xref: /openbmc/linux/arch/x86/kernel/crash.c (revision 179dd8c0)
1 /*
2  * Architecture specific (i386/x86_64) functions for kexec based crash dumps.
3  *
4  * Created by: Hariprasad Nellitheertha (hari@in.ibm.com)
5  *
6  * Copyright (C) IBM Corporation, 2004. All rights reserved.
7  * Copyright (C) Red Hat Inc., 2014. All rights reserved.
8  * Authors:
9  *      Vivek Goyal <vgoyal@redhat.com>
10  *
11  */
12 
13 #define pr_fmt(fmt)	"kexec: " fmt
14 
15 #include <linux/types.h>
16 #include <linux/kernel.h>
17 #include <linux/smp.h>
18 #include <linux/reboot.h>
19 #include <linux/kexec.h>
20 #include <linux/delay.h>
21 #include <linux/elf.h>
22 #include <linux/elfcore.h>
23 #include <linux/module.h>
24 #include <linux/slab.h>
25 #include <linux/vmalloc.h>
26 
27 #include <asm/processor.h>
28 #include <asm/hardirq.h>
29 #include <asm/nmi.h>
30 #include <asm/hw_irq.h>
31 #include <asm/apic.h>
32 #include <asm/io_apic.h>
33 #include <asm/hpet.h>
34 #include <linux/kdebug.h>
35 #include <asm/cpu.h>
36 #include <asm/reboot.h>
37 #include <asm/virtext.h>
38 
39 /* Alignment required for elf header segment */
40 #define ELF_CORE_HEADER_ALIGN   4096
41 
42 /* This primarily represents number of split ranges due to exclusion */
43 #define CRASH_MAX_RANGES	16
44 
45 struct crash_mem_range {
46 	u64 start, end;
47 };
48 
49 struct crash_mem {
50 	unsigned int nr_ranges;
51 	struct crash_mem_range ranges[CRASH_MAX_RANGES];
52 };
53 
54 /* Misc data about ram ranges needed to prepare elf headers */
55 struct crash_elf_data {
56 	struct kimage *image;
57 	/*
58 	 * Total number of ram ranges we have after various adjustments for
59 	 * GART, crash reserved region etc.
60 	 */
61 	unsigned int max_nr_ranges;
62 	unsigned long gart_start, gart_end;
63 
64 	/* Pointer to elf header */
65 	void *ehdr;
66 	/* Pointer to next phdr */
67 	void *bufp;
68 	struct crash_mem mem;
69 };
70 
71 /* Used while preparing memory map entries for second kernel */
72 struct crash_memmap_data {
73 	struct boot_params *params;
74 	/* Type of memory */
75 	unsigned int type;
76 };
77 
78 int in_crash_kexec;
79 
80 /*
81  * This is used to VMCLEAR all VMCSs loaded on the
82  * processor. And when loading kvm_intel module, the
83  * callback function pointer will be assigned.
84  *
85  * protected by rcu.
86  */
87 crash_vmclear_fn __rcu *crash_vmclear_loaded_vmcss = NULL;
88 EXPORT_SYMBOL_GPL(crash_vmclear_loaded_vmcss);
89 unsigned long crash_zero_bytes;
90 
91 static inline void cpu_crash_vmclear_loaded_vmcss(void)
92 {
93 	crash_vmclear_fn *do_vmclear_operation = NULL;
94 
95 	rcu_read_lock();
96 	do_vmclear_operation = rcu_dereference(crash_vmclear_loaded_vmcss);
97 	if (do_vmclear_operation)
98 		do_vmclear_operation();
99 	rcu_read_unlock();
100 }
101 
102 #if defined(CONFIG_SMP) && defined(CONFIG_X86_LOCAL_APIC)
103 
104 static void kdump_nmi_callback(int cpu, struct pt_regs *regs)
105 {
106 #ifdef CONFIG_X86_32
107 	struct pt_regs fixed_regs;
108 
109 	if (!user_mode(regs)) {
110 		crash_fixup_ss_esp(&fixed_regs, regs);
111 		regs = &fixed_regs;
112 	}
113 #endif
114 	crash_save_cpu(regs, cpu);
115 
116 	/*
117 	 * VMCLEAR VMCSs loaded on all cpus if needed.
118 	 */
119 	cpu_crash_vmclear_loaded_vmcss();
120 
121 	/* Disable VMX or SVM if needed.
122 	 *
123 	 * We need to disable virtualization on all CPUs.
124 	 * Having VMX or SVM enabled on any CPU may break rebooting
125 	 * after the kdump kernel has finished its task.
126 	 */
127 	cpu_emergency_vmxoff();
128 	cpu_emergency_svm_disable();
129 
130 	disable_local_APIC();
131 }
132 
133 static void kdump_nmi_shootdown_cpus(void)
134 {
135 	in_crash_kexec = 1;
136 	nmi_shootdown_cpus(kdump_nmi_callback);
137 
138 	disable_local_APIC();
139 }
140 
141 #else
142 static void kdump_nmi_shootdown_cpus(void)
143 {
144 	/* There are no cpus to shootdown */
145 }
146 #endif
147 
148 void native_machine_crash_shutdown(struct pt_regs *regs)
149 {
150 	/* This function is only called after the system
151 	 * has panicked or is otherwise in a critical state.
152 	 * The minimum amount of code to allow a kexec'd kernel
153 	 * to run successfully needs to happen here.
154 	 *
155 	 * In practice this means shooting down the other cpus in
156 	 * an SMP system.
157 	 */
158 	/* The kernel is broken so disable interrupts */
159 	local_irq_disable();
160 
161 	kdump_nmi_shootdown_cpus();
162 
163 	/*
164 	 * VMCLEAR VMCSs loaded on this cpu if needed.
165 	 */
166 	cpu_crash_vmclear_loaded_vmcss();
167 
168 	/* Booting kdump kernel with VMX or SVM enabled won't work,
169 	 * because (among other limitations) we can't disable paging
170 	 * with the virt flags.
171 	 */
172 	cpu_emergency_vmxoff();
173 	cpu_emergency_svm_disable();
174 
175 #ifdef CONFIG_X86_IO_APIC
176 	/* Prevent crash_kexec() from deadlocking on ioapic_lock. */
177 	ioapic_zap_locks();
178 	disable_IO_APIC();
179 #endif
180 	lapic_shutdown();
181 #ifdef CONFIG_HPET_TIMER
182 	hpet_disable();
183 #endif
184 	crash_save_cpu(regs, safe_smp_processor_id());
185 }
186 
187 #ifdef CONFIG_KEXEC_FILE
188 static int get_nr_ram_ranges_callback(unsigned long start_pfn,
189 				unsigned long nr_pfn, void *arg)
190 {
191 	int *nr_ranges = arg;
192 
193 	(*nr_ranges)++;
194 	return 0;
195 }
196 
197 static int get_gart_ranges_callback(u64 start, u64 end, void *arg)
198 {
199 	struct crash_elf_data *ced = arg;
200 
201 	ced->gart_start = start;
202 	ced->gart_end = end;
203 
204 	/* Not expecting more than 1 gart aperture */
205 	return 1;
206 }
207 
208 
209 /* Gather all the required information to prepare elf headers for ram regions */
210 static void fill_up_crash_elf_data(struct crash_elf_data *ced,
211 				   struct kimage *image)
212 {
213 	unsigned int nr_ranges = 0;
214 
215 	ced->image = image;
216 
217 	walk_system_ram_range(0, -1, &nr_ranges,
218 				get_nr_ram_ranges_callback);
219 
220 	ced->max_nr_ranges = nr_ranges;
221 
222 	/*
223 	 * We don't create ELF headers for GART aperture as an attempt
224 	 * to dump this memory in second kernel leads to hang/crash.
225 	 * If gart aperture is present, one needs to exclude that region
226 	 * and that could lead to need of extra phdr.
227 	 */
228 	walk_iomem_res("GART", IORESOURCE_MEM, 0, -1,
229 				ced, get_gart_ranges_callback);
230 
231 	/*
232 	 * If we have gart region, excluding that could potentially split
233 	 * a memory range, resulting in extra header. Account for  that.
234 	 */
235 	if (ced->gart_end)
236 		ced->max_nr_ranges++;
237 
238 	/* Exclusion of crash region could split memory ranges */
239 	ced->max_nr_ranges++;
240 
241 	/* If crashk_low_res is not 0, another range split possible */
242 	if (crashk_low_res.end)
243 		ced->max_nr_ranges++;
244 }
245 
246 static int exclude_mem_range(struct crash_mem *mem,
247 		unsigned long long mstart, unsigned long long mend)
248 {
249 	int i, j;
250 	unsigned long long start, end;
251 	struct crash_mem_range temp_range = {0, 0};
252 
253 	for (i = 0; i < mem->nr_ranges; i++) {
254 		start = mem->ranges[i].start;
255 		end = mem->ranges[i].end;
256 
257 		if (mstart > end || mend < start)
258 			continue;
259 
260 		/* Truncate any area outside of range */
261 		if (mstart < start)
262 			mstart = start;
263 		if (mend > end)
264 			mend = end;
265 
266 		/* Found completely overlapping range */
267 		if (mstart == start && mend == end) {
268 			mem->ranges[i].start = 0;
269 			mem->ranges[i].end = 0;
270 			if (i < mem->nr_ranges - 1) {
271 				/* Shift rest of the ranges to left */
272 				for (j = i; j < mem->nr_ranges - 1; j++) {
273 					mem->ranges[j].start =
274 						mem->ranges[j+1].start;
275 					mem->ranges[j].end =
276 							mem->ranges[j+1].end;
277 				}
278 			}
279 			mem->nr_ranges--;
280 			return 0;
281 		}
282 
283 		if (mstart > start && mend < end) {
284 			/* Split original range */
285 			mem->ranges[i].end = mstart - 1;
286 			temp_range.start = mend + 1;
287 			temp_range.end = end;
288 		} else if (mstart != start)
289 			mem->ranges[i].end = mstart - 1;
290 		else
291 			mem->ranges[i].start = mend + 1;
292 		break;
293 	}
294 
295 	/* If a split happend, add the split to array */
296 	if (!temp_range.end)
297 		return 0;
298 
299 	/* Split happened */
300 	if (i == CRASH_MAX_RANGES - 1) {
301 		pr_err("Too many crash ranges after split\n");
302 		return -ENOMEM;
303 	}
304 
305 	/* Location where new range should go */
306 	j = i + 1;
307 	if (j < mem->nr_ranges) {
308 		/* Move over all ranges one slot towards the end */
309 		for (i = mem->nr_ranges - 1; i >= j; i--)
310 			mem->ranges[i + 1] = mem->ranges[i];
311 	}
312 
313 	mem->ranges[j].start = temp_range.start;
314 	mem->ranges[j].end = temp_range.end;
315 	mem->nr_ranges++;
316 	return 0;
317 }
318 
319 /*
320  * Look for any unwanted ranges between mstart, mend and remove them. This
321  * might lead to split and split ranges are put in ced->mem.ranges[] array
322  */
323 static int elf_header_exclude_ranges(struct crash_elf_data *ced,
324 		unsigned long long mstart, unsigned long long mend)
325 {
326 	struct crash_mem *cmem = &ced->mem;
327 	int ret = 0;
328 
329 	memset(cmem->ranges, 0, sizeof(cmem->ranges));
330 
331 	cmem->ranges[0].start = mstart;
332 	cmem->ranges[0].end = mend;
333 	cmem->nr_ranges = 1;
334 
335 	/* Exclude crashkernel region */
336 	ret = exclude_mem_range(cmem, crashk_res.start, crashk_res.end);
337 	if (ret)
338 		return ret;
339 
340 	if (crashk_low_res.end) {
341 		ret = exclude_mem_range(cmem, crashk_low_res.start, crashk_low_res.end);
342 		if (ret)
343 			return ret;
344 	}
345 
346 	/* Exclude GART region */
347 	if (ced->gart_end) {
348 		ret = exclude_mem_range(cmem, ced->gart_start, ced->gart_end);
349 		if (ret)
350 			return ret;
351 	}
352 
353 	return ret;
354 }
355 
356 static int prepare_elf64_ram_headers_callback(u64 start, u64 end, void *arg)
357 {
358 	struct crash_elf_data *ced = arg;
359 	Elf64_Ehdr *ehdr;
360 	Elf64_Phdr *phdr;
361 	unsigned long mstart, mend;
362 	struct kimage *image = ced->image;
363 	struct crash_mem *cmem;
364 	int ret, i;
365 
366 	ehdr = ced->ehdr;
367 
368 	/* Exclude unwanted mem ranges */
369 	ret = elf_header_exclude_ranges(ced, start, end);
370 	if (ret)
371 		return ret;
372 
373 	/* Go through all the ranges in ced->mem.ranges[] and prepare phdr */
374 	cmem = &ced->mem;
375 
376 	for (i = 0; i < cmem->nr_ranges; i++) {
377 		mstart = cmem->ranges[i].start;
378 		mend = cmem->ranges[i].end;
379 
380 		phdr = ced->bufp;
381 		ced->bufp += sizeof(Elf64_Phdr);
382 
383 		phdr->p_type = PT_LOAD;
384 		phdr->p_flags = PF_R|PF_W|PF_X;
385 		phdr->p_offset  = mstart;
386 
387 		/*
388 		 * If a range matches backup region, adjust offset to backup
389 		 * segment.
390 		 */
391 		if (mstart == image->arch.backup_src_start &&
392 		    (mend - mstart + 1) == image->arch.backup_src_sz)
393 			phdr->p_offset = image->arch.backup_load_addr;
394 
395 		phdr->p_paddr = mstart;
396 		phdr->p_vaddr = (unsigned long long) __va(mstart);
397 		phdr->p_filesz = phdr->p_memsz = mend - mstart + 1;
398 		phdr->p_align = 0;
399 		ehdr->e_phnum++;
400 		pr_debug("Crash PT_LOAD elf header. phdr=%p vaddr=0x%llx, paddr=0x%llx, sz=0x%llx e_phnum=%d p_offset=0x%llx\n",
401 			phdr, phdr->p_vaddr, phdr->p_paddr, phdr->p_filesz,
402 			ehdr->e_phnum, phdr->p_offset);
403 	}
404 
405 	return ret;
406 }
407 
408 static int prepare_elf64_headers(struct crash_elf_data *ced,
409 		void **addr, unsigned long *sz)
410 {
411 	Elf64_Ehdr *ehdr;
412 	Elf64_Phdr *phdr;
413 	unsigned long nr_cpus = num_possible_cpus(), nr_phdr, elf_sz;
414 	unsigned char *buf, *bufp;
415 	unsigned int cpu;
416 	unsigned long long notes_addr;
417 	int ret;
418 
419 	/* extra phdr for vmcoreinfo elf note */
420 	nr_phdr = nr_cpus + 1;
421 	nr_phdr += ced->max_nr_ranges;
422 
423 	/*
424 	 * kexec-tools creates an extra PT_LOAD phdr for kernel text mapping
425 	 * area on x86_64 (ffffffff80000000 - ffffffffa0000000).
426 	 * I think this is required by tools like gdb. So same physical
427 	 * memory will be mapped in two elf headers. One will contain kernel
428 	 * text virtual addresses and other will have __va(physical) addresses.
429 	 */
430 
431 	nr_phdr++;
432 	elf_sz = sizeof(Elf64_Ehdr) + nr_phdr * sizeof(Elf64_Phdr);
433 	elf_sz = ALIGN(elf_sz, ELF_CORE_HEADER_ALIGN);
434 
435 	buf = vzalloc(elf_sz);
436 	if (!buf)
437 		return -ENOMEM;
438 
439 	bufp = buf;
440 	ehdr = (Elf64_Ehdr *)bufp;
441 	bufp += sizeof(Elf64_Ehdr);
442 	memcpy(ehdr->e_ident, ELFMAG, SELFMAG);
443 	ehdr->e_ident[EI_CLASS] = ELFCLASS64;
444 	ehdr->e_ident[EI_DATA] = ELFDATA2LSB;
445 	ehdr->e_ident[EI_VERSION] = EV_CURRENT;
446 	ehdr->e_ident[EI_OSABI] = ELF_OSABI;
447 	memset(ehdr->e_ident + EI_PAD, 0, EI_NIDENT - EI_PAD);
448 	ehdr->e_type = ET_CORE;
449 	ehdr->e_machine = ELF_ARCH;
450 	ehdr->e_version = EV_CURRENT;
451 	ehdr->e_phoff = sizeof(Elf64_Ehdr);
452 	ehdr->e_ehsize = sizeof(Elf64_Ehdr);
453 	ehdr->e_phentsize = sizeof(Elf64_Phdr);
454 
455 	/* Prepare one phdr of type PT_NOTE for each present cpu */
456 	for_each_present_cpu(cpu) {
457 		phdr = (Elf64_Phdr *)bufp;
458 		bufp += sizeof(Elf64_Phdr);
459 		phdr->p_type = PT_NOTE;
460 		notes_addr = per_cpu_ptr_to_phys(per_cpu_ptr(crash_notes, cpu));
461 		phdr->p_offset = phdr->p_paddr = notes_addr;
462 		phdr->p_filesz = phdr->p_memsz = sizeof(note_buf_t);
463 		(ehdr->e_phnum)++;
464 	}
465 
466 	/* Prepare one PT_NOTE header for vmcoreinfo */
467 	phdr = (Elf64_Phdr *)bufp;
468 	bufp += sizeof(Elf64_Phdr);
469 	phdr->p_type = PT_NOTE;
470 	phdr->p_offset = phdr->p_paddr = paddr_vmcoreinfo_note();
471 	phdr->p_filesz = phdr->p_memsz = sizeof(vmcoreinfo_note);
472 	(ehdr->e_phnum)++;
473 
474 #ifdef CONFIG_X86_64
475 	/* Prepare PT_LOAD type program header for kernel text region */
476 	phdr = (Elf64_Phdr *)bufp;
477 	bufp += sizeof(Elf64_Phdr);
478 	phdr->p_type = PT_LOAD;
479 	phdr->p_flags = PF_R|PF_W|PF_X;
480 	phdr->p_vaddr = (Elf64_Addr)_text;
481 	phdr->p_filesz = phdr->p_memsz = _end - _text;
482 	phdr->p_offset = phdr->p_paddr = __pa_symbol(_text);
483 	(ehdr->e_phnum)++;
484 #endif
485 
486 	/* Prepare PT_LOAD headers for system ram chunks. */
487 	ced->ehdr = ehdr;
488 	ced->bufp = bufp;
489 	ret = walk_system_ram_res(0, -1, ced,
490 			prepare_elf64_ram_headers_callback);
491 	if (ret < 0)
492 		return ret;
493 
494 	*addr = buf;
495 	*sz = elf_sz;
496 	return 0;
497 }
498 
499 /* Prepare elf headers. Return addr and size */
500 static int prepare_elf_headers(struct kimage *image, void **addr,
501 					unsigned long *sz)
502 {
503 	struct crash_elf_data *ced;
504 	int ret;
505 
506 	ced = kzalloc(sizeof(*ced), GFP_KERNEL);
507 	if (!ced)
508 		return -ENOMEM;
509 
510 	fill_up_crash_elf_data(ced, image);
511 
512 	/* By default prepare 64bit headers */
513 	ret =  prepare_elf64_headers(ced, addr, sz);
514 	kfree(ced);
515 	return ret;
516 }
517 
518 static int add_e820_entry(struct boot_params *params, struct e820entry *entry)
519 {
520 	unsigned int nr_e820_entries;
521 
522 	nr_e820_entries = params->e820_entries;
523 	if (nr_e820_entries >= E820MAX)
524 		return 1;
525 
526 	memcpy(&params->e820_map[nr_e820_entries], entry,
527 			sizeof(struct e820entry));
528 	params->e820_entries++;
529 	return 0;
530 }
531 
532 static int memmap_entry_callback(u64 start, u64 end, void *arg)
533 {
534 	struct crash_memmap_data *cmd = arg;
535 	struct boot_params *params = cmd->params;
536 	struct e820entry ei;
537 
538 	ei.addr = start;
539 	ei.size = end - start + 1;
540 	ei.type = cmd->type;
541 	add_e820_entry(params, &ei);
542 
543 	return 0;
544 }
545 
546 static int memmap_exclude_ranges(struct kimage *image, struct crash_mem *cmem,
547 				 unsigned long long mstart,
548 				 unsigned long long mend)
549 {
550 	unsigned long start, end;
551 	int ret = 0;
552 
553 	cmem->ranges[0].start = mstart;
554 	cmem->ranges[0].end = mend;
555 	cmem->nr_ranges = 1;
556 
557 	/* Exclude Backup region */
558 	start = image->arch.backup_load_addr;
559 	end = start + image->arch.backup_src_sz - 1;
560 	ret = exclude_mem_range(cmem, start, end);
561 	if (ret)
562 		return ret;
563 
564 	/* Exclude elf header region */
565 	start = image->arch.elf_load_addr;
566 	end = start + image->arch.elf_headers_sz - 1;
567 	return exclude_mem_range(cmem, start, end);
568 }
569 
570 /* Prepare memory map for crash dump kernel */
571 int crash_setup_memmap_entries(struct kimage *image, struct boot_params *params)
572 {
573 	int i, ret = 0;
574 	unsigned long flags;
575 	struct e820entry ei;
576 	struct crash_memmap_data cmd;
577 	struct crash_mem *cmem;
578 
579 	cmem = vzalloc(sizeof(struct crash_mem));
580 	if (!cmem)
581 		return -ENOMEM;
582 
583 	memset(&cmd, 0, sizeof(struct crash_memmap_data));
584 	cmd.params = params;
585 
586 	/* Add first 640K segment */
587 	ei.addr = image->arch.backup_src_start;
588 	ei.size = image->arch.backup_src_sz;
589 	ei.type = E820_RAM;
590 	add_e820_entry(params, &ei);
591 
592 	/* Add ACPI tables */
593 	cmd.type = E820_ACPI;
594 	flags = IORESOURCE_MEM | IORESOURCE_BUSY;
595 	walk_iomem_res("ACPI Tables", flags, 0, -1, &cmd,
596 		       memmap_entry_callback);
597 
598 	/* Add ACPI Non-volatile Storage */
599 	cmd.type = E820_NVS;
600 	walk_iomem_res("ACPI Non-volatile Storage", flags, 0, -1, &cmd,
601 			memmap_entry_callback);
602 
603 	/* Add crashk_low_res region */
604 	if (crashk_low_res.end) {
605 		ei.addr = crashk_low_res.start;
606 		ei.size = crashk_low_res.end - crashk_low_res.start + 1;
607 		ei.type = E820_RAM;
608 		add_e820_entry(params, &ei);
609 	}
610 
611 	/* Exclude some ranges from crashk_res and add rest to memmap */
612 	ret = memmap_exclude_ranges(image, cmem, crashk_res.start,
613 						crashk_res.end);
614 	if (ret)
615 		goto out;
616 
617 	for (i = 0; i < cmem->nr_ranges; i++) {
618 		ei.size = cmem->ranges[i].end - cmem->ranges[i].start + 1;
619 
620 		/* If entry is less than a page, skip it */
621 		if (ei.size < PAGE_SIZE)
622 			continue;
623 		ei.addr = cmem->ranges[i].start;
624 		ei.type = E820_RAM;
625 		add_e820_entry(params, &ei);
626 	}
627 
628 out:
629 	vfree(cmem);
630 	return ret;
631 }
632 
633 static int determine_backup_region(u64 start, u64 end, void *arg)
634 {
635 	struct kimage *image = arg;
636 
637 	image->arch.backup_src_start = start;
638 	image->arch.backup_src_sz = end - start + 1;
639 
640 	/* Expecting only one range for backup region */
641 	return 1;
642 }
643 
644 int crash_load_segments(struct kimage *image)
645 {
646 	unsigned long src_start, src_sz, elf_sz;
647 	void *elf_addr;
648 	int ret;
649 
650 	/*
651 	 * Determine and load a segment for backup area. First 640K RAM
652 	 * region is backup source
653 	 */
654 
655 	ret = walk_system_ram_res(KEXEC_BACKUP_SRC_START, KEXEC_BACKUP_SRC_END,
656 				image, determine_backup_region);
657 
658 	/* Zero or postive return values are ok */
659 	if (ret < 0)
660 		return ret;
661 
662 	src_start = image->arch.backup_src_start;
663 	src_sz = image->arch.backup_src_sz;
664 
665 	/* Add backup segment. */
666 	if (src_sz) {
667 		/*
668 		 * Ideally there is no source for backup segment. This is
669 		 * copied in purgatory after crash. Just add a zero filled
670 		 * segment for now to make sure checksum logic works fine.
671 		 */
672 		ret = kexec_add_buffer(image, (char *)&crash_zero_bytes,
673 				       sizeof(crash_zero_bytes), src_sz,
674 				       PAGE_SIZE, 0, -1, 0,
675 				       &image->arch.backup_load_addr);
676 		if (ret)
677 			return ret;
678 		pr_debug("Loaded backup region at 0x%lx backup_start=0x%lx memsz=0x%lx\n",
679 			 image->arch.backup_load_addr, src_start, src_sz);
680 	}
681 
682 	/* Prepare elf headers and add a segment */
683 	ret = prepare_elf_headers(image, &elf_addr, &elf_sz);
684 	if (ret)
685 		return ret;
686 
687 	image->arch.elf_headers = elf_addr;
688 	image->arch.elf_headers_sz = elf_sz;
689 
690 	ret = kexec_add_buffer(image, (char *)elf_addr, elf_sz, elf_sz,
691 			ELF_CORE_HEADER_ALIGN, 0, -1, 0,
692 			&image->arch.elf_load_addr);
693 	if (ret) {
694 		vfree((void *)image->arch.elf_headers);
695 		return ret;
696 	}
697 	pr_debug("Loaded ELF headers at 0x%lx bufsz=0x%lx memsz=0x%lx\n",
698 		 image->arch.elf_load_addr, elf_sz, elf_sz);
699 
700 	return ret;
701 }
702 #endif /* CONFIG_KEXEC_FILE */
703