1 /* 2 * Architecture specific (i386/x86_64) functions for kexec based crash dumps. 3 * 4 * Created by: Hariprasad Nellitheertha (hari@in.ibm.com) 5 * 6 * Copyright (C) IBM Corporation, 2004. All rights reserved. 7 * Copyright (C) Red Hat Inc., 2014. All rights reserved. 8 * Authors: 9 * Vivek Goyal <vgoyal@redhat.com> 10 * 11 */ 12 13 #define pr_fmt(fmt) "kexec: " fmt 14 15 #include <linux/types.h> 16 #include <linux/kernel.h> 17 #include <linux/smp.h> 18 #include <linux/reboot.h> 19 #include <linux/kexec.h> 20 #include <linux/delay.h> 21 #include <linux/elf.h> 22 #include <linux/elfcore.h> 23 #include <linux/module.h> 24 #include <linux/slab.h> 25 26 #include <asm/processor.h> 27 #include <asm/hardirq.h> 28 #include <asm/nmi.h> 29 #include <asm/hw_irq.h> 30 #include <asm/apic.h> 31 #include <asm/hpet.h> 32 #include <linux/kdebug.h> 33 #include <asm/cpu.h> 34 #include <asm/reboot.h> 35 #include <asm/virtext.h> 36 37 /* Alignment required for elf header segment */ 38 #define ELF_CORE_HEADER_ALIGN 4096 39 40 /* This primarily represents number of split ranges due to exclusion */ 41 #define CRASH_MAX_RANGES 16 42 43 struct crash_mem_range { 44 u64 start, end; 45 }; 46 47 struct crash_mem { 48 unsigned int nr_ranges; 49 struct crash_mem_range ranges[CRASH_MAX_RANGES]; 50 }; 51 52 /* Misc data about ram ranges needed to prepare elf headers */ 53 struct crash_elf_data { 54 struct kimage *image; 55 /* 56 * Total number of ram ranges we have after various adjustments for 57 * GART, crash reserved region etc. 58 */ 59 unsigned int max_nr_ranges; 60 unsigned long gart_start, gart_end; 61 62 /* Pointer to elf header */ 63 void *ehdr; 64 /* Pointer to next phdr */ 65 void *bufp; 66 struct crash_mem mem; 67 }; 68 69 /* Used while preparing memory map entries for second kernel */ 70 struct crash_memmap_data { 71 struct boot_params *params; 72 /* Type of memory */ 73 unsigned int type; 74 }; 75 76 int in_crash_kexec; 77 78 /* 79 * This is used to VMCLEAR all VMCSs loaded on the 80 * processor. And when loading kvm_intel module, the 81 * callback function pointer will be assigned. 82 * 83 * protected by rcu. 84 */ 85 crash_vmclear_fn __rcu *crash_vmclear_loaded_vmcss = NULL; 86 EXPORT_SYMBOL_GPL(crash_vmclear_loaded_vmcss); 87 unsigned long crash_zero_bytes; 88 89 static inline void cpu_crash_vmclear_loaded_vmcss(void) 90 { 91 crash_vmclear_fn *do_vmclear_operation = NULL; 92 93 rcu_read_lock(); 94 do_vmclear_operation = rcu_dereference(crash_vmclear_loaded_vmcss); 95 if (do_vmclear_operation) 96 do_vmclear_operation(); 97 rcu_read_unlock(); 98 } 99 100 #if defined(CONFIG_SMP) && defined(CONFIG_X86_LOCAL_APIC) 101 102 static void kdump_nmi_callback(int cpu, struct pt_regs *regs) 103 { 104 #ifdef CONFIG_X86_32 105 struct pt_regs fixed_regs; 106 107 if (!user_mode_vm(regs)) { 108 crash_fixup_ss_esp(&fixed_regs, regs); 109 regs = &fixed_regs; 110 } 111 #endif 112 crash_save_cpu(regs, cpu); 113 114 /* 115 * VMCLEAR VMCSs loaded on all cpus if needed. 116 */ 117 cpu_crash_vmclear_loaded_vmcss(); 118 119 /* Disable VMX or SVM if needed. 120 * 121 * We need to disable virtualization on all CPUs. 122 * Having VMX or SVM enabled on any CPU may break rebooting 123 * after the kdump kernel has finished its task. 124 */ 125 cpu_emergency_vmxoff(); 126 cpu_emergency_svm_disable(); 127 128 disable_local_APIC(); 129 } 130 131 static void kdump_nmi_shootdown_cpus(void) 132 { 133 in_crash_kexec = 1; 134 nmi_shootdown_cpus(kdump_nmi_callback); 135 136 disable_local_APIC(); 137 } 138 139 #else 140 static void kdump_nmi_shootdown_cpus(void) 141 { 142 /* There are no cpus to shootdown */ 143 } 144 #endif 145 146 void native_machine_crash_shutdown(struct pt_regs *regs) 147 { 148 /* This function is only called after the system 149 * has panicked or is otherwise in a critical state. 150 * The minimum amount of code to allow a kexec'd kernel 151 * to run successfully needs to happen here. 152 * 153 * In practice this means shooting down the other cpus in 154 * an SMP system. 155 */ 156 /* The kernel is broken so disable interrupts */ 157 local_irq_disable(); 158 159 kdump_nmi_shootdown_cpus(); 160 161 /* 162 * VMCLEAR VMCSs loaded on this cpu if needed. 163 */ 164 cpu_crash_vmclear_loaded_vmcss(); 165 166 /* Booting kdump kernel with VMX or SVM enabled won't work, 167 * because (among other limitations) we can't disable paging 168 * with the virt flags. 169 */ 170 cpu_emergency_vmxoff(); 171 cpu_emergency_svm_disable(); 172 173 #ifdef CONFIG_X86_IO_APIC 174 /* Prevent crash_kexec() from deadlocking on ioapic_lock. */ 175 ioapic_zap_locks(); 176 disable_IO_APIC(); 177 #endif 178 lapic_shutdown(); 179 #ifdef CONFIG_HPET_TIMER 180 hpet_disable(); 181 #endif 182 crash_save_cpu(regs, safe_smp_processor_id()); 183 } 184 185 #ifdef CONFIG_KEXEC_FILE 186 static int get_nr_ram_ranges_callback(unsigned long start_pfn, 187 unsigned long nr_pfn, void *arg) 188 { 189 int *nr_ranges = arg; 190 191 (*nr_ranges)++; 192 return 0; 193 } 194 195 static int get_gart_ranges_callback(u64 start, u64 end, void *arg) 196 { 197 struct crash_elf_data *ced = arg; 198 199 ced->gart_start = start; 200 ced->gart_end = end; 201 202 /* Not expecting more than 1 gart aperture */ 203 return 1; 204 } 205 206 207 /* Gather all the required information to prepare elf headers for ram regions */ 208 static void fill_up_crash_elf_data(struct crash_elf_data *ced, 209 struct kimage *image) 210 { 211 unsigned int nr_ranges = 0; 212 213 ced->image = image; 214 215 walk_system_ram_range(0, -1, &nr_ranges, 216 get_nr_ram_ranges_callback); 217 218 ced->max_nr_ranges = nr_ranges; 219 220 /* 221 * We don't create ELF headers for GART aperture as an attempt 222 * to dump this memory in second kernel leads to hang/crash. 223 * If gart aperture is present, one needs to exclude that region 224 * and that could lead to need of extra phdr. 225 */ 226 walk_iomem_res("GART", IORESOURCE_MEM, 0, -1, 227 ced, get_gart_ranges_callback); 228 229 /* 230 * If we have gart region, excluding that could potentially split 231 * a memory range, resulting in extra header. Account for that. 232 */ 233 if (ced->gart_end) 234 ced->max_nr_ranges++; 235 236 /* Exclusion of crash region could split memory ranges */ 237 ced->max_nr_ranges++; 238 239 /* If crashk_low_res is not 0, another range split possible */ 240 if (crashk_low_res.end) 241 ced->max_nr_ranges++; 242 } 243 244 static int exclude_mem_range(struct crash_mem *mem, 245 unsigned long long mstart, unsigned long long mend) 246 { 247 int i, j; 248 unsigned long long start, end; 249 struct crash_mem_range temp_range = {0, 0}; 250 251 for (i = 0; i < mem->nr_ranges; i++) { 252 start = mem->ranges[i].start; 253 end = mem->ranges[i].end; 254 255 if (mstart > end || mend < start) 256 continue; 257 258 /* Truncate any area outside of range */ 259 if (mstart < start) 260 mstart = start; 261 if (mend > end) 262 mend = end; 263 264 /* Found completely overlapping range */ 265 if (mstart == start && mend == end) { 266 mem->ranges[i].start = 0; 267 mem->ranges[i].end = 0; 268 if (i < mem->nr_ranges - 1) { 269 /* Shift rest of the ranges to left */ 270 for (j = i; j < mem->nr_ranges - 1; j++) { 271 mem->ranges[j].start = 272 mem->ranges[j+1].start; 273 mem->ranges[j].end = 274 mem->ranges[j+1].end; 275 } 276 } 277 mem->nr_ranges--; 278 return 0; 279 } 280 281 if (mstart > start && mend < end) { 282 /* Split original range */ 283 mem->ranges[i].end = mstart - 1; 284 temp_range.start = mend + 1; 285 temp_range.end = end; 286 } else if (mstart != start) 287 mem->ranges[i].end = mstart - 1; 288 else 289 mem->ranges[i].start = mend + 1; 290 break; 291 } 292 293 /* If a split happend, add the split to array */ 294 if (!temp_range.end) 295 return 0; 296 297 /* Split happened */ 298 if (i == CRASH_MAX_RANGES - 1) { 299 pr_err("Too many crash ranges after split\n"); 300 return -ENOMEM; 301 } 302 303 /* Location where new range should go */ 304 j = i + 1; 305 if (j < mem->nr_ranges) { 306 /* Move over all ranges one slot towards the end */ 307 for (i = mem->nr_ranges - 1; i >= j; i--) 308 mem->ranges[i + 1] = mem->ranges[i]; 309 } 310 311 mem->ranges[j].start = temp_range.start; 312 mem->ranges[j].end = temp_range.end; 313 mem->nr_ranges++; 314 return 0; 315 } 316 317 /* 318 * Look for any unwanted ranges between mstart, mend and remove them. This 319 * might lead to split and split ranges are put in ced->mem.ranges[] array 320 */ 321 static int elf_header_exclude_ranges(struct crash_elf_data *ced, 322 unsigned long long mstart, unsigned long long mend) 323 { 324 struct crash_mem *cmem = &ced->mem; 325 int ret = 0; 326 327 memset(cmem->ranges, 0, sizeof(cmem->ranges)); 328 329 cmem->ranges[0].start = mstart; 330 cmem->ranges[0].end = mend; 331 cmem->nr_ranges = 1; 332 333 /* Exclude crashkernel region */ 334 ret = exclude_mem_range(cmem, crashk_res.start, crashk_res.end); 335 if (ret) 336 return ret; 337 338 if (crashk_low_res.end) { 339 ret = exclude_mem_range(cmem, crashk_low_res.start, crashk_low_res.end); 340 if (ret) 341 return ret; 342 } 343 344 /* Exclude GART region */ 345 if (ced->gart_end) { 346 ret = exclude_mem_range(cmem, ced->gart_start, ced->gart_end); 347 if (ret) 348 return ret; 349 } 350 351 return ret; 352 } 353 354 static int prepare_elf64_ram_headers_callback(u64 start, u64 end, void *arg) 355 { 356 struct crash_elf_data *ced = arg; 357 Elf64_Ehdr *ehdr; 358 Elf64_Phdr *phdr; 359 unsigned long mstart, mend; 360 struct kimage *image = ced->image; 361 struct crash_mem *cmem; 362 int ret, i; 363 364 ehdr = ced->ehdr; 365 366 /* Exclude unwanted mem ranges */ 367 ret = elf_header_exclude_ranges(ced, start, end); 368 if (ret) 369 return ret; 370 371 /* Go through all the ranges in ced->mem.ranges[] and prepare phdr */ 372 cmem = &ced->mem; 373 374 for (i = 0; i < cmem->nr_ranges; i++) { 375 mstart = cmem->ranges[i].start; 376 mend = cmem->ranges[i].end; 377 378 phdr = ced->bufp; 379 ced->bufp += sizeof(Elf64_Phdr); 380 381 phdr->p_type = PT_LOAD; 382 phdr->p_flags = PF_R|PF_W|PF_X; 383 phdr->p_offset = mstart; 384 385 /* 386 * If a range matches backup region, adjust offset to backup 387 * segment. 388 */ 389 if (mstart == image->arch.backup_src_start && 390 (mend - mstart + 1) == image->arch.backup_src_sz) 391 phdr->p_offset = image->arch.backup_load_addr; 392 393 phdr->p_paddr = mstart; 394 phdr->p_vaddr = (unsigned long long) __va(mstart); 395 phdr->p_filesz = phdr->p_memsz = mend - mstart + 1; 396 phdr->p_align = 0; 397 ehdr->e_phnum++; 398 pr_debug("Crash PT_LOAD elf header. phdr=%p vaddr=0x%llx, paddr=0x%llx, sz=0x%llx e_phnum=%d p_offset=0x%llx\n", 399 phdr, phdr->p_vaddr, phdr->p_paddr, phdr->p_filesz, 400 ehdr->e_phnum, phdr->p_offset); 401 } 402 403 return ret; 404 } 405 406 static int prepare_elf64_headers(struct crash_elf_data *ced, 407 void **addr, unsigned long *sz) 408 { 409 Elf64_Ehdr *ehdr; 410 Elf64_Phdr *phdr; 411 unsigned long nr_cpus = num_possible_cpus(), nr_phdr, elf_sz; 412 unsigned char *buf, *bufp; 413 unsigned int cpu; 414 unsigned long long notes_addr; 415 int ret; 416 417 /* extra phdr for vmcoreinfo elf note */ 418 nr_phdr = nr_cpus + 1; 419 nr_phdr += ced->max_nr_ranges; 420 421 /* 422 * kexec-tools creates an extra PT_LOAD phdr for kernel text mapping 423 * area on x86_64 (ffffffff80000000 - ffffffffa0000000). 424 * I think this is required by tools like gdb. So same physical 425 * memory will be mapped in two elf headers. One will contain kernel 426 * text virtual addresses and other will have __va(physical) addresses. 427 */ 428 429 nr_phdr++; 430 elf_sz = sizeof(Elf64_Ehdr) + nr_phdr * sizeof(Elf64_Phdr); 431 elf_sz = ALIGN(elf_sz, ELF_CORE_HEADER_ALIGN); 432 433 buf = vzalloc(elf_sz); 434 if (!buf) 435 return -ENOMEM; 436 437 bufp = buf; 438 ehdr = (Elf64_Ehdr *)bufp; 439 bufp += sizeof(Elf64_Ehdr); 440 memcpy(ehdr->e_ident, ELFMAG, SELFMAG); 441 ehdr->e_ident[EI_CLASS] = ELFCLASS64; 442 ehdr->e_ident[EI_DATA] = ELFDATA2LSB; 443 ehdr->e_ident[EI_VERSION] = EV_CURRENT; 444 ehdr->e_ident[EI_OSABI] = ELF_OSABI; 445 memset(ehdr->e_ident + EI_PAD, 0, EI_NIDENT - EI_PAD); 446 ehdr->e_type = ET_CORE; 447 ehdr->e_machine = ELF_ARCH; 448 ehdr->e_version = EV_CURRENT; 449 ehdr->e_phoff = sizeof(Elf64_Ehdr); 450 ehdr->e_ehsize = sizeof(Elf64_Ehdr); 451 ehdr->e_phentsize = sizeof(Elf64_Phdr); 452 453 /* Prepare one phdr of type PT_NOTE for each present cpu */ 454 for_each_present_cpu(cpu) { 455 phdr = (Elf64_Phdr *)bufp; 456 bufp += sizeof(Elf64_Phdr); 457 phdr->p_type = PT_NOTE; 458 notes_addr = per_cpu_ptr_to_phys(per_cpu_ptr(crash_notes, cpu)); 459 phdr->p_offset = phdr->p_paddr = notes_addr; 460 phdr->p_filesz = phdr->p_memsz = sizeof(note_buf_t); 461 (ehdr->e_phnum)++; 462 } 463 464 /* Prepare one PT_NOTE header for vmcoreinfo */ 465 phdr = (Elf64_Phdr *)bufp; 466 bufp += sizeof(Elf64_Phdr); 467 phdr->p_type = PT_NOTE; 468 phdr->p_offset = phdr->p_paddr = paddr_vmcoreinfo_note(); 469 phdr->p_filesz = phdr->p_memsz = sizeof(vmcoreinfo_note); 470 (ehdr->e_phnum)++; 471 472 #ifdef CONFIG_X86_64 473 /* Prepare PT_LOAD type program header for kernel text region */ 474 phdr = (Elf64_Phdr *)bufp; 475 bufp += sizeof(Elf64_Phdr); 476 phdr->p_type = PT_LOAD; 477 phdr->p_flags = PF_R|PF_W|PF_X; 478 phdr->p_vaddr = (Elf64_Addr)_text; 479 phdr->p_filesz = phdr->p_memsz = _end - _text; 480 phdr->p_offset = phdr->p_paddr = __pa_symbol(_text); 481 (ehdr->e_phnum)++; 482 #endif 483 484 /* Prepare PT_LOAD headers for system ram chunks. */ 485 ced->ehdr = ehdr; 486 ced->bufp = bufp; 487 ret = walk_system_ram_res(0, -1, ced, 488 prepare_elf64_ram_headers_callback); 489 if (ret < 0) 490 return ret; 491 492 *addr = buf; 493 *sz = elf_sz; 494 return 0; 495 } 496 497 /* Prepare elf headers. Return addr and size */ 498 static int prepare_elf_headers(struct kimage *image, void **addr, 499 unsigned long *sz) 500 { 501 struct crash_elf_data *ced; 502 int ret; 503 504 ced = kzalloc(sizeof(*ced), GFP_KERNEL); 505 if (!ced) 506 return -ENOMEM; 507 508 fill_up_crash_elf_data(ced, image); 509 510 /* By default prepare 64bit headers */ 511 ret = prepare_elf64_headers(ced, addr, sz); 512 kfree(ced); 513 return ret; 514 } 515 516 static int add_e820_entry(struct boot_params *params, struct e820entry *entry) 517 { 518 unsigned int nr_e820_entries; 519 520 nr_e820_entries = params->e820_entries; 521 if (nr_e820_entries >= E820MAX) 522 return 1; 523 524 memcpy(¶ms->e820_map[nr_e820_entries], entry, 525 sizeof(struct e820entry)); 526 params->e820_entries++; 527 return 0; 528 } 529 530 static int memmap_entry_callback(u64 start, u64 end, void *arg) 531 { 532 struct crash_memmap_data *cmd = arg; 533 struct boot_params *params = cmd->params; 534 struct e820entry ei; 535 536 ei.addr = start; 537 ei.size = end - start + 1; 538 ei.type = cmd->type; 539 add_e820_entry(params, &ei); 540 541 return 0; 542 } 543 544 static int memmap_exclude_ranges(struct kimage *image, struct crash_mem *cmem, 545 unsigned long long mstart, 546 unsigned long long mend) 547 { 548 unsigned long start, end; 549 int ret = 0; 550 551 cmem->ranges[0].start = mstart; 552 cmem->ranges[0].end = mend; 553 cmem->nr_ranges = 1; 554 555 /* Exclude Backup region */ 556 start = image->arch.backup_load_addr; 557 end = start + image->arch.backup_src_sz - 1; 558 ret = exclude_mem_range(cmem, start, end); 559 if (ret) 560 return ret; 561 562 /* Exclude elf header region */ 563 start = image->arch.elf_load_addr; 564 end = start + image->arch.elf_headers_sz - 1; 565 return exclude_mem_range(cmem, start, end); 566 } 567 568 /* Prepare memory map for crash dump kernel */ 569 int crash_setup_memmap_entries(struct kimage *image, struct boot_params *params) 570 { 571 int i, ret = 0; 572 unsigned long flags; 573 struct e820entry ei; 574 struct crash_memmap_data cmd; 575 struct crash_mem *cmem; 576 577 cmem = vzalloc(sizeof(struct crash_mem)); 578 if (!cmem) 579 return -ENOMEM; 580 581 memset(&cmd, 0, sizeof(struct crash_memmap_data)); 582 cmd.params = params; 583 584 /* Add first 640K segment */ 585 ei.addr = image->arch.backup_src_start; 586 ei.size = image->arch.backup_src_sz; 587 ei.type = E820_RAM; 588 add_e820_entry(params, &ei); 589 590 /* Add ACPI tables */ 591 cmd.type = E820_ACPI; 592 flags = IORESOURCE_MEM | IORESOURCE_BUSY; 593 walk_iomem_res("ACPI Tables", flags, 0, -1, &cmd, 594 memmap_entry_callback); 595 596 /* Add ACPI Non-volatile Storage */ 597 cmd.type = E820_NVS; 598 walk_iomem_res("ACPI Non-volatile Storage", flags, 0, -1, &cmd, 599 memmap_entry_callback); 600 601 /* Add crashk_low_res region */ 602 if (crashk_low_res.end) { 603 ei.addr = crashk_low_res.start; 604 ei.size = crashk_low_res.end - crashk_low_res.start + 1; 605 ei.type = E820_RAM; 606 add_e820_entry(params, &ei); 607 } 608 609 /* Exclude some ranges from crashk_res and add rest to memmap */ 610 ret = memmap_exclude_ranges(image, cmem, crashk_res.start, 611 crashk_res.end); 612 if (ret) 613 goto out; 614 615 for (i = 0; i < cmem->nr_ranges; i++) { 616 ei.size = cmem->ranges[i].end - cmem->ranges[i].start + 1; 617 618 /* If entry is less than a page, skip it */ 619 if (ei.size < PAGE_SIZE) 620 continue; 621 ei.addr = cmem->ranges[i].start; 622 ei.type = E820_RAM; 623 add_e820_entry(params, &ei); 624 } 625 626 out: 627 vfree(cmem); 628 return ret; 629 } 630 631 static int determine_backup_region(u64 start, u64 end, void *arg) 632 { 633 struct kimage *image = arg; 634 635 image->arch.backup_src_start = start; 636 image->arch.backup_src_sz = end - start + 1; 637 638 /* Expecting only one range for backup region */ 639 return 1; 640 } 641 642 int crash_load_segments(struct kimage *image) 643 { 644 unsigned long src_start, src_sz, elf_sz; 645 void *elf_addr; 646 int ret; 647 648 /* 649 * Determine and load a segment for backup area. First 640K RAM 650 * region is backup source 651 */ 652 653 ret = walk_system_ram_res(KEXEC_BACKUP_SRC_START, KEXEC_BACKUP_SRC_END, 654 image, determine_backup_region); 655 656 /* Zero or postive return values are ok */ 657 if (ret < 0) 658 return ret; 659 660 src_start = image->arch.backup_src_start; 661 src_sz = image->arch.backup_src_sz; 662 663 /* Add backup segment. */ 664 if (src_sz) { 665 /* 666 * Ideally there is no source for backup segment. This is 667 * copied in purgatory after crash. Just add a zero filled 668 * segment for now to make sure checksum logic works fine. 669 */ 670 ret = kexec_add_buffer(image, (char *)&crash_zero_bytes, 671 sizeof(crash_zero_bytes), src_sz, 672 PAGE_SIZE, 0, -1, 0, 673 &image->arch.backup_load_addr); 674 if (ret) 675 return ret; 676 pr_debug("Loaded backup region at 0x%lx backup_start=0x%lx memsz=0x%lx\n", 677 image->arch.backup_load_addr, src_start, src_sz); 678 } 679 680 /* Prepare elf headers and add a segment */ 681 ret = prepare_elf_headers(image, &elf_addr, &elf_sz); 682 if (ret) 683 return ret; 684 685 image->arch.elf_headers = elf_addr; 686 image->arch.elf_headers_sz = elf_sz; 687 688 ret = kexec_add_buffer(image, (char *)elf_addr, elf_sz, elf_sz, 689 ELF_CORE_HEADER_ALIGN, 0, -1, 0, 690 &image->arch.elf_load_addr); 691 if (ret) { 692 vfree((void *)image->arch.elf_headers); 693 return ret; 694 } 695 pr_debug("Loaded ELF headers at 0x%lx bufsz=0x%lx memsz=0x%lx\n", 696 image->arch.elf_load_addr, elf_sz, elf_sz); 697 698 return ret; 699 } 700 #endif /* CONFIG_KEXEC_FILE */ 701