare elf headers and add a segment */
673 	ret = prepare_elf_headers(image, &kbuf.buffer, &kbuf.bufsz);
674 	if (ret)
675 		return ret;
676 
677 	image->arch.elf_headers = kbuf.buffer;
678 	image->arch.elf_headers_sz = kbuf.bufsz;
679 
680 	kbuf.memsz = kbuf.bufsz;
681 	kbuf.buf_align = ELF_CORE_HEADER_ALIGN;
682 	ret = kexec_add_buffer(&kbuf);
683 	if (ret) {
684 		vfree((void *)image->arch.elf_headers);
685 		return ret;
686 	}
687 	image->arch.elf_load_addr = kbuf.mem;
688 	pr_debug("Loaded ELF headers at 0x%lx bufsz=0x%lx memsz=0x%lx\n",
689 		 image->arch.elf_load_addr, kbuf.bufsz, kbuf.bufsz);
690 
691 	return ret;
692 }
693 #endif /* CONFIG_KEXEC_FILE */
694