xref: /openbmc/linux/arch/x86/kernel/crash.c (revision 60772e48)
1 /*
2  * Architecture specific (i386/x86_64) functions for kexec based crash dumps.
3  *
4  * Created by: Hariprasad Nellitheertha (hari@in.ibm.com)
5  *
6  * Copyright (C) IBM Corporation, 2004. All rights reserved.
7  * Copyright (C) Red Hat Inc., 2014. All rights reserved.
8  * Authors:
9  *      Vivek Goyal <vgoyal@redhat.com>
10  *
11  */
12 
13 #define pr_fmt(fmt)	"kexec: " fmt
14 
15 #include <linux/types.h>
16 #include <linux/kernel.h>
17 #include <linux/smp.h>
18 #include <linux/reboot.h>
19 #include <linux/kexec.h>
20 #include <linux/delay.h>
21 #include <linux/elf.h>
22 #include <linux/elfcore.h>
23 #include <linux/export.h>
24 #include <linux/slab.h>
25 #include <linux/vmalloc.h>
26 
27 #include <asm/processor.h>
28 #include <asm/hardirq.h>
29 #include <asm/nmi.h>
30 #include <asm/hw_irq.h>
31 #include <asm/apic.h>
32 #include <asm/e820/types.h>
33 #include <asm/io_apic.h>
34 #include <asm/hpet.h>
35 #include <linux/kdebug.h>
36 #include <asm/cpu.h>
37 #include <asm/reboot.h>
38 #include <asm/virtext.h>
39 #include <asm/intel_pt.h>
40 
41 /* Alignment required for elf header segment */
42 #define ELF_CORE_HEADER_ALIGN   4096
43 
44 /* This primarily represents number of split ranges due to exclusion */
45 #define CRASH_MAX_RANGES	16
46 
47 struct crash_mem_range {
48 	u64 start, end;
49 };
50 
51 struct crash_mem {
52 	unsigned int nr_ranges;
53 	struct crash_mem_range ranges[CRASH_MAX_RANGES];
54 };
55 
56 /* Misc data about ram ranges needed to prepare elf headers */
57 struct crash_elf_data {
58 	struct kimage *image;
59 	/*
60 	 * Total number of ram ranges we have after various adjustments for
61 	 * crash reserved region, etc.
62 	 */
63 	unsigned int max_nr_ranges;
64 
65 	/* Pointer to elf header */
66 	void *ehdr;
67 	/* Pointer to next phdr */
68 	void *bufp;
69 	struct crash_mem mem;
70 };
71 
72 /* Used while preparing memory map entries for second kernel */
73 struct crash_memmap_data {
74 	struct boot_params *params;
75 	/* Type of memory */
76 	unsigned int type;
77 };
78 
79 /*
80  * This is used to VMCLEAR all VMCSs loaded on the
81  * processor. And when loading kvm_intel module, the
82  * callback function pointer will be assigned.
83  *
84  * protected by rcu.
85  */
86 crash_vmclear_fn __rcu *crash_vmclear_loaded_vmcss = NULL;
87 EXPORT_SYMBOL_GPL(crash_vmclear_loaded_vmcss);
88 unsigned long crash_zero_bytes;
89 
90 static inline void cpu_crash_vmclear_loaded_vmcss(void)
91 {
92 	crash_vmclear_fn *do_vmclear_operation = NULL;
93 
94 	rcu_read_lock();
95 	do_vmclear_operation = rcu_dereference(crash_vmclear_loaded_vmcss);
96 	if (do_vmclear_operation)
97 		do_vmclear_operation();
98 	rcu_read_unlock();
99 }
100 
101 #if defined(CONFIG_SMP) && defined(CONFIG_X86_LOCAL_APIC)
102 
103 static void kdump_nmi_callback(int cpu, struct pt_regs *regs)
104 {
105 #ifdef CONFIG_X86_32
106 	struct pt_regs fixed_regs;
107 
108 	if (!user_mode(regs)) {
109 		crash_fixup_ss_esp(&fixed_regs, regs);
110 		regs = &fixed_regs;
111 	}
112 #endif
113 	crash_save_cpu(regs, cpu);
114 
115 	/*
116 	 * VMCLEAR VMCSs loaded on all cpus if needed.
117 	 */
118 	cpu_crash_vmclear_loaded_vmcss();
119 
120 	/* Disable VMX or SVM if needed.
121 	 *
122 	 * We need to disable virtualization on all CPUs.
123 	 * Having VMX or SVM enabled on any CPU may break rebooting
124 	 * after the kdump kernel has finished its task.
125 	 */
126 	cpu_emergency_vmxoff();
127 	cpu_emergency_svm_disable();
128 
129 	/*
130 	 * Disable Intel PT to stop its logging
131 	 */
132 	cpu_emergency_stop_pt();
133 
134 	disable_local_APIC();
135 }
136 
137 void kdump_nmi_shootdown_cpus(void)
138 {
139 	nmi_shootdown_cpus(kdump_nmi_callback);
140 
141 	disable_local_APIC();
142 }
143 
144 /* Override the weak function in kernel/panic.c */
145 void crash_smp_send_stop(void)
146 {
147 	static int cpus_stopped;
148 
149 	if (cpus_stopped)
150 		return;
151 
152 	if (smp_ops.crash_stop_other_cpus)
153 		smp_ops.crash_stop_other_cpus();
154 	else
155 		smp_send_stop();
156 
157 	cpus_stopped = 1;
158 }
159 
160 #else
161 void crash_smp_send_stop(void)
162 {
163 	/* There are no cpus to shootdown */
164 }
165 #endif
166 
167 void native_machine_crash_shutdown(struct pt_regs *regs)
168 {
169 	/* This function is only called after the system
170 	 * has panicked or is otherwise in a critical state.
171 	 * The minimum amount of code to allow a kexec'd kernel
172 	 * to run successfully needs to happen here.
173 	 *
174 	 * In practice this means shooting down the other cpus in
175 	 * an SMP system.
176 	 */
177 	/* The kernel is broken so disable interrupts */
178 	local_irq_disable();
179 
180 	crash_smp_send_stop();
181 
182 	/*
183 	 * VMCLEAR VMCSs loaded on this cpu if needed.
184 	 */
185 	cpu_crash_vmclear_loaded_vmcss();
186 
187 	/* Booting kdump kernel with VMX or SVM enabled won't work,
188 	 * because (among other limitations) we can't disable paging
189 	 * with the virt flags.
190 	 */
191 	cpu_emergency_vmxoff();
192 	cpu_emergency_svm_disable();
193 
194 	/*
195 	 * Disable Intel PT to stop its logging
196 	 */
197 	cpu_emergency_stop_pt();
198 
199 #ifdef CONFIG_X86_IO_APIC
200 	/* Prevent crash_kexec() from deadlocking on ioapic_lock. */
201 	ioapic_zap_locks();
202 	disable_IO_APIC();
203 #endif
204 	lapic_shutdown();
205 #ifdef CONFIG_HPET_TIMER
206 	hpet_disable();
207 #endif
208 	crash_save_cpu(regs, safe_smp_processor_id());
209 }
210 
211 #ifdef CONFIG_KEXEC_FILE
212 static int get_nr_ram_ranges_callback(struct resource *res, void *arg)
213 {
214 	unsigned int *nr_ranges = arg;
215 
216 	(*nr_ranges)++;
217 	return 0;
218 }
219 
220 
221 /* Gather all the required information to prepare elf headers for ram regions */
222 static void fill_up_crash_elf_data(struct crash_elf_data *ced,
223 				   struct kimage *image)
224 {
225 	unsigned int nr_ranges = 0;
226 
227 	ced->image = image;
228 
229 	walk_system_ram_res(0, -1, &nr_ranges,
230 				get_nr_ram_ranges_callback);
231 
232 	ced->max_nr_ranges = nr_ranges;
233 
234 	/* Exclusion of crash region could split memory ranges */
235 	ced->max_nr_ranges++;
236 
237 	/* If crashk_low_res is not 0, another range split possible */
238 	if (crashk_low_res.end)
239 		ced->max_nr_ranges++;
240 }
241 
242 static int exclude_mem_range(struct crash_mem *mem,
243 		unsigned long long mstart, unsigned long long mend)
244 {
245 	int i, j;
246 	unsigned long long start, end;
247 	struct crash_mem_range temp_range = {0, 0};
248 
249 	for (i = 0; i < mem->nr_ranges; i++) {
250 		start = mem->ranges[i].start;
251 		end = mem->ranges[i].end;
252 
253 		if (mstart > end || mend < start)
254 			continue;
255 
256 		/* Truncate any area outside of range */
257 		if (mstart < start)
258 			mstart = start;
259 		if (mend > end)
260 			mend = end;
261 
262 		/* Found completely overlapping range */
263 		if (mstart == start && mend == end) {
264 			mem->ranges[i].start = 0;
265 			mem->ranges[i].end = 0;
266 			if (i < mem->nr_ranges - 1) {
267 				/* Shift rest of the ranges to left */
268 				for (j = i; j < mem->nr_ranges - 1; j++) {
269 					mem->ranges[j].start =
270 						mem->ranges[j+1].start;
271 					mem->ranges[j].end =
272 							mem->ranges[j+1].end;
273 				}
274 			}
275 			mem->nr_ranges--;
276 			return 0;
277 		}
278 
279 		if (mstart > start && mend < end) {
280 			/* Split original range */
281 			mem->ranges[i].end = mstart - 1;
282 			temp_range.start = mend + 1;
283 			temp_range.end = end;
284 		} else if (mstart != start)
285 			mem->ranges[i].end = mstart - 1;
286 		else
287 			mem->ranges[i].start = mend + 1;
288 		break;
289 	}
290 
291 	/* If a split happend, add the split to array */
292 	if (!temp_range.end)
293 		return 0;
294 
295 	/* Split happened */
296 	if (i == CRASH_MAX_RANGES - 1) {
297 		pr_err("Too many crash ranges after split\n");
298 		return -ENOMEM;
299 	}
300 
301 	/* Location where new range should go */
302 	j = i + 1;
303 	if (j < mem->nr_ranges) {
304 		/* Move over all ranges one slot towards the end */
305 		for (i = mem->nr_ranges - 1; i >= j; i--)
306 			mem->ranges[i + 1] = mem->ranges[i];
307 	}
308 
309 	mem->ranges[j].start = temp_range.start;
310 	mem->ranges[j].end = temp_range.end;
311 	mem->nr_ranges++;
312 	return 0;
313 }
314 
315 /*
316  * Look for any unwanted ranges between mstart, mend and remove them. This
317  * might lead to split and split ranges are put in ced->mem.ranges[] array
318  */
319 static int elf_header_exclude_ranges(struct crash_elf_data *ced,
320 		unsigned long long mstart, unsigned long long mend)
321 {
322 	struct crash_mem *cmem = &ced->mem;
323 	int ret = 0;
324 
325 	memset(cmem->ranges, 0, sizeof(cmem->ranges));
326 
327 	cmem->ranges[0].start = mstart;
328 	cmem->ranges[0].end = mend;
329 	cmem->nr_ranges = 1;
330 
331 	/* Exclude crashkernel region */
332 	ret = exclude_mem_range(cmem, crashk_res.start, crashk_res.end);
333 	if (ret)
334 		return ret;
335 
336 	if (crashk_low_res.end) {
337 		ret = exclude_mem_range(cmem, crashk_low_res.start, crashk_low_res.end);
338 		if (ret)
339 			return ret;
340 	}
341 
342 	return ret;
343 }
344 
345 static int prepare_elf64_ram_headers_callback(struct resource *res, void *arg)
346 {
347 	struct crash_elf_data *ced = arg;
348 	Elf64_Ehdr *ehdr;
349 	Elf64_Phdr *phdr;
350 	unsigned long mstart, mend;
351 	struct kimage *image = ced->image;
352 	struct crash_mem *cmem;
353 	int ret, i;
354 
355 	ehdr = ced->ehdr;
356 
357 	/* Exclude unwanted mem ranges */
358 	ret = elf_header_exclude_ranges(ced, res->start, res->end);
359 	if (ret)
360 		return ret;
361 
362 	/* Go through all the ranges in ced->mem.ranges[] and prepare phdr */
363 	cmem = &ced->mem;
364 
365 	for (i = 0; i < cmem->nr_ranges; i++) {
366 		mstart = cmem->ranges[i].start;
367 		mend = cmem->ranges[i].end;
368 
369 		phdr = ced->bufp;
370 		ced->bufp += sizeof(Elf64_Phdr);
371 
372 		phdr->p_type = PT_LOAD;
373 		phdr->p_flags = PF_R|PF_W|PF_X;
374 		phdr->p_offset  = mstart;
375 
376 		/*
377 		 * If a range matches backup region, adjust offset to backup
378 		 * segment.
379 		 */
380 		if (mstart == image->arch.backup_src_start &&
381 		    (mend - mstart + 1) == image->arch.backup_src_sz)
382 			phdr->p_offset = image->arch.backup_load_addr;
383 
384 		phdr->p_paddr = mstart;
385 		phdr->p_vaddr = (unsigned long long) __va(mstart);
386 		phdr->p_filesz = phdr->p_memsz = mend - mstart + 1;
387 		phdr->p_align = 0;
388 		ehdr->e_phnum++;
389 		pr_debug("Crash PT_LOAD elf header. phdr=%p vaddr=0x%llx, paddr=0x%llx, sz=0x%llx e_phnum=%d p_offset=0x%llx\n",
390 			phdr, phdr->p_vaddr, phdr->p_paddr, phdr->p_filesz,
391 			ehdr->e_phnum, phdr->p_offset);
392 	}
393 
394 	return ret;
395 }
396 
397 static int prepare_elf64_headers(struct crash_elf_data *ced,
398 		void **addr, unsigned long *sz)
399 {
400 	Elf64_Ehdr *ehdr;
401 	Elf64_Phdr *phdr;
402 	unsigned long nr_cpus = num_possible_cpus(), nr_phdr, elf_sz;
403 	unsigned char *buf, *bufp;
404 	unsigned int cpu;
405 	unsigned long long notes_addr;
406 	int ret;
407 
408 	/* extra phdr for vmcoreinfo elf note */
409 	nr_phdr = nr_cpus + 1;
410 	nr_phdr += ced->max_nr_ranges;
411 
412 	/*
413 	 * kexec-tools creates an extra PT_LOAD phdr for kernel text mapping
414 	 * area on x86_64 (ffffffff80000000 - ffffffffa0000000).
415 	 * I think this is required by tools like gdb. So same physical
416 	 * memory will be mapped in two elf headers. One will contain kernel
417 	 * text virtual addresses and other will have __va(physical) addresses.
418 	 */
419 
420 	nr_phdr++;
421 	elf_sz = sizeof(Elf64_Ehdr) + nr_phdr * sizeof(Elf64_Phdr);
422 	elf_sz = ALIGN(elf_sz, ELF_CORE_HEADER_ALIGN);
423 
424 	buf = vzalloc(elf_sz);
425 	if (!buf)
426 		return -ENOMEM;
427 
428 	bufp = buf;
429 	ehdr = (Elf64_Ehdr *)bufp;
430 	bufp += sizeof(Elf64_Ehdr);
431 	memcpy(ehdr->e_ident, ELFMAG, SELFMAG);
432 	ehdr->e_ident[EI_CLASS] = ELFCLASS64;
433 	ehdr->e_ident[EI_DATA] = ELFDATA2LSB;
434 	ehdr->e_ident[EI_VERSION] = EV_CURRENT;
435 	ehdr->e_ident[EI_OSABI] = ELF_OSABI;
436 	memset(ehdr->e_ident + EI_PAD, 0, EI_NIDENT - EI_PAD);
437 	ehdr->e_type = ET_CORE;
438 	ehdr->e_machine = ELF_ARCH;
439 	ehdr->e_version = EV_CURRENT;
440 	ehdr->e_phoff = sizeof(Elf64_Ehdr);
441 	ehdr->e_ehsize = sizeof(Elf64_Ehdr);
442 	ehdr->e_phentsize = sizeof(Elf64_Phdr);
443 
444 	/* Prepare one phdr of type PT_NOTE for each present cpu */
445 	for_each_present_cpu(cpu) {
446 		phdr = (Elf64_Phdr *)bufp;
447 		bufp += sizeof(Elf64_Phdr);
448 		phdr->p_type = PT_NOTE;
449 		notes_addr = per_cpu_ptr_to_phys(per_cpu_ptr(crash_notes, cpu));
450 		phdr->p_offset = phdr->p_paddr = notes_addr;
451 		phdr->p_filesz = phdr->p_memsz = sizeof(note_buf_t);
452 		(ehdr->e_phnum)++;
453 	}
454 
455 	/* Prepare one PT_NOTE header for vmcoreinfo */
456 	phdr = (Elf64_Phdr *)bufp;
457 	bufp += sizeof(Elf64_Phdr);
458 	phdr->p_type = PT_NOTE;
459 	phdr->p_offset = phdr->p_paddr = paddr_vmcoreinfo_note();
460 	phdr->p_filesz = phdr->p_memsz = VMCOREINFO_NOTE_SIZE;
461 	(ehdr->e_phnum)++;
462 
463 #ifdef CONFIG_X86_64
464 	/* Prepare PT_LOAD type program header for kernel text region */
465 	phdr = (Elf64_Phdr *)bufp;
466 	bufp += sizeof(Elf64_Phdr);
467 	phdr->p_type = PT_LOAD;
468 	phdr->p_flags = PF_R|PF_W|PF_X;
469 	phdr->p_vaddr = (Elf64_Addr)_text;
470 	phdr->p_filesz = phdr->p_memsz = _end - _text;
471 	phdr->p_offset = phdr->p_paddr = __pa_symbol(_text);
472 	(ehdr->e_phnum)++;
473 #endif
474 
475 	/* Prepare PT_LOAD headers for system ram chunks. */
476 	ced->ehdr = ehdr;
477 	ced->bufp = bufp;
478 	ret = walk_system_ram_res(0, -1, ced,
479 			prepare_elf64_ram_headers_callback);
480 	if (ret < 0)
481 		return ret;
482 
483 	*addr = buf;
484 	*sz = elf_sz;
485 	return 0;
486 }
487 
488 /* Prepare elf headers. Return addr and size */
489 static int prepare_elf_headers(struct kimage *image, void **addr,
490 					unsigned long *sz)
491 {
492 	struct crash_elf_data *ced;
493 	int ret;
494 
495 	ced = kzalloc(sizeof(*ced), GFP_KERNEL);
496 	if (!ced)
497 		return -ENOMEM;
498 
499 	fill_up_crash_elf_data(ced, image);
500 
501 	/* By default prepare 64bit headers */
502 	ret =  prepare_elf64_headers(ced, addr, sz);
503 	kfree(ced);
504 	return ret;
505 }
506 
507 static int add_e820_entry(struct boot_params *params, struct e820_entry *entry)
508 {
509 	unsigned int nr_e820_entries;
510 
511 	nr_e820_entries = params->e820_entries;
512 	if (nr_e820_entries >= E820_MAX_ENTRIES_ZEROPAGE)
513 		return 1;
514 
515 	memcpy(&params->e820_table[nr_e820_entries], entry,
516 			sizeof(struct e820_entry));
517 	params->e820_entries++;
518 	return 0;
519 }
520 
521 static int memmap_entry_callback(struct resource *res, void *arg)
522 {
523 	struct crash_memmap_data *cmd = arg;
524 	struct boot_params *params = cmd->params;
525 	struct e820_entry ei;
526 
527 	ei.addr = res->start;
528 	ei.size = resource_size(res);
529 	ei.type = cmd->type;
530 	add_e820_entry(params, &ei);
531 
532 	return 0;
533 }
534 
535 static int memmap_exclude_ranges(struct kimage *image, struct crash_mem *cmem,
536 				 unsigned long long mstart,
537 				 unsigned long long mend)
538 {
539 	unsigned long start, end;
540 	int ret = 0;
541 
542 	cmem->ranges[0].start = mstart;
543 	cmem->ranges[0].end = mend;
544 	cmem->nr_ranges = 1;
545 
546 	/* Exclude Backup region */
547 	start = image->arch.backup_load_addr;
548 	end = start + image->arch.backup_src_sz - 1;
549 	ret = exclude_mem_range(cmem, start, end);
550 	if (ret)
551 		return ret;
552 
553 	/* Exclude elf header region */
554 	start = image->arch.elf_load_addr;
555 	end = start + image->arch.elf_headers_sz - 1;
556 	return exclude_mem_range(cmem, start, end);
557 }
558 
559 /* Prepare memory map for crash dump kernel */
560 int crash_setup_memmap_entries(struct kimage *image, struct boot_params *params)
561 {
562 	int i, ret = 0;
563 	unsigned long flags;
564 	struct e820_entry ei;
565 	struct crash_memmap_data cmd;
566 	struct crash_mem *cmem;
567 
568 	cmem = vzalloc(sizeof(struct crash_mem));
569 	if (!cmem)
570 		return -ENOMEM;
571 
572 	memset(&cmd, 0, sizeof(struct crash_memmap_data));
573 	cmd.params = params;
574 
575 	/* Add first 640K segment */
576 	ei.addr = image->arch.backup_src_start;
577 	ei.size = image->arch.backup_src_sz;
578 	ei.type = E820_TYPE_RAM;
579 	add_e820_entry(params, &ei);
580 
581 	/* Add ACPI tables */
582 	cmd.type = E820_TYPE_ACPI;
583 	flags = IORESOURCE_MEM | IORESOURCE_BUSY;
584 	walk_iomem_res_desc(IORES_DESC_ACPI_TABLES, flags, 0, -1, &cmd,
585 		       memmap_entry_callback);
586 
587 	/* Add ACPI Non-volatile Storage */
588 	cmd.type = E820_TYPE_NVS;
589 	walk_iomem_res_desc(IORES_DESC_ACPI_NV_STORAGE, flags, 0, -1, &cmd,
590 			memmap_entry_callback);
591 
592 	/* Add crashk_low_res region */
593 	if (crashk_low_res.end) {
594 		ei.addr = crashk_low_res.start;
595 		ei.size = crashk_low_res.end - crashk_low_res.start + 1;
596 		ei.type = E820_TYPE_RAM;
597 		add_e820_entry(params, &ei);
598 	}
599 
600 	/* Exclude some ranges from crashk_res and add rest to memmap */
601 	ret = memmap_exclude_ranges(image, cmem, crashk_res.start,
602 						crashk_res.end);
603 	if (ret)
604 		goto out;
605 
606 	for (i = 0; i < cmem->nr_ranges; i++) {
607 		ei.size = cmem->ranges[i].end - cmem->ranges[i].start + 1;
608 
609 		/* If entry is less than a page, skip it */
610 		if (ei.size < PAGE_SIZE)
611 			continue;
612 		ei.addr = cmem->ranges[i].start;
613 		ei.type = E820_TYPE_RAM;
614 		add_e820_entry(params, &ei);
615 	}
616 
617 out:
618 	vfree(cmem);
619 	return ret;
620 }
621 
622 static int determine_backup_region(struct resource *res, void *arg)
623 {
624 	struct kimage *image = arg;
625 
626 	image->arch.backup_src_start = res->start;
627 	image->arch.backup_src_sz = resource_size(res);
628 
629 	/* Expecting only one range for backup region */
630 	return 1;
631 }
632 
633 int crash_load_segments(struct kimage *image)
634 {
635 	int ret;
636 	struct kexec_buf kbuf = { .image = image, .buf_min = 0,
637 				  .buf_max = ULONG_MAX, .top_down = false };
638 
639 	/*
640 	 * Determine and load a segment for backup area. First 640K RAM
641 	 * region is backup source
642 	 */
643 
644 	ret = walk_system_ram_res(KEXEC_BACKUP_SRC_START, KEXEC_BACKUP_SRC_END,
645 				image, determine_backup_region);
646 
647 	/* Zero or postive return values are ok */
648 	if (ret < 0)
649 		return ret;
650 
651 	/* Add backup segment. */
652 	if (image->arch.backup_src_sz) {
653 		kbuf.buffer = &crash_zero_bytes;
654 		kbuf.bufsz = sizeof(crash_zero_bytes);
655 		kbuf.memsz = image->arch.backup_src_sz;
656 		kbuf.buf_align = PAGE_SIZE;
657 		/*
658 		 * Ideally there is no source for backup segment. This is
659 		 * copied in purgatory after crash. Just add a zero filled
660 		 * segment for now to make sure checksum logic works fine.
661 		 */
662 		ret = kexec_add_buffer(&kbuf);
663 		if (ret)
664 			return ret;
665 		image->arch.backup_load_addr = kbuf.mem;
666 		pr_debug("Loaded backup region at 0x%lx backup_start=0x%lx memsz=0x%lx\n",
667 			 image->arch.backup_load_addr,
668 			 image->arch.backup_src_start, kbuf.memsz);
669 	}
670 
671 	/* Prepare elf headers and add a segment */
672 	ret = prepare_elf_headers(image, &kbuf.buffer, &kbuf.bufsz);
673 	if (ret)
674 		return ret;
675 
676 	image->arch.elf_headers = kbuf.buffer;
677 	image->arch.elf_headers_sz = kbuf.bufsz;
678 
679 	kbuf.memsz = kbuf.bufsz;
680 	kbuf.buf_align = ELF_CORE_HEADER_ALIGN;
681 	ret = kexec_add_buffer(&kbuf);
682 	if (ret) {
683 		vfree((void *)image->arch.elf_headers);
684 		return ret;
685 	}
686 	image->arch.elf_load_addr = kbuf.mem;
687 	pr_debug("Loaded ELF headers at 0x%lx bufsz=0x%lx memsz=0x%lx\n",
688 		 image->arch.elf_load_addr, kbuf.bufsz, kbuf.bufsz);
689 
690 	return ret;
691 }
692 #endif /* CONFIG_KEXEC_FILE */
693