xref: /openbmc/linux/arch/x86/kernel/cpu/sgx/main.c (revision 5e2421ce)
1 // SPDX-License-Identifier: GPL-2.0
2 /*  Copyright(c) 2016-20 Intel Corporation. */
3 
4 #include <linux/file.h>
5 #include <linux/freezer.h>
6 #include <linux/highmem.h>
7 #include <linux/kthread.h>
8 #include <linux/miscdevice.h>
9 #include <linux/node.h>
10 #include <linux/pagemap.h>
11 #include <linux/ratelimit.h>
12 #include <linux/sched/mm.h>
13 #include <linux/sched/signal.h>
14 #include <linux/slab.h>
15 #include <linux/sysfs.h>
16 #include <asm/sgx.h>
17 #include "driver.h"
18 #include "encl.h"
19 #include "encls.h"
20 
21 struct sgx_epc_section sgx_epc_sections[SGX_MAX_EPC_SECTIONS];
22 static int sgx_nr_epc_sections;
23 static struct task_struct *ksgxd_tsk;
24 static DECLARE_WAIT_QUEUE_HEAD(ksgxd_waitq);
25 static DEFINE_XARRAY(sgx_epc_address_space);
26 
27 /*
28  * These variables are part of the state of the reclaimer, and must be accessed
29  * with sgx_reclaimer_lock acquired.
30  */
31 static LIST_HEAD(sgx_active_page_list);
32 static DEFINE_SPINLOCK(sgx_reclaimer_lock);
33 
34 static atomic_long_t sgx_nr_free_pages = ATOMIC_LONG_INIT(0);
35 
36 /* Nodes with one or more EPC sections. */
37 static nodemask_t sgx_numa_mask;
38 
39 /*
40  * Array with one list_head for each possible NUMA node.  Each
41  * list contains all the sgx_epc_section's which are on that
42  * node.
43  */
44 static struct sgx_numa_node *sgx_numa_nodes;
45 
46 static LIST_HEAD(sgx_dirty_page_list);
47 
48 /*
49  * Reset post-kexec EPC pages to the uninitialized state. The pages are removed
50  * from the input list, and made available for the page allocator. SECS pages
51  * prepending their children in the input list are left intact.
52  */
53 static void __sgx_sanitize_pages(struct list_head *dirty_page_list)
54 {
55 	struct sgx_epc_page *page;
56 	LIST_HEAD(dirty);
57 	int ret;
58 
59 	/* dirty_page_list is thread-local, no need for a lock: */
60 	while (!list_empty(dirty_page_list)) {
61 		if (kthread_should_stop())
62 			return;
63 
64 		page = list_first_entry(dirty_page_list, struct sgx_epc_page, list);
65 
66 		/*
67 		 * Checking page->poison without holding the node->lock
68 		 * is racy, but losing the race (i.e. poison is set just
69 		 * after the check) just means __eremove() will be uselessly
70 		 * called for a page that sgx_free_epc_page() will put onto
71 		 * the node->sgx_poison_page_list later.
72 		 */
73 		if (page->poison) {
74 			struct sgx_epc_section *section = &sgx_epc_sections[page->section];
75 			struct sgx_numa_node *node = section->node;
76 
77 			spin_lock(&node->lock);
78 			list_move(&page->list, &node->sgx_poison_page_list);
79 			spin_unlock(&node->lock);
80 
81 			continue;
82 		}
83 
84 		ret = __eremove(sgx_get_epc_virt_addr(page));
85 		if (!ret) {
86 			/*
87 			 * page is now sanitized.  Make it available via the SGX
88 			 * page allocator:
89 			 */
90 			list_del(&page->list);
91 			sgx_free_epc_page(page);
92 		} else {
93 			/* The page is not yet clean - move to the dirty list. */
94 			list_move_tail(&page->list, &dirty);
95 		}
96 
97 		cond_resched();
98 	}
99 
100 	list_splice(&dirty, dirty_page_list);
101 }
102 
103 static bool sgx_reclaimer_age(struct sgx_epc_page *epc_page)
104 {
105 	struct sgx_encl_page *page = epc_page->owner;
106 	struct sgx_encl *encl = page->encl;
107 	struct sgx_encl_mm *encl_mm;
108 	bool ret = true;
109 	int idx;
110 
111 	idx = srcu_read_lock(&encl->srcu);
112 
113 	list_for_each_entry_rcu(encl_mm, &encl->mm_list, list) {
114 		if (!mmget_not_zero(encl_mm->mm))
115 			continue;
116 
117 		mmap_read_lock(encl_mm->mm);
118 		ret = !sgx_encl_test_and_clear_young(encl_mm->mm, page);
119 		mmap_read_unlock(encl_mm->mm);
120 
121 		mmput_async(encl_mm->mm);
122 
123 		if (!ret)
124 			break;
125 	}
126 
127 	srcu_read_unlock(&encl->srcu, idx);
128 
129 	if (!ret)
130 		return false;
131 
132 	return true;
133 }
134 
135 static void sgx_reclaimer_block(struct sgx_epc_page *epc_page)
136 {
137 	struct sgx_encl_page *page = epc_page->owner;
138 	unsigned long addr = page->desc & PAGE_MASK;
139 	struct sgx_encl *encl = page->encl;
140 	unsigned long mm_list_version;
141 	struct sgx_encl_mm *encl_mm;
142 	struct vm_area_struct *vma;
143 	int idx, ret;
144 
145 	do {
146 		mm_list_version = encl->mm_list_version;
147 
148 		/* Pairs with smp_rmb() in sgx_encl_mm_add(). */
149 		smp_rmb();
150 
151 		idx = srcu_read_lock(&encl->srcu);
152 
153 		list_for_each_entry_rcu(encl_mm, &encl->mm_list, list) {
154 			if (!mmget_not_zero(encl_mm->mm))
155 				continue;
156 
157 			mmap_read_lock(encl_mm->mm);
158 
159 			ret = sgx_encl_find(encl_mm->mm, addr, &vma);
160 			if (!ret && encl == vma->vm_private_data)
161 				zap_vma_ptes(vma, addr, PAGE_SIZE);
162 
163 			mmap_read_unlock(encl_mm->mm);
164 
165 			mmput_async(encl_mm->mm);
166 		}
167 
168 		srcu_read_unlock(&encl->srcu, idx);
169 	} while (unlikely(encl->mm_list_version != mm_list_version));
170 
171 	mutex_lock(&encl->lock);
172 
173 	ret = __eblock(sgx_get_epc_virt_addr(epc_page));
174 	if (encls_failed(ret))
175 		ENCLS_WARN(ret, "EBLOCK");
176 
177 	mutex_unlock(&encl->lock);
178 }
179 
180 static int __sgx_encl_ewb(struct sgx_epc_page *epc_page, void *va_slot,
181 			  struct sgx_backing *backing)
182 {
183 	struct sgx_pageinfo pginfo;
184 	int ret;
185 
186 	pginfo.addr = 0;
187 	pginfo.secs = 0;
188 
189 	pginfo.contents = (unsigned long)kmap_atomic(backing->contents);
190 	pginfo.metadata = (unsigned long)kmap_atomic(backing->pcmd) +
191 			  backing->pcmd_offset;
192 
193 	ret = __ewb(&pginfo, sgx_get_epc_virt_addr(epc_page), va_slot);
194 
195 	kunmap_atomic((void *)(unsigned long)(pginfo.metadata -
196 					      backing->pcmd_offset));
197 	kunmap_atomic((void *)(unsigned long)pginfo.contents);
198 
199 	return ret;
200 }
201 
202 static void sgx_ipi_cb(void *info)
203 {
204 }
205 
206 static const cpumask_t *sgx_encl_ewb_cpumask(struct sgx_encl *encl)
207 {
208 	cpumask_t *cpumask = &encl->cpumask;
209 	struct sgx_encl_mm *encl_mm;
210 	int idx;
211 
212 	/*
213 	 * Can race with sgx_encl_mm_add(), but ETRACK has already been
214 	 * executed, which means that the CPUs running in the new mm will enter
215 	 * into the enclave with a fresh epoch.
216 	 */
217 	cpumask_clear(cpumask);
218 
219 	idx = srcu_read_lock(&encl->srcu);
220 
221 	list_for_each_entry_rcu(encl_mm, &encl->mm_list, list) {
222 		if (!mmget_not_zero(encl_mm->mm))
223 			continue;
224 
225 		cpumask_or(cpumask, cpumask, mm_cpumask(encl_mm->mm));
226 
227 		mmput_async(encl_mm->mm);
228 	}
229 
230 	srcu_read_unlock(&encl->srcu, idx);
231 
232 	return cpumask;
233 }
234 
235 /*
236  * Swap page to the regular memory transformed to the blocked state by using
237  * EBLOCK, which means that it can no longer be referenced (no new TLB entries).
238  *
239  * The first trial just tries to write the page assuming that some other thread
240  * has reset the count for threads inside the enclave by using ETRACK, and
241  * previous thread count has been zeroed out. The second trial calls ETRACK
242  * before EWB. If that fails we kick all the HW threads out, and then do EWB,
243  * which should be guaranteed the succeed.
244  */
245 static void sgx_encl_ewb(struct sgx_epc_page *epc_page,
246 			 struct sgx_backing *backing)
247 {
248 	struct sgx_encl_page *encl_page = epc_page->owner;
249 	struct sgx_encl *encl = encl_page->encl;
250 	struct sgx_va_page *va_page;
251 	unsigned int va_offset;
252 	void *va_slot;
253 	int ret;
254 
255 	encl_page->desc &= ~SGX_ENCL_PAGE_BEING_RECLAIMED;
256 
257 	va_page = list_first_entry(&encl->va_pages, struct sgx_va_page,
258 				   list);
259 	va_offset = sgx_alloc_va_slot(va_page);
260 	va_slot = sgx_get_epc_virt_addr(va_page->epc_page) + va_offset;
261 	if (sgx_va_page_full(va_page))
262 		list_move_tail(&va_page->list, &encl->va_pages);
263 
264 	ret = __sgx_encl_ewb(epc_page, va_slot, backing);
265 	if (ret == SGX_NOT_TRACKED) {
266 		ret = __etrack(sgx_get_epc_virt_addr(encl->secs.epc_page));
267 		if (ret) {
268 			if (encls_failed(ret))
269 				ENCLS_WARN(ret, "ETRACK");
270 		}
271 
272 		ret = __sgx_encl_ewb(epc_page, va_slot, backing);
273 		if (ret == SGX_NOT_TRACKED) {
274 			/*
275 			 * Slow path, send IPIs to kick cpus out of the
276 			 * enclave.  Note, it's imperative that the cpu
277 			 * mask is generated *after* ETRACK, else we'll
278 			 * miss cpus that entered the enclave between
279 			 * generating the mask and incrementing epoch.
280 			 */
281 			on_each_cpu_mask(sgx_encl_ewb_cpumask(encl),
282 					 sgx_ipi_cb, NULL, 1);
283 			ret = __sgx_encl_ewb(epc_page, va_slot, backing);
284 		}
285 	}
286 
287 	if (ret) {
288 		if (encls_failed(ret))
289 			ENCLS_WARN(ret, "EWB");
290 
291 		sgx_free_va_slot(va_page, va_offset);
292 	} else {
293 		encl_page->desc |= va_offset;
294 		encl_page->va_page = va_page;
295 	}
296 }
297 
298 static void sgx_reclaimer_write(struct sgx_epc_page *epc_page,
299 				struct sgx_backing *backing)
300 {
301 	struct sgx_encl_page *encl_page = epc_page->owner;
302 	struct sgx_encl *encl = encl_page->encl;
303 	struct sgx_backing secs_backing;
304 	int ret;
305 
306 	mutex_lock(&encl->lock);
307 
308 	sgx_encl_ewb(epc_page, backing);
309 	encl_page->epc_page = NULL;
310 	encl->secs_child_cnt--;
311 
312 	if (!encl->secs_child_cnt && test_bit(SGX_ENCL_INITIALIZED, &encl->flags)) {
313 		ret = sgx_encl_get_backing(encl, PFN_DOWN(encl->size),
314 					   &secs_backing);
315 		if (ret)
316 			goto out;
317 
318 		sgx_encl_ewb(encl->secs.epc_page, &secs_backing);
319 
320 		sgx_encl_free_epc_page(encl->secs.epc_page);
321 		encl->secs.epc_page = NULL;
322 
323 		sgx_encl_put_backing(&secs_backing, true);
324 	}
325 
326 out:
327 	mutex_unlock(&encl->lock);
328 }
329 
330 /*
331  * Take a fixed number of pages from the head of the active page pool and
332  * reclaim them to the enclave's private shmem files. Skip the pages, which have
333  * been accessed since the last scan. Move those pages to the tail of active
334  * page pool so that the pages get scanned in LRU like fashion.
335  *
336  * Batch process a chunk of pages (at the moment 16) in order to degrade amount
337  * of IPI's and ETRACK's potentially required. sgx_encl_ewb() does degrade a bit
338  * among the HW threads with three stage EWB pipeline (EWB, ETRACK + EWB and IPI
339  * + EWB) but not sufficiently. Reclaiming one page at a time would also be
340  * problematic as it would increase the lock contention too much, which would
341  * halt forward progress.
342  */
343 static void sgx_reclaim_pages(void)
344 {
345 	struct sgx_epc_page *chunk[SGX_NR_TO_SCAN];
346 	struct sgx_backing backing[SGX_NR_TO_SCAN];
347 	struct sgx_epc_section *section;
348 	struct sgx_encl_page *encl_page;
349 	struct sgx_epc_page *epc_page;
350 	struct sgx_numa_node *node;
351 	pgoff_t page_index;
352 	int cnt = 0;
353 	int ret;
354 	int i;
355 
356 	spin_lock(&sgx_reclaimer_lock);
357 	for (i = 0; i < SGX_NR_TO_SCAN; i++) {
358 		if (list_empty(&sgx_active_page_list))
359 			break;
360 
361 		epc_page = list_first_entry(&sgx_active_page_list,
362 					    struct sgx_epc_page, list);
363 		list_del_init(&epc_page->list);
364 		encl_page = epc_page->owner;
365 
366 		if (kref_get_unless_zero(&encl_page->encl->refcount) != 0)
367 			chunk[cnt++] = epc_page;
368 		else
369 			/* The owner is freeing the page. No need to add the
370 			 * page back to the list of reclaimable pages.
371 			 */
372 			epc_page->flags &= ~SGX_EPC_PAGE_RECLAIMER_TRACKED;
373 	}
374 	spin_unlock(&sgx_reclaimer_lock);
375 
376 	for (i = 0; i < cnt; i++) {
377 		epc_page = chunk[i];
378 		encl_page = epc_page->owner;
379 
380 		if (!sgx_reclaimer_age(epc_page))
381 			goto skip;
382 
383 		page_index = PFN_DOWN(encl_page->desc - encl_page->encl->base);
384 		ret = sgx_encl_get_backing(encl_page->encl, page_index, &backing[i]);
385 		if (ret)
386 			goto skip;
387 
388 		mutex_lock(&encl_page->encl->lock);
389 		encl_page->desc |= SGX_ENCL_PAGE_BEING_RECLAIMED;
390 		mutex_unlock(&encl_page->encl->lock);
391 		continue;
392 
393 skip:
394 		spin_lock(&sgx_reclaimer_lock);
395 		list_add_tail(&epc_page->list, &sgx_active_page_list);
396 		spin_unlock(&sgx_reclaimer_lock);
397 
398 		kref_put(&encl_page->encl->refcount, sgx_encl_release);
399 
400 		chunk[i] = NULL;
401 	}
402 
403 	for (i = 0; i < cnt; i++) {
404 		epc_page = chunk[i];
405 		if (epc_page)
406 			sgx_reclaimer_block(epc_page);
407 	}
408 
409 	for (i = 0; i < cnt; i++) {
410 		epc_page = chunk[i];
411 		if (!epc_page)
412 			continue;
413 
414 		encl_page = epc_page->owner;
415 		sgx_reclaimer_write(epc_page, &backing[i]);
416 		sgx_encl_put_backing(&backing[i], true);
417 
418 		kref_put(&encl_page->encl->refcount, sgx_encl_release);
419 		epc_page->flags &= ~SGX_EPC_PAGE_RECLAIMER_TRACKED;
420 
421 		section = &sgx_epc_sections[epc_page->section];
422 		node = section->node;
423 
424 		spin_lock(&node->lock);
425 		list_add_tail(&epc_page->list, &node->free_page_list);
426 		spin_unlock(&node->lock);
427 		atomic_long_inc(&sgx_nr_free_pages);
428 	}
429 }
430 
431 static bool sgx_should_reclaim(unsigned long watermark)
432 {
433 	return atomic_long_read(&sgx_nr_free_pages) < watermark &&
434 	       !list_empty(&sgx_active_page_list);
435 }
436 
437 static int ksgxd(void *p)
438 {
439 	set_freezable();
440 
441 	/*
442 	 * Sanitize pages in order to recover from kexec(). The 2nd pass is
443 	 * required for SECS pages, whose child pages blocked EREMOVE.
444 	 */
445 	__sgx_sanitize_pages(&sgx_dirty_page_list);
446 	__sgx_sanitize_pages(&sgx_dirty_page_list);
447 
448 	/* sanity check: */
449 	WARN_ON(!list_empty(&sgx_dirty_page_list));
450 
451 	while (!kthread_should_stop()) {
452 		if (try_to_freeze())
453 			continue;
454 
455 		wait_event_freezable(ksgxd_waitq,
456 				     kthread_should_stop() ||
457 				     sgx_should_reclaim(SGX_NR_HIGH_PAGES));
458 
459 		if (sgx_should_reclaim(SGX_NR_HIGH_PAGES))
460 			sgx_reclaim_pages();
461 
462 		cond_resched();
463 	}
464 
465 	return 0;
466 }
467 
468 static bool __init sgx_page_reclaimer_init(void)
469 {
470 	struct task_struct *tsk;
471 
472 	tsk = kthread_run(ksgxd, NULL, "ksgxd");
473 	if (IS_ERR(tsk))
474 		return false;
475 
476 	ksgxd_tsk = tsk;
477 
478 	return true;
479 }
480 
481 static struct sgx_epc_page *__sgx_alloc_epc_page_from_node(int nid)
482 {
483 	struct sgx_numa_node *node = &sgx_numa_nodes[nid];
484 	struct sgx_epc_page *page = NULL;
485 
486 	spin_lock(&node->lock);
487 
488 	if (list_empty(&node->free_page_list)) {
489 		spin_unlock(&node->lock);
490 		return NULL;
491 	}
492 
493 	page = list_first_entry(&node->free_page_list, struct sgx_epc_page, list);
494 	list_del_init(&page->list);
495 	page->flags = 0;
496 
497 	spin_unlock(&node->lock);
498 	atomic_long_dec(&sgx_nr_free_pages);
499 
500 	return page;
501 }
502 
503 /**
504  * __sgx_alloc_epc_page() - Allocate an EPC page
505  *
506  * Iterate through NUMA nodes and reserve ia free EPC page to the caller. Start
507  * from the NUMA node, where the caller is executing.
508  *
509  * Return:
510  * - an EPC page:	A borrowed EPC pages were available.
511  * - NULL:		Out of EPC pages.
512  */
513 struct sgx_epc_page *__sgx_alloc_epc_page(void)
514 {
515 	struct sgx_epc_page *page;
516 	int nid_of_current = numa_node_id();
517 	int nid = nid_of_current;
518 
519 	if (node_isset(nid_of_current, sgx_numa_mask)) {
520 		page = __sgx_alloc_epc_page_from_node(nid_of_current);
521 		if (page)
522 			return page;
523 	}
524 
525 	/* Fall back to the non-local NUMA nodes: */
526 	while (true) {
527 		nid = next_node_in(nid, sgx_numa_mask);
528 		if (nid == nid_of_current)
529 			break;
530 
531 		page = __sgx_alloc_epc_page_from_node(nid);
532 		if (page)
533 			return page;
534 	}
535 
536 	return ERR_PTR(-ENOMEM);
537 }
538 
539 /**
540  * sgx_mark_page_reclaimable() - Mark a page as reclaimable
541  * @page:	EPC page
542  *
543  * Mark a page as reclaimable and add it to the active page list. Pages
544  * are automatically removed from the active list when freed.
545  */
546 void sgx_mark_page_reclaimable(struct sgx_epc_page *page)
547 {
548 	spin_lock(&sgx_reclaimer_lock);
549 	page->flags |= SGX_EPC_PAGE_RECLAIMER_TRACKED;
550 	list_add_tail(&page->list, &sgx_active_page_list);
551 	spin_unlock(&sgx_reclaimer_lock);
552 }
553 
554 /**
555  * sgx_unmark_page_reclaimable() - Remove a page from the reclaim list
556  * @page:	EPC page
557  *
558  * Clear the reclaimable flag and remove the page from the active page list.
559  *
560  * Return:
561  *   0 on success,
562  *   -EBUSY if the page is in the process of being reclaimed
563  */
564 int sgx_unmark_page_reclaimable(struct sgx_epc_page *page)
565 {
566 	spin_lock(&sgx_reclaimer_lock);
567 	if (page->flags & SGX_EPC_PAGE_RECLAIMER_TRACKED) {
568 		/* The page is being reclaimed. */
569 		if (list_empty(&page->list)) {
570 			spin_unlock(&sgx_reclaimer_lock);
571 			return -EBUSY;
572 		}
573 
574 		list_del(&page->list);
575 		page->flags &= ~SGX_EPC_PAGE_RECLAIMER_TRACKED;
576 	}
577 	spin_unlock(&sgx_reclaimer_lock);
578 
579 	return 0;
580 }
581 
582 /**
583  * sgx_alloc_epc_page() - Allocate an EPC page
584  * @owner:	the owner of the EPC page
585  * @reclaim:	reclaim pages if necessary
586  *
587  * Iterate through EPC sections and borrow a free EPC page to the caller. When a
588  * page is no longer needed it must be released with sgx_free_epc_page(). If
589  * @reclaim is set to true, directly reclaim pages when we are out of pages. No
590  * mm's can be locked when @reclaim is set to true.
591  *
592  * Finally, wake up ksgxd when the number of pages goes below the watermark
593  * before returning back to the caller.
594  *
595  * Return:
596  *   an EPC page,
597  *   -errno on error
598  */
599 struct sgx_epc_page *sgx_alloc_epc_page(void *owner, bool reclaim)
600 {
601 	struct sgx_epc_page *page;
602 
603 	for ( ; ; ) {
604 		page = __sgx_alloc_epc_page();
605 		if (!IS_ERR(page)) {
606 			page->owner = owner;
607 			break;
608 		}
609 
610 		if (list_empty(&sgx_active_page_list))
611 			return ERR_PTR(-ENOMEM);
612 
613 		if (!reclaim) {
614 			page = ERR_PTR(-EBUSY);
615 			break;
616 		}
617 
618 		if (signal_pending(current)) {
619 			page = ERR_PTR(-ERESTARTSYS);
620 			break;
621 		}
622 
623 		sgx_reclaim_pages();
624 		cond_resched();
625 	}
626 
627 	if (sgx_should_reclaim(SGX_NR_LOW_PAGES))
628 		wake_up(&ksgxd_waitq);
629 
630 	return page;
631 }
632 
633 /**
634  * sgx_free_epc_page() - Free an EPC page
635  * @page:	an EPC page
636  *
637  * Put the EPC page back to the list of free pages. It's the caller's
638  * responsibility to make sure that the page is in uninitialized state. In other
639  * words, do EREMOVE, EWB or whatever operation is necessary before calling
640  * this function.
641  */
642 void sgx_free_epc_page(struct sgx_epc_page *page)
643 {
644 	struct sgx_epc_section *section = &sgx_epc_sections[page->section];
645 	struct sgx_numa_node *node = section->node;
646 
647 	spin_lock(&node->lock);
648 
649 	page->owner = NULL;
650 	if (page->poison)
651 		list_add(&page->list, &node->sgx_poison_page_list);
652 	else
653 		list_add_tail(&page->list, &node->free_page_list);
654 	page->flags = SGX_EPC_PAGE_IS_FREE;
655 
656 	spin_unlock(&node->lock);
657 	atomic_long_inc(&sgx_nr_free_pages);
658 }
659 
660 static bool __init sgx_setup_epc_section(u64 phys_addr, u64 size,
661 					 unsigned long index,
662 					 struct sgx_epc_section *section)
663 {
664 	unsigned long nr_pages = size >> PAGE_SHIFT;
665 	unsigned long i;
666 
667 	section->virt_addr = memremap(phys_addr, size, MEMREMAP_WB);
668 	if (!section->virt_addr)
669 		return false;
670 
671 	section->pages = vmalloc(nr_pages * sizeof(struct sgx_epc_page));
672 	if (!section->pages) {
673 		memunmap(section->virt_addr);
674 		return false;
675 	}
676 
677 	section->phys_addr = phys_addr;
678 	xa_store_range(&sgx_epc_address_space, section->phys_addr,
679 		       phys_addr + size - 1, section, GFP_KERNEL);
680 
681 	for (i = 0; i < nr_pages; i++) {
682 		section->pages[i].section = index;
683 		section->pages[i].flags = 0;
684 		section->pages[i].owner = NULL;
685 		section->pages[i].poison = 0;
686 		list_add_tail(&section->pages[i].list, &sgx_dirty_page_list);
687 	}
688 
689 	return true;
690 }
691 
692 bool arch_is_platform_page(u64 paddr)
693 {
694 	return !!xa_load(&sgx_epc_address_space, paddr);
695 }
696 EXPORT_SYMBOL_GPL(arch_is_platform_page);
697 
698 static struct sgx_epc_page *sgx_paddr_to_page(u64 paddr)
699 {
700 	struct sgx_epc_section *section;
701 
702 	section = xa_load(&sgx_epc_address_space, paddr);
703 	if (!section)
704 		return NULL;
705 
706 	return &section->pages[PFN_DOWN(paddr - section->phys_addr)];
707 }
708 
709 /*
710  * Called in process context to handle a hardware reported
711  * error in an SGX EPC page.
712  * If the MF_ACTION_REQUIRED bit is set in flags, then the
713  * context is the task that consumed the poison data. Otherwise
714  * this is called from a kernel thread unrelated to the page.
715  */
716 int arch_memory_failure(unsigned long pfn, int flags)
717 {
718 	struct sgx_epc_page *page = sgx_paddr_to_page(pfn << PAGE_SHIFT);
719 	struct sgx_epc_section *section;
720 	struct sgx_numa_node *node;
721 
722 	/*
723 	 * mm/memory-failure.c calls this routine for all errors
724 	 * where there isn't a "struct page" for the address. But that
725 	 * includes other address ranges besides SGX.
726 	 */
727 	if (!page)
728 		return -ENXIO;
729 
730 	/*
731 	 * If poison was consumed synchronously. Send a SIGBUS to
732 	 * the task. Hardware has already exited the SGX enclave and
733 	 * will not allow re-entry to an enclave that has a memory
734 	 * error. The signal may help the task understand why the
735 	 * enclave is broken.
736 	 */
737 	if (flags & MF_ACTION_REQUIRED)
738 		force_sig(SIGBUS);
739 
740 	section = &sgx_epc_sections[page->section];
741 	node = section->node;
742 
743 	spin_lock(&node->lock);
744 
745 	/* Already poisoned? Nothing more to do */
746 	if (page->poison)
747 		goto out;
748 
749 	page->poison = 1;
750 
751 	/*
752 	 * If the page is on a free list, move it to the per-node
753 	 * poison page list.
754 	 */
755 	if (page->flags & SGX_EPC_PAGE_IS_FREE) {
756 		list_move(&page->list, &node->sgx_poison_page_list);
757 		goto out;
758 	}
759 
760 	/*
761 	 * TBD: Add additional plumbing to enable pre-emptive
762 	 * action for asynchronous poison notification. Until
763 	 * then just hope that the poison:
764 	 * a) is not accessed - sgx_free_epc_page() will deal with it
765 	 *    when the user gives it back
766 	 * b) results in a recoverable machine check rather than
767 	 *    a fatal one
768 	 */
769 out:
770 	spin_unlock(&node->lock);
771 	return 0;
772 }
773 
774 /**
775  * A section metric is concatenated in a way that @low bits 12-31 define the
776  * bits 12-31 of the metric and @high bits 0-19 define the bits 32-51 of the
777  * metric.
778  */
779 static inline u64 __init sgx_calc_section_metric(u64 low, u64 high)
780 {
781 	return (low & GENMASK_ULL(31, 12)) +
782 	       ((high & GENMASK_ULL(19, 0)) << 32);
783 }
784 
785 #ifdef CONFIG_NUMA
786 static ssize_t sgx_total_bytes_show(struct device *dev, struct device_attribute *attr, char *buf)
787 {
788 	return sysfs_emit(buf, "%lu\n", sgx_numa_nodes[dev->id].size);
789 }
790 static DEVICE_ATTR_RO(sgx_total_bytes);
791 
792 static umode_t arch_node_attr_is_visible(struct kobject *kobj,
793 		struct attribute *attr, int idx)
794 {
795 	/* Make all x86/ attributes invisible when SGX is not initialized: */
796 	if (nodes_empty(sgx_numa_mask))
797 		return 0;
798 
799 	return attr->mode;
800 }
801 
802 static struct attribute *arch_node_dev_attrs[] = {
803 	&dev_attr_sgx_total_bytes.attr,
804 	NULL,
805 };
806 
807 const struct attribute_group arch_node_dev_group = {
808 	.name = "x86",
809 	.attrs = arch_node_dev_attrs,
810 	.is_visible = arch_node_attr_is_visible,
811 };
812 
813 static void __init arch_update_sysfs_visibility(int nid)
814 {
815 	struct node *node = node_devices[nid];
816 	int ret;
817 
818 	ret = sysfs_update_group(&node->dev.kobj, &arch_node_dev_group);
819 
820 	if (ret)
821 		pr_err("sysfs update failed (%d), files may be invisible", ret);
822 }
823 #else /* !CONFIG_NUMA */
824 static void __init arch_update_sysfs_visibility(int nid) {}
825 #endif
826 
827 static bool __init sgx_page_cache_init(void)
828 {
829 	u32 eax, ebx, ecx, edx, type;
830 	u64 pa, size;
831 	int nid;
832 	int i;
833 
834 	sgx_numa_nodes = kmalloc_array(num_possible_nodes(), sizeof(*sgx_numa_nodes), GFP_KERNEL);
835 	if (!sgx_numa_nodes)
836 		return false;
837 
838 	for (i = 0; i < ARRAY_SIZE(sgx_epc_sections); i++) {
839 		cpuid_count(SGX_CPUID, i + SGX_CPUID_EPC, &eax, &ebx, &ecx, &edx);
840 
841 		type = eax & SGX_CPUID_EPC_MASK;
842 		if (type == SGX_CPUID_EPC_INVALID)
843 			break;
844 
845 		if (type != SGX_CPUID_EPC_SECTION) {
846 			pr_err_once("Unknown EPC section type: %u\n", type);
847 			break;
848 		}
849 
850 		pa   = sgx_calc_section_metric(eax, ebx);
851 		size = sgx_calc_section_metric(ecx, edx);
852 
853 		pr_info("EPC section 0x%llx-0x%llx\n", pa, pa + size - 1);
854 
855 		if (!sgx_setup_epc_section(pa, size, i, &sgx_epc_sections[i])) {
856 			pr_err("No free memory for an EPC section\n");
857 			break;
858 		}
859 
860 		nid = numa_map_to_online_node(phys_to_target_node(pa));
861 		if (nid == NUMA_NO_NODE) {
862 			/* The physical address is already printed above. */
863 			pr_warn(FW_BUG "Unable to map EPC section to online node. Fallback to the NUMA node 0.\n");
864 			nid = 0;
865 		}
866 
867 		if (!node_isset(nid, sgx_numa_mask)) {
868 			spin_lock_init(&sgx_numa_nodes[nid].lock);
869 			INIT_LIST_HEAD(&sgx_numa_nodes[nid].free_page_list);
870 			INIT_LIST_HEAD(&sgx_numa_nodes[nid].sgx_poison_page_list);
871 			node_set(nid, sgx_numa_mask);
872 			sgx_numa_nodes[nid].size = 0;
873 
874 			/* Make SGX-specific node sysfs files visible: */
875 			arch_update_sysfs_visibility(nid);
876 		}
877 
878 		sgx_epc_sections[i].node =  &sgx_numa_nodes[nid];
879 		sgx_numa_nodes[nid].size += size;
880 
881 		sgx_nr_epc_sections++;
882 	}
883 
884 	if (!sgx_nr_epc_sections) {
885 		pr_err("There are zero EPC sections.\n");
886 		return false;
887 	}
888 
889 	return true;
890 }
891 
892 /*
893  * Update the SGX_LEPUBKEYHASH MSRs to the values specified by caller.
894  * Bare-metal driver requires to update them to hash of enclave's signer
895  * before EINIT. KVM needs to update them to guest's virtual MSR values
896  * before doing EINIT from guest.
897  */
898 void sgx_update_lepubkeyhash(u64 *lepubkeyhash)
899 {
900 	int i;
901 
902 	WARN_ON_ONCE(preemptible());
903 
904 	for (i = 0; i < 4; i++)
905 		wrmsrl(MSR_IA32_SGXLEPUBKEYHASH0 + i, lepubkeyhash[i]);
906 }
907 
908 const struct file_operations sgx_provision_fops = {
909 	.owner			= THIS_MODULE,
910 };
911 
912 static struct miscdevice sgx_dev_provision = {
913 	.minor = MISC_DYNAMIC_MINOR,
914 	.name = "sgx_provision",
915 	.nodename = "sgx_provision",
916 	.fops = &sgx_provision_fops,
917 };
918 
919 /**
920  * sgx_set_attribute() - Update allowed attributes given file descriptor
921  * @allowed_attributes:		Pointer to allowed enclave attributes
922  * @attribute_fd:		File descriptor for specific attribute
923  *
924  * Append enclave attribute indicated by file descriptor to allowed
925  * attributes. Currently only SGX_ATTR_PROVISIONKEY indicated by
926  * /dev/sgx_provision is supported.
927  *
928  * Return:
929  * -0:		SGX_ATTR_PROVISIONKEY is appended to allowed_attributes
930  * -EINVAL:	Invalid, or not supported file descriptor
931  */
932 int sgx_set_attribute(unsigned long *allowed_attributes,
933 		      unsigned int attribute_fd)
934 {
935 	struct file *file;
936 
937 	file = fget(attribute_fd);
938 	if (!file)
939 		return -EINVAL;
940 
941 	if (file->f_op != &sgx_provision_fops) {
942 		fput(file);
943 		return -EINVAL;
944 	}
945 
946 	*allowed_attributes |= SGX_ATTR_PROVISIONKEY;
947 
948 	fput(file);
949 	return 0;
950 }
951 EXPORT_SYMBOL_GPL(sgx_set_attribute);
952 
953 static int __init sgx_init(void)
954 {
955 	int ret;
956 	int i;
957 
958 	if (!cpu_feature_enabled(X86_FEATURE_SGX))
959 		return -ENODEV;
960 
961 	if (!sgx_page_cache_init())
962 		return -ENOMEM;
963 
964 	if (!sgx_page_reclaimer_init()) {
965 		ret = -ENOMEM;
966 		goto err_page_cache;
967 	}
968 
969 	ret = misc_register(&sgx_dev_provision);
970 	if (ret)
971 		goto err_kthread;
972 
973 	/*
974 	 * Always try to initialize the native *and* KVM drivers.
975 	 * The KVM driver is less picky than the native one and
976 	 * can function if the native one is not supported on the
977 	 * current system or fails to initialize.
978 	 *
979 	 * Error out only if both fail to initialize.
980 	 */
981 	ret = sgx_drv_init();
982 
983 	if (sgx_vepc_init() && ret)
984 		goto err_provision;
985 
986 	return 0;
987 
988 err_provision:
989 	misc_deregister(&sgx_dev_provision);
990 
991 err_kthread:
992 	kthread_stop(ksgxd_tsk);
993 
994 err_page_cache:
995 	for (i = 0; i < sgx_nr_epc_sections; i++) {
996 		vfree(sgx_epc_sections[i].pages);
997 		memunmap(sgx_epc_sections[i].virt_addr);
998 	}
999 
1000 	return ret;
1001 }
1002 
1003 device_initcall(sgx_init);
1004