xref: /openbmc/linux/arch/x86/kernel/cpu/sgx/encl.c (revision b1a792601f264df7172a728f1a83a05b6b399dfb)
1 // SPDX-License-Identifier: GPL-2.0
2 /*  Copyright(c) 2016-20 Intel Corporation. */
3 
4 #include <linux/lockdep.h>
5 #include <linux/mm.h>
6 #include <linux/mman.h>
7 #include <linux/shmem_fs.h>
8 #include <linux/suspend.h>
9 #include <linux/sched/mm.h>
10 #include "arch.h"
11 #include "encl.h"
12 #include "encls.h"
13 #include "sgx.h"
14 
15 /*
16  * ELDU: Load an EPC page as unblocked. For more info, see "OS Management of EPC
17  * Pages" in the SDM.
18  */
19 static int __sgx_encl_eldu(struct sgx_encl_page *encl_page,
20 			   struct sgx_epc_page *epc_page,
21 			   struct sgx_epc_page *secs_page)
22 {
23 	unsigned long va_offset = encl_page->desc & SGX_ENCL_PAGE_VA_OFFSET_MASK;
24 	struct sgx_encl *encl = encl_page->encl;
25 	struct sgx_pageinfo pginfo;
26 	struct sgx_backing b;
27 	pgoff_t page_index;
28 	int ret;
29 
30 	if (secs_page)
31 		page_index = PFN_DOWN(encl_page->desc - encl_page->encl->base);
32 	else
33 		page_index = PFN_DOWN(encl->size);
34 
35 	ret = sgx_encl_get_backing(encl, page_index, &b);
36 	if (ret)
37 		return ret;
38 
39 	pginfo.addr = encl_page->desc & PAGE_MASK;
40 	pginfo.contents = (unsigned long)kmap_atomic(b.contents);
41 	pginfo.metadata = (unsigned long)kmap_atomic(b.pcmd) +
42 			  b.pcmd_offset;
43 
44 	if (secs_page)
45 		pginfo.secs = (u64)sgx_get_epc_virt_addr(secs_page);
46 	else
47 		pginfo.secs = 0;
48 
49 	ret = __eldu(&pginfo, sgx_get_epc_virt_addr(epc_page),
50 		     sgx_get_epc_virt_addr(encl_page->va_page->epc_page) + va_offset);
51 	if (ret) {
52 		if (encls_failed(ret))
53 			ENCLS_WARN(ret, "ELDU");
54 
55 		ret = -EFAULT;
56 	}
57 
58 	kunmap_atomic((void *)(unsigned long)(pginfo.metadata - b.pcmd_offset));
59 	kunmap_atomic((void *)(unsigned long)pginfo.contents);
60 
61 	sgx_encl_put_backing(&b, false);
62 
63 	return ret;
64 }
65 
66 static struct sgx_epc_page *sgx_encl_eldu(struct sgx_encl_page *encl_page,
67 					  struct sgx_epc_page *secs_page)
68 {
69 
70 	unsigned long va_offset = encl_page->desc & SGX_ENCL_PAGE_VA_OFFSET_MASK;
71 	struct sgx_encl *encl = encl_page->encl;
72 	struct sgx_epc_page *epc_page;
73 	int ret;
74 
75 	epc_page = sgx_alloc_epc_page(encl_page, false);
76 	if (IS_ERR(epc_page))
77 		return epc_page;
78 
79 	ret = __sgx_encl_eldu(encl_page, epc_page, secs_page);
80 	if (ret) {
81 		sgx_free_epc_page(epc_page);
82 		return ERR_PTR(ret);
83 	}
84 
85 	sgx_free_va_slot(encl_page->va_page, va_offset);
86 	list_move(&encl_page->va_page->list, &encl->va_pages);
87 	encl_page->desc &= ~SGX_ENCL_PAGE_VA_OFFSET_MASK;
88 	encl_page->epc_page = epc_page;
89 
90 	return epc_page;
91 }
92 
93 static struct sgx_encl_page *sgx_encl_load_page(struct sgx_encl *encl,
94 						unsigned long addr,
95 						unsigned long vm_flags)
96 {
97 	unsigned long vm_prot_bits = vm_flags & (VM_READ | VM_WRITE | VM_EXEC);
98 	struct sgx_epc_page *epc_page;
99 	struct sgx_encl_page *entry;
100 
101 	entry = xa_load(&encl->page_array, PFN_DOWN(addr));
102 	if (!entry)
103 		return ERR_PTR(-EFAULT);
104 
105 	/*
106 	 * Verify that the faulted page has equal or higher build time
107 	 * permissions than the VMA permissions (i.e. the subset of {VM_READ,
108 	 * VM_WRITE, VM_EXECUTE} in vma->vm_flags).
109 	 */
110 	if ((entry->vm_max_prot_bits & vm_prot_bits) != vm_prot_bits)
111 		return ERR_PTR(-EFAULT);
112 
113 	/* Entry successfully located. */
114 	if (entry->epc_page) {
115 		if (entry->desc & SGX_ENCL_PAGE_BEING_RECLAIMED)
116 			return ERR_PTR(-EBUSY);
117 
118 		return entry;
119 	}
120 
121 	if (!(encl->secs.epc_page)) {
122 		epc_page = sgx_encl_eldu(&encl->secs, NULL);
123 		if (IS_ERR(epc_page))
124 			return ERR_CAST(epc_page);
125 	}
126 
127 	epc_page = sgx_encl_eldu(entry, encl->secs.epc_page);
128 	if (IS_ERR(epc_page))
129 		return ERR_CAST(epc_page);
130 
131 	encl->secs_child_cnt++;
132 	sgx_mark_page_reclaimable(entry->epc_page);
133 
134 	return entry;
135 }
136 
137 static vm_fault_t sgx_vma_fault(struct vm_fault *vmf)
138 {
139 	unsigned long addr = (unsigned long)vmf->address;
140 	struct vm_area_struct *vma = vmf->vma;
141 	struct sgx_encl_page *entry;
142 	unsigned long phys_addr;
143 	struct sgx_encl *encl;
144 	vm_fault_t ret;
145 
146 	encl = vma->vm_private_data;
147 
148 	/*
149 	 * It's very unlikely but possible that allocating memory for the
150 	 * mm_list entry of a forked process failed in sgx_vma_open(). When
151 	 * this happens, vm_private_data is set to NULL.
152 	 */
153 	if (unlikely(!encl))
154 		return VM_FAULT_SIGBUS;
155 
156 	mutex_lock(&encl->lock);
157 
158 	entry = sgx_encl_load_page(encl, addr, vma->vm_flags);
159 	if (IS_ERR(entry)) {
160 		mutex_unlock(&encl->lock);
161 
162 		if (PTR_ERR(entry) == -EBUSY)
163 			return VM_FAULT_NOPAGE;
164 
165 		return VM_FAULT_SIGBUS;
166 	}
167 
168 	phys_addr = sgx_get_epc_phys_addr(entry->epc_page);
169 
170 	ret = vmf_insert_pfn(vma, addr, PFN_DOWN(phys_addr));
171 	if (ret != VM_FAULT_NOPAGE) {
172 		mutex_unlock(&encl->lock);
173 
174 		return VM_FAULT_SIGBUS;
175 	}
176 
177 	sgx_encl_test_and_clear_young(vma->vm_mm, entry);
178 	mutex_unlock(&encl->lock);
179 
180 	return VM_FAULT_NOPAGE;
181 }
182 
183 static void sgx_vma_open(struct vm_area_struct *vma)
184 {
185 	struct sgx_encl *encl = vma->vm_private_data;
186 
187 	/*
188 	 * It's possible but unlikely that vm_private_data is NULL. This can
189 	 * happen in a grandchild of a process, when sgx_encl_mm_add() had
190 	 * failed to allocate memory in this callback.
191 	 */
192 	if (unlikely(!encl))
193 		return;
194 
195 	if (sgx_encl_mm_add(encl, vma->vm_mm))
196 		vma->vm_private_data = NULL;
197 }
198 
199 
200 /**
201  * sgx_encl_may_map() - Check if a requested VMA mapping is allowed
202  * @encl:		an enclave pointer
203  * @start:		lower bound of the address range, inclusive
204  * @end:		upper bound of the address range, exclusive
205  * @vm_flags:		VMA flags
206  *
207  * Iterate through the enclave pages contained within [@start, @end) to verify
208  * that the permissions requested by a subset of {VM_READ, VM_WRITE, VM_EXEC}
209  * do not contain any permissions that are not contained in the build time
210  * permissions of any of the enclave pages within the given address range.
211  *
212  * An enclave creator must declare the strongest permissions that will be
213  * needed for each enclave page. This ensures that mappings have the identical
214  * or weaker permissions than the earlier declared permissions.
215  *
216  * Return: 0 on success, -EACCES otherwise
217  */
218 int sgx_encl_may_map(struct sgx_encl *encl, unsigned long start,
219 		     unsigned long end, unsigned long vm_flags)
220 {
221 	unsigned long vm_prot_bits = vm_flags & (VM_READ | VM_WRITE | VM_EXEC);
222 	struct sgx_encl_page *page;
223 	unsigned long count = 0;
224 	int ret = 0;
225 
226 	XA_STATE(xas, &encl->page_array, PFN_DOWN(start));
227 
228 	/*
229 	 * Disallow READ_IMPLIES_EXEC tasks as their VMA permissions might
230 	 * conflict with the enclave page permissions.
231 	 */
232 	if (current->personality & READ_IMPLIES_EXEC)
233 		return -EACCES;
234 
235 	mutex_lock(&encl->lock);
236 	xas_lock(&xas);
237 	xas_for_each(&xas, page, PFN_DOWN(end - 1)) {
238 		if (~page->vm_max_prot_bits & vm_prot_bits) {
239 			ret = -EACCES;
240 			break;
241 		}
242 
243 		/* Reschedule on every XA_CHECK_SCHED iteration. */
244 		if (!(++count % XA_CHECK_SCHED)) {
245 			xas_pause(&xas);
246 			xas_unlock(&xas);
247 			mutex_unlock(&encl->lock);
248 
249 			cond_resched();
250 
251 			mutex_lock(&encl->lock);
252 			xas_lock(&xas);
253 		}
254 	}
255 	xas_unlock(&xas);
256 	mutex_unlock(&encl->lock);
257 
258 	return ret;
259 }
260 
261 static int sgx_vma_mprotect(struct vm_area_struct *vma, unsigned long start,
262 			    unsigned long end, unsigned long newflags)
263 {
264 	return sgx_encl_may_map(vma->vm_private_data, start, end, newflags);
265 }
266 
267 static int sgx_encl_debug_read(struct sgx_encl *encl, struct sgx_encl_page *page,
268 			       unsigned long addr, void *data)
269 {
270 	unsigned long offset = addr & ~PAGE_MASK;
271 	int ret;
272 
273 
274 	ret = __edbgrd(sgx_get_epc_virt_addr(page->epc_page) + offset, data);
275 	if (ret)
276 		return -EIO;
277 
278 	return 0;
279 }
280 
281 static int sgx_encl_debug_write(struct sgx_encl *encl, struct sgx_encl_page *page,
282 				unsigned long addr, void *data)
283 {
284 	unsigned long offset = addr & ~PAGE_MASK;
285 	int ret;
286 
287 	ret = __edbgwr(sgx_get_epc_virt_addr(page->epc_page) + offset, data);
288 	if (ret)
289 		return -EIO;
290 
291 	return 0;
292 }
293 
294 /*
295  * Load an enclave page to EPC if required, and take encl->lock.
296  */
297 static struct sgx_encl_page *sgx_encl_reserve_page(struct sgx_encl *encl,
298 						   unsigned long addr,
299 						   unsigned long vm_flags)
300 {
301 	struct sgx_encl_page *entry;
302 
303 	for ( ; ; ) {
304 		mutex_lock(&encl->lock);
305 
306 		entry = sgx_encl_load_page(encl, addr, vm_flags);
307 		if (PTR_ERR(entry) != -EBUSY)
308 			break;
309 
310 		mutex_unlock(&encl->lock);
311 	}
312 
313 	if (IS_ERR(entry))
314 		mutex_unlock(&encl->lock);
315 
316 	return entry;
317 }
318 
319 static int sgx_vma_access(struct vm_area_struct *vma, unsigned long addr,
320 			  void *buf, int len, int write)
321 {
322 	struct sgx_encl *encl = vma->vm_private_data;
323 	struct sgx_encl_page *entry = NULL;
324 	char data[sizeof(unsigned long)];
325 	unsigned long align;
326 	int offset;
327 	int cnt;
328 	int ret = 0;
329 	int i;
330 
331 	/*
332 	 * If process was forked, VMA is still there but vm_private_data is set
333 	 * to NULL.
334 	 */
335 	if (!encl)
336 		return -EFAULT;
337 
338 	if (!test_bit(SGX_ENCL_DEBUG, &encl->flags))
339 		return -EFAULT;
340 
341 	for (i = 0; i < len; i += cnt) {
342 		entry = sgx_encl_reserve_page(encl, (addr + i) & PAGE_MASK,
343 					      vma->vm_flags);
344 		if (IS_ERR(entry)) {
345 			ret = PTR_ERR(entry);
346 			break;
347 		}
348 
349 		align = ALIGN_DOWN(addr + i, sizeof(unsigned long));
350 		offset = (addr + i) & (sizeof(unsigned long) - 1);
351 		cnt = sizeof(unsigned long) - offset;
352 		cnt = min(cnt, len - i);
353 
354 		ret = sgx_encl_debug_read(encl, entry, align, data);
355 		if (ret)
356 			goto out;
357 
358 		if (write) {
359 			memcpy(data + offset, buf + i, cnt);
360 			ret = sgx_encl_debug_write(encl, entry, align, data);
361 			if (ret)
362 				goto out;
363 		} else {
364 			memcpy(buf + i, data + offset, cnt);
365 		}
366 
367 out:
368 		mutex_unlock(&encl->lock);
369 
370 		if (ret)
371 			break;
372 	}
373 
374 	return ret < 0 ? ret : i;
375 }
376 
377 const struct vm_operations_struct sgx_vm_ops = {
378 	.fault = sgx_vma_fault,
379 	.mprotect = sgx_vma_mprotect,
380 	.open = sgx_vma_open,
381 	.access = sgx_vma_access,
382 };
383 
384 /**
385  * sgx_encl_release - Destroy an enclave instance
386  * @kref:	address of a kref inside &sgx_encl
387  *
388  * Used together with kref_put(). Frees all the resources associated with the
389  * enclave and the instance itself.
390  */
391 void sgx_encl_release(struct kref *ref)
392 {
393 	struct sgx_encl *encl = container_of(ref, struct sgx_encl, refcount);
394 	struct sgx_va_page *va_page;
395 	struct sgx_encl_page *entry;
396 	unsigned long index;
397 
398 	xa_for_each(&encl->page_array, index, entry) {
399 		if (entry->epc_page) {
400 			/*
401 			 * The page and its radix tree entry cannot be freed
402 			 * if the page is being held by the reclaimer.
403 			 */
404 			if (sgx_unmark_page_reclaimable(entry->epc_page))
405 				continue;
406 
407 			sgx_free_epc_page(entry->epc_page);
408 			encl->secs_child_cnt--;
409 			entry->epc_page = NULL;
410 		}
411 
412 		kfree(entry);
413 	}
414 
415 	xa_destroy(&encl->page_array);
416 
417 	if (!encl->secs_child_cnt && encl->secs.epc_page) {
418 		sgx_free_epc_page(encl->secs.epc_page);
419 		encl->secs.epc_page = NULL;
420 	}
421 
422 	while (!list_empty(&encl->va_pages)) {
423 		va_page = list_first_entry(&encl->va_pages, struct sgx_va_page,
424 					   list);
425 		list_del(&va_page->list);
426 		sgx_free_epc_page(va_page->epc_page);
427 		kfree(va_page);
428 	}
429 
430 	if (encl->backing)
431 		fput(encl->backing);
432 
433 	cleanup_srcu_struct(&encl->srcu);
434 
435 	WARN_ON_ONCE(!list_empty(&encl->mm_list));
436 
437 	/* Detect EPC page leak's. */
438 	WARN_ON_ONCE(encl->secs_child_cnt);
439 	WARN_ON_ONCE(encl->secs.epc_page);
440 
441 	kfree(encl);
442 }
443 
444 /*
445  * 'mm' is exiting and no longer needs mmu notifications.
446  */
447 static void sgx_mmu_notifier_release(struct mmu_notifier *mn,
448 				     struct mm_struct *mm)
449 {
450 	struct sgx_encl_mm *encl_mm = container_of(mn, struct sgx_encl_mm, mmu_notifier);
451 	struct sgx_encl_mm *tmp = NULL;
452 
453 	/*
454 	 * The enclave itself can remove encl_mm.  Note, objects can't be moved
455 	 * off an RCU protected list, but deletion is ok.
456 	 */
457 	spin_lock(&encl_mm->encl->mm_lock);
458 	list_for_each_entry(tmp, &encl_mm->encl->mm_list, list) {
459 		if (tmp == encl_mm) {
460 			list_del_rcu(&encl_mm->list);
461 			break;
462 		}
463 	}
464 	spin_unlock(&encl_mm->encl->mm_lock);
465 
466 	if (tmp == encl_mm) {
467 		synchronize_srcu(&encl_mm->encl->srcu);
468 		mmu_notifier_put(mn);
469 	}
470 }
471 
472 static void sgx_mmu_notifier_free(struct mmu_notifier *mn)
473 {
474 	struct sgx_encl_mm *encl_mm = container_of(mn, struct sgx_encl_mm, mmu_notifier);
475 
476 	/* 'encl_mm' is going away, put encl_mm->encl reference: */
477 	kref_put(&encl_mm->encl->refcount, sgx_encl_release);
478 
479 	kfree(encl_mm);
480 }
481 
482 static const struct mmu_notifier_ops sgx_mmu_notifier_ops = {
483 	.release		= sgx_mmu_notifier_release,
484 	.free_notifier		= sgx_mmu_notifier_free,
485 };
486 
487 static struct sgx_encl_mm *sgx_encl_find_mm(struct sgx_encl *encl,
488 					    struct mm_struct *mm)
489 {
490 	struct sgx_encl_mm *encl_mm = NULL;
491 	struct sgx_encl_mm *tmp;
492 	int idx;
493 
494 	idx = srcu_read_lock(&encl->srcu);
495 
496 	list_for_each_entry_rcu(tmp, &encl->mm_list, list) {
497 		if (tmp->mm == mm) {
498 			encl_mm = tmp;
499 			break;
500 		}
501 	}
502 
503 	srcu_read_unlock(&encl->srcu, idx);
504 
505 	return encl_mm;
506 }
507 
508 int sgx_encl_mm_add(struct sgx_encl *encl, struct mm_struct *mm)
509 {
510 	struct sgx_encl_mm *encl_mm;
511 	int ret;
512 
513 	/*
514 	 * Even though a single enclave may be mapped into an mm more than once,
515 	 * each 'mm' only appears once on encl->mm_list. This is guaranteed by
516 	 * holding the mm's mmap lock for write before an mm can be added or
517 	 * remove to an encl->mm_list.
518 	 */
519 	mmap_assert_write_locked(mm);
520 
521 	/*
522 	 * It's possible that an entry already exists in the mm_list, because it
523 	 * is removed only on VFS release or process exit.
524 	 */
525 	if (sgx_encl_find_mm(encl, mm))
526 		return 0;
527 
528 	encl_mm = kzalloc(sizeof(*encl_mm), GFP_KERNEL);
529 	if (!encl_mm)
530 		return -ENOMEM;
531 
532 	/* Grab a refcount for the encl_mm->encl reference: */
533 	kref_get(&encl->refcount);
534 	encl_mm->encl = encl;
535 	encl_mm->mm = mm;
536 	encl_mm->mmu_notifier.ops = &sgx_mmu_notifier_ops;
537 
538 	ret = __mmu_notifier_register(&encl_mm->mmu_notifier, mm);
539 	if (ret) {
540 		kfree(encl_mm);
541 		return ret;
542 	}
543 
544 	spin_lock(&encl->mm_lock);
545 	list_add_rcu(&encl_mm->list, &encl->mm_list);
546 	/* Pairs with smp_rmb() in sgx_reclaimer_block(). */
547 	smp_wmb();
548 	encl->mm_list_version++;
549 	spin_unlock(&encl->mm_lock);
550 
551 	return 0;
552 }
553 
554 static struct page *sgx_encl_get_backing_page(struct sgx_encl *encl,
555 					      pgoff_t index)
556 {
557 	struct inode *inode = encl->backing->f_path.dentry->d_inode;
558 	struct address_space *mapping = inode->i_mapping;
559 	gfp_t gfpmask = mapping_gfp_mask(mapping);
560 
561 	return shmem_read_mapping_page_gfp(mapping, index, gfpmask);
562 }
563 
564 /**
565  * sgx_encl_get_backing() - Pin the backing storage
566  * @encl:	an enclave pointer
567  * @page_index:	enclave page index
568  * @backing:	data for accessing backing storage for the page
569  *
570  * Pin the backing storage pages for storing the encrypted contents and Paging
571  * Crypto MetaData (PCMD) of an enclave page.
572  *
573  * Return:
574  *   0 on success,
575  *   -errno otherwise.
576  */
577 int sgx_encl_get_backing(struct sgx_encl *encl, unsigned long page_index,
578 			 struct sgx_backing *backing)
579 {
580 	pgoff_t pcmd_index = PFN_DOWN(encl->size) + 1 + (page_index >> 5);
581 	struct page *contents;
582 	struct page *pcmd;
583 
584 	contents = sgx_encl_get_backing_page(encl, page_index);
585 	if (IS_ERR(contents))
586 		return PTR_ERR(contents);
587 
588 	pcmd = sgx_encl_get_backing_page(encl, pcmd_index);
589 	if (IS_ERR(pcmd)) {
590 		put_page(contents);
591 		return PTR_ERR(pcmd);
592 	}
593 
594 	backing->page_index = page_index;
595 	backing->contents = contents;
596 	backing->pcmd = pcmd;
597 	backing->pcmd_offset =
598 		(page_index & (PAGE_SIZE / sizeof(struct sgx_pcmd) - 1)) *
599 		sizeof(struct sgx_pcmd);
600 
601 	return 0;
602 }
603 
604 /**
605  * sgx_encl_put_backing() - Unpin the backing storage
606  * @backing:	data for accessing backing storage for the page
607  * @do_write:	mark pages dirty
608  */
609 void sgx_encl_put_backing(struct sgx_backing *backing, bool do_write)
610 {
611 	if (do_write) {
612 		set_page_dirty(backing->pcmd);
613 		set_page_dirty(backing->contents);
614 	}
615 
616 	put_page(backing->pcmd);
617 	put_page(backing->contents);
618 }
619 
620 static int sgx_encl_test_and_clear_young_cb(pte_t *ptep, unsigned long addr,
621 					    void *data)
622 {
623 	pte_t pte;
624 	int ret;
625 
626 	ret = pte_young(*ptep);
627 	if (ret) {
628 		pte = pte_mkold(*ptep);
629 		set_pte_at((struct mm_struct *)data, addr, ptep, pte);
630 	}
631 
632 	return ret;
633 }
634 
635 /**
636  * sgx_encl_test_and_clear_young() - Test and reset the accessed bit
637  * @mm:		mm_struct that is checked
638  * @page:	enclave page to be tested for recent access
639  *
640  * Checks the Access (A) bit from the PTE corresponding to the enclave page and
641  * clears it.
642  *
643  * Return: 1 if the page has been recently accessed and 0 if not.
644  */
645 int sgx_encl_test_and_clear_young(struct mm_struct *mm,
646 				  struct sgx_encl_page *page)
647 {
648 	unsigned long addr = page->desc & PAGE_MASK;
649 	struct sgx_encl *encl = page->encl;
650 	struct vm_area_struct *vma;
651 	int ret;
652 
653 	ret = sgx_encl_find(mm, addr, &vma);
654 	if (ret)
655 		return 0;
656 
657 	if (encl != vma->vm_private_data)
658 		return 0;
659 
660 	ret = apply_to_page_range(vma->vm_mm, addr, PAGE_SIZE,
661 				  sgx_encl_test_and_clear_young_cb, vma->vm_mm);
662 	if (ret < 0)
663 		return 0;
664 
665 	return ret;
666 }
667 
668 /**
669  * sgx_alloc_va_page() - Allocate a Version Array (VA) page
670  *
671  * Allocate a free EPC page and convert it to a Version Array (VA) page.
672  *
673  * Return:
674  *   a VA page,
675  *   -errno otherwise
676  */
677 struct sgx_epc_page *sgx_alloc_va_page(void)
678 {
679 	struct sgx_epc_page *epc_page;
680 	int ret;
681 
682 	epc_page = sgx_alloc_epc_page(NULL, true);
683 	if (IS_ERR(epc_page))
684 		return ERR_CAST(epc_page);
685 
686 	ret = __epa(sgx_get_epc_virt_addr(epc_page));
687 	if (ret) {
688 		WARN_ONCE(1, "EPA returned %d (0x%x)", ret, ret);
689 		sgx_free_epc_page(epc_page);
690 		return ERR_PTR(-EFAULT);
691 	}
692 
693 	return epc_page;
694 }
695 
696 /**
697  * sgx_alloc_va_slot - allocate a VA slot
698  * @va_page:	a &struct sgx_va_page instance
699  *
700  * Allocates a slot from a &struct sgx_va_page instance.
701  *
702  * Return: offset of the slot inside the VA page
703  */
704 unsigned int sgx_alloc_va_slot(struct sgx_va_page *va_page)
705 {
706 	int slot = find_first_zero_bit(va_page->slots, SGX_VA_SLOT_COUNT);
707 
708 	if (slot < SGX_VA_SLOT_COUNT)
709 		set_bit(slot, va_page->slots);
710 
711 	return slot << 3;
712 }
713 
714 /**
715  * sgx_free_va_slot - free a VA slot
716  * @va_page:	a &struct sgx_va_page instance
717  * @offset:	offset of the slot inside the VA page
718  *
719  * Frees a slot from a &struct sgx_va_page instance.
720  */
721 void sgx_free_va_slot(struct sgx_va_page *va_page, unsigned int offset)
722 {
723 	clear_bit(offset >> 3, va_page->slots);
724 }
725 
726 /**
727  * sgx_va_page_full - is the VA page full?
728  * @va_page:	a &struct sgx_va_page instance
729  *
730  * Return: true if all slots have been taken
731  */
732 bool sgx_va_page_full(struct sgx_va_page *va_page)
733 {
734 	int slot = find_first_zero_bit(va_page->slots, SGX_VA_SLOT_COUNT);
735 
736 	return slot == SGX_VA_SLOT_COUNT;
737 }
738