1 /* 2 * Architecture specific (i386/x86_64) functions for kexec based crash dumps. 3 * 4 * Created by: Hariprasad Nellitheertha (hari@in.ibm.com) 5 * 6 * Copyright (C) IBM Corporation, 2004. All rights reserved. 7 * Copyright (C) Red Hat Inc., 2014. All rights reserved. 8 * Authors: 9 * Vivek Goyal <vgoyal@redhat.com> 10 * 11 */ 12 13 #define pr_fmt(fmt) "kexec: " fmt 14 15 #include <linux/types.h> 16 #include <linux/kernel.h> 17 #include <linux/smp.h> 18 #include <linux/reboot.h> 19 #include <linux/kexec.h> 20 #include <linux/delay.h> 21 #include <linux/elf.h> 22 #include <linux/elfcore.h> 23 #include <linux/export.h> 24 #include <linux/slab.h> 25 #include <linux/vmalloc.h> 26 27 #include <asm/processor.h> 28 #include <asm/hardirq.h> 29 #include <asm/nmi.h> 30 #include <asm/hw_irq.h> 31 #include <asm/apic.h> 32 #include <asm/e820/types.h> 33 #include <asm/io_apic.h> 34 #include <asm/hpet.h> 35 #include <linux/kdebug.h> 36 #include <asm/cpu.h> 37 #include <asm/reboot.h> 38 #include <asm/virtext.h> 39 #include <asm/intel_pt.h> 40 41 /* Alignment required for elf header segment */ 42 #define ELF_CORE_HEADER_ALIGN 4096 43 44 /* This primarily represents number of split ranges due to exclusion */ 45 #define CRASH_MAX_RANGES 16 46 47 struct crash_mem_range { 48 u64 start, end; 49 }; 50 51 struct crash_mem { 52 unsigned int nr_ranges; 53 struct crash_mem_range ranges[CRASH_MAX_RANGES]; 54 }; 55 56 /* Misc data about ram ranges needed to prepare elf headers */ 57 struct crash_elf_data { 58 struct kimage *image; 59 /* 60 * Total number of ram ranges we have after various adjustments for 61 * crash reserved region, etc. 62 */ 63 unsigned int max_nr_ranges; 64 65 /* Pointer to elf header */ 66 void *ehdr; 67 /* Pointer to next phdr */ 68 void *bufp; 69 struct crash_mem mem; 70 }; 71 72 /* Used while preparing memory map entries for second kernel */ 73 struct crash_memmap_data { 74 struct boot_params *params; 75 /* Type of memory */ 76 unsigned int type; 77 }; 78 79 /* 80 * This is used to VMCLEAR all VMCSs loaded on the 81 * processor. And when loading kvm_intel module, the 82 * callback function pointer will be assigned. 83 * 84 * protected by rcu. 85 */ 86 crash_vmclear_fn __rcu *crash_vmclear_loaded_vmcss = NULL; 87 EXPORT_SYMBOL_GPL(crash_vmclear_loaded_vmcss); 88 unsigned long crash_zero_bytes; 89 90 static inline void cpu_crash_vmclear_loaded_vmcss(void) 91 { 92 crash_vmclear_fn *do_vmclear_operation = NULL; 93 94 rcu_read_lock(); 95 do_vmclear_operation = rcu_dereference(crash_vmclear_loaded_vmcss); 96 if (do_vmclear_operation) 97 do_vmclear_operation(); 98 rcu_read_unlock(); 99 } 100 101 #if defined(CONFIG_SMP) && defined(CONFIG_X86_LOCAL_APIC) 102 103 static void kdump_nmi_callback(int cpu, struct pt_regs *regs) 104 { 105 #ifdef CONFIG_X86_32 106 struct pt_regs fixed_regs; 107 108 if (!user_mode(regs)) { 109 crash_fixup_ss_esp(&fixed_regs, regs); 110 regs = &fixed_regs; 111 } 112 #endif 113 crash_save_cpu(regs, cpu); 114 115 /* 116 * VMCLEAR VMCSs loaded on all cpus if needed. 117 */ 118 cpu_crash_vmclear_loaded_vmcss(); 119 120 /* Disable VMX or SVM if needed. 121 * 122 * We need to disable virtualization on all CPUs. 123 * Having VMX or SVM enabled on any CPU may break rebooting 124 * after the kdump kernel has finished its task. 125 */ 126 cpu_emergency_vmxoff(); 127 cpu_emergency_svm_disable(); 128 129 /* 130 * Disable Intel PT to stop its logging 131 */ 132 cpu_emergency_stop_pt(); 133 134 disable_local_APIC(); 135 } 136 137 void kdump_nmi_shootdown_cpus(void) 138 { 139 nmi_shootdown_cpus(kdump_nmi_callback); 140 141 disable_local_APIC(); 142 } 143 144 /* Override the weak function in kernel/panic.c */ 145 void crash_smp_send_stop(void) 146 { 147 static int cpus_stopped; 148 149 if (cpus_stopped) 150 return; 151 152 if (smp_ops.crash_stop_other_cpus) 153 smp_ops.crash_stop_other_cpus(); 154 else 155 smp_send_stop(); 156 157 cpus_stopped = 1; 158 } 159 160 #else 161 void crash_smp_send_stop(void) 162 { 163 /* There are no cpus to shootdown */ 164 } 165 #endif 166 167 void native_machine_crash_shutdown(struct pt_regs *regs) 168 { 169 /* This function is only called after the system 170 * has panicked or is otherwise in a critical state. 171 * The minimum amount of code to allow a kexec'd kernel 172 * to run successfully needs to happen here. 173 * 174 * In practice this means shooting down the other cpus in 175 * an SMP system. 176 */ 177 /* The kernel is broken so disable interrupts */ 178 local_irq_disable(); 179 180 crash_smp_send_stop(); 181 182 /* 183 * VMCLEAR VMCSs loaded on this cpu if needed. 184 */ 185 cpu_crash_vmclear_loaded_vmcss(); 186 187 /* Booting kdump kernel with VMX or SVM enabled won't work, 188 * because (among other limitations) we can't disable paging 189 * with the virt flags. 190 */ 191 cpu_emergency_vmxoff(); 192 cpu_emergency_svm_disable(); 193 194 /* 195 * Disable Intel PT to stop its logging 196 */ 197 cpu_emergency_stop_pt(); 198 199 #ifdef CONFIG_X86_IO_APIC 200 /* Prevent crash_kexec() from deadlocking on ioapic_lock. */ 201 ioapic_zap_locks(); 202 disable_IO_APIC(); 203 #endif 204 lapic_shutdown(); 205 #ifdef CONFIG_HPET_TIMER 206 hpet_disable(); 207 #endif 208 crash_save_cpu(regs, safe_smp_processor_id()); 209 } 210 211 #ifdef CONFIG_KEXEC_FILE 212 static int get_nr_ram_ranges_callback(struct resource *res, void *arg) 213 { 214 unsigned int *nr_ranges = arg; 215 216 (*nr_ranges)++; 217 return 0; 218 } 219 220 221 /* Gather all the required information to prepare elf headers for ram regions */ 222 static void fill_up_crash_elf_data(struct crash_elf_data *ced, 223 struct kimage *image) 224 { 225 unsigned int nr_ranges = 0; 226 227 ced->image = image; 228 229 walk_system_ram_res(0, -1, &nr_ranges, 230 get_nr_ram_ranges_callback); 231 232 ced->max_nr_ranges = nr_ranges; 233 234 /* Exclusion of crash region could split memory ranges */ 235 ced->max_nr_ranges++; 236 237 /* If crashk_low_res is not 0, another range split possible */ 238 if (crashk_low_res.end) 239 ced->max_nr_ranges++; 240 } 241 242 static int exclude_mem_range(struct crash_mem *mem, 243 unsigned long long mstart, unsigned long long mend) 244 { 245 int i, j; 246 unsigned long long start, end; 247 struct crash_mem_range temp_range = {0, 0}; 248 249 for (i = 0; i < mem->nr_ranges; i++) { 250 start = mem->ranges[i].start; 251 end = mem->ranges[i].end; 252 253 if (mstart > end || mend < start) 254 continue; 255 256 /* Truncate any area outside of range */ 257 if (mstart < start) 258 mstart = start; 259 if (mend > end) 260 mend = end; 261 262 /* Found completely overlapping range */ 263 if (mstart == start && mend == end) { 264 mem->ranges[i].start = 0; 265 mem->ranges[i].end = 0; 266 if (i < mem->nr_ranges - 1) { 267 /* Shift rest of the ranges to left */ 268 for (j = i; j < mem->nr_ranges - 1; j++) { 269 mem->ranges[j].start = 270 mem->ranges[j+1].start; 271 mem->ranges[j].end = 272 mem->ranges[j+1].end; 273 } 274 } 275 mem->nr_ranges--; 276 return 0; 277 } 278 279 if (mstart > start && mend < end) { 280 /* Split original range */ 281 mem->ranges[i].end = mstart - 1; 282 temp_range.start = mend + 1; 283 temp_range.end = end; 284 } else if (mstart != start) 285 mem->ranges[i].end = mstart - 1; 286 else 287 mem->ranges[i].start = mend + 1; 288 break; 289 } 290 291 /* If a split happend, add the split to array */ 292 if (!temp_range.end) 293 return 0; 294 295 /* Split happened */ 296 if (i == CRASH_MAX_RANGES - 1) { 297 pr_err("Too many crash ranges after split\n"); 298 return -ENOMEM; 299 } 300 301 /* Location where new range should go */ 302 j = i + 1; 303 if (j < mem->nr_ranges) { 304 /* Move over all ranges one slot towards the end */ 305 for (i = mem->nr_ranges - 1; i >= j; i--) 306 mem->ranges[i + 1] = mem->ranges[i]; 307 } 308 309 mem->ranges[j].start = temp_range.start; 310 mem->ranges[j].end = temp_range.end; 311 mem->nr_ranges++; 312 return 0; 313 } 314 315 /* 316 * Look for any unwanted ranges between mstart, mend and remove them. This 317 * might lead to split and split ranges are put in ced->mem.ranges[] array 318 */ 319 static int elf_header_exclude_ranges(struct crash_elf_data *ced, 320 unsigned long long mstart, unsigned long long mend) 321 { 322 struct crash_mem *cmem = &ced->mem; 323 int ret = 0; 324 325 memset(cmem->ranges, 0, sizeof(cmem->ranges)); 326 327 cmem->ranges[0].start = mstart; 328 cmem->ranges[0].end = mend; 329 cmem->nr_ranges = 1; 330 331 /* Exclude crashkernel region */ 332 ret = exclude_mem_range(cmem, crashk_res.start, crashk_res.end); 333 if (ret) 334 return ret; 335 336 if (crashk_low_res.end) { 337 ret = exclude_mem_range(cmem, crashk_low_res.start, crashk_low_res.end); 338 if (ret) 339 return ret; 340 } 341 342 return ret; 343 } 344 345 static int prepare_elf64_ram_headers_callback(struct resource *res, void *arg) 346 { 347 struct crash_elf_data *ced = arg; 348 Elf64_Ehdr *ehdr; 349 Elf64_Phdr *phdr; 350 unsigned long mstart, mend; 351 struct kimage *image = ced->image; 352 struct crash_mem *cmem; 353 int ret, i; 354 355 ehdr = ced->ehdr; 356 357 /* Exclude unwanted mem ranges */ 358 ret = elf_header_exclude_ranges(ced, res->start, res->end); 359 if (ret) 360 return ret; 361 362 /* Go through all the ranges in ced->mem.ranges[] and prepare phdr */ 363 cmem = &ced->mem; 364 365 for (i = 0; i < cmem->nr_ranges; i++) { 366 mstart = cmem->ranges[i].start; 367 mend = cmem->ranges[i].end; 368 369 phdr = ced->bufp; 370 ced->bufp += sizeof(Elf64_Phdr); 371 372 phdr->p_type = PT_LOAD; 373 phdr->p_flags = PF_R|PF_W|PF_X; 374 phdr->p_offset = mstart; 375 376 /* 377 * If a range matches backup region, adjust offset to backup 378 * segment. 379 */ 380 if (mstart == image->arch.backup_src_start && 381 (mend - mstart + 1) == image->arch.backup_src_sz) 382 phdr->p_offset = image->arch.backup_load_addr; 383 384 phdr->p_paddr = mstart; 385 phdr->p_vaddr = (unsigned long long) __va(mstart); 386 phdr->p_filesz = phdr->p_memsz = mend - mstart + 1; 387 phdr->p_align = 0; 388 ehdr->e_phnum++; 389 pr_debug("Crash PT_LOAD elf header. phdr=%p vaddr=0x%llx, paddr=0x%llx, sz=0x%llx e_phnum=%d p_offset=0x%llx\n", 390 phdr, phdr->p_vaddr, phdr->p_paddr, phdr->p_filesz, 391 ehdr->e_phnum, phdr->p_offset); 392 } 393 394 return ret; 395 } 396 397 static int prepare_elf64_headers(struct crash_elf_data *ced, 398 void **addr, unsigned long *sz) 399 { 400 Elf64_Ehdr *ehdr; 401 Elf64_Phdr *phdr; 402 unsigned long nr_cpus = num_possible_cpus(), nr_phdr, elf_sz; 403 unsigned char *buf, *bufp; 404 unsigned int cpu; 405 unsigned long long notes_addr; 406 int ret; 407 408 /* extra phdr for vmcoreinfo elf note */ 409 nr_phdr = nr_cpus + 1; 410 nr_phdr += ced->max_nr_ranges; 411 412 /* 413 * kexec-tools creates an extra PT_LOAD phdr for kernel text mapping 414 * area on x86_64 (ffffffff80000000 - ffffffffa0000000). 415 * I think this is required by tools like gdb. So same physical 416 * memory will be mapped in two elf headers. One will contain kernel 417 * text virtual addresses and other will have __va(physical) addresses. 418 */ 419 420 nr_phdr++; 421 elf_sz = sizeof(Elf64_Ehdr) + nr_phdr * sizeof(Elf64_Phdr); 422 elf_sz = ALIGN(elf_sz, ELF_CORE_HEADER_ALIGN); 423 424 buf = vzalloc(elf_sz); 425 if (!buf) 426 return -ENOMEM; 427 428 bufp = buf; 429 ehdr = (Elf64_Ehdr *)bufp; 430 bufp += sizeof(Elf64_Ehdr); 431 memcpy(ehdr->e_ident, ELFMAG, SELFMAG); 432 ehdr->e_ident[EI_CLASS] = ELFCLASS64; 433 ehdr->e_ident[EI_DATA] = ELFDATA2LSB; 434 ehdr->e_ident[EI_VERSION] = EV_CURRENT; 435 ehdr->e_ident[EI_OSABI] = ELF_OSABI; 436 memset(ehdr->e_ident + EI_PAD, 0, EI_NIDENT - EI_PAD); 437 ehdr->e_type = ET_CORE; 438 ehdr->e_machine = ELF_ARCH; 439 ehdr->e_version = EV_CURRENT; 440 ehdr->e_phoff = sizeof(Elf64_Ehdr); 441 ehdr->e_ehsize = sizeof(Elf64_Ehdr); 442 ehdr->e_phentsize = sizeof(Elf64_Phdr); 443 444 /* Prepare one phdr of type PT_NOTE for each present cpu */ 445 for_each_present_cpu(cpu) { 446 phdr = (Elf64_Phdr *)bufp; 447 bufp += sizeof(Elf64_Phdr); 448 phdr->p_type = PT_NOTE; 449 notes_addr = per_cpu_ptr_to_phys(per_cpu_ptr(crash_notes, cpu)); 450 phdr->p_offset = phdr->p_paddr = notes_addr; 451 phdr->p_filesz = phdr->p_memsz = sizeof(note_buf_t); 452 (ehdr->e_phnum)++; 453 } 454 455 /* Prepare one PT_NOTE header for vmcoreinfo */ 456 phdr = (Elf64_Phdr *)bufp; 457 bufp += sizeof(Elf64_Phdr); 458 phdr->p_type = PT_NOTE; 459 phdr->p_offset = phdr->p_paddr = paddr_vmcoreinfo_note(); 460 phdr->p_filesz = phdr->p_memsz = VMCOREINFO_NOTE_SIZE; 461 (ehdr->e_phnum)++; 462 463 #ifdef CONFIG_X86_64 464 /* Prepare PT_LOAD type program header for kernel text region */ 465 phdr = (Elf64_Phdr *)bufp; 466 bufp += sizeof(Elf64_Phdr); 467 phdr->p_type = PT_LOAD; 468 phdr->p_flags = PF_R|PF_W|PF_X; 469 phdr->p_vaddr = (Elf64_Addr)_text; 470 phdr->p_filesz = phdr->p_memsz = _end - _text; 471 phdr->p_offset = phdr->p_paddr = __pa_symbol(_text); 472 (ehdr->e_phnum)++; 473 #endif 474 475 /* Prepare PT_LOAD headers for system ram chunks. */ 476 ced->ehdr = ehdr; 477 ced->bufp = bufp; 478 ret = walk_system_ram_res(0, -1, ced, 479 prepare_elf64_ram_headers_callback); 480 if (ret < 0) 481 return ret; 482 483 *addr = buf; 484 *sz = elf_sz; 485 return 0; 486 } 487 488 /* Prepare elf headers. Return addr and size */ 489 static int prepare_elf_headers(struct kimage *image, void **addr, 490 unsigned long *sz) 491 { 492 struct crash_elf_data *ced; 493 int ret; 494 495 ced = kzalloc(sizeof(*ced), GFP_KERNEL); 496 if (!ced) 497 return -ENOMEM; 498 499 fill_up_crash_elf_data(ced, image); 500 501 /* By default prepare 64bit headers */ 502 ret = prepare_elf64_headers(ced, addr, sz); 503 kfree(ced); 504 return ret; 505 } 506 507 static int add_e820_entry(struct boot_params *params, struct e820_entry *entry) 508 { 509 unsigned int nr_e820_entries; 510 511 nr_e820_entries = params->e820_entries; 512 if (nr_e820_entries >= E820_MAX_ENTRIES_ZEROPAGE) 513 return 1; 514 515 memcpy(¶ms->e820_table[nr_e820_entries], entry, 516 sizeof(struct e820_entry)); 517 params->e820_entries++; 518 return 0; 519 } 520 521 static int memmap_entry_callback(struct resource *res, void *arg) 522 { 523 struct crash_memmap_data *cmd = arg; 524 struct boot_params *params = cmd->params; 525 struct e820_entry ei; 526 527 ei.addr = res->start; 528 ei.size = resource_size(res); 529 ei.type = cmd->type; 530 add_e820_entry(params, &ei); 531 532 return 0; 533 } 534 535 static int memmap_exclude_ranges(struct kimage *image, struct crash_mem *cmem, 536 unsigned long long mstart, 537 unsigned long long mend) 538 { 539 unsigned long start, end; 540 int ret = 0; 541 542 cmem->ranges[0].start = mstart; 543 cmem->ranges[0].end = mend; 544 cmem->nr_ranges = 1; 545 546 /* Exclude Backup region */ 547 start = image->arch.backup_load_addr; 548 end = start + image->arch.backup_src_sz - 1; 549 ret = exclude_mem_range(cmem, start, end); 550 if (ret) 551 return ret; 552 553 /* Exclude elf header region */ 554 start = image->arch.elf_load_addr; 555 end = start + image->arch.elf_headers_sz - 1; 556 return exclude_mem_range(cmem, start, end); 557 } 558 559 /* Prepare memory map for crash dump kernel */ 560 int crash_setup_memmap_entries(struct kimage *image, struct boot_params *params) 561 { 562 int i, ret = 0; 563 unsigned long flags; 564 struct e820_entry ei; 565 struct crash_memmap_data cmd; 566 struct crash_mem *cmem; 567 568 cmem = vzalloc(sizeof(struct crash_mem)); 569 if (!cmem) 570 return -ENOMEM; 571 572 memset(&cmd, 0, sizeof(struct crash_memmap_data)); 573 cmd.params = params; 574 575 /* Add first 640K segment */ 576 ei.addr = image->arch.backup_src_start; 577 ei.size = image->arch.backup_src_sz; 578 ei.type = E820_TYPE_RAM; 579 add_e820_entry(params, &ei); 580 581 /* Add ACPI tables */ 582 cmd.type = E820_TYPE_ACPI; 583 flags = IORESOURCE_MEM | IORESOURCE_BUSY; 584 walk_iomem_res_desc(IORES_DESC_ACPI_TABLES, flags, 0, -1, &cmd, 585 memmap_entry_callback); 586 587 /* Add ACPI Non-volatile Storage */ 588 cmd.type = E820_TYPE_NVS; 589 walk_iomem_res_desc(IORES_DESC_ACPI_NV_STORAGE, flags, 0, -1, &cmd, 590 memmap_entry_callback); 591 592 /* Add crashk_low_res region */ 593 if (crashk_low_res.end) { 594 ei.addr = crashk_low_res.start; 595 ei.size = crashk_low_res.end - crashk_low_res.start + 1; 596 ei.type = E820_TYPE_RAM; 597 add_e820_entry(params, &ei); 598 } 599 600 /* Exclude some ranges from crashk_res and add rest to memmap */ 601 ret = memmap_exclude_ranges(image, cmem, crashk_res.start, 602 crashk_res.end); 603 if (ret) 604 goto out; 605 606 for (i = 0; i < cmem->nr_ranges; i++) { 607 ei.size = cmem->ranges[i].end - cmem->ranges[i].start + 1; 608 609 /* If entry is less than a page, skip it */ 610 if (ei.size < PAGE_SIZE) 611 continue; 612 ei.addr = cmem->ranges[i].start; 613 ei.type = E820_TYPE_RAM; 614 add_e820_entry(params, &ei); 615 } 616 617 out: 618 vfree(cmem); 619 return ret; 620 } 621 622 static int determine_backup_region(struct resource *res, void *arg) 623 { 624 struct kimage *image = arg; 625 626 image->arch.backup_src_start = res->start; 627 image->arch.backup_src_sz = resource_size(res); 628 629 /* Expecting only one range for backup region */ 630 return 1; 631 } 632 633 int crash_load_segments(struct kimage *image) 634 { 635 int ret; 636 struct kexec_buf kbuf = { .image = image, .buf_min = 0, 637 .buf_max = ULONG_MAX, .top_down = false }; 638 639 /* 640 * Determine and load a segment for backup area. First 640K RAM 641 * region is backup source 642 */ 643 644 ret = walk_system_ram_res(KEXEC_BACKUP_SRC_START, KEXEC_BACKUP_SRC_END, 645 image, determine_backup_region); 646 647 /* Zero or postive return values are ok */ 648 if (ret < 0) 649 return ret; 650 651 /* Add backup segment. */ 652 if (image->arch.backup_src_sz) { 653 kbuf.buffer = &crash_zero_bytes; 654 kbuf.bufsz = sizeof(crash_zero_bytes); 655 kbuf.memsz = image->arch.backup_src_sz; 656 kbuf.buf_align = PAGE_SIZE; 657 /* 658 * Ideally there is no source for backup segment. This is 659 * copied in purgatory after crash. Just add a zero filled 660 * segment for now to make sure checksum logic works fine. 661 */ 662 ret = kexec_add_buffer(&kbuf); 663 if (ret) 664 return ret; 665 image->arch.backup_load_addr = kbuf.mem; 666 pr_debug("Loaded backup region at 0x%lx backup_start=0x%lx memsz=0x%lx\n", 667 image->arch.backup_load_addr, 668 image->arch.backup_src_start, kbuf.memsz); 669 } 670 671 /* Prepare elf headers and add a segment */ 672 ret = prepare_elf_headers(image, &kbuf.buffer, &kbuf.bufsz); 673 if (ret) 674 return ret; 675 676 image->arch.elf_headers = kbuf.buffer; 677 image->arch.elf_headers_sz = kbuf.bufsz; 678 679 kbuf.memsz = kbuf.bufsz; 680 kbuf.buf_align = ELF_CORE_HEADER_ALIGN; 681 ret = kexec_add_buffer(&kbuf); 682 if (ret) { 683 vfree((void *)image->arch.elf_headers); 684 return ret; 685 } 686 image->arch.elf_load_addr = kbuf.mem; 687 pr_debug("Loaded ELF headers at 0x%lx bufsz=0x%lx memsz=0x%lx\n", 688 image->arch.elf_load_addr, kbuf.bufsz, kbuf.bufsz); 689 690 return ret; 691 } 692 #endif /* CONFIG_KEXEC_FILE */ 693