1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright(c) 2016-20 Intel Corporation. */ 3 4 #include <linux/file.h> 5 #include <linux/freezer.h> 6 #include <linux/highmem.h> 7 #include <linux/kthread.h> 8 #include <linux/miscdevice.h> 9 #include <linux/node.h> 10 #include <linux/pagemap.h> 11 #include <linux/ratelimit.h> 12 #include <linux/sched/mm.h> 13 #include <linux/sched/signal.h> 14 #include <linux/slab.h> 15 #include <linux/sysfs.h> 16 #include <asm/sgx.h> 17 #include "driver.h" 18 #include "encl.h" 19 #include "encls.h" 20 21 struct sgx_epc_section sgx_epc_sections[SGX_MAX_EPC_SECTIONS]; 22 static int sgx_nr_epc_sections; 23 static struct task_struct *ksgxd_tsk; 24 static DECLARE_WAIT_QUEUE_HEAD(ksgxd_waitq); 25 static DEFINE_XARRAY(sgx_epc_address_space); 26 27 /* 28 * These variables are part of the state of the reclaimer, and must be accessed 29 * with sgx_reclaimer_lock acquired. 30 */ 31 static LIST_HEAD(sgx_active_page_list); 32 static DEFINE_SPINLOCK(sgx_reclaimer_lock); 33 34 static atomic_long_t sgx_nr_free_pages = ATOMIC_LONG_INIT(0); 35 36 /* Nodes with one or more EPC sections. */ 37 static nodemask_t sgx_numa_mask; 38 39 /* 40 * Array with one list_head for each possible NUMA node. Each 41 * list contains all the sgx_epc_section's which are on that 42 * node. 43 */ 44 static struct sgx_numa_node *sgx_numa_nodes; 45 46 static LIST_HEAD(sgx_dirty_page_list); 47 48 /* 49 * Reset post-kexec EPC pages to the uninitialized state. The pages are removed 50 * from the input list, and made available for the page allocator. SECS pages 51 * prepending their children in the input list are left intact. 52 */ 53 static void __sgx_sanitize_pages(struct list_head *dirty_page_list) 54 { 55 struct sgx_epc_page *page; 56 LIST_HEAD(dirty); 57 int ret; 58 59 /* dirty_page_list is thread-local, no need for a lock: */ 60 while (!list_empty(dirty_page_list)) { 61 if (kthread_should_stop()) 62 return; 63 64 page = list_first_entry(dirty_page_list, struct sgx_epc_page, list); 65 66 /* 67 * Checking page->poison without holding the node->lock 68 * is racy, but losing the race (i.e. poison is set just 69 * after the check) just means __eremove() will be uselessly 70 * called for a page that sgx_free_epc_page() will put onto 71 * the node->sgx_poison_page_list later. 72 */ 73 if (page->poison) { 74 struct sgx_epc_section *section = &sgx_epc_sections[page->section]; 75 struct sgx_numa_node *node = section->node; 76 77 spin_lock(&node->lock); 78 list_move(&page->list, &node->sgx_poison_page_list); 79 spin_unlock(&node->lock); 80 81 continue; 82 } 83 84 ret = __eremove(sgx_get_epc_virt_addr(page)); 85 if (!ret) { 86 /* 87 * page is now sanitized. Make it available via the SGX 88 * page allocator: 89 */ 90 list_del(&page->list); 91 sgx_free_epc_page(page); 92 } else { 93 /* The page is not yet clean - move to the dirty list. */ 94 list_move_tail(&page->list, &dirty); 95 } 96 97 cond_resched(); 98 } 99 100 list_splice(&dirty, dirty_page_list); 101 } 102 103 static bool sgx_reclaimer_age(struct sgx_epc_page *epc_page) 104 { 105 struct sgx_encl_page *page = epc_page->owner; 106 struct sgx_encl *encl = page->encl; 107 struct sgx_encl_mm *encl_mm; 108 bool ret = true; 109 int idx; 110 111 idx = srcu_read_lock(&encl->srcu); 112 113 list_for_each_entry_rcu(encl_mm, &encl->mm_list, list) { 114 if (!mmget_not_zero(encl_mm->mm)) 115 continue; 116 117 mmap_read_lock(encl_mm->mm); 118 ret = !sgx_encl_test_and_clear_young(encl_mm->mm, page); 119 mmap_read_unlock(encl_mm->mm); 120 121 mmput_async(encl_mm->mm); 122 123 if (!ret) 124 break; 125 } 126 127 srcu_read_unlock(&encl->srcu, idx); 128 129 if (!ret) 130 return false; 131 132 return true; 133 } 134 135 static void sgx_reclaimer_block(struct sgx_epc_page *epc_page) 136 { 137 struct sgx_encl_page *page = epc_page->owner; 138 unsigned long addr = page->desc & PAGE_MASK; 139 struct sgx_encl *encl = page->encl; 140 unsigned long mm_list_version; 141 struct sgx_encl_mm *encl_mm; 142 struct vm_area_struct *vma; 143 int idx, ret; 144 145 do { 146 mm_list_version = encl->mm_list_version; 147 148 /* Pairs with smp_rmb() in sgx_encl_mm_add(). */ 149 smp_rmb(); 150 151 idx = srcu_read_lock(&encl->srcu); 152 153 list_for_each_entry_rcu(encl_mm, &encl->mm_list, list) { 154 if (!mmget_not_zero(encl_mm->mm)) 155 continue; 156 157 mmap_read_lock(encl_mm->mm); 158 159 ret = sgx_encl_find(encl_mm->mm, addr, &vma); 160 if (!ret && encl == vma->vm_private_data) 161 zap_vma_ptes(vma, addr, PAGE_SIZE); 162 163 mmap_read_unlock(encl_mm->mm); 164 165 mmput_async(encl_mm->mm); 166 } 167 168 srcu_read_unlock(&encl->srcu, idx); 169 } while (unlikely(encl->mm_list_version != mm_list_version)); 170 171 mutex_lock(&encl->lock); 172 173 ret = __eblock(sgx_get_epc_virt_addr(epc_page)); 174 if (encls_failed(ret)) 175 ENCLS_WARN(ret, "EBLOCK"); 176 177 mutex_unlock(&encl->lock); 178 } 179 180 static int __sgx_encl_ewb(struct sgx_epc_page *epc_page, void *va_slot, 181 struct sgx_backing *backing) 182 { 183 struct sgx_pageinfo pginfo; 184 int ret; 185 186 pginfo.addr = 0; 187 pginfo.secs = 0; 188 189 pginfo.contents = (unsigned long)kmap_atomic(backing->contents); 190 pginfo.metadata = (unsigned long)kmap_atomic(backing->pcmd) + 191 backing->pcmd_offset; 192 193 ret = __ewb(&pginfo, sgx_get_epc_virt_addr(epc_page), va_slot); 194 set_page_dirty(backing->pcmd); 195 set_page_dirty(backing->contents); 196 197 kunmap_atomic((void *)(unsigned long)(pginfo.metadata - 198 backing->pcmd_offset)); 199 kunmap_atomic((void *)(unsigned long)pginfo.contents); 200 201 return ret; 202 } 203 204 static void sgx_ipi_cb(void *info) 205 { 206 } 207 208 static const cpumask_t *sgx_encl_ewb_cpumask(struct sgx_encl *encl) 209 { 210 cpumask_t *cpumask = &encl->cpumask; 211 struct sgx_encl_mm *encl_mm; 212 int idx; 213 214 /* 215 * Can race with sgx_encl_mm_add(), but ETRACK has already been 216 * executed, which means that the CPUs running in the new mm will enter 217 * into the enclave with a fresh epoch. 218 */ 219 cpumask_clear(cpumask); 220 221 idx = srcu_read_lock(&encl->srcu); 222 223 list_for_each_entry_rcu(encl_mm, &encl->mm_list, list) { 224 if (!mmget_not_zero(encl_mm->mm)) 225 continue; 226 227 cpumask_or(cpumask, cpumask, mm_cpumask(encl_mm->mm)); 228 229 mmput_async(encl_mm->mm); 230 } 231 232 srcu_read_unlock(&encl->srcu, idx); 233 234 return cpumask; 235 } 236 237 /* 238 * Swap page to the regular memory transformed to the blocked state by using 239 * EBLOCK, which means that it can no longer be referenced (no new TLB entries). 240 * 241 * The first trial just tries to write the page assuming that some other thread 242 * has reset the count for threads inside the enclave by using ETRACK, and 243 * previous thread count has been zeroed out. The second trial calls ETRACK 244 * before EWB. If that fails we kick all the HW threads out, and then do EWB, 245 * which should be guaranteed the succeed. 246 */ 247 static void sgx_encl_ewb(struct sgx_epc_page *epc_page, 248 struct sgx_backing *backing) 249 { 250 struct sgx_encl_page *encl_page = epc_page->owner; 251 struct sgx_encl *encl = encl_page->encl; 252 struct sgx_va_page *va_page; 253 unsigned int va_offset; 254 void *va_slot; 255 int ret; 256 257 encl_page->desc &= ~SGX_ENCL_PAGE_BEING_RECLAIMED; 258 259 va_page = list_first_entry(&encl->va_pages, struct sgx_va_page, 260 list); 261 va_offset = sgx_alloc_va_slot(va_page); 262 va_slot = sgx_get_epc_virt_addr(va_page->epc_page) + va_offset; 263 if (sgx_va_page_full(va_page)) 264 list_move_tail(&va_page->list, &encl->va_pages); 265 266 ret = __sgx_encl_ewb(epc_page, va_slot, backing); 267 if (ret == SGX_NOT_TRACKED) { 268 ret = __etrack(sgx_get_epc_virt_addr(encl->secs.epc_page)); 269 if (ret) { 270 if (encls_failed(ret)) 271 ENCLS_WARN(ret, "ETRACK"); 272 } 273 274 ret = __sgx_encl_ewb(epc_page, va_slot, backing); 275 if (ret == SGX_NOT_TRACKED) { 276 /* 277 * Slow path, send IPIs to kick cpus out of the 278 * enclave. Note, it's imperative that the cpu 279 * mask is generated *after* ETRACK, else we'll 280 * miss cpus that entered the enclave between 281 * generating the mask and incrementing epoch. 282 */ 283 on_each_cpu_mask(sgx_encl_ewb_cpumask(encl), 284 sgx_ipi_cb, NULL, 1); 285 ret = __sgx_encl_ewb(epc_page, va_slot, backing); 286 } 287 } 288 289 if (ret) { 290 if (encls_failed(ret)) 291 ENCLS_WARN(ret, "EWB"); 292 293 sgx_free_va_slot(va_page, va_offset); 294 } else { 295 encl_page->desc |= va_offset; 296 encl_page->va_page = va_page; 297 } 298 } 299 300 static void sgx_reclaimer_write(struct sgx_epc_page *epc_page, 301 struct sgx_backing *backing) 302 { 303 struct sgx_encl_page *encl_page = epc_page->owner; 304 struct sgx_encl *encl = encl_page->encl; 305 struct sgx_backing secs_backing; 306 int ret; 307 308 mutex_lock(&encl->lock); 309 310 sgx_encl_ewb(epc_page, backing); 311 encl_page->epc_page = NULL; 312 encl->secs_child_cnt--; 313 sgx_encl_put_backing(backing); 314 315 if (!encl->secs_child_cnt && test_bit(SGX_ENCL_INITIALIZED, &encl->flags)) { 316 ret = sgx_encl_alloc_backing(encl, PFN_DOWN(encl->size), 317 &secs_backing); 318 if (ret) 319 goto out; 320 321 sgx_encl_ewb(encl->secs.epc_page, &secs_backing); 322 323 sgx_encl_free_epc_page(encl->secs.epc_page); 324 encl->secs.epc_page = NULL; 325 326 sgx_encl_put_backing(&secs_backing); 327 } 328 329 out: 330 mutex_unlock(&encl->lock); 331 } 332 333 /* 334 * Take a fixed number of pages from the head of the active page pool and 335 * reclaim them to the enclave's private shmem files. Skip the pages, which have 336 * been accessed since the last scan. Move those pages to the tail of active 337 * page pool so that the pages get scanned in LRU like fashion. 338 * 339 * Batch process a chunk of pages (at the moment 16) in order to degrade amount 340 * of IPI's and ETRACK's potentially required. sgx_encl_ewb() does degrade a bit 341 * among the HW threads with three stage EWB pipeline (EWB, ETRACK + EWB and IPI 342 * + EWB) but not sufficiently. Reclaiming one page at a time would also be 343 * problematic as it would increase the lock contention too much, which would 344 * halt forward progress. 345 */ 346 static void sgx_reclaim_pages(void) 347 { 348 struct sgx_epc_page *chunk[SGX_NR_TO_SCAN]; 349 struct sgx_backing backing[SGX_NR_TO_SCAN]; 350 struct sgx_encl_page *encl_page; 351 struct sgx_epc_page *epc_page; 352 pgoff_t page_index; 353 int cnt = 0; 354 int ret; 355 int i; 356 357 spin_lock(&sgx_reclaimer_lock); 358 for (i = 0; i < SGX_NR_TO_SCAN; i++) { 359 if (list_empty(&sgx_active_page_list)) 360 break; 361 362 epc_page = list_first_entry(&sgx_active_page_list, 363 struct sgx_epc_page, list); 364 list_del_init(&epc_page->list); 365 encl_page = epc_page->owner; 366 367 if (kref_get_unless_zero(&encl_page->encl->refcount) != 0) 368 chunk[cnt++] = epc_page; 369 else 370 /* The owner is freeing the page. No need to add the 371 * page back to the list of reclaimable pages. 372 */ 373 epc_page->flags &= ~SGX_EPC_PAGE_RECLAIMER_TRACKED; 374 } 375 spin_unlock(&sgx_reclaimer_lock); 376 377 for (i = 0; i < cnt; i++) { 378 epc_page = chunk[i]; 379 encl_page = epc_page->owner; 380 381 if (!sgx_reclaimer_age(epc_page)) 382 goto skip; 383 384 page_index = PFN_DOWN(encl_page->desc - encl_page->encl->base); 385 386 mutex_lock(&encl_page->encl->lock); 387 ret = sgx_encl_alloc_backing(encl_page->encl, page_index, &backing[i]); 388 if (ret) { 389 mutex_unlock(&encl_page->encl->lock); 390 goto skip; 391 } 392 393 encl_page->desc |= SGX_ENCL_PAGE_BEING_RECLAIMED; 394 mutex_unlock(&encl_page->encl->lock); 395 continue; 396 397 skip: 398 spin_lock(&sgx_reclaimer_lock); 399 list_add_tail(&epc_page->list, &sgx_active_page_list); 400 spin_unlock(&sgx_reclaimer_lock); 401 402 kref_put(&encl_page->encl->refcount, sgx_encl_release); 403 404 chunk[i] = NULL; 405 } 406 407 for (i = 0; i < cnt; i++) { 408 epc_page = chunk[i]; 409 if (epc_page) 410 sgx_reclaimer_block(epc_page); 411 } 412 413 for (i = 0; i < cnt; i++) { 414 epc_page = chunk[i]; 415 if (!epc_page) 416 continue; 417 418 encl_page = epc_page->owner; 419 sgx_reclaimer_write(epc_page, &backing[i]); 420 421 kref_put(&encl_page->encl->refcount, sgx_encl_release); 422 epc_page->flags &= ~SGX_EPC_PAGE_RECLAIMER_TRACKED; 423 424 sgx_free_epc_page(epc_page); 425 } 426 } 427 428 static bool sgx_should_reclaim(unsigned long watermark) 429 { 430 return atomic_long_read(&sgx_nr_free_pages) < watermark && 431 !list_empty(&sgx_active_page_list); 432 } 433 434 static int ksgxd(void *p) 435 { 436 set_freezable(); 437 438 /* 439 * Sanitize pages in order to recover from kexec(). The 2nd pass is 440 * required for SECS pages, whose child pages blocked EREMOVE. 441 */ 442 __sgx_sanitize_pages(&sgx_dirty_page_list); 443 __sgx_sanitize_pages(&sgx_dirty_page_list); 444 445 /* sanity check: */ 446 WARN_ON(!list_empty(&sgx_dirty_page_list)); 447 448 while (!kthread_should_stop()) { 449 if (try_to_freeze()) 450 continue; 451 452 wait_event_freezable(ksgxd_waitq, 453 kthread_should_stop() || 454 sgx_should_reclaim(SGX_NR_HIGH_PAGES)); 455 456 if (sgx_should_reclaim(SGX_NR_HIGH_PAGES)) 457 sgx_reclaim_pages(); 458 459 cond_resched(); 460 } 461 462 return 0; 463 } 464 465 static bool __init sgx_page_reclaimer_init(void) 466 { 467 struct task_struct *tsk; 468 469 tsk = kthread_run(ksgxd, NULL, "ksgxd"); 470 if (IS_ERR(tsk)) 471 return false; 472 473 ksgxd_tsk = tsk; 474 475 return true; 476 } 477 478 bool current_is_ksgxd(void) 479 { 480 return current == ksgxd_tsk; 481 } 482 483 static struct sgx_epc_page *__sgx_alloc_epc_page_from_node(int nid) 484 { 485 struct sgx_numa_node *node = &sgx_numa_nodes[nid]; 486 struct sgx_epc_page *page = NULL; 487 488 spin_lock(&node->lock); 489 490 if (list_empty(&node->free_page_list)) { 491 spin_unlock(&node->lock); 492 return NULL; 493 } 494 495 page = list_first_entry(&node->free_page_list, struct sgx_epc_page, list); 496 list_del_init(&page->list); 497 page->flags = 0; 498 499 spin_unlock(&node->lock); 500 atomic_long_dec(&sgx_nr_free_pages); 501 502 return page; 503 } 504 505 /** 506 * __sgx_alloc_epc_page() - Allocate an EPC page 507 * 508 * Iterate through NUMA nodes and reserve ia free EPC page to the caller. Start 509 * from the NUMA node, where the caller is executing. 510 * 511 * Return: 512 * - an EPC page: A borrowed EPC pages were available. 513 * - NULL: Out of EPC pages. 514 */ 515 struct sgx_epc_page *__sgx_alloc_epc_page(void) 516 { 517 struct sgx_epc_page *page; 518 int nid_of_current = numa_node_id(); 519 int nid = nid_of_current; 520 521 if (node_isset(nid_of_current, sgx_numa_mask)) { 522 page = __sgx_alloc_epc_page_from_node(nid_of_current); 523 if (page) 524 return page; 525 } 526 527 /* Fall back to the non-local NUMA nodes: */ 528 while (true) { 529 nid = next_node_in(nid, sgx_numa_mask); 530 if (nid == nid_of_current) 531 break; 532 533 page = __sgx_alloc_epc_page_from_node(nid); 534 if (page) 535 return page; 536 } 537 538 return ERR_PTR(-ENOMEM); 539 } 540 541 /** 542 * sgx_mark_page_reclaimable() - Mark a page as reclaimable 543 * @page: EPC page 544 * 545 * Mark a page as reclaimable and add it to the active page list. Pages 546 * are automatically removed from the active list when freed. 547 */ 548 void sgx_mark_page_reclaimable(struct sgx_epc_page *page) 549 { 550 spin_lock(&sgx_reclaimer_lock); 551 page->flags |= SGX_EPC_PAGE_RECLAIMER_TRACKED; 552 list_add_tail(&page->list, &sgx_active_page_list); 553 spin_unlock(&sgx_reclaimer_lock); 554 } 555 556 /** 557 * sgx_unmark_page_reclaimable() - Remove a page from the reclaim list 558 * @page: EPC page 559 * 560 * Clear the reclaimable flag and remove the page from the active page list. 561 * 562 * Return: 563 * 0 on success, 564 * -EBUSY if the page is in the process of being reclaimed 565 */ 566 int sgx_unmark_page_reclaimable(struct sgx_epc_page *page) 567 { 568 spin_lock(&sgx_reclaimer_lock); 569 if (page->flags & SGX_EPC_PAGE_RECLAIMER_TRACKED) { 570 /* The page is being reclaimed. */ 571 if (list_empty(&page->list)) { 572 spin_unlock(&sgx_reclaimer_lock); 573 return -EBUSY; 574 } 575 576 list_del(&page->list); 577 page->flags &= ~SGX_EPC_PAGE_RECLAIMER_TRACKED; 578 } 579 spin_unlock(&sgx_reclaimer_lock); 580 581 return 0; 582 } 583 584 /** 585 * sgx_alloc_epc_page() - Allocate an EPC page 586 * @owner: the owner of the EPC page 587 * @reclaim: reclaim pages if necessary 588 * 589 * Iterate through EPC sections and borrow a free EPC page to the caller. When a 590 * page is no longer needed it must be released with sgx_free_epc_page(). If 591 * @reclaim is set to true, directly reclaim pages when we are out of pages. No 592 * mm's can be locked when @reclaim is set to true. 593 * 594 * Finally, wake up ksgxd when the number of pages goes below the watermark 595 * before returning back to the caller. 596 * 597 * Return: 598 * an EPC page, 599 * -errno on error 600 */ 601 struct sgx_epc_page *sgx_alloc_epc_page(void *owner, bool reclaim) 602 { 603 struct sgx_epc_page *page; 604 605 for ( ; ; ) { 606 page = __sgx_alloc_epc_page(); 607 if (!IS_ERR(page)) { 608 page->owner = owner; 609 break; 610 } 611 612 if (list_empty(&sgx_active_page_list)) 613 return ERR_PTR(-ENOMEM); 614 615 if (!reclaim) { 616 page = ERR_PTR(-EBUSY); 617 break; 618 } 619 620 if (signal_pending(current)) { 621 page = ERR_PTR(-ERESTARTSYS); 622 break; 623 } 624 625 sgx_reclaim_pages(); 626 cond_resched(); 627 } 628 629 if (sgx_should_reclaim(SGX_NR_LOW_PAGES)) 630 wake_up(&ksgxd_waitq); 631 632 return page; 633 } 634 635 /** 636 * sgx_free_epc_page() - Free an EPC page 637 * @page: an EPC page 638 * 639 * Put the EPC page back to the list of free pages. It's the caller's 640 * responsibility to make sure that the page is in uninitialized state. In other 641 * words, do EREMOVE, EWB or whatever operation is necessary before calling 642 * this function. 643 */ 644 void sgx_free_epc_page(struct sgx_epc_page *page) 645 { 646 struct sgx_epc_section *section = &sgx_epc_sections[page->section]; 647 struct sgx_numa_node *node = section->node; 648 649 spin_lock(&node->lock); 650 651 page->owner = NULL; 652 if (page->poison) 653 list_add(&page->list, &node->sgx_poison_page_list); 654 else 655 list_add_tail(&page->list, &node->free_page_list); 656 page->flags = SGX_EPC_PAGE_IS_FREE; 657 658 spin_unlock(&node->lock); 659 atomic_long_inc(&sgx_nr_free_pages); 660 } 661 662 static bool __init sgx_setup_epc_section(u64 phys_addr, u64 size, 663 unsigned long index, 664 struct sgx_epc_section *section) 665 { 666 unsigned long nr_pages = size >> PAGE_SHIFT; 667 unsigned long i; 668 669 section->virt_addr = memremap(phys_addr, size, MEMREMAP_WB); 670 if (!section->virt_addr) 671 return false; 672 673 section->pages = vmalloc(nr_pages * sizeof(struct sgx_epc_page)); 674 if (!section->pages) { 675 memunmap(section->virt_addr); 676 return false; 677 } 678 679 section->phys_addr = phys_addr; 680 xa_store_range(&sgx_epc_address_space, section->phys_addr, 681 phys_addr + size - 1, section, GFP_KERNEL); 682 683 for (i = 0; i < nr_pages; i++) { 684 section->pages[i].section = index; 685 section->pages[i].flags = 0; 686 section->pages[i].owner = NULL; 687 section->pages[i].poison = 0; 688 list_add_tail(§ion->pages[i].list, &sgx_dirty_page_list); 689 } 690 691 return true; 692 } 693 694 bool arch_is_platform_page(u64 paddr) 695 { 696 return !!xa_load(&sgx_epc_address_space, paddr); 697 } 698 EXPORT_SYMBOL_GPL(arch_is_platform_page); 699 700 static struct sgx_epc_page *sgx_paddr_to_page(u64 paddr) 701 { 702 struct sgx_epc_section *section; 703 704 section = xa_load(&sgx_epc_address_space, paddr); 705 if (!section) 706 return NULL; 707 708 return §ion->pages[PFN_DOWN(paddr - section->phys_addr)]; 709 } 710 711 /* 712 * Called in process context to handle a hardware reported 713 * error in an SGX EPC page. 714 * If the MF_ACTION_REQUIRED bit is set in flags, then the 715 * context is the task that consumed the poison data. Otherwise 716 * this is called from a kernel thread unrelated to the page. 717 */ 718 int arch_memory_failure(unsigned long pfn, int flags) 719 { 720 struct sgx_epc_page *page = sgx_paddr_to_page(pfn << PAGE_SHIFT); 721 struct sgx_epc_section *section; 722 struct sgx_numa_node *node; 723 724 /* 725 * mm/memory-failure.c calls this routine for all errors 726 * where there isn't a "struct page" for the address. But that 727 * includes other address ranges besides SGX. 728 */ 729 if (!page) 730 return -ENXIO; 731 732 /* 733 * If poison was consumed synchronously. Send a SIGBUS to 734 * the task. Hardware has already exited the SGX enclave and 735 * will not allow re-entry to an enclave that has a memory 736 * error. The signal may help the task understand why the 737 * enclave is broken. 738 */ 739 if (flags & MF_ACTION_REQUIRED) 740 force_sig(SIGBUS); 741 742 section = &sgx_epc_sections[page->section]; 743 node = section->node; 744 745 spin_lock(&node->lock); 746 747 /* Already poisoned? Nothing more to do */ 748 if (page->poison) 749 goto out; 750 751 page->poison = 1; 752 753 /* 754 * If the page is on a free list, move it to the per-node 755 * poison page list. 756 */ 757 if (page->flags & SGX_EPC_PAGE_IS_FREE) { 758 list_move(&page->list, &node->sgx_poison_page_list); 759 goto out; 760 } 761 762 /* 763 * TBD: Add additional plumbing to enable pre-emptive 764 * action for asynchronous poison notification. Until 765 * then just hope that the poison: 766 * a) is not accessed - sgx_free_epc_page() will deal with it 767 * when the user gives it back 768 * b) results in a recoverable machine check rather than 769 * a fatal one 770 */ 771 out: 772 spin_unlock(&node->lock); 773 return 0; 774 } 775 776 /** 777 * A section metric is concatenated in a way that @low bits 12-31 define the 778 * bits 12-31 of the metric and @high bits 0-19 define the bits 32-51 of the 779 * metric. 780 */ 781 static inline u64 __init sgx_calc_section_metric(u64 low, u64 high) 782 { 783 return (low & GENMASK_ULL(31, 12)) + 784 ((high & GENMASK_ULL(19, 0)) << 32); 785 } 786 787 #ifdef CONFIG_NUMA 788 static ssize_t sgx_total_bytes_show(struct device *dev, struct device_attribute *attr, char *buf) 789 { 790 return sysfs_emit(buf, "%lu\n", sgx_numa_nodes[dev->id].size); 791 } 792 static DEVICE_ATTR_RO(sgx_total_bytes); 793 794 static umode_t arch_node_attr_is_visible(struct kobject *kobj, 795 struct attribute *attr, int idx) 796 { 797 /* Make all x86/ attributes invisible when SGX is not initialized: */ 798 if (nodes_empty(sgx_numa_mask)) 799 return 0; 800 801 return attr->mode; 802 } 803 804 static struct attribute *arch_node_dev_attrs[] = { 805 &dev_attr_sgx_total_bytes.attr, 806 NULL, 807 }; 808 809 const struct attribute_group arch_node_dev_group = { 810 .name = "x86", 811 .attrs = arch_node_dev_attrs, 812 .is_visible = arch_node_attr_is_visible, 813 }; 814 815 static void __init arch_update_sysfs_visibility(int nid) 816 { 817 struct node *node = node_devices[nid]; 818 int ret; 819 820 ret = sysfs_update_group(&node->dev.kobj, &arch_node_dev_group); 821 822 if (ret) 823 pr_err("sysfs update failed (%d), files may be invisible", ret); 824 } 825 #else /* !CONFIG_NUMA */ 826 static void __init arch_update_sysfs_visibility(int nid) {} 827 #endif 828 829 static bool __init sgx_page_cache_init(void) 830 { 831 u32 eax, ebx, ecx, edx, type; 832 u64 pa, size; 833 int nid; 834 int i; 835 836 sgx_numa_nodes = kmalloc_array(num_possible_nodes(), sizeof(*sgx_numa_nodes), GFP_KERNEL); 837 if (!sgx_numa_nodes) 838 return false; 839 840 for (i = 0; i < ARRAY_SIZE(sgx_epc_sections); i++) { 841 cpuid_count(SGX_CPUID, i + SGX_CPUID_EPC, &eax, &ebx, &ecx, &edx); 842 843 type = eax & SGX_CPUID_EPC_MASK; 844 if (type == SGX_CPUID_EPC_INVALID) 845 break; 846 847 if (type != SGX_CPUID_EPC_SECTION) { 848 pr_err_once("Unknown EPC section type: %u\n", type); 849 break; 850 } 851 852 pa = sgx_calc_section_metric(eax, ebx); 853 size = sgx_calc_section_metric(ecx, edx); 854 855 pr_info("EPC section 0x%llx-0x%llx\n", pa, pa + size - 1); 856 857 if (!sgx_setup_epc_section(pa, size, i, &sgx_epc_sections[i])) { 858 pr_err("No free memory for an EPC section\n"); 859 break; 860 } 861 862 nid = numa_map_to_online_node(phys_to_target_node(pa)); 863 if (nid == NUMA_NO_NODE) { 864 /* The physical address is already printed above. */ 865 pr_warn(FW_BUG "Unable to map EPC section to online node. Fallback to the NUMA node 0.\n"); 866 nid = 0; 867 } 868 869 if (!node_isset(nid, sgx_numa_mask)) { 870 spin_lock_init(&sgx_numa_nodes[nid].lock); 871 INIT_LIST_HEAD(&sgx_numa_nodes[nid].free_page_list); 872 INIT_LIST_HEAD(&sgx_numa_nodes[nid].sgx_poison_page_list); 873 node_set(nid, sgx_numa_mask); 874 sgx_numa_nodes[nid].size = 0; 875 876 /* Make SGX-specific node sysfs files visible: */ 877 arch_update_sysfs_visibility(nid); 878 } 879 880 sgx_epc_sections[i].node = &sgx_numa_nodes[nid]; 881 sgx_numa_nodes[nid].size += size; 882 883 sgx_nr_epc_sections++; 884 } 885 886 if (!sgx_nr_epc_sections) { 887 pr_err("There are zero EPC sections.\n"); 888 return false; 889 } 890 891 return true; 892 } 893 894 /* 895 * Update the SGX_LEPUBKEYHASH MSRs to the values specified by caller. 896 * Bare-metal driver requires to update them to hash of enclave's signer 897 * before EINIT. KVM needs to update them to guest's virtual MSR values 898 * before doing EINIT from guest. 899 */ 900 void sgx_update_lepubkeyhash(u64 *lepubkeyhash) 901 { 902 int i; 903 904 WARN_ON_ONCE(preemptible()); 905 906 for (i = 0; i < 4; i++) 907 wrmsrl(MSR_IA32_SGXLEPUBKEYHASH0 + i, lepubkeyhash[i]); 908 } 909 910 const struct file_operations sgx_provision_fops = { 911 .owner = THIS_MODULE, 912 }; 913 914 static struct miscdevice sgx_dev_provision = { 915 .minor = MISC_DYNAMIC_MINOR, 916 .name = "sgx_provision", 917 .nodename = "sgx_provision", 918 .fops = &sgx_provision_fops, 919 }; 920 921 /** 922 * sgx_set_attribute() - Update allowed attributes given file descriptor 923 * @allowed_attributes: Pointer to allowed enclave attributes 924 * @attribute_fd: File descriptor for specific attribute 925 * 926 * Append enclave attribute indicated by file descriptor to allowed 927 * attributes. Currently only SGX_ATTR_PROVISIONKEY indicated by 928 * /dev/sgx_provision is supported. 929 * 930 * Return: 931 * -0: SGX_ATTR_PROVISIONKEY is appended to allowed_attributes 932 * -EINVAL: Invalid, or not supported file descriptor 933 */ 934 int sgx_set_attribute(unsigned long *allowed_attributes, 935 unsigned int attribute_fd) 936 { 937 struct file *file; 938 939 file = fget(attribute_fd); 940 if (!file) 941 return -EINVAL; 942 943 if (file->f_op != &sgx_provision_fops) { 944 fput(file); 945 return -EINVAL; 946 } 947 948 *allowed_attributes |= SGX_ATTR_PROVISIONKEY; 949 950 fput(file); 951 return 0; 952 } 953 EXPORT_SYMBOL_GPL(sgx_set_attribute); 954 955 static int __init sgx_init(void) 956 { 957 int ret; 958 int i; 959 960 if (!cpu_feature_enabled(X86_FEATURE_SGX)) 961 return -ENODEV; 962 963 if (!sgx_page_cache_init()) 964 return -ENOMEM; 965 966 if (!sgx_page_reclaimer_init()) { 967 ret = -ENOMEM; 968 goto err_page_cache; 969 } 970 971 ret = misc_register(&sgx_dev_provision); 972 if (ret) 973 goto err_kthread; 974 975 /* 976 * Always try to initialize the native *and* KVM drivers. 977 * The KVM driver is less picky than the native one and 978 * can function if the native one is not supported on the 979 * current system or fails to initialize. 980 * 981 * Error out only if both fail to initialize. 982 */ 983 ret = sgx_drv_init(); 984 985 if (sgx_vepc_init() && ret) 986 goto err_provision; 987 988 return 0; 989 990 err_provision: 991 misc_deregister(&sgx_dev_provision); 992 993 err_kthread: 994 kthread_stop(ksgxd_tsk); 995 996 err_page_cache: 997 for (i = 0; i < sgx_nr_epc_sections; i++) { 998 vfree(sgx_epc_sections[i].pages); 999 memunmap(sgx_epc_sections[i].virt_addr); 1000 } 1001 1002 return ret; 1003 } 1004 1005 device_initcall(sgx_init); 1006