xref: /openbmc/linux/arch/x86/kernel/cpu/sgx/main.c (revision d9f6e12f)
1 // SPDX-License-Identifier: GPL-2.0
2 /*  Copyright(c) 2016-20 Intel Corporation. */
3 
4 #include <linux/freezer.h>
5 #include <linux/highmem.h>
6 #include <linux/kthread.h>
7 #include <linux/pagemap.h>
8 #include <linux/ratelimit.h>
9 #include <linux/sched/mm.h>
10 #include <linux/sched/signal.h>
11 #include <linux/slab.h>
12 #include "driver.h"
13 #include "encl.h"
14 #include "encls.h"
15 
16 struct sgx_epc_section sgx_epc_sections[SGX_MAX_EPC_SECTIONS];
17 static int sgx_nr_epc_sections;
18 static struct task_struct *ksgxd_tsk;
19 static DECLARE_WAIT_QUEUE_HEAD(ksgxd_waitq);
20 
21 /*
22  * These variables are part of the state of the reclaimer, and must be accessed
23  * with sgx_reclaimer_lock acquired.
24  */
25 static LIST_HEAD(sgx_active_page_list);
26 
27 static DEFINE_SPINLOCK(sgx_reclaimer_lock);
28 
29 /*
30  * Reset dirty EPC pages to uninitialized state. Laundry can be left with SECS
31  * pages whose child pages blocked EREMOVE.
32  */
33 static void sgx_sanitize_section(struct sgx_epc_section *section)
34 {
35 	struct sgx_epc_page *page;
36 	LIST_HEAD(dirty);
37 	int ret;
38 
39 	/* init_laundry_list is thread-local, no need for a lock: */
40 	while (!list_empty(&section->init_laundry_list)) {
41 		if (kthread_should_stop())
42 			return;
43 
44 		/* needed for access to ->page_list: */
45 		spin_lock(&section->lock);
46 
47 		page = list_first_entry(&section->init_laundry_list,
48 					struct sgx_epc_page, list);
49 
50 		ret = __eremove(sgx_get_epc_virt_addr(page));
51 		if (!ret)
52 			list_move(&page->list, &section->page_list);
53 		else
54 			list_move_tail(&page->list, &dirty);
55 
56 		spin_unlock(&section->lock);
57 
58 		cond_resched();
59 	}
60 
61 	list_splice(&dirty, &section->init_laundry_list);
62 }
63 
64 static bool sgx_reclaimer_age(struct sgx_epc_page *epc_page)
65 {
66 	struct sgx_encl_page *page = epc_page->owner;
67 	struct sgx_encl *encl = page->encl;
68 	struct sgx_encl_mm *encl_mm;
69 	bool ret = true;
70 	int idx;
71 
72 	idx = srcu_read_lock(&encl->srcu);
73 
74 	list_for_each_entry_rcu(encl_mm, &encl->mm_list, list) {
75 		if (!mmget_not_zero(encl_mm->mm))
76 			continue;
77 
78 		mmap_read_lock(encl_mm->mm);
79 		ret = !sgx_encl_test_and_clear_young(encl_mm->mm, page);
80 		mmap_read_unlock(encl_mm->mm);
81 
82 		mmput_async(encl_mm->mm);
83 
84 		if (!ret)
85 			break;
86 	}
87 
88 	srcu_read_unlock(&encl->srcu, idx);
89 
90 	if (!ret)
91 		return false;
92 
93 	return true;
94 }
95 
96 static void sgx_reclaimer_block(struct sgx_epc_page *epc_page)
97 {
98 	struct sgx_encl_page *page = epc_page->owner;
99 	unsigned long addr = page->desc & PAGE_MASK;
100 	struct sgx_encl *encl = page->encl;
101 	unsigned long mm_list_version;
102 	struct sgx_encl_mm *encl_mm;
103 	struct vm_area_struct *vma;
104 	int idx, ret;
105 
106 	do {
107 		mm_list_version = encl->mm_list_version;
108 
109 		/* Pairs with smp_rmb() in sgx_encl_mm_add(). */
110 		smp_rmb();
111 
112 		idx = srcu_read_lock(&encl->srcu);
113 
114 		list_for_each_entry_rcu(encl_mm, &encl->mm_list, list) {
115 			if (!mmget_not_zero(encl_mm->mm))
116 				continue;
117 
118 			mmap_read_lock(encl_mm->mm);
119 
120 			ret = sgx_encl_find(encl_mm->mm, addr, &vma);
121 			if (!ret && encl == vma->vm_private_data)
122 				zap_vma_ptes(vma, addr, PAGE_SIZE);
123 
124 			mmap_read_unlock(encl_mm->mm);
125 
126 			mmput_async(encl_mm->mm);
127 		}
128 
129 		srcu_read_unlock(&encl->srcu, idx);
130 	} while (unlikely(encl->mm_list_version != mm_list_version));
131 
132 	mutex_lock(&encl->lock);
133 
134 	ret = __eblock(sgx_get_epc_virt_addr(epc_page));
135 	if (encls_failed(ret))
136 		ENCLS_WARN(ret, "EBLOCK");
137 
138 	mutex_unlock(&encl->lock);
139 }
140 
141 static int __sgx_encl_ewb(struct sgx_epc_page *epc_page, void *va_slot,
142 			  struct sgx_backing *backing)
143 {
144 	struct sgx_pageinfo pginfo;
145 	int ret;
146 
147 	pginfo.addr = 0;
148 	pginfo.secs = 0;
149 
150 	pginfo.contents = (unsigned long)kmap_atomic(backing->contents);
151 	pginfo.metadata = (unsigned long)kmap_atomic(backing->pcmd) +
152 			  backing->pcmd_offset;
153 
154 	ret = __ewb(&pginfo, sgx_get_epc_virt_addr(epc_page), va_slot);
155 
156 	kunmap_atomic((void *)(unsigned long)(pginfo.metadata -
157 					      backing->pcmd_offset));
158 	kunmap_atomic((void *)(unsigned long)pginfo.contents);
159 
160 	return ret;
161 }
162 
163 static void sgx_ipi_cb(void *info)
164 {
165 }
166 
167 static const cpumask_t *sgx_encl_ewb_cpumask(struct sgx_encl *encl)
168 {
169 	cpumask_t *cpumask = &encl->cpumask;
170 	struct sgx_encl_mm *encl_mm;
171 	int idx;
172 
173 	/*
174 	 * Can race with sgx_encl_mm_add(), but ETRACK has already been
175 	 * executed, which means that the CPUs running in the new mm will enter
176 	 * into the enclave with a fresh epoch.
177 	 */
178 	cpumask_clear(cpumask);
179 
180 	idx = srcu_read_lock(&encl->srcu);
181 
182 	list_for_each_entry_rcu(encl_mm, &encl->mm_list, list) {
183 		if (!mmget_not_zero(encl_mm->mm))
184 			continue;
185 
186 		cpumask_or(cpumask, cpumask, mm_cpumask(encl_mm->mm));
187 
188 		mmput_async(encl_mm->mm);
189 	}
190 
191 	srcu_read_unlock(&encl->srcu, idx);
192 
193 	return cpumask;
194 }
195 
196 /*
197  * Swap page to the regular memory transformed to the blocked state by using
198  * EBLOCK, which means that it can no longer be referenced (no new TLB entries).
199  *
200  * The first trial just tries to write the page assuming that some other thread
201  * has reset the count for threads inside the enclave by using ETRACK, and
202  * previous thread count has been zeroed out. The second trial calls ETRACK
203  * before EWB. If that fails we kick all the HW threads out, and then do EWB,
204  * which should be guaranteed the succeed.
205  */
206 static void sgx_encl_ewb(struct sgx_epc_page *epc_page,
207 			 struct sgx_backing *backing)
208 {
209 	struct sgx_encl_page *encl_page = epc_page->owner;
210 	struct sgx_encl *encl = encl_page->encl;
211 	struct sgx_va_page *va_page;
212 	unsigned int va_offset;
213 	void *va_slot;
214 	int ret;
215 
216 	encl_page->desc &= ~SGX_ENCL_PAGE_BEING_RECLAIMED;
217 
218 	va_page = list_first_entry(&encl->va_pages, struct sgx_va_page,
219 				   list);
220 	va_offset = sgx_alloc_va_slot(va_page);
221 	va_slot = sgx_get_epc_virt_addr(va_page->epc_page) + va_offset;
222 	if (sgx_va_page_full(va_page))
223 		list_move_tail(&va_page->list, &encl->va_pages);
224 
225 	ret = __sgx_encl_ewb(epc_page, va_slot, backing);
226 	if (ret == SGX_NOT_TRACKED) {
227 		ret = __etrack(sgx_get_epc_virt_addr(encl->secs.epc_page));
228 		if (ret) {
229 			if (encls_failed(ret))
230 				ENCLS_WARN(ret, "ETRACK");
231 		}
232 
233 		ret = __sgx_encl_ewb(epc_page, va_slot, backing);
234 		if (ret == SGX_NOT_TRACKED) {
235 			/*
236 			 * Slow path, send IPIs to kick cpus out of the
237 			 * enclave.  Note, it's imperative that the cpu
238 			 * mask is generated *after* ETRACK, else we'll
239 			 * miss cpus that entered the enclave between
240 			 * generating the mask and incrementing epoch.
241 			 */
242 			on_each_cpu_mask(sgx_encl_ewb_cpumask(encl),
243 					 sgx_ipi_cb, NULL, 1);
244 			ret = __sgx_encl_ewb(epc_page, va_slot, backing);
245 		}
246 	}
247 
248 	if (ret) {
249 		if (encls_failed(ret))
250 			ENCLS_WARN(ret, "EWB");
251 
252 		sgx_free_va_slot(va_page, va_offset);
253 	} else {
254 		encl_page->desc |= va_offset;
255 		encl_page->va_page = va_page;
256 	}
257 }
258 
259 static void sgx_reclaimer_write(struct sgx_epc_page *epc_page,
260 				struct sgx_backing *backing)
261 {
262 	struct sgx_encl_page *encl_page = epc_page->owner;
263 	struct sgx_encl *encl = encl_page->encl;
264 	struct sgx_backing secs_backing;
265 	int ret;
266 
267 	mutex_lock(&encl->lock);
268 
269 	sgx_encl_ewb(epc_page, backing);
270 	encl_page->epc_page = NULL;
271 	encl->secs_child_cnt--;
272 
273 	if (!encl->secs_child_cnt && test_bit(SGX_ENCL_INITIALIZED, &encl->flags)) {
274 		ret = sgx_encl_get_backing(encl, PFN_DOWN(encl->size),
275 					   &secs_backing);
276 		if (ret)
277 			goto out;
278 
279 		sgx_encl_ewb(encl->secs.epc_page, &secs_backing);
280 
281 		sgx_free_epc_page(encl->secs.epc_page);
282 		encl->secs.epc_page = NULL;
283 
284 		sgx_encl_put_backing(&secs_backing, true);
285 	}
286 
287 out:
288 	mutex_unlock(&encl->lock);
289 }
290 
291 /*
292  * Take a fixed number of pages from the head of the active page pool and
293  * reclaim them to the enclave's private shmem files. Skip the pages, which have
294  * been accessed since the last scan. Move those pages to the tail of active
295  * page pool so that the pages get scanned in LRU like fashion.
296  *
297  * Batch process a chunk of pages (at the moment 16) in order to degrade amount
298  * of IPI's and ETRACK's potentially required. sgx_encl_ewb() does degrade a bit
299  * among the HW threads with three stage EWB pipeline (EWB, ETRACK + EWB and IPI
300  * + EWB) but not sufficiently. Reclaiming one page at a time would also be
301  * problematic as it would increase the lock contention too much, which would
302  * halt forward progress.
303  */
304 static void sgx_reclaim_pages(void)
305 {
306 	struct sgx_epc_page *chunk[SGX_NR_TO_SCAN];
307 	struct sgx_backing backing[SGX_NR_TO_SCAN];
308 	struct sgx_epc_section *section;
309 	struct sgx_encl_page *encl_page;
310 	struct sgx_epc_page *epc_page;
311 	pgoff_t page_index;
312 	int cnt = 0;
313 	int ret;
314 	int i;
315 
316 	spin_lock(&sgx_reclaimer_lock);
317 	for (i = 0; i < SGX_NR_TO_SCAN; i++) {
318 		if (list_empty(&sgx_active_page_list))
319 			break;
320 
321 		epc_page = list_first_entry(&sgx_active_page_list,
322 					    struct sgx_epc_page, list);
323 		list_del_init(&epc_page->list);
324 		encl_page = epc_page->owner;
325 
326 		if (kref_get_unless_zero(&encl_page->encl->refcount) != 0)
327 			chunk[cnt++] = epc_page;
328 		else
329 			/* The owner is freeing the page. No need to add the
330 			 * page back to the list of reclaimable pages.
331 			 */
332 			epc_page->flags &= ~SGX_EPC_PAGE_RECLAIMER_TRACKED;
333 	}
334 	spin_unlock(&sgx_reclaimer_lock);
335 
336 	for (i = 0; i < cnt; i++) {
337 		epc_page = chunk[i];
338 		encl_page = epc_page->owner;
339 
340 		if (!sgx_reclaimer_age(epc_page))
341 			goto skip;
342 
343 		page_index = PFN_DOWN(encl_page->desc - encl_page->encl->base);
344 		ret = sgx_encl_get_backing(encl_page->encl, page_index, &backing[i]);
345 		if (ret)
346 			goto skip;
347 
348 		mutex_lock(&encl_page->encl->lock);
349 		encl_page->desc |= SGX_ENCL_PAGE_BEING_RECLAIMED;
350 		mutex_unlock(&encl_page->encl->lock);
351 		continue;
352 
353 skip:
354 		spin_lock(&sgx_reclaimer_lock);
355 		list_add_tail(&epc_page->list, &sgx_active_page_list);
356 		spin_unlock(&sgx_reclaimer_lock);
357 
358 		kref_put(&encl_page->encl->refcount, sgx_encl_release);
359 
360 		chunk[i] = NULL;
361 	}
362 
363 	for (i = 0; i < cnt; i++) {
364 		epc_page = chunk[i];
365 		if (epc_page)
366 			sgx_reclaimer_block(epc_page);
367 	}
368 
369 	for (i = 0; i < cnt; i++) {
370 		epc_page = chunk[i];
371 		if (!epc_page)
372 			continue;
373 
374 		encl_page = epc_page->owner;
375 		sgx_reclaimer_write(epc_page, &backing[i]);
376 		sgx_encl_put_backing(&backing[i], true);
377 
378 		kref_put(&encl_page->encl->refcount, sgx_encl_release);
379 		epc_page->flags &= ~SGX_EPC_PAGE_RECLAIMER_TRACKED;
380 
381 		section = &sgx_epc_sections[epc_page->section];
382 		spin_lock(&section->lock);
383 		list_add_tail(&epc_page->list, &section->page_list);
384 		section->free_cnt++;
385 		spin_unlock(&section->lock);
386 	}
387 }
388 
389 static unsigned long sgx_nr_free_pages(void)
390 {
391 	unsigned long cnt = 0;
392 	int i;
393 
394 	for (i = 0; i < sgx_nr_epc_sections; i++)
395 		cnt += sgx_epc_sections[i].free_cnt;
396 
397 	return cnt;
398 }
399 
400 static bool sgx_should_reclaim(unsigned long watermark)
401 {
402 	return sgx_nr_free_pages() < watermark &&
403 	       !list_empty(&sgx_active_page_list);
404 }
405 
406 static int ksgxd(void *p)
407 {
408 	int i;
409 
410 	set_freezable();
411 
412 	/*
413 	 * Sanitize pages in order to recover from kexec(). The 2nd pass is
414 	 * required for SECS pages, whose child pages blocked EREMOVE.
415 	 */
416 	for (i = 0; i < sgx_nr_epc_sections; i++)
417 		sgx_sanitize_section(&sgx_epc_sections[i]);
418 
419 	for (i = 0; i < sgx_nr_epc_sections; i++) {
420 		sgx_sanitize_section(&sgx_epc_sections[i]);
421 
422 		/* Should never happen. */
423 		if (!list_empty(&sgx_epc_sections[i].init_laundry_list))
424 			WARN(1, "EPC section %d has unsanitized pages.\n", i);
425 	}
426 
427 	while (!kthread_should_stop()) {
428 		if (try_to_freeze())
429 			continue;
430 
431 		wait_event_freezable(ksgxd_waitq,
432 				     kthread_should_stop() ||
433 				     sgx_should_reclaim(SGX_NR_HIGH_PAGES));
434 
435 		if (sgx_should_reclaim(SGX_NR_HIGH_PAGES))
436 			sgx_reclaim_pages();
437 
438 		cond_resched();
439 	}
440 
441 	return 0;
442 }
443 
444 static bool __init sgx_page_reclaimer_init(void)
445 {
446 	struct task_struct *tsk;
447 
448 	tsk = kthread_run(ksgxd, NULL, "ksgxd");
449 	if (IS_ERR(tsk))
450 		return false;
451 
452 	ksgxd_tsk = tsk;
453 
454 	return true;
455 }
456 
457 static struct sgx_epc_page *__sgx_alloc_epc_page_from_section(struct sgx_epc_section *section)
458 {
459 	struct sgx_epc_page *page;
460 
461 	spin_lock(&section->lock);
462 
463 	if (list_empty(&section->page_list)) {
464 		spin_unlock(&section->lock);
465 		return NULL;
466 	}
467 
468 	page = list_first_entry(&section->page_list, struct sgx_epc_page, list);
469 	list_del_init(&page->list);
470 	section->free_cnt--;
471 
472 	spin_unlock(&section->lock);
473 	return page;
474 }
475 
476 /**
477  * __sgx_alloc_epc_page() - Allocate an EPC page
478  *
479  * Iterate through EPC sections and borrow a free EPC page to the caller. When a
480  * page is no longer needed it must be released with sgx_free_epc_page().
481  *
482  * Return:
483  *   an EPC page,
484  *   -errno on error
485  */
486 struct sgx_epc_page *__sgx_alloc_epc_page(void)
487 {
488 	struct sgx_epc_section *section;
489 	struct sgx_epc_page *page;
490 	int i;
491 
492 	for (i = 0; i < sgx_nr_epc_sections; i++) {
493 		section = &sgx_epc_sections[i];
494 
495 		page = __sgx_alloc_epc_page_from_section(section);
496 		if (page)
497 			return page;
498 	}
499 
500 	return ERR_PTR(-ENOMEM);
501 }
502 
503 /**
504  * sgx_mark_page_reclaimable() - Mark a page as reclaimable
505  * @page:	EPC page
506  *
507  * Mark a page as reclaimable and add it to the active page list. Pages
508  * are automatically removed from the active list when freed.
509  */
510 void sgx_mark_page_reclaimable(struct sgx_epc_page *page)
511 {
512 	spin_lock(&sgx_reclaimer_lock);
513 	page->flags |= SGX_EPC_PAGE_RECLAIMER_TRACKED;
514 	list_add_tail(&page->list, &sgx_active_page_list);
515 	spin_unlock(&sgx_reclaimer_lock);
516 }
517 
518 /**
519  * sgx_unmark_page_reclaimable() - Remove a page from the reclaim list
520  * @page:	EPC page
521  *
522  * Clear the reclaimable flag and remove the page from the active page list.
523  *
524  * Return:
525  *   0 on success,
526  *   -EBUSY if the page is in the process of being reclaimed
527  */
528 int sgx_unmark_page_reclaimable(struct sgx_epc_page *page)
529 {
530 	spin_lock(&sgx_reclaimer_lock);
531 	if (page->flags & SGX_EPC_PAGE_RECLAIMER_TRACKED) {
532 		/* The page is being reclaimed. */
533 		if (list_empty(&page->list)) {
534 			spin_unlock(&sgx_reclaimer_lock);
535 			return -EBUSY;
536 		}
537 
538 		list_del(&page->list);
539 		page->flags &= ~SGX_EPC_PAGE_RECLAIMER_TRACKED;
540 	}
541 	spin_unlock(&sgx_reclaimer_lock);
542 
543 	return 0;
544 }
545 
546 /**
547  * sgx_alloc_epc_page() - Allocate an EPC page
548  * @owner:	the owner of the EPC page
549  * @reclaim:	reclaim pages if necessary
550  *
551  * Iterate through EPC sections and borrow a free EPC page to the caller. When a
552  * page is no longer needed it must be released with sgx_free_epc_page(). If
553  * @reclaim is set to true, directly reclaim pages when we are out of pages. No
554  * mm's can be locked when @reclaim is set to true.
555  *
556  * Finally, wake up ksgxd when the number of pages goes below the watermark
557  * before returning back to the caller.
558  *
559  * Return:
560  *   an EPC page,
561  *   -errno on error
562  */
563 struct sgx_epc_page *sgx_alloc_epc_page(void *owner, bool reclaim)
564 {
565 	struct sgx_epc_page *page;
566 
567 	for ( ; ; ) {
568 		page = __sgx_alloc_epc_page();
569 		if (!IS_ERR(page)) {
570 			page->owner = owner;
571 			break;
572 		}
573 
574 		if (list_empty(&sgx_active_page_list))
575 			return ERR_PTR(-ENOMEM);
576 
577 		if (!reclaim) {
578 			page = ERR_PTR(-EBUSY);
579 			break;
580 		}
581 
582 		if (signal_pending(current)) {
583 			page = ERR_PTR(-ERESTARTSYS);
584 			break;
585 		}
586 
587 		sgx_reclaim_pages();
588 		cond_resched();
589 	}
590 
591 	if (sgx_should_reclaim(SGX_NR_LOW_PAGES))
592 		wake_up(&ksgxd_waitq);
593 
594 	return page;
595 }
596 
597 /**
598  * sgx_free_epc_page() - Free an EPC page
599  * @page:	an EPC page
600  *
601  * Call EREMOVE for an EPC page and insert it back to the list of free pages.
602  */
603 void sgx_free_epc_page(struct sgx_epc_page *page)
604 {
605 	struct sgx_epc_section *section = &sgx_epc_sections[page->section];
606 	int ret;
607 
608 	WARN_ON_ONCE(page->flags & SGX_EPC_PAGE_RECLAIMER_TRACKED);
609 
610 	ret = __eremove(sgx_get_epc_virt_addr(page));
611 	if (WARN_ONCE(ret, "EREMOVE returned %d (0x%x)", ret, ret))
612 		return;
613 
614 	spin_lock(&section->lock);
615 	list_add_tail(&page->list, &section->page_list);
616 	section->free_cnt++;
617 	spin_unlock(&section->lock);
618 }
619 
620 static bool __init sgx_setup_epc_section(u64 phys_addr, u64 size,
621 					 unsigned long index,
622 					 struct sgx_epc_section *section)
623 {
624 	unsigned long nr_pages = size >> PAGE_SHIFT;
625 	unsigned long i;
626 
627 	section->virt_addr = memremap(phys_addr, size, MEMREMAP_WB);
628 	if (!section->virt_addr)
629 		return false;
630 
631 	section->pages = vmalloc(nr_pages * sizeof(struct sgx_epc_page));
632 	if (!section->pages) {
633 		memunmap(section->virt_addr);
634 		return false;
635 	}
636 
637 	section->phys_addr = phys_addr;
638 	spin_lock_init(&section->lock);
639 	INIT_LIST_HEAD(&section->page_list);
640 	INIT_LIST_HEAD(&section->init_laundry_list);
641 
642 	for (i = 0; i < nr_pages; i++) {
643 		section->pages[i].section = index;
644 		section->pages[i].flags = 0;
645 		section->pages[i].owner = NULL;
646 		list_add_tail(&section->pages[i].list, &section->init_laundry_list);
647 	}
648 
649 	section->free_cnt = nr_pages;
650 	return true;
651 }
652 
653 /**
654  * A section metric is concatenated in a way that @low bits 12-31 define the
655  * bits 12-31 of the metric and @high bits 0-19 define the bits 32-51 of the
656  * metric.
657  */
658 static inline u64 __init sgx_calc_section_metric(u64 low, u64 high)
659 {
660 	return (low & GENMASK_ULL(31, 12)) +
661 	       ((high & GENMASK_ULL(19, 0)) << 32);
662 }
663 
664 static bool __init sgx_page_cache_init(void)
665 {
666 	u32 eax, ebx, ecx, edx, type;
667 	u64 pa, size;
668 	int i;
669 
670 	for (i = 0; i < ARRAY_SIZE(sgx_epc_sections); i++) {
671 		cpuid_count(SGX_CPUID, i + SGX_CPUID_EPC, &eax, &ebx, &ecx, &edx);
672 
673 		type = eax & SGX_CPUID_EPC_MASK;
674 		if (type == SGX_CPUID_EPC_INVALID)
675 			break;
676 
677 		if (type != SGX_CPUID_EPC_SECTION) {
678 			pr_err_once("Unknown EPC section type: %u\n", type);
679 			break;
680 		}
681 
682 		pa   = sgx_calc_section_metric(eax, ebx);
683 		size = sgx_calc_section_metric(ecx, edx);
684 
685 		pr_info("EPC section 0x%llx-0x%llx\n", pa, pa + size - 1);
686 
687 		if (!sgx_setup_epc_section(pa, size, i, &sgx_epc_sections[i])) {
688 			pr_err("No free memory for an EPC section\n");
689 			break;
690 		}
691 
692 		sgx_nr_epc_sections++;
693 	}
694 
695 	if (!sgx_nr_epc_sections) {
696 		pr_err("There are zero EPC sections.\n");
697 		return false;
698 	}
699 
700 	return true;
701 }
702 
703 static int __init sgx_init(void)
704 {
705 	int ret;
706 	int i;
707 
708 	if (!cpu_feature_enabled(X86_FEATURE_SGX))
709 		return -ENODEV;
710 
711 	if (!sgx_page_cache_init())
712 		return -ENOMEM;
713 
714 	if (!sgx_page_reclaimer_init()) {
715 		ret = -ENOMEM;
716 		goto err_page_cache;
717 	}
718 
719 	ret = sgx_drv_init();
720 	if (ret)
721 		goto err_kthread;
722 
723 	return 0;
724 
725 err_kthread:
726 	kthread_stop(ksgxd_tsk);
727 
728 err_page_cache:
729 	for (i = 0; i < sgx_nr_epc_sections; i++) {
730 		vfree(sgx_epc_sections[i].pages);
731 		memunmap(sgx_epc_sections[i].virt_addr);
732 	}
733 
734 	return ret;
735 }
736 
737 device_initcall(sgx_init);
738