1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright(c) 2016-20 Intel Corporation. */ 3 4 #include <linux/file.h> 5 #include <linux/freezer.h> 6 #include <linux/highmem.h> 7 #include <linux/kthread.h> 8 #include <linux/miscdevice.h> 9 #include <linux/node.h> 10 #include <linux/pagemap.h> 11 #include <linux/ratelimit.h> 12 #include <linux/sched/mm.h> 13 #include <linux/sched/signal.h> 14 #include <linux/slab.h> 15 #include <linux/sysfs.h> 16 #include <asm/sgx.h> 17 #include "driver.h" 18 #include "encl.h" 19 #include "encls.h" 20 21 struct sgx_epc_section sgx_epc_sections[SGX_MAX_EPC_SECTIONS]; 22 static int sgx_nr_epc_sections; 23 static struct task_struct *ksgxd_tsk; 24 static DECLARE_WAIT_QUEUE_HEAD(ksgxd_waitq); 25 static DEFINE_XARRAY(sgx_epc_address_space); 26 27 /* 28 * These variables are part of the state of the reclaimer, and must be accessed 29 * with sgx_reclaimer_lock acquired. 30 */ 31 static LIST_HEAD(sgx_active_page_list); 32 static DEFINE_SPINLOCK(sgx_reclaimer_lock); 33 34 static atomic_long_t sgx_nr_free_pages = ATOMIC_LONG_INIT(0); 35 36 /* Nodes with one or more EPC sections. */ 37 static nodemask_t sgx_numa_mask; 38 39 /* 40 * Array with one list_head for each possible NUMA node. Each 41 * list contains all the sgx_epc_section's which are on that 42 * node. 43 */ 44 static struct sgx_numa_node *sgx_numa_nodes; 45 46 static LIST_HEAD(sgx_dirty_page_list); 47 48 /* 49 * Reset post-kexec EPC pages to the uninitialized state. The pages are removed 50 * from the input list, and made available for the page allocator. SECS pages 51 * prepending their children in the input list are left intact. 52 */ 53 static void __sgx_sanitize_pages(struct list_head *dirty_page_list) 54 { 55 struct sgx_epc_page *page; 56 LIST_HEAD(dirty); 57 int ret; 58 59 /* dirty_page_list is thread-local, no need for a lock: */ 60 while (!list_empty(dirty_page_list)) { 61 if (kthread_should_stop()) 62 return; 63 64 page = list_first_entry(dirty_page_list, struct sgx_epc_page, list); 65 66 /* 67 * Checking page->poison without holding the node->lock 68 * is racy, but losing the race (i.e. poison is set just 69 * after the check) just means __eremove() will be uselessly 70 * called for a page that sgx_free_epc_page() will put onto 71 * the node->sgx_poison_page_list later. 72 */ 73 if (page->poison) { 74 struct sgx_epc_section *section = &sgx_epc_sections[page->section]; 75 struct sgx_numa_node *node = section->node; 76 77 spin_lock(&node->lock); 78 list_move(&page->list, &node->sgx_poison_page_list); 79 spin_unlock(&node->lock); 80 81 continue; 82 } 83 84 ret = __eremove(sgx_get_epc_virt_addr(page)); 85 if (!ret) { 86 /* 87 * page is now sanitized. Make it available via the SGX 88 * page allocator: 89 */ 90 list_del(&page->list); 91 sgx_free_epc_page(page); 92 } else { 93 /* The page is not yet clean - move to the dirty list. */ 94 list_move_tail(&page->list, &dirty); 95 } 96 97 cond_resched(); 98 } 99 100 list_splice(&dirty, dirty_page_list); 101 } 102 103 static bool sgx_reclaimer_age(struct sgx_epc_page *epc_page) 104 { 105 struct sgx_encl_page *page = epc_page->owner; 106 struct sgx_encl *encl = page->encl; 107 struct sgx_encl_mm *encl_mm; 108 bool ret = true; 109 int idx; 110 111 idx = srcu_read_lock(&encl->srcu); 112 113 list_for_each_entry_rcu(encl_mm, &encl->mm_list, list) { 114 if (!mmget_not_zero(encl_mm->mm)) 115 continue; 116 117 mmap_read_lock(encl_mm->mm); 118 ret = !sgx_encl_test_and_clear_young(encl_mm->mm, page); 119 mmap_read_unlock(encl_mm->mm); 120 121 mmput_async(encl_mm->mm); 122 123 if (!ret) 124 break; 125 } 126 127 srcu_read_unlock(&encl->srcu, idx); 128 129 if (!ret) 130 return false; 131 132 return true; 133 } 134 135 static void sgx_reclaimer_block(struct sgx_epc_page *epc_page) 136 { 137 struct sgx_encl_page *page = epc_page->owner; 138 unsigned long addr = page->desc & PAGE_MASK; 139 struct sgx_encl *encl = page->encl; 140 int ret; 141 142 sgx_zap_enclave_ptes(encl, addr); 143 144 mutex_lock(&encl->lock); 145 146 ret = __eblock(sgx_get_epc_virt_addr(epc_page)); 147 if (encls_failed(ret)) 148 ENCLS_WARN(ret, "EBLOCK"); 149 150 mutex_unlock(&encl->lock); 151 } 152 153 static int __sgx_encl_ewb(struct sgx_epc_page *epc_page, void *va_slot, 154 struct sgx_backing *backing) 155 { 156 struct sgx_pageinfo pginfo; 157 int ret; 158 159 pginfo.addr = 0; 160 pginfo.secs = 0; 161 162 pginfo.contents = (unsigned long)kmap_atomic(backing->contents); 163 pginfo.metadata = (unsigned long)kmap_atomic(backing->pcmd) + 164 backing->pcmd_offset; 165 166 ret = __ewb(&pginfo, sgx_get_epc_virt_addr(epc_page), va_slot); 167 set_page_dirty(backing->pcmd); 168 set_page_dirty(backing->contents); 169 170 kunmap_atomic((void *)(unsigned long)(pginfo.metadata - 171 backing->pcmd_offset)); 172 kunmap_atomic((void *)(unsigned long)pginfo.contents); 173 174 return ret; 175 } 176 177 void sgx_ipi_cb(void *info) 178 { 179 } 180 181 /* 182 * Swap page to the regular memory transformed to the blocked state by using 183 * EBLOCK, which means that it can no longer be referenced (no new TLB entries). 184 * 185 * The first trial just tries to write the page assuming that some other thread 186 * has reset the count for threads inside the enclave by using ETRACK, and 187 * previous thread count has been zeroed out. The second trial calls ETRACK 188 * before EWB. If that fails we kick all the HW threads out, and then do EWB, 189 * which should be guaranteed the succeed. 190 */ 191 static void sgx_encl_ewb(struct sgx_epc_page *epc_page, 192 struct sgx_backing *backing) 193 { 194 struct sgx_encl_page *encl_page = epc_page->owner; 195 struct sgx_encl *encl = encl_page->encl; 196 struct sgx_va_page *va_page; 197 unsigned int va_offset; 198 void *va_slot; 199 int ret; 200 201 encl_page->desc &= ~SGX_ENCL_PAGE_BEING_RECLAIMED; 202 203 va_page = list_first_entry(&encl->va_pages, struct sgx_va_page, 204 list); 205 va_offset = sgx_alloc_va_slot(va_page); 206 va_slot = sgx_get_epc_virt_addr(va_page->epc_page) + va_offset; 207 if (sgx_va_page_full(va_page)) 208 list_move_tail(&va_page->list, &encl->va_pages); 209 210 ret = __sgx_encl_ewb(epc_page, va_slot, backing); 211 if (ret == SGX_NOT_TRACKED) { 212 ret = __etrack(sgx_get_epc_virt_addr(encl->secs.epc_page)); 213 if (ret) { 214 if (encls_failed(ret)) 215 ENCLS_WARN(ret, "ETRACK"); 216 } 217 218 ret = __sgx_encl_ewb(epc_page, va_slot, backing); 219 if (ret == SGX_NOT_TRACKED) { 220 /* 221 * Slow path, send IPIs to kick cpus out of the 222 * enclave. Note, it's imperative that the cpu 223 * mask is generated *after* ETRACK, else we'll 224 * miss cpus that entered the enclave between 225 * generating the mask and incrementing epoch. 226 */ 227 on_each_cpu_mask(sgx_encl_cpumask(encl), 228 sgx_ipi_cb, NULL, 1); 229 ret = __sgx_encl_ewb(epc_page, va_slot, backing); 230 } 231 } 232 233 if (ret) { 234 if (encls_failed(ret)) 235 ENCLS_WARN(ret, "EWB"); 236 237 sgx_free_va_slot(va_page, va_offset); 238 } else { 239 encl_page->desc |= va_offset; 240 encl_page->va_page = va_page; 241 } 242 } 243 244 static void sgx_reclaimer_write(struct sgx_epc_page *epc_page, 245 struct sgx_backing *backing) 246 { 247 struct sgx_encl_page *encl_page = epc_page->owner; 248 struct sgx_encl *encl = encl_page->encl; 249 struct sgx_backing secs_backing; 250 int ret; 251 252 mutex_lock(&encl->lock); 253 254 sgx_encl_ewb(epc_page, backing); 255 encl_page->epc_page = NULL; 256 encl->secs_child_cnt--; 257 sgx_encl_put_backing(backing); 258 259 if (!encl->secs_child_cnt && test_bit(SGX_ENCL_INITIALIZED, &encl->flags)) { 260 ret = sgx_encl_alloc_backing(encl, PFN_DOWN(encl->size), 261 &secs_backing); 262 if (ret) 263 goto out; 264 265 sgx_encl_ewb(encl->secs.epc_page, &secs_backing); 266 267 sgx_encl_free_epc_page(encl->secs.epc_page); 268 encl->secs.epc_page = NULL; 269 270 sgx_encl_put_backing(&secs_backing); 271 } 272 273 out: 274 mutex_unlock(&encl->lock); 275 } 276 277 /* 278 * Take a fixed number of pages from the head of the active page pool and 279 * reclaim them to the enclave's private shmem files. Skip the pages, which have 280 * been accessed since the last scan. Move those pages to the tail of active 281 * page pool so that the pages get scanned in LRU like fashion. 282 * 283 * Batch process a chunk of pages (at the moment 16) in order to degrade amount 284 * of IPI's and ETRACK's potentially required. sgx_encl_ewb() does degrade a bit 285 * among the HW threads with three stage EWB pipeline (EWB, ETRACK + EWB and IPI 286 * + EWB) but not sufficiently. Reclaiming one page at a time would also be 287 * problematic as it would increase the lock contention too much, which would 288 * halt forward progress. 289 */ 290 static void sgx_reclaim_pages(void) 291 { 292 struct sgx_epc_page *chunk[SGX_NR_TO_SCAN]; 293 struct sgx_backing backing[SGX_NR_TO_SCAN]; 294 struct sgx_encl_page *encl_page; 295 struct sgx_epc_page *epc_page; 296 pgoff_t page_index; 297 int cnt = 0; 298 int ret; 299 int i; 300 301 spin_lock(&sgx_reclaimer_lock); 302 for (i = 0; i < SGX_NR_TO_SCAN; i++) { 303 if (list_empty(&sgx_active_page_list)) 304 break; 305 306 epc_page = list_first_entry(&sgx_active_page_list, 307 struct sgx_epc_page, list); 308 list_del_init(&epc_page->list); 309 encl_page = epc_page->owner; 310 311 if (kref_get_unless_zero(&encl_page->encl->refcount) != 0) 312 chunk[cnt++] = epc_page; 313 else 314 /* The owner is freeing the page. No need to add the 315 * page back to the list of reclaimable pages. 316 */ 317 epc_page->flags &= ~SGX_EPC_PAGE_RECLAIMER_TRACKED; 318 } 319 spin_unlock(&sgx_reclaimer_lock); 320 321 for (i = 0; i < cnt; i++) { 322 epc_page = chunk[i]; 323 encl_page = epc_page->owner; 324 325 if (!sgx_reclaimer_age(epc_page)) 326 goto skip; 327 328 page_index = PFN_DOWN(encl_page->desc - encl_page->encl->base); 329 330 mutex_lock(&encl_page->encl->lock); 331 ret = sgx_encl_alloc_backing(encl_page->encl, page_index, &backing[i]); 332 if (ret) { 333 mutex_unlock(&encl_page->encl->lock); 334 goto skip; 335 } 336 337 encl_page->desc |= SGX_ENCL_PAGE_BEING_RECLAIMED; 338 mutex_unlock(&encl_page->encl->lock); 339 continue; 340 341 skip: 342 spin_lock(&sgx_reclaimer_lock); 343 list_add_tail(&epc_page->list, &sgx_active_page_list); 344 spin_unlock(&sgx_reclaimer_lock); 345 346 kref_put(&encl_page->encl->refcount, sgx_encl_release); 347 348 chunk[i] = NULL; 349 } 350 351 for (i = 0; i < cnt; i++) { 352 epc_page = chunk[i]; 353 if (epc_page) 354 sgx_reclaimer_block(epc_page); 355 } 356 357 for (i = 0; i < cnt; i++) { 358 epc_page = chunk[i]; 359 if (!epc_page) 360 continue; 361 362 encl_page = epc_page->owner; 363 sgx_reclaimer_write(epc_page, &backing[i]); 364 365 kref_put(&encl_page->encl->refcount, sgx_encl_release); 366 epc_page->flags &= ~SGX_EPC_PAGE_RECLAIMER_TRACKED; 367 368 sgx_free_epc_page(epc_page); 369 } 370 } 371 372 static bool sgx_should_reclaim(unsigned long watermark) 373 { 374 return atomic_long_read(&sgx_nr_free_pages) < watermark && 375 !list_empty(&sgx_active_page_list); 376 } 377 378 /* 379 * sgx_reclaim_direct() should be called (without enclave's mutex held) 380 * in locations where SGX memory resources might be low and might be 381 * needed in order to make forward progress. 382 */ 383 void sgx_reclaim_direct(void) 384 { 385 if (sgx_should_reclaim(SGX_NR_LOW_PAGES)) 386 sgx_reclaim_pages(); 387 } 388 389 static int ksgxd(void *p) 390 { 391 set_freezable(); 392 393 /* 394 * Sanitize pages in order to recover from kexec(). The 2nd pass is 395 * required for SECS pages, whose child pages blocked EREMOVE. 396 */ 397 __sgx_sanitize_pages(&sgx_dirty_page_list); 398 __sgx_sanitize_pages(&sgx_dirty_page_list); 399 400 /* sanity check: */ 401 WARN_ON(!list_empty(&sgx_dirty_page_list)); 402 403 while (!kthread_should_stop()) { 404 if (try_to_freeze()) 405 continue; 406 407 wait_event_freezable(ksgxd_waitq, 408 kthread_should_stop() || 409 sgx_should_reclaim(SGX_NR_HIGH_PAGES)); 410 411 if (sgx_should_reclaim(SGX_NR_HIGH_PAGES)) 412 sgx_reclaim_pages(); 413 414 cond_resched(); 415 } 416 417 return 0; 418 } 419 420 static bool __init sgx_page_reclaimer_init(void) 421 { 422 struct task_struct *tsk; 423 424 tsk = kthread_run(ksgxd, NULL, "ksgxd"); 425 if (IS_ERR(tsk)) 426 return false; 427 428 ksgxd_tsk = tsk; 429 430 return true; 431 } 432 433 bool current_is_ksgxd(void) 434 { 435 return current == ksgxd_tsk; 436 } 437 438 static struct sgx_epc_page *__sgx_alloc_epc_page_from_node(int nid) 439 { 440 struct sgx_numa_node *node = &sgx_numa_nodes[nid]; 441 struct sgx_epc_page *page = NULL; 442 443 spin_lock(&node->lock); 444 445 if (list_empty(&node->free_page_list)) { 446 spin_unlock(&node->lock); 447 return NULL; 448 } 449 450 page = list_first_entry(&node->free_page_list, struct sgx_epc_page, list); 451 list_del_init(&page->list); 452 page->flags = 0; 453 454 spin_unlock(&node->lock); 455 atomic_long_dec(&sgx_nr_free_pages); 456 457 return page; 458 } 459 460 /** 461 * __sgx_alloc_epc_page() - Allocate an EPC page 462 * 463 * Iterate through NUMA nodes and reserve ia free EPC page to the caller. Start 464 * from the NUMA node, where the caller is executing. 465 * 466 * Return: 467 * - an EPC page: A borrowed EPC pages were available. 468 * - NULL: Out of EPC pages. 469 */ 470 struct sgx_epc_page *__sgx_alloc_epc_page(void) 471 { 472 struct sgx_epc_page *page; 473 int nid_of_current = numa_node_id(); 474 int nid = nid_of_current; 475 476 if (node_isset(nid_of_current, sgx_numa_mask)) { 477 page = __sgx_alloc_epc_page_from_node(nid_of_current); 478 if (page) 479 return page; 480 } 481 482 /* Fall back to the non-local NUMA nodes: */ 483 while (true) { 484 nid = next_node_in(nid, sgx_numa_mask); 485 if (nid == nid_of_current) 486 break; 487 488 page = __sgx_alloc_epc_page_from_node(nid); 489 if (page) 490 return page; 491 } 492 493 return ERR_PTR(-ENOMEM); 494 } 495 496 /** 497 * sgx_mark_page_reclaimable() - Mark a page as reclaimable 498 * @page: EPC page 499 * 500 * Mark a page as reclaimable and add it to the active page list. Pages 501 * are automatically removed from the active list when freed. 502 */ 503 void sgx_mark_page_reclaimable(struct sgx_epc_page *page) 504 { 505 spin_lock(&sgx_reclaimer_lock); 506 page->flags |= SGX_EPC_PAGE_RECLAIMER_TRACKED; 507 list_add_tail(&page->list, &sgx_active_page_list); 508 spin_unlock(&sgx_reclaimer_lock); 509 } 510 511 /** 512 * sgx_unmark_page_reclaimable() - Remove a page from the reclaim list 513 * @page: EPC page 514 * 515 * Clear the reclaimable flag and remove the page from the active page list. 516 * 517 * Return: 518 * 0 on success, 519 * -EBUSY if the page is in the process of being reclaimed 520 */ 521 int sgx_unmark_page_reclaimable(struct sgx_epc_page *page) 522 { 523 spin_lock(&sgx_reclaimer_lock); 524 if (page->flags & SGX_EPC_PAGE_RECLAIMER_TRACKED) { 525 /* The page is being reclaimed. */ 526 if (list_empty(&page->list)) { 527 spin_unlock(&sgx_reclaimer_lock); 528 return -EBUSY; 529 } 530 531 list_del(&page->list); 532 page->flags &= ~SGX_EPC_PAGE_RECLAIMER_TRACKED; 533 } 534 spin_unlock(&sgx_reclaimer_lock); 535 536 return 0; 537 } 538 539 /** 540 * sgx_alloc_epc_page() - Allocate an EPC page 541 * @owner: the owner of the EPC page 542 * @reclaim: reclaim pages if necessary 543 * 544 * Iterate through EPC sections and borrow a free EPC page to the caller. When a 545 * page is no longer needed it must be released with sgx_free_epc_page(). If 546 * @reclaim is set to true, directly reclaim pages when we are out of pages. No 547 * mm's can be locked when @reclaim is set to true. 548 * 549 * Finally, wake up ksgxd when the number of pages goes below the watermark 550 * before returning back to the caller. 551 * 552 * Return: 553 * an EPC page, 554 * -errno on error 555 */ 556 struct sgx_epc_page *sgx_alloc_epc_page(void *owner, bool reclaim) 557 { 558 struct sgx_epc_page *page; 559 560 for ( ; ; ) { 561 page = __sgx_alloc_epc_page(); 562 if (!IS_ERR(page)) { 563 page->owner = owner; 564 break; 565 } 566 567 if (list_empty(&sgx_active_page_list)) 568 return ERR_PTR(-ENOMEM); 569 570 if (!reclaim) { 571 page = ERR_PTR(-EBUSY); 572 break; 573 } 574 575 if (signal_pending(current)) { 576 page = ERR_PTR(-ERESTARTSYS); 577 break; 578 } 579 580 sgx_reclaim_pages(); 581 cond_resched(); 582 } 583 584 if (sgx_should_reclaim(SGX_NR_LOW_PAGES)) 585 wake_up(&ksgxd_waitq); 586 587 return page; 588 } 589 590 /** 591 * sgx_free_epc_page() - Free an EPC page 592 * @page: an EPC page 593 * 594 * Put the EPC page back to the list of free pages. It's the caller's 595 * responsibility to make sure that the page is in uninitialized state. In other 596 * words, do EREMOVE, EWB or whatever operation is necessary before calling 597 * this function. 598 */ 599 void sgx_free_epc_page(struct sgx_epc_page *page) 600 { 601 struct sgx_epc_section *section = &sgx_epc_sections[page->section]; 602 struct sgx_numa_node *node = section->node; 603 604 spin_lock(&node->lock); 605 606 page->owner = NULL; 607 if (page->poison) 608 list_add(&page->list, &node->sgx_poison_page_list); 609 else 610 list_add_tail(&page->list, &node->free_page_list); 611 page->flags = SGX_EPC_PAGE_IS_FREE; 612 613 spin_unlock(&node->lock); 614 atomic_long_inc(&sgx_nr_free_pages); 615 } 616 617 static bool __init sgx_setup_epc_section(u64 phys_addr, u64 size, 618 unsigned long index, 619 struct sgx_epc_section *section) 620 { 621 unsigned long nr_pages = size >> PAGE_SHIFT; 622 unsigned long i; 623 624 section->virt_addr = memremap(phys_addr, size, MEMREMAP_WB); 625 if (!section->virt_addr) 626 return false; 627 628 section->pages = vmalloc(nr_pages * sizeof(struct sgx_epc_page)); 629 if (!section->pages) { 630 memunmap(section->virt_addr); 631 return false; 632 } 633 634 section->phys_addr = phys_addr; 635 xa_store_range(&sgx_epc_address_space, section->phys_addr, 636 phys_addr + size - 1, section, GFP_KERNEL); 637 638 for (i = 0; i < nr_pages; i++) { 639 section->pages[i].section = index; 640 section->pages[i].flags = 0; 641 section->pages[i].owner = NULL; 642 section->pages[i].poison = 0; 643 list_add_tail(§ion->pages[i].list, &sgx_dirty_page_list); 644 } 645 646 return true; 647 } 648 649 bool arch_is_platform_page(u64 paddr) 650 { 651 return !!xa_load(&sgx_epc_address_space, paddr); 652 } 653 EXPORT_SYMBOL_GPL(arch_is_platform_page); 654 655 static struct sgx_epc_page *sgx_paddr_to_page(u64 paddr) 656 { 657 struct sgx_epc_section *section; 658 659 section = xa_load(&sgx_epc_address_space, paddr); 660 if (!section) 661 return NULL; 662 663 return §ion->pages[PFN_DOWN(paddr - section->phys_addr)]; 664 } 665 666 /* 667 * Called in process context to handle a hardware reported 668 * error in an SGX EPC page. 669 * If the MF_ACTION_REQUIRED bit is set in flags, then the 670 * context is the task that consumed the poison data. Otherwise 671 * this is called from a kernel thread unrelated to the page. 672 */ 673 int arch_memory_failure(unsigned long pfn, int flags) 674 { 675 struct sgx_epc_page *page = sgx_paddr_to_page(pfn << PAGE_SHIFT); 676 struct sgx_epc_section *section; 677 struct sgx_numa_node *node; 678 679 /* 680 * mm/memory-failure.c calls this routine for all errors 681 * where there isn't a "struct page" for the address. But that 682 * includes other address ranges besides SGX. 683 */ 684 if (!page) 685 return -ENXIO; 686 687 /* 688 * If poison was consumed synchronously. Send a SIGBUS to 689 * the task. Hardware has already exited the SGX enclave and 690 * will not allow re-entry to an enclave that has a memory 691 * error. The signal may help the task understand why the 692 * enclave is broken. 693 */ 694 if (flags & MF_ACTION_REQUIRED) 695 force_sig(SIGBUS); 696 697 section = &sgx_epc_sections[page->section]; 698 node = section->node; 699 700 spin_lock(&node->lock); 701 702 /* Already poisoned? Nothing more to do */ 703 if (page->poison) 704 goto out; 705 706 page->poison = 1; 707 708 /* 709 * If the page is on a free list, move it to the per-node 710 * poison page list. 711 */ 712 if (page->flags & SGX_EPC_PAGE_IS_FREE) { 713 list_move(&page->list, &node->sgx_poison_page_list); 714 goto out; 715 } 716 717 /* 718 * TBD: Add additional plumbing to enable pre-emptive 719 * action for asynchronous poison notification. Until 720 * then just hope that the poison: 721 * a) is not accessed - sgx_free_epc_page() will deal with it 722 * when the user gives it back 723 * b) results in a recoverable machine check rather than 724 * a fatal one 725 */ 726 out: 727 spin_unlock(&node->lock); 728 return 0; 729 } 730 731 /** 732 * A section metric is concatenated in a way that @low bits 12-31 define the 733 * bits 12-31 of the metric and @high bits 0-19 define the bits 32-51 of the 734 * metric. 735 */ 736 static inline u64 __init sgx_calc_section_metric(u64 low, u64 high) 737 { 738 return (low & GENMASK_ULL(31, 12)) + 739 ((high & GENMASK_ULL(19, 0)) << 32); 740 } 741 742 #ifdef CONFIG_NUMA 743 static ssize_t sgx_total_bytes_show(struct device *dev, struct device_attribute *attr, char *buf) 744 { 745 return sysfs_emit(buf, "%lu\n", sgx_numa_nodes[dev->id].size); 746 } 747 static DEVICE_ATTR_RO(sgx_total_bytes); 748 749 static umode_t arch_node_attr_is_visible(struct kobject *kobj, 750 struct attribute *attr, int idx) 751 { 752 /* Make all x86/ attributes invisible when SGX is not initialized: */ 753 if (nodes_empty(sgx_numa_mask)) 754 return 0; 755 756 return attr->mode; 757 } 758 759 static struct attribute *arch_node_dev_attrs[] = { 760 &dev_attr_sgx_total_bytes.attr, 761 NULL, 762 }; 763 764 const struct attribute_group arch_node_dev_group = { 765 .name = "x86", 766 .attrs = arch_node_dev_attrs, 767 .is_visible = arch_node_attr_is_visible, 768 }; 769 770 static void __init arch_update_sysfs_visibility(int nid) 771 { 772 struct node *node = node_devices[nid]; 773 int ret; 774 775 ret = sysfs_update_group(&node->dev.kobj, &arch_node_dev_group); 776 777 if (ret) 778 pr_err("sysfs update failed (%d), files may be invisible", ret); 779 } 780 #else /* !CONFIG_NUMA */ 781 static void __init arch_update_sysfs_visibility(int nid) {} 782 #endif 783 784 static bool __init sgx_page_cache_init(void) 785 { 786 u32 eax, ebx, ecx, edx, type; 787 u64 pa, size; 788 int nid; 789 int i; 790 791 sgx_numa_nodes = kmalloc_array(num_possible_nodes(), sizeof(*sgx_numa_nodes), GFP_KERNEL); 792 if (!sgx_numa_nodes) 793 return false; 794 795 for (i = 0; i < ARRAY_SIZE(sgx_epc_sections); i++) { 796 cpuid_count(SGX_CPUID, i + SGX_CPUID_EPC, &eax, &ebx, &ecx, &edx); 797 798 type = eax & SGX_CPUID_EPC_MASK; 799 if (type == SGX_CPUID_EPC_INVALID) 800 break; 801 802 if (type != SGX_CPUID_EPC_SECTION) { 803 pr_err_once("Unknown EPC section type: %u\n", type); 804 break; 805 } 806 807 pa = sgx_calc_section_metric(eax, ebx); 808 size = sgx_calc_section_metric(ecx, edx); 809 810 pr_info("EPC section 0x%llx-0x%llx\n", pa, pa + size - 1); 811 812 if (!sgx_setup_epc_section(pa, size, i, &sgx_epc_sections[i])) { 813 pr_err("No free memory for an EPC section\n"); 814 break; 815 } 816 817 nid = numa_map_to_online_node(phys_to_target_node(pa)); 818 if (nid == NUMA_NO_NODE) { 819 /* The physical address is already printed above. */ 820 pr_warn(FW_BUG "Unable to map EPC section to online node. Fallback to the NUMA node 0.\n"); 821 nid = 0; 822 } 823 824 if (!node_isset(nid, sgx_numa_mask)) { 825 spin_lock_init(&sgx_numa_nodes[nid].lock); 826 INIT_LIST_HEAD(&sgx_numa_nodes[nid].free_page_list); 827 INIT_LIST_HEAD(&sgx_numa_nodes[nid].sgx_poison_page_list); 828 node_set(nid, sgx_numa_mask); 829 sgx_numa_nodes[nid].size = 0; 830 831 /* Make SGX-specific node sysfs files visible: */ 832 arch_update_sysfs_visibility(nid); 833 } 834 835 sgx_epc_sections[i].node = &sgx_numa_nodes[nid]; 836 sgx_numa_nodes[nid].size += size; 837 838 sgx_nr_epc_sections++; 839 } 840 841 if (!sgx_nr_epc_sections) { 842 pr_err("There are zero EPC sections.\n"); 843 return false; 844 } 845 846 return true; 847 } 848 849 /* 850 * Update the SGX_LEPUBKEYHASH MSRs to the values specified by caller. 851 * Bare-metal driver requires to update them to hash of enclave's signer 852 * before EINIT. KVM needs to update them to guest's virtual MSR values 853 * before doing EINIT from guest. 854 */ 855 void sgx_update_lepubkeyhash(u64 *lepubkeyhash) 856 { 857 int i; 858 859 WARN_ON_ONCE(preemptible()); 860 861 for (i = 0; i < 4; i++) 862 wrmsrl(MSR_IA32_SGXLEPUBKEYHASH0 + i, lepubkeyhash[i]); 863 } 864 865 const struct file_operations sgx_provision_fops = { 866 .owner = THIS_MODULE, 867 }; 868 869 static struct miscdevice sgx_dev_provision = { 870 .minor = MISC_DYNAMIC_MINOR, 871 .name = "sgx_provision", 872 .nodename = "sgx_provision", 873 .fops = &sgx_provision_fops, 874 }; 875 876 /** 877 * sgx_set_attribute() - Update allowed attributes given file descriptor 878 * @allowed_attributes: Pointer to allowed enclave attributes 879 * @attribute_fd: File descriptor for specific attribute 880 * 881 * Append enclave attribute indicated by file descriptor to allowed 882 * attributes. Currently only SGX_ATTR_PROVISIONKEY indicated by 883 * /dev/sgx_provision is supported. 884 * 885 * Return: 886 * -0: SGX_ATTR_PROVISIONKEY is appended to allowed_attributes 887 * -EINVAL: Invalid, or not supported file descriptor 888 */ 889 int sgx_set_attribute(unsigned long *allowed_attributes, 890 unsigned int attribute_fd) 891 { 892 struct file *file; 893 894 file = fget(attribute_fd); 895 if (!file) 896 return -EINVAL; 897 898 if (file->f_op != &sgx_provision_fops) { 899 fput(file); 900 return -EINVAL; 901 } 902 903 *allowed_attributes |= SGX_ATTR_PROVISIONKEY; 904 905 fput(file); 906 return 0; 907 } 908 EXPORT_SYMBOL_GPL(sgx_set_attribute); 909 910 static int __init sgx_init(void) 911 { 912 int ret; 913 int i; 914 915 if (!cpu_feature_enabled(X86_FEATURE_SGX)) 916 return -ENODEV; 917 918 if (!sgx_page_cache_init()) 919 return -ENOMEM; 920 921 if (!sgx_page_reclaimer_init()) { 922 ret = -ENOMEM; 923 goto err_page_cache; 924 } 925 926 ret = misc_register(&sgx_dev_provision); 927 if (ret) 928 goto err_kthread; 929 930 /* 931 * Always try to initialize the native *and* KVM drivers. 932 * The KVM driver is less picky than the native one and 933 * can function if the native one is not supported on the 934 * current system or fails to initialize. 935 * 936 * Error out only if both fail to initialize. 937 */ 938 ret = sgx_drv_init(); 939 940 if (sgx_vepc_init() && ret) 941 goto err_provision; 942 943 return 0; 944 945 err_provision: 946 misc_deregister(&sgx_dev_provision); 947 948 err_kthread: 949 kthread_stop(ksgxd_tsk); 950 951 err_page_cache: 952 for (i = 0; i < sgx_nr_epc_sections; i++) { 953 vfree(sgx_epc_sections[i].pages); 954 memunmap(sgx_epc_sections[i].virt_addr); 955 } 956 957 return ret; 958 } 959 960 device_initcall(sgx_init); 961