1 /* 2 * Architecture specific (i386/x86_64) functions for kexec based crash dumps. 3 * 4 * Created by: Hariprasad Nellitheertha (hari@in.ibm.com) 5 * 6 * Copyright (C) IBM Corporation, 2004. All rights reserved. 7 * Copyright (C) Red Hat Inc., 2014. All rights reserved. 8 * Authors: 9 * Vivek Goyal <vgoyal@redhat.com> 10 * 11 */ 12 13 #define pr_fmt(fmt) "kexec: " fmt 14 15 #include <linux/types.h> 16 #include <linux/kernel.h> 17 #include <linux/smp.h> 18 #include <linux/reboot.h> 19 #include <linux/kexec.h> 20 #include <linux/delay.h> 21 #include <linux/elf.h> 22 #include <linux/elfcore.h> 23 #include <linux/export.h> 24 #include <linux/slab.h> 25 #include <linux/vmalloc.h> 26 27 #include <asm/processor.h> 28 #include <asm/hardirq.h> 29 #include <asm/nmi.h> 30 #include <asm/hw_irq.h> 31 #include <asm/apic.h> 32 #include <asm/e820/types.h> 33 #include <asm/io_apic.h> 34 #include <asm/hpet.h> 35 #include <linux/kdebug.h> 36 #include <asm/cpu.h> 37 #include <asm/reboot.h> 38 #include <asm/virtext.h> 39 #include <asm/intel_pt.h> 40 41 /* Alignment required for elf header segment */ 42 #define ELF_CORE_HEADER_ALIGN 4096 43 44 /* This primarily represents number of split ranges due to exclusion */ 45 #define CRASH_MAX_RANGES 16 46 47 struct crash_mem_range { 48 u64 start, end; 49 }; 50 51 struct crash_mem { 52 unsigned int nr_ranges; 53 struct crash_mem_range ranges[CRASH_MAX_RANGES]; 54 }; 55 56 /* Misc data about ram ranges needed to prepare elf headers */ 57 struct crash_elf_data { 58 struct kimage *image; 59 /* 60 * Total number of ram ranges we have after various adjustments for 61 * crash reserved region, etc. 62 */ 63 unsigned int max_nr_ranges; 64 65 /* Pointer to elf header */ 66 void *ehdr; 67 /* Pointer to next phdr */ 68 void *bufp; 69 struct crash_mem mem; 70 }; 71 72 /* Used while preparing memory map entries for second kernel */ 73 struct crash_memmap_data { 74 struct boot_params *params; 75 /* Type of memory */ 76 unsigned int type; 77 }; 78 79 /* 80 * This is used to VMCLEAR all VMCSs loaded on the 81 * processor. And when loading kvm_intel module, the 82 * callback function pointer will be assigned. 83 * 84 * protected by rcu. 85 */ 86 crash_vmclear_fn __rcu *crash_vmclear_loaded_vmcss = NULL; 87 EXPORT_SYMBOL_GPL(crash_vmclear_loaded_vmcss); 88 unsigned long crash_zero_bytes; 89 90 static inline void cpu_crash_vmclear_loaded_vmcss(void) 91 { 92 crash_vmclear_fn *do_vmclear_operation = NULL; 93 94 rcu_read_lock(); 95 do_vmclear_operation = rcu_dereference(crash_vmclear_loaded_vmcss); 96 if (do_vmclear_operation) 97 do_vmclear_operation(); 98 rcu_read_unlock(); 99 } 100 101 #if defined(CONFIG_SMP) && defined(CONFIG_X86_LOCAL_APIC) 102 103 static void kdump_nmi_callback(int cpu, struct pt_regs *regs) 104 { 105 #ifdef CONFIG_X86_32 106 struct pt_regs fixed_regs; 107 108 if (!user_mode(regs)) { 109 crash_fixup_ss_esp(&fixed_regs, regs); 110 regs = &fixed_regs; 111 } 112 #endif 113 crash_save_cpu(regs, cpu); 114 115 /* 116 * VMCLEAR VMCSs loaded on all cpus if needed. 117 */ 118 cpu_crash_vmclear_loaded_vmcss(); 119 120 /* Disable VMX or SVM if needed. 121 * 122 * We need to disable virtualization on all CPUs. 123 * Having VMX or SVM enabled on any CPU may break rebooting 124 * after the kdump kernel has finished its task. 125 */ 126 cpu_emergency_vmxoff(); 127 cpu_emergency_svm_disable(); 128 129 /* 130 * Disable Intel PT to stop its logging 131 */ 132 cpu_emergency_stop_pt(); 133 134 disable_local_APIC(); 135 } 136 137 void kdump_nmi_shootdown_cpus(void) 138 { 139 nmi_shootdown_cpus(kdump_nmi_callback); 140 141 disable_local_APIC(); 142 } 143 144 /* Override the weak function in kernel/panic.c */ 145 void crash_smp_send_stop(void) 146 { 147 static int cpus_stopped; 148 149 if (cpus_stopped) 150 return; 151 152 if (smp_ops.crash_stop_other_cpus) 153 smp_ops.crash_stop_other_cpus(); 154 else 155 smp_send_stop(); 156 157 cpus_stopped = 1; 158 } 159 160 #else 161 void crash_smp_send_stop(void) 162 { 163 /* There are no cpus to shootdown */ 164 } 165 #endif 166 167 void native_machine_crash_shutdown(struct pt_regs *regs) 168 { 169 /* This function is only called after the system 170 * has panicked or is otherwise in a critical state. 171 * The minimum amount of code to allow a kexec'd kernel 172 * to run successfully needs to happen here. 173 * 174 * In practice this means shooting down the other cpus in 175 * an SMP system. 176 */ 177 /* The kernel is broken so disable interrupts */ 178 local_irq_disable(); 179 180 crash_smp_send_stop(); 181 182 /* 183 * VMCLEAR VMCSs loaded on this cpu if needed. 184 */ 185 cpu_crash_vmclear_loaded_vmcss(); 186 187 /* Booting kdump kernel with VMX or SVM enabled won't work, 188 * because (among other limitations) we can't disable paging 189 * with the virt flags. 190 */ 191 cpu_emergency_vmxoff(); 192 cpu_emergency_svm_disable(); 193 194 /* 195 * Disable Intel PT to stop its logging 196 */ 197 cpu_emergency_stop_pt(); 198 199 #ifdef CONFIG_X86_IO_APIC 200 /* Prevent crash_kexec() from deadlocking on ioapic_lock. */ 201 ioapic_zap_locks(); 202 clear_IO_APIC(); 203 #endif 204 lapic_shutdown(); 205 restore_boot_irq_mode(); 206 #ifdef CONFIG_HPET_TIMER 207 hpet_disable(); 208 #endif 209 crash_save_cpu(regs, safe_smp_processor_id()); 210 } 211 212 #ifdef CONFIG_KEXEC_FILE 213 static int get_nr_ram_ranges_callback(struct resource *res, void *arg) 214 { 215 unsigned int *nr_ranges = arg; 216 217 (*nr_ranges)++; 218 return 0; 219 } 220 221 222 /* Gather all the required information to prepare elf headers for ram regions */ 223 static void fill_up_crash_elf_data(struct crash_elf_data *ced, 224 struct kimage *image) 225 { 226 unsigned int nr_ranges = 0; 227 228 ced->image = image; 229 230 walk_system_ram_res(0, -1, &nr_ranges, 231 get_nr_ram_ranges_callback); 232 233 ced->max_nr_ranges = nr_ranges; 234 235 /* Exclusion of crash region could split memory ranges */ 236 ced->max_nr_ranges++; 237 238 /* If crashk_low_res is not 0, another range split possible */ 239 if (crashk_low_res.end) 240 ced->max_nr_ranges++; 241 } 242 243 static int exclude_mem_range(struct crash_mem *mem, 244 unsigned long long mstart, unsigned long long mend) 245 { 246 int i, j; 247 unsigned long long start, end; 248 struct crash_mem_range temp_range = {0, 0}; 249 250 for (i = 0; i < mem->nr_ranges; i++) { 251 start = mem->ranges[i].start; 252 end = mem->ranges[i].end; 253 254 if (mstart > end || mend < start) 255 continue; 256 257 /* Truncate any area outside of range */ 258 if (mstart < start) 259 mstart = start; 260 if (mend > end) 261 mend = end; 262 263 /* Found completely overlapping range */ 264 if (mstart == start && mend == end) { 265 mem->ranges[i].start = 0; 266 mem->ranges[i].end = 0; 267 if (i < mem->nr_ranges - 1) { 268 /* Shift rest of the ranges to left */ 269 for (j = i; j < mem->nr_ranges - 1; j++) { 270 mem->ranges[j].start = 271 mem->ranges[j+1].start; 272 mem->ranges[j].end = 273 mem->ranges[j+1].end; 274 } 275 } 276 mem->nr_ranges--; 277 return 0; 278 } 279 280 if (mstart > start && mend < end) { 281 /* Split original range */ 282 mem->ranges[i].end = mstart - 1; 283 temp_range.start = mend + 1; 284 temp_range.end = end; 285 } else if (mstart != start) 286 mem->ranges[i].end = mstart - 1; 287 else 288 mem->ranges[i].start = mend + 1; 289 break; 290 } 291 292 /* If a split happend, add the split to array */ 293 if (!temp_range.end) 294 return 0; 295 296 /* Split happened */ 297 if (i == CRASH_MAX_RANGES - 1) { 298 pr_err("Too many crash ranges after split\n"); 299 return -ENOMEM; 300 } 301 302 /* Location where new range should go */ 303 j = i + 1; 304 if (j < mem->nr_ranges) { 305 /* Move over all ranges one slot towards the end */ 306 for (i = mem->nr_ranges - 1; i >= j; i--) 307 mem->ranges[i + 1] = mem->ranges[i]; 308 } 309 310 mem->ranges[j].start = temp_range.start; 311 mem->ranges[j].end = temp_range.end; 312 mem->nr_ranges++; 313 return 0; 314 } 315 316 /* 317 * Look for any unwanted ranges between mstart, mend and remove them. This 318 * might lead to split and split ranges are put in ced->mem.ranges[] array 319 */ 320 static int elf_header_exclude_ranges(struct crash_elf_data *ced, 321 unsigned long long mstart, unsigned long long mend) 322 { 323 struct crash_mem *cmem = &ced->mem; 324 int ret = 0; 325 326 memset(cmem->ranges, 0, sizeof(cmem->ranges)); 327 328 cmem->ranges[0].start = mstart; 329 cmem->ranges[0].end = mend; 330 cmem->nr_ranges = 1; 331 332 /* Exclude crashkernel region */ 333 ret = exclude_mem_range(cmem, crashk_res.start, crashk_res.end); 334 if (ret) 335 return ret; 336 337 if (crashk_low_res.end) { 338 ret = exclude_mem_range(cmem, crashk_low_res.start, crashk_low_res.end); 339 if (ret) 340 return ret; 341 } 342 343 return ret; 344 } 345 346 static int prepare_elf64_ram_headers_callback(struct resource *res, void *arg) 347 { 348 struct crash_elf_data *ced = arg; 349 Elf64_Ehdr *ehdr; 350 Elf64_Phdr *phdr; 351 unsigned long mstart, mend; 352 struct kimage *image = ced->image; 353 struct crash_mem *cmem; 354 int ret, i; 355 356 ehdr = ced->ehdr; 357 358 /* Exclude unwanted mem ranges */ 359 ret = elf_header_exclude_ranges(ced, res->start, res->end); 360 if (ret) 361 return ret; 362 363 /* Go through all the ranges in ced->mem.ranges[] and prepare phdr */ 364 cmem = &ced->mem; 365 366 for (i = 0; i < cmem->nr_ranges; i++) { 367 mstart = cmem->ranges[i].start; 368 mend = cmem->ranges[i].end; 369 370 phdr = ced->bufp; 371 ced->bufp += sizeof(Elf64_Phdr); 372 373 phdr->p_type = PT_LOAD; 374 phdr->p_flags = PF_R|PF_W|PF_X; 375 phdr->p_offset = mstart; 376 377 /* 378 * If a range matches backup region, adjust offset to backup 379 * segment. 380 */ 381 if (mstart == image->arch.backup_src_start && 382 (mend - mstart + 1) == image->arch.backup_src_sz) 383 phdr->p_offset = image->arch.backup_load_addr; 384 385 phdr->p_paddr = mstart; 386 phdr->p_vaddr = (unsigned long long) __va(mstart); 387 phdr->p_filesz = phdr->p_memsz = mend - mstart + 1; 388 phdr->p_align = 0; 389 ehdr->e_phnum++; 390 pr_debug("Crash PT_LOAD elf header. phdr=%p vaddr=0x%llx, paddr=0x%llx, sz=0x%llx e_phnum=%d p_offset=0x%llx\n", 391 phdr, phdr->p_vaddr, phdr->p_paddr, phdr->p_filesz, 392 ehdr->e_phnum, phdr->p_offset); 393 } 394 395 return ret; 396 } 397 398 static int prepare_elf64_headers(struct crash_elf_data *ced, 399 void **addr, unsigned long *sz) 400 { 401 Elf64_Ehdr *ehdr; 402 Elf64_Phdr *phdr; 403 unsigned long nr_cpus = num_possible_cpus(), nr_phdr, elf_sz; 404 unsigned char *buf, *bufp; 405 unsigned int cpu; 406 unsigned long long notes_addr; 407 int ret; 408 409 /* extra phdr for vmcoreinfo elf note */ 410 nr_phdr = nr_cpus + 1; 411 nr_phdr += ced->max_nr_ranges; 412 413 /* 414 * kexec-tools creates an extra PT_LOAD phdr for kernel text mapping 415 * area on x86_64 (ffffffff80000000 - ffffffffa0000000). 416 * I think this is required by tools like gdb. So same physical 417 * memory will be mapped in two elf headers. One will contain kernel 418 * text virtual addresses and other will have __va(physical) addresses. 419 */ 420 421 nr_phdr++; 422 elf_sz = sizeof(Elf64_Ehdr) + nr_phdr * sizeof(Elf64_Phdr); 423 elf_sz = ALIGN(elf_sz, ELF_CORE_HEADER_ALIGN); 424 425 buf = vzalloc(elf_sz); 426 if (!buf) 427 return -ENOMEM; 428 429 bufp = buf; 430 ehdr = (Elf64_Ehdr *)bufp; 431 bufp += sizeof(Elf64_Ehdr); 432 memcpy(ehdr->e_ident, ELFMAG, SELFMAG); 433 ehdr->e_ident[EI_CLASS] = ELFCLASS64; 434 ehdr->e_ident[EI_DATA] = ELFDATA2LSB; 435 ehdr->e_ident[EI_VERSION] = EV_CURRENT; 436 ehdr->e_ident[EI_OSABI] = ELF_OSABI; 437 memset(ehdr->e_ident + EI_PAD, 0, EI_NIDENT - EI_PAD); 438 ehdr->e_type = ET_CORE; 439 ehdr->e_machine = ELF_ARCH; 440 ehdr->e_version = EV_CURRENT; 441 ehdr->e_phoff = sizeof(Elf64_Ehdr); 442 ehdr->e_ehsize = sizeof(Elf64_Ehdr); 443 ehdr->e_phentsize = sizeof(Elf64_Phdr); 444 445 /* Prepare one phdr of type PT_NOTE for each present cpu */ 446 for_each_present_cpu(cpu) { 447 phdr = (Elf64_Phdr *)bufp; 448 bufp += sizeof(Elf64_Phdr); 449 phdr->p_type = PT_NOTE; 450 notes_addr = per_cpu_ptr_to_phys(per_cpu_ptr(crash_notes, cpu)); 451 phdr->p_offset = phdr->p_paddr = notes_addr; 452 phdr->p_filesz = phdr->p_memsz = sizeof(note_buf_t); 453 (ehdr->e_phnum)++; 454 } 455 456 /* Prepare one PT_NOTE header for vmcoreinfo */ 457 phdr = (Elf64_Phdr *)bufp; 458 bufp += sizeof(Elf64_Phdr); 459 phdr->p_type = PT_NOTE; 460 phdr->p_offset = phdr->p_paddr = paddr_vmcoreinfo_note(); 461 phdr->p_filesz = phdr->p_memsz = VMCOREINFO_NOTE_SIZE; 462 (ehdr->e_phnum)++; 463 464 #ifdef CONFIG_X86_64 465 /* Prepare PT_LOAD type program header for kernel text region */ 466 phdr = (Elf64_Phdr *)bufp; 467 bufp += sizeof(Elf64_Phdr); 468 phdr->p_type = PT_LOAD; 469 phdr->p_flags = PF_R|PF_W|PF_X; 470 phdr->p_vaddr = (Elf64_Addr)_text; 471 phdr->p_filesz = phdr->p_memsz = _end - _text; 472 phdr->p_offset = phdr->p_paddr = __pa_symbol(_text); 473 (ehdr->e_phnum)++; 474 #endif 475 476 /* Prepare PT_LOAD headers for system ram chunks. */ 477 ced->ehdr = ehdr; 478 ced->bufp = bufp; 479 ret = walk_system_ram_res(0, -1, ced, 480 prepare_elf64_ram_headers_callback); 481 if (ret < 0) 482 return ret; 483 484 *addr = buf; 485 *sz = elf_sz; 486 return 0; 487 } 488 489 /* Prepare elf headers. Return addr and size */ 490 static int prepare_elf_headers(struct kimage *image, void **addr, 491 unsigned long *sz) 492 { 493 struct crash_elf_data *ced; 494 int ret; 495 496 ced = kzalloc(sizeof(*ced), GFP_KERNEL); 497 if (!ced) 498 return -ENOMEM; 499 500 fill_up_crash_elf_data(ced, image); 501 502 /* By default prepare 64bit headers */ 503 ret = prepare_elf64_headers(ced, addr, sz); 504 kfree(ced); 505 return ret; 506 } 507 508 static int add_e820_entry(struct boot_params *params, struct e820_entry *entry) 509 { 510 unsigned int nr_e820_entries; 511 512 nr_e820_entries = params->e820_entries; 513 if (nr_e820_entries >= E820_MAX_ENTRIES_ZEROPAGE) 514 return 1; 515 516 memcpy(¶ms->e820_table[nr_e820_entries], entry, 517 sizeof(struct e820_entry)); 518 params->e820_entries++; 519 return 0; 520 } 521 522 static int memmap_entry_callback(struct resource *res, void *arg) 523 { 524 struct crash_memmap_data *cmd = arg; 525 struct boot_params *params = cmd->params; 526 struct e820_entry ei; 527 528 ei.addr = res->start; 529 ei.size = resource_size(res); 530 ei.type = cmd->type; 531 add_e820_entry(params, &ei); 532 533 return 0; 534 } 535 536 static int memmap_exclude_ranges(struct kimage *image, struct crash_mem *cmem, 537 unsigned long long mstart, 538 unsigned long long mend) 539 { 540 unsigned long start, end; 541 int ret = 0; 542 543 cmem->ranges[0].start = mstart; 544 cmem->ranges[0].end = mend; 545 cmem->nr_ranges = 1; 546 547 /* Exclude Backup region */ 548 start = image->arch.backup_load_addr; 549 end = start + image->arch.backup_src_sz - 1; 550 ret = exclude_mem_range(cmem, start, end); 551 if (ret) 552 return ret; 553 554 /* Exclude elf header region */ 555 start = image->arch.elf_load_addr; 556 end = start + image->arch.elf_headers_sz - 1; 557 return exclude_mem_range(cmem, start, end); 558 } 559 560 /* Prepare memory map for crash dump kernel */ 561 int crash_setup_memmap_entries(struct kimage *image, struct boot_params *params) 562 { 563 int i, ret = 0; 564 unsigned long flags; 565 struct e820_entry ei; 566 struct crash_memmap_data cmd; 567 struct crash_mem *cmem; 568 569 cmem = vzalloc(sizeof(struct crash_mem)); 570 if (!cmem) 571 return -ENOMEM; 572 573 memset(&cmd, 0, sizeof(struct crash_memmap_data)); 574 cmd.params = params; 575 576 /* Add first 640K segment */ 577 ei.addr = image->arch.backup_src_start; 578 ei.size = image->arch.backup_src_sz; 579 ei.type = E820_TYPE_RAM; 580 add_e820_entry(params, &ei); 581 582 /* Add ACPI tables */ 583 cmd.type = E820_TYPE_ACPI; 584 flags = IORESOURCE_MEM | IORESOURCE_BUSY; 585 walk_iomem_res_desc(IORES_DESC_ACPI_TABLES, flags, 0, -1, &cmd, 586 memmap_entry_callback); 587 588 /* Add ACPI Non-volatile Storage */ 589 cmd.type = E820_TYPE_NVS; 590 walk_iomem_res_desc(IORES_DESC_ACPI_NV_STORAGE, flags, 0, -1, &cmd, 591 memmap_entry_callback); 592 593 /* Add crashk_low_res region */ 594 if (crashk_low_res.end) { 595 ei.addr = crashk_low_res.start; 596 ei.size = crashk_low_res.end - crashk_low_res.start + 1; 597 ei.type = E820_TYPE_RAM; 598 add_e820_entry(params, &ei); 599 } 600 601 /* Exclude some ranges from crashk_res and add rest to memmap */ 602 ret = memmap_exclude_ranges(image, cmem, crashk_res.start, 603 crashk_res.end); 604 if (ret) 605 goto out; 606 607 for (i = 0; i < cmem->nr_ranges; i++) { 608 ei.size = cmem->ranges[i].end - cmem->ranges[i].start + 1; 609 610 /* If entry is less than a page, skip it */ 611 if (ei.size < PAGE_SIZE) 612 continue; 613 ei.addr = cmem->ranges[i].start; 614 ei.type = E820_TYPE_RAM; 615 add_e820_entry(params, &ei); 616 } 617 618 out: 619 vfree(cmem); 620 return ret; 621 } 622 623 static int determine_backup_region(struct resource *res, void *arg) 624 { 625 struct kimage *image = arg; 626 627 image->arch.backup_src_start = res->start; 628 image->arch.backup_src_sz = resource_size(res); 629 630 /* Expecting only one range for backup region */ 631 return 1; 632 } 633 634 int crash_load_segments(struct kimage *image) 635 { 636 int ret; 637 struct kexec_buf kbuf = { .image = image, .buf_min = 0, 638 .buf_max = ULONG_MAX, .top_down = false }; 639 640 /* 641 * Determine and load a segment for backup area. First 640K RAM 642 * region is backup source 643 */ 644 645 ret = walk_system_ram_res(KEXEC_BACKUP_SRC_START, KEXEC_BACKUP_SRC_END, 646 image, determine_backup_region); 647 648 /* Zero or postive return values are ok */ 649 if (ret < 0) 650 return ret; 651 652 /* Add backup segment. */ 653 if (image->arch.backup_src_sz) { 654 kbuf.buffer = &crash_zero_bytes; 655 kbuf.bufsz = sizeof(crash_zero_bytes); 656 kbuf.memsz = image->arch.backup_src_sz; 657 kbuf.buf_align = PAGE_SIZE; 658 /* 659 * Ideally there is no source for backup segment. This is 660 * copied in purgatory after crash. Just add a zero filled 661 * segment for now to make sure checksum logic works fine. 662 */ 663 ret = kexec_add_buffer(&kbuf); 664 if (ret) 665 return ret; 666 image->arch.backup_load_addr = kbuf.mem; 667 pr_debug("Loaded backup region at 0x%lx backup_start=0x%lx memsz=0x%lx\n", 668 image->arch.backup_load_addr, 669 image->arch.backup_src_start, kbuf.memsz); 670 } 671 672 /* Prepare elf headers and add a segment */ 673 ret = prepare_elf_headers(image, &kbuf.buffer, &kbuf.bufsz); 674 if (ret) 675 return ret; 676 677 image->arch.elf_headers = kbuf.buffer; 678 image->arch.elf_headers_sz = kbuf.bufsz; 679 680 kbuf.memsz = kbuf.bufsz; 681 kbuf.buf_align = ELF_CORE_HEADER_ALIGN; 682 ret = kexec_add_buffer(&kbuf); 683 if (ret) { 684 vfree((void *)image->arch.elf_headers); 685 return ret; 686 } 687 image->arch.elf_load_addr = kbuf.mem; 688 pr_debug("Loaded ELF headers at 0x%lx bufsz=0x%lx memsz=0x%lx\n", 689 image->arch.elf_load_addr, kbuf.bufsz, kbuf.bufsz); 690 691 return ret; 692 } 693 #endif /* CONFIG_KEXEC_FILE */ 694