1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright(c) 2016-20 Intel Corporation. */ 3 4 #include <linux/lockdep.h> 5 #include <linux/mm.h> 6 #include <linux/mman.h> 7 #include <linux/shmem_fs.h> 8 #include <linux/suspend.h> 9 #include <linux/sched/mm.h> 10 #include <asm/sgx.h> 11 #include "encl.h" 12 #include "encls.h" 13 #include "sgx.h" 14 15 static int sgx_encl_lookup_backing(struct sgx_encl *encl, unsigned long page_index, 16 struct sgx_backing *backing); 17 18 #define PCMDS_PER_PAGE (PAGE_SIZE / sizeof(struct sgx_pcmd)) 19 /* 20 * 32 PCMD entries share a PCMD page. PCMD_FIRST_MASK is used to 21 * determine the page index associated with the first PCMD entry 22 * within a PCMD page. 23 */ 24 #define PCMD_FIRST_MASK GENMASK(4, 0) 25 26 /** 27 * reclaimer_writing_to_pcmd() - Query if any enclave page associated with 28 * a PCMD page is in process of being reclaimed. 29 * @encl: Enclave to which PCMD page belongs 30 * @start_addr: Address of enclave page using first entry within the PCMD page 31 * 32 * When an enclave page is reclaimed some Paging Crypto MetaData (PCMD) is 33 * stored. The PCMD data of a reclaimed enclave page contains enough 34 * information for the processor to verify the page at the time 35 * it is loaded back into the Enclave Page Cache (EPC). 36 * 37 * The backing storage to which enclave pages are reclaimed is laid out as 38 * follows: 39 * Encrypted enclave pages:SECS page:PCMD pages 40 * 41 * Each PCMD page contains the PCMD metadata of 42 * PAGE_SIZE/sizeof(struct sgx_pcmd) enclave pages. 43 * 44 * A PCMD page can only be truncated if it is (a) empty, and (b) not in the 45 * process of getting data (and thus soon being non-empty). (b) is tested with 46 * a check if an enclave page sharing the PCMD page is in the process of being 47 * reclaimed. 48 * 49 * The reclaimer sets the SGX_ENCL_PAGE_BEING_RECLAIMED flag when it 50 * intends to reclaim that enclave page - it means that the PCMD page 51 * associated with that enclave page is about to get some data and thus 52 * even if the PCMD page is empty, it should not be truncated. 53 * 54 * Context: Enclave mutex (&sgx_encl->lock) must be held. 55 * Return: 1 if the reclaimer is about to write to the PCMD page 56 * 0 if the reclaimer has no intention to write to the PCMD page 57 */ 58 static int reclaimer_writing_to_pcmd(struct sgx_encl *encl, 59 unsigned long start_addr) 60 { 61 int reclaimed = 0; 62 int i; 63 64 /* 65 * PCMD_FIRST_MASK is based on number of PCMD entries within 66 * PCMD page being 32. 67 */ 68 BUILD_BUG_ON(PCMDS_PER_PAGE != 32); 69 70 for (i = 0; i < PCMDS_PER_PAGE; i++) { 71 struct sgx_encl_page *entry; 72 unsigned long addr; 73 74 addr = start_addr + i * PAGE_SIZE; 75 76 /* 77 * Stop when reaching the SECS page - it does not 78 * have a page_array entry and its reclaim is 79 * started and completed with enclave mutex held so 80 * it does not use the SGX_ENCL_PAGE_BEING_RECLAIMED 81 * flag. 82 */ 83 if (addr == encl->base + encl->size) 84 break; 85 86 entry = xa_load(&encl->page_array, PFN_DOWN(addr)); 87 if (!entry) 88 continue; 89 90 /* 91 * VA page slot ID uses same bit as the flag so it is important 92 * to ensure that the page is not already in backing store. 93 */ 94 if (entry->epc_page && 95 (entry->desc & SGX_ENCL_PAGE_BEING_RECLAIMED)) { 96 reclaimed = 1; 97 break; 98 } 99 } 100 101 return reclaimed; 102 } 103 104 /* 105 * Calculate byte offset of a PCMD struct associated with an enclave page. PCMD's 106 * follow right after the EPC data in the backing storage. In addition to the 107 * visible enclave pages, there's one extra page slot for SECS, before PCMD 108 * structs. 109 */ 110 static inline pgoff_t sgx_encl_get_backing_page_pcmd_offset(struct sgx_encl *encl, 111 unsigned long page_index) 112 { 113 pgoff_t epc_end_off = encl->size + sizeof(struct sgx_secs); 114 115 return epc_end_off + page_index * sizeof(struct sgx_pcmd); 116 } 117 118 /* 119 * Free a page from the backing storage in the given page index. 120 */ 121 static inline void sgx_encl_truncate_backing_page(struct sgx_encl *encl, unsigned long page_index) 122 { 123 struct inode *inode = file_inode(encl->backing); 124 125 shmem_truncate_range(inode, PFN_PHYS(page_index), PFN_PHYS(page_index) + PAGE_SIZE - 1); 126 } 127 128 /* 129 * ELDU: Load an EPC page as unblocked. For more info, see "OS Management of EPC 130 * Pages" in the SDM. 131 */ 132 static int __sgx_encl_eldu(struct sgx_encl_page *encl_page, 133 struct sgx_epc_page *epc_page, 134 struct sgx_epc_page *secs_page) 135 { 136 unsigned long va_offset = encl_page->desc & SGX_ENCL_PAGE_VA_OFFSET_MASK; 137 struct sgx_encl *encl = encl_page->encl; 138 pgoff_t page_index, page_pcmd_off; 139 unsigned long pcmd_first_page; 140 struct sgx_pageinfo pginfo; 141 struct sgx_backing b; 142 bool pcmd_page_empty; 143 u8 *pcmd_page; 144 int ret; 145 146 if (secs_page) 147 page_index = PFN_DOWN(encl_page->desc - encl_page->encl->base); 148 else 149 page_index = PFN_DOWN(encl->size); 150 151 /* 152 * Address of enclave page using the first entry within the PCMD page. 153 */ 154 pcmd_first_page = PFN_PHYS(page_index & ~PCMD_FIRST_MASK) + encl->base; 155 156 page_pcmd_off = sgx_encl_get_backing_page_pcmd_offset(encl, page_index); 157 158 ret = sgx_encl_lookup_backing(encl, page_index, &b); 159 if (ret) 160 return ret; 161 162 pginfo.addr = encl_page->desc & PAGE_MASK; 163 pginfo.contents = (unsigned long)kmap_atomic(b.contents); 164 pcmd_page = kmap_atomic(b.pcmd); 165 pginfo.metadata = (unsigned long)pcmd_page + b.pcmd_offset; 166 167 if (secs_page) 168 pginfo.secs = (u64)sgx_get_epc_virt_addr(secs_page); 169 else 170 pginfo.secs = 0; 171 172 ret = __eldu(&pginfo, sgx_get_epc_virt_addr(epc_page), 173 sgx_get_epc_virt_addr(encl_page->va_page->epc_page) + va_offset); 174 if (ret) { 175 if (encls_failed(ret)) 176 ENCLS_WARN(ret, "ELDU"); 177 178 ret = -EFAULT; 179 } 180 181 memset(pcmd_page + b.pcmd_offset, 0, sizeof(struct sgx_pcmd)); 182 set_page_dirty(b.pcmd); 183 184 /* 185 * The area for the PCMD in the page was zeroed above. Check if the 186 * whole page is now empty meaning that all PCMD's have been zeroed: 187 */ 188 pcmd_page_empty = !memchr_inv(pcmd_page, 0, PAGE_SIZE); 189 190 kunmap_atomic(pcmd_page); 191 kunmap_atomic((void *)(unsigned long)pginfo.contents); 192 193 get_page(b.pcmd); 194 sgx_encl_put_backing(&b); 195 196 sgx_encl_truncate_backing_page(encl, page_index); 197 198 if (pcmd_page_empty && !reclaimer_writing_to_pcmd(encl, pcmd_first_page)) { 199 sgx_encl_truncate_backing_page(encl, PFN_DOWN(page_pcmd_off)); 200 pcmd_page = kmap_atomic(b.pcmd); 201 if (memchr_inv(pcmd_page, 0, PAGE_SIZE)) 202 pr_warn("PCMD page not empty after truncate.\n"); 203 kunmap_atomic(pcmd_page); 204 } 205 206 put_page(b.pcmd); 207 208 return ret; 209 } 210 211 static struct sgx_epc_page *sgx_encl_eldu(struct sgx_encl_page *encl_page, 212 struct sgx_epc_page *secs_page) 213 { 214 215 unsigned long va_offset = encl_page->desc & SGX_ENCL_PAGE_VA_OFFSET_MASK; 216 struct sgx_encl *encl = encl_page->encl; 217 struct sgx_epc_page *epc_page; 218 int ret; 219 220 epc_page = sgx_alloc_epc_page(encl_page, false); 221 if (IS_ERR(epc_page)) 222 return epc_page; 223 224 ret = __sgx_encl_eldu(encl_page, epc_page, secs_page); 225 if (ret) { 226 sgx_encl_free_epc_page(epc_page); 227 return ERR_PTR(ret); 228 } 229 230 sgx_free_va_slot(encl_page->va_page, va_offset); 231 list_move(&encl_page->va_page->list, &encl->va_pages); 232 encl_page->desc &= ~SGX_ENCL_PAGE_VA_OFFSET_MASK; 233 encl_page->epc_page = epc_page; 234 235 return epc_page; 236 } 237 238 static struct sgx_encl_page *__sgx_encl_load_page(struct sgx_encl *encl, 239 struct sgx_encl_page *entry) 240 { 241 struct sgx_epc_page *epc_page; 242 243 /* Entry successfully located. */ 244 if (entry->epc_page) { 245 if (entry->desc & SGX_ENCL_PAGE_BEING_RECLAIMED) 246 return ERR_PTR(-EBUSY); 247 248 return entry; 249 } 250 251 if (!(encl->secs.epc_page)) { 252 epc_page = sgx_encl_eldu(&encl->secs, NULL); 253 if (IS_ERR(epc_page)) 254 return ERR_CAST(epc_page); 255 } 256 257 epc_page = sgx_encl_eldu(entry, encl->secs.epc_page); 258 if (IS_ERR(epc_page)) 259 return ERR_CAST(epc_page); 260 261 encl->secs_child_cnt++; 262 sgx_mark_page_reclaimable(entry->epc_page); 263 264 return entry; 265 } 266 267 static struct sgx_encl_page *sgx_encl_load_page_in_vma(struct sgx_encl *encl, 268 unsigned long addr, 269 unsigned long vm_flags) 270 { 271 unsigned long vm_prot_bits = vm_flags & (VM_READ | VM_WRITE | VM_EXEC); 272 struct sgx_encl_page *entry; 273 274 entry = xa_load(&encl->page_array, PFN_DOWN(addr)); 275 if (!entry) 276 return ERR_PTR(-EFAULT); 277 278 /* 279 * Verify that the page has equal or higher build time 280 * permissions than the VMA permissions (i.e. the subset of {VM_READ, 281 * VM_WRITE, VM_EXECUTE} in vma->vm_flags). 282 */ 283 if ((entry->vm_max_prot_bits & vm_prot_bits) != vm_prot_bits) 284 return ERR_PTR(-EFAULT); 285 286 return __sgx_encl_load_page(encl, entry); 287 } 288 289 struct sgx_encl_page *sgx_encl_load_page(struct sgx_encl *encl, 290 unsigned long addr) 291 { 292 struct sgx_encl_page *entry; 293 294 entry = xa_load(&encl->page_array, PFN_DOWN(addr)); 295 if (!entry) 296 return ERR_PTR(-EFAULT); 297 298 return __sgx_encl_load_page(encl, entry); 299 } 300 301 /** 302 * sgx_encl_eaug_page() - Dynamically add page to initialized enclave 303 * @vma: VMA obtained from fault info from where page is accessed 304 * @encl: enclave accessing the page 305 * @addr: address that triggered the page fault 306 * 307 * When an initialized enclave accesses a page with no backing EPC page 308 * on a SGX2 system then the EPC can be added dynamically via the SGX2 309 * ENCLS[EAUG] instruction. 310 * 311 * Returns: Appropriate vm_fault_t: VM_FAULT_NOPAGE when PTE was installed 312 * successfully, VM_FAULT_SIGBUS or VM_FAULT_OOM as error otherwise. 313 */ 314 static vm_fault_t sgx_encl_eaug_page(struct vm_area_struct *vma, 315 struct sgx_encl *encl, unsigned long addr) 316 { 317 vm_fault_t vmret = VM_FAULT_SIGBUS; 318 struct sgx_pageinfo pginfo = {0}; 319 struct sgx_encl_page *encl_page; 320 struct sgx_epc_page *epc_page; 321 struct sgx_va_page *va_page; 322 unsigned long phys_addr; 323 u64 secinfo_flags; 324 int ret; 325 326 if (!test_bit(SGX_ENCL_INITIALIZED, &encl->flags)) 327 return VM_FAULT_SIGBUS; 328 329 /* 330 * Ignore internal permission checking for dynamically added pages. 331 * They matter only for data added during the pre-initialization 332 * phase. The enclave decides the permissions by the means of 333 * EACCEPT, EACCEPTCOPY and EMODPE. 334 */ 335 secinfo_flags = SGX_SECINFO_R | SGX_SECINFO_W | SGX_SECINFO_X; 336 encl_page = sgx_encl_page_alloc(encl, addr - encl->base, secinfo_flags); 337 if (IS_ERR(encl_page)) 338 return VM_FAULT_OOM; 339 340 mutex_lock(&encl->lock); 341 342 epc_page = sgx_alloc_epc_page(encl_page, false); 343 if (IS_ERR(epc_page)) { 344 if (PTR_ERR(epc_page) == -EBUSY) 345 vmret = VM_FAULT_NOPAGE; 346 goto err_out_unlock; 347 } 348 349 va_page = sgx_encl_grow(encl, false); 350 if (IS_ERR(va_page)) { 351 if (PTR_ERR(va_page) == -EBUSY) 352 vmret = VM_FAULT_NOPAGE; 353 goto err_out_epc; 354 } 355 356 if (va_page) 357 list_add(&va_page->list, &encl->va_pages); 358 359 ret = xa_insert(&encl->page_array, PFN_DOWN(encl_page->desc), 360 encl_page, GFP_KERNEL); 361 /* 362 * If ret == -EBUSY then page was created in another flow while 363 * running without encl->lock 364 */ 365 if (ret) 366 goto err_out_shrink; 367 368 pginfo.secs = (unsigned long)sgx_get_epc_virt_addr(encl->secs.epc_page); 369 pginfo.addr = encl_page->desc & PAGE_MASK; 370 pginfo.metadata = 0; 371 372 ret = __eaug(&pginfo, sgx_get_epc_virt_addr(epc_page)); 373 if (ret) 374 goto err_out; 375 376 encl_page->encl = encl; 377 encl_page->epc_page = epc_page; 378 encl_page->type = SGX_PAGE_TYPE_REG; 379 encl->secs_child_cnt++; 380 381 sgx_mark_page_reclaimable(encl_page->epc_page); 382 383 phys_addr = sgx_get_epc_phys_addr(epc_page); 384 /* 385 * Do not undo everything when creating PTE entry fails - next #PF 386 * would find page ready for a PTE. 387 */ 388 vmret = vmf_insert_pfn(vma, addr, PFN_DOWN(phys_addr)); 389 if (vmret != VM_FAULT_NOPAGE) { 390 mutex_unlock(&encl->lock); 391 return VM_FAULT_SIGBUS; 392 } 393 mutex_unlock(&encl->lock); 394 return VM_FAULT_NOPAGE; 395 396 err_out: 397 xa_erase(&encl->page_array, PFN_DOWN(encl_page->desc)); 398 399 err_out_shrink: 400 sgx_encl_shrink(encl, va_page); 401 err_out_epc: 402 sgx_encl_free_epc_page(epc_page); 403 err_out_unlock: 404 mutex_unlock(&encl->lock); 405 kfree(encl_page); 406 407 return vmret; 408 } 409 410 static vm_fault_t sgx_vma_fault(struct vm_fault *vmf) 411 { 412 unsigned long addr = (unsigned long)vmf->address; 413 struct vm_area_struct *vma = vmf->vma; 414 struct sgx_encl_page *entry; 415 unsigned long phys_addr; 416 struct sgx_encl *encl; 417 vm_fault_t ret; 418 419 encl = vma->vm_private_data; 420 421 /* 422 * It's very unlikely but possible that allocating memory for the 423 * mm_list entry of a forked process failed in sgx_vma_open(). When 424 * this happens, vm_private_data is set to NULL. 425 */ 426 if (unlikely(!encl)) 427 return VM_FAULT_SIGBUS; 428 429 /* 430 * The page_array keeps track of all enclave pages, whether they 431 * are swapped out or not. If there is no entry for this page and 432 * the system supports SGX2 then it is possible to dynamically add 433 * a new enclave page. This is only possible for an initialized 434 * enclave that will be checked for right away. 435 */ 436 if (cpu_feature_enabled(X86_FEATURE_SGX2) && 437 (!xa_load(&encl->page_array, PFN_DOWN(addr)))) 438 return sgx_encl_eaug_page(vma, encl, addr); 439 440 mutex_lock(&encl->lock); 441 442 entry = sgx_encl_load_page_in_vma(encl, addr, vma->vm_flags); 443 if (IS_ERR(entry)) { 444 mutex_unlock(&encl->lock); 445 446 if (PTR_ERR(entry) == -EBUSY) 447 return VM_FAULT_NOPAGE; 448 449 return VM_FAULT_SIGBUS; 450 } 451 452 phys_addr = sgx_get_epc_phys_addr(entry->epc_page); 453 454 ret = vmf_insert_pfn(vma, addr, PFN_DOWN(phys_addr)); 455 if (ret != VM_FAULT_NOPAGE) { 456 mutex_unlock(&encl->lock); 457 458 return VM_FAULT_SIGBUS; 459 } 460 461 sgx_encl_test_and_clear_young(vma->vm_mm, entry); 462 mutex_unlock(&encl->lock); 463 464 return VM_FAULT_NOPAGE; 465 } 466 467 static void sgx_vma_open(struct vm_area_struct *vma) 468 { 469 struct sgx_encl *encl = vma->vm_private_data; 470 471 /* 472 * It's possible but unlikely that vm_private_data is NULL. This can 473 * happen in a grandchild of a process, when sgx_encl_mm_add() had 474 * failed to allocate memory in this callback. 475 */ 476 if (unlikely(!encl)) 477 return; 478 479 if (sgx_encl_mm_add(encl, vma->vm_mm)) 480 vma->vm_private_data = NULL; 481 } 482 483 484 /** 485 * sgx_encl_may_map() - Check if a requested VMA mapping is allowed 486 * @encl: an enclave pointer 487 * @start: lower bound of the address range, inclusive 488 * @end: upper bound of the address range, exclusive 489 * @vm_flags: VMA flags 490 * 491 * Iterate through the enclave pages contained within [@start, @end) to verify 492 * that the permissions requested by a subset of {VM_READ, VM_WRITE, VM_EXEC} 493 * do not contain any permissions that are not contained in the build time 494 * permissions of any of the enclave pages within the given address range. 495 * 496 * An enclave creator must declare the strongest permissions that will be 497 * needed for each enclave page. This ensures that mappings have the identical 498 * or weaker permissions than the earlier declared permissions. 499 * 500 * Return: 0 on success, -EACCES otherwise 501 */ 502 int sgx_encl_may_map(struct sgx_encl *encl, unsigned long start, 503 unsigned long end, unsigned long vm_flags) 504 { 505 unsigned long vm_prot_bits = vm_flags & (VM_READ | VM_WRITE | VM_EXEC); 506 struct sgx_encl_page *page; 507 unsigned long count = 0; 508 int ret = 0; 509 510 XA_STATE(xas, &encl->page_array, PFN_DOWN(start)); 511 512 /* Disallow mapping outside enclave's address range. */ 513 if (test_bit(SGX_ENCL_INITIALIZED, &encl->flags) && 514 (start < encl->base || end > encl->base + encl->size)) 515 return -EACCES; 516 517 /* 518 * Disallow READ_IMPLIES_EXEC tasks as their VMA permissions might 519 * conflict with the enclave page permissions. 520 */ 521 if (current->personality & READ_IMPLIES_EXEC) 522 return -EACCES; 523 524 mutex_lock(&encl->lock); 525 xas_lock(&xas); 526 xas_for_each(&xas, page, PFN_DOWN(end - 1)) { 527 if (~page->vm_max_prot_bits & vm_prot_bits) { 528 ret = -EACCES; 529 break; 530 } 531 532 /* Reschedule on every XA_CHECK_SCHED iteration. */ 533 if (!(++count % XA_CHECK_SCHED)) { 534 xas_pause(&xas); 535 xas_unlock(&xas); 536 mutex_unlock(&encl->lock); 537 538 cond_resched(); 539 540 mutex_lock(&encl->lock); 541 xas_lock(&xas); 542 } 543 } 544 xas_unlock(&xas); 545 mutex_unlock(&encl->lock); 546 547 return ret; 548 } 549 550 static int sgx_vma_mprotect(struct vm_area_struct *vma, unsigned long start, 551 unsigned long end, unsigned long newflags) 552 { 553 return sgx_encl_may_map(vma->vm_private_data, start, end, newflags); 554 } 555 556 static int sgx_encl_debug_read(struct sgx_encl *encl, struct sgx_encl_page *page, 557 unsigned long addr, void *data) 558 { 559 unsigned long offset = addr & ~PAGE_MASK; 560 int ret; 561 562 563 ret = __edbgrd(sgx_get_epc_virt_addr(page->epc_page) + offset, data); 564 if (ret) 565 return -EIO; 566 567 return 0; 568 } 569 570 static int sgx_encl_debug_write(struct sgx_encl *encl, struct sgx_encl_page *page, 571 unsigned long addr, void *data) 572 { 573 unsigned long offset = addr & ~PAGE_MASK; 574 int ret; 575 576 ret = __edbgwr(sgx_get_epc_virt_addr(page->epc_page) + offset, data); 577 if (ret) 578 return -EIO; 579 580 return 0; 581 } 582 583 /* 584 * Load an enclave page to EPC if required, and take encl->lock. 585 */ 586 static struct sgx_encl_page *sgx_encl_reserve_page(struct sgx_encl *encl, 587 unsigned long addr, 588 unsigned long vm_flags) 589 { 590 struct sgx_encl_page *entry; 591 592 for ( ; ; ) { 593 mutex_lock(&encl->lock); 594 595 entry = sgx_encl_load_page_in_vma(encl, addr, vm_flags); 596 if (PTR_ERR(entry) != -EBUSY) 597 break; 598 599 mutex_unlock(&encl->lock); 600 } 601 602 if (IS_ERR(entry)) 603 mutex_unlock(&encl->lock); 604 605 return entry; 606 } 607 608 static int sgx_vma_access(struct vm_area_struct *vma, unsigned long addr, 609 void *buf, int len, int write) 610 { 611 struct sgx_encl *encl = vma->vm_private_data; 612 struct sgx_encl_page *entry = NULL; 613 char data[sizeof(unsigned long)]; 614 unsigned long align; 615 int offset; 616 int cnt; 617 int ret = 0; 618 int i; 619 620 /* 621 * If process was forked, VMA is still there but vm_private_data is set 622 * to NULL. 623 */ 624 if (!encl) 625 return -EFAULT; 626 627 if (!test_bit(SGX_ENCL_DEBUG, &encl->flags)) 628 return -EFAULT; 629 630 for (i = 0; i < len; i += cnt) { 631 entry = sgx_encl_reserve_page(encl, (addr + i) & PAGE_MASK, 632 vma->vm_flags); 633 if (IS_ERR(entry)) { 634 ret = PTR_ERR(entry); 635 break; 636 } 637 638 align = ALIGN_DOWN(addr + i, sizeof(unsigned long)); 639 offset = (addr + i) & (sizeof(unsigned long) - 1); 640 cnt = sizeof(unsigned long) - offset; 641 cnt = min(cnt, len - i); 642 643 ret = sgx_encl_debug_read(encl, entry, align, data); 644 if (ret) 645 goto out; 646 647 if (write) { 648 memcpy(data + offset, buf + i, cnt); 649 ret = sgx_encl_debug_write(encl, entry, align, data); 650 if (ret) 651 goto out; 652 } else { 653 memcpy(buf + i, data + offset, cnt); 654 } 655 656 out: 657 mutex_unlock(&encl->lock); 658 659 if (ret) 660 break; 661 } 662 663 return ret < 0 ? ret : i; 664 } 665 666 const struct vm_operations_struct sgx_vm_ops = { 667 .fault = sgx_vma_fault, 668 .mprotect = sgx_vma_mprotect, 669 .open = sgx_vma_open, 670 .access = sgx_vma_access, 671 }; 672 673 /** 674 * sgx_encl_release - Destroy an enclave instance 675 * @ref: address of a kref inside &sgx_encl 676 * 677 * Used together with kref_put(). Frees all the resources associated with the 678 * enclave and the instance itself. 679 */ 680 void sgx_encl_release(struct kref *ref) 681 { 682 struct sgx_encl *encl = container_of(ref, struct sgx_encl, refcount); 683 struct sgx_va_page *va_page; 684 struct sgx_encl_page *entry; 685 unsigned long index; 686 687 xa_for_each(&encl->page_array, index, entry) { 688 if (entry->epc_page) { 689 /* 690 * The page and its radix tree entry cannot be freed 691 * if the page is being held by the reclaimer. 692 */ 693 if (sgx_unmark_page_reclaimable(entry->epc_page)) 694 continue; 695 696 sgx_encl_free_epc_page(entry->epc_page); 697 encl->secs_child_cnt--; 698 entry->epc_page = NULL; 699 } 700 701 kfree(entry); 702 /* Invoke scheduler to prevent soft lockups. */ 703 cond_resched(); 704 } 705 706 xa_destroy(&encl->page_array); 707 708 if (!encl->secs_child_cnt && encl->secs.epc_page) { 709 sgx_encl_free_epc_page(encl->secs.epc_page); 710 encl->secs.epc_page = NULL; 711 } 712 713 while (!list_empty(&encl->va_pages)) { 714 va_page = list_first_entry(&encl->va_pages, struct sgx_va_page, 715 list); 716 list_del(&va_page->list); 717 sgx_encl_free_epc_page(va_page->epc_page); 718 kfree(va_page); 719 } 720 721 if (encl->backing) 722 fput(encl->backing); 723 724 cleanup_srcu_struct(&encl->srcu); 725 726 WARN_ON_ONCE(!list_empty(&encl->mm_list)); 727 728 /* Detect EPC page leak's. */ 729 WARN_ON_ONCE(encl->secs_child_cnt); 730 WARN_ON_ONCE(encl->secs.epc_page); 731 732 kfree(encl); 733 } 734 735 /* 736 * 'mm' is exiting and no longer needs mmu notifications. 737 */ 738 static void sgx_mmu_notifier_release(struct mmu_notifier *mn, 739 struct mm_struct *mm) 740 { 741 struct sgx_encl_mm *encl_mm = container_of(mn, struct sgx_encl_mm, mmu_notifier); 742 struct sgx_encl_mm *tmp = NULL; 743 744 /* 745 * The enclave itself can remove encl_mm. Note, objects can't be moved 746 * off an RCU protected list, but deletion is ok. 747 */ 748 spin_lock(&encl_mm->encl->mm_lock); 749 list_for_each_entry(tmp, &encl_mm->encl->mm_list, list) { 750 if (tmp == encl_mm) { 751 list_del_rcu(&encl_mm->list); 752 break; 753 } 754 } 755 spin_unlock(&encl_mm->encl->mm_lock); 756 757 if (tmp == encl_mm) { 758 synchronize_srcu(&encl_mm->encl->srcu); 759 mmu_notifier_put(mn); 760 } 761 } 762 763 static void sgx_mmu_notifier_free(struct mmu_notifier *mn) 764 { 765 struct sgx_encl_mm *encl_mm = container_of(mn, struct sgx_encl_mm, mmu_notifier); 766 767 /* 'encl_mm' is going away, put encl_mm->encl reference: */ 768 kref_put(&encl_mm->encl->refcount, sgx_encl_release); 769 770 kfree(encl_mm); 771 } 772 773 static const struct mmu_notifier_ops sgx_mmu_notifier_ops = { 774 .release = sgx_mmu_notifier_release, 775 .free_notifier = sgx_mmu_notifier_free, 776 }; 777 778 static struct sgx_encl_mm *sgx_encl_find_mm(struct sgx_encl *encl, 779 struct mm_struct *mm) 780 { 781 struct sgx_encl_mm *encl_mm = NULL; 782 struct sgx_encl_mm *tmp; 783 int idx; 784 785 idx = srcu_read_lock(&encl->srcu); 786 787 list_for_each_entry_rcu(tmp, &encl->mm_list, list) { 788 if (tmp->mm == mm) { 789 encl_mm = tmp; 790 break; 791 } 792 } 793 794 srcu_read_unlock(&encl->srcu, idx); 795 796 return encl_mm; 797 } 798 799 int sgx_encl_mm_add(struct sgx_encl *encl, struct mm_struct *mm) 800 { 801 struct sgx_encl_mm *encl_mm; 802 int ret; 803 804 /* 805 * Even though a single enclave may be mapped into an mm more than once, 806 * each 'mm' only appears once on encl->mm_list. This is guaranteed by 807 * holding the mm's mmap lock for write before an mm can be added or 808 * remove to an encl->mm_list. 809 */ 810 mmap_assert_write_locked(mm); 811 812 /* 813 * It's possible that an entry already exists in the mm_list, because it 814 * is removed only on VFS release or process exit. 815 */ 816 if (sgx_encl_find_mm(encl, mm)) 817 return 0; 818 819 encl_mm = kzalloc(sizeof(*encl_mm), GFP_KERNEL); 820 if (!encl_mm) 821 return -ENOMEM; 822 823 /* Grab a refcount for the encl_mm->encl reference: */ 824 kref_get(&encl->refcount); 825 encl_mm->encl = encl; 826 encl_mm->mm = mm; 827 encl_mm->mmu_notifier.ops = &sgx_mmu_notifier_ops; 828 829 ret = __mmu_notifier_register(&encl_mm->mmu_notifier, mm); 830 if (ret) { 831 kfree(encl_mm); 832 return ret; 833 } 834 835 spin_lock(&encl->mm_lock); 836 list_add_rcu(&encl_mm->list, &encl->mm_list); 837 /* Pairs with smp_rmb() in sgx_zap_enclave_ptes(). */ 838 smp_wmb(); 839 encl->mm_list_version++; 840 spin_unlock(&encl->mm_lock); 841 842 return 0; 843 } 844 845 /** 846 * sgx_encl_cpumask() - Query which CPUs might be accessing the enclave 847 * @encl: the enclave 848 * 849 * Some SGX functions require that no cached linear-to-physical address 850 * mappings are present before they can succeed. For example, ENCLS[EWB] 851 * copies a page from the enclave page cache to regular main memory but 852 * it fails if it cannot ensure that there are no cached 853 * linear-to-physical address mappings referring to the page. 854 * 855 * SGX hardware flushes all cached linear-to-physical mappings on a CPU 856 * when an enclave is exited via ENCLU[EEXIT] or an Asynchronous Enclave 857 * Exit (AEX). Exiting an enclave will thus ensure cached linear-to-physical 858 * address mappings are cleared but coordination with the tracking done within 859 * the SGX hardware is needed to support the SGX functions that depend on this 860 * cache clearing. 861 * 862 * When the ENCLS[ETRACK] function is issued on an enclave the hardware 863 * tracks threads operating inside the enclave at that time. The SGX 864 * hardware tracking require that all the identified threads must have 865 * exited the enclave in order to flush the mappings before a function such 866 * as ENCLS[EWB] will be permitted 867 * 868 * The following flow is used to support SGX functions that require that 869 * no cached linear-to-physical address mappings are present: 870 * 1) Execute ENCLS[ETRACK] to initiate hardware tracking. 871 * 2) Use this function (sgx_encl_cpumask()) to query which CPUs might be 872 * accessing the enclave. 873 * 3) Send IPI to identified CPUs, kicking them out of the enclave and 874 * thus flushing all locally cached linear-to-physical address mappings. 875 * 4) Execute SGX function. 876 * 877 * Context: It is required to call this function after ENCLS[ETRACK]. 878 * This will ensure that if any new mm appears (racing with 879 * sgx_encl_mm_add()) then the new mm will enter into the 880 * enclave with fresh linear-to-physical address mappings. 881 * 882 * It is required that all IPIs are completed before a new 883 * ENCLS[ETRACK] is issued so be sure to protect steps 1 to 3 884 * of the above flow with the enclave's mutex. 885 * 886 * Return: cpumask of CPUs that might be accessing @encl 887 */ 888 const cpumask_t *sgx_encl_cpumask(struct sgx_encl *encl) 889 { 890 cpumask_t *cpumask = &encl->cpumask; 891 struct sgx_encl_mm *encl_mm; 892 int idx; 893 894 cpumask_clear(cpumask); 895 896 idx = srcu_read_lock(&encl->srcu); 897 898 list_for_each_entry_rcu(encl_mm, &encl->mm_list, list) { 899 if (!mmget_not_zero(encl_mm->mm)) 900 continue; 901 902 cpumask_or(cpumask, cpumask, mm_cpumask(encl_mm->mm)); 903 904 mmput_async(encl_mm->mm); 905 } 906 907 srcu_read_unlock(&encl->srcu, idx); 908 909 return cpumask; 910 } 911 912 static struct page *sgx_encl_get_backing_page(struct sgx_encl *encl, 913 pgoff_t index) 914 { 915 struct address_space *mapping = encl->backing->f_mapping; 916 gfp_t gfpmask = mapping_gfp_mask(mapping); 917 918 return shmem_read_mapping_page_gfp(mapping, index, gfpmask); 919 } 920 921 /** 922 * __sgx_encl_get_backing() - Pin the backing storage 923 * @encl: an enclave pointer 924 * @page_index: enclave page index 925 * @backing: data for accessing backing storage for the page 926 * 927 * Pin the backing storage pages for storing the encrypted contents and Paging 928 * Crypto MetaData (PCMD) of an enclave page. 929 * 930 * Return: 931 * 0 on success, 932 * -errno otherwise. 933 */ 934 static int __sgx_encl_get_backing(struct sgx_encl *encl, unsigned long page_index, 935 struct sgx_backing *backing) 936 { 937 pgoff_t page_pcmd_off = sgx_encl_get_backing_page_pcmd_offset(encl, page_index); 938 struct page *contents; 939 struct page *pcmd; 940 941 contents = sgx_encl_get_backing_page(encl, page_index); 942 if (IS_ERR(contents)) 943 return PTR_ERR(contents); 944 945 pcmd = sgx_encl_get_backing_page(encl, PFN_DOWN(page_pcmd_off)); 946 if (IS_ERR(pcmd)) { 947 put_page(contents); 948 return PTR_ERR(pcmd); 949 } 950 951 backing->contents = contents; 952 backing->pcmd = pcmd; 953 backing->pcmd_offset = page_pcmd_off & (PAGE_SIZE - 1); 954 955 return 0; 956 } 957 958 /* 959 * When called from ksgxd, returns the mem_cgroup of a struct mm stored 960 * in the enclave's mm_list. When not called from ksgxd, just returns 961 * the mem_cgroup of the current task. 962 */ 963 static struct mem_cgroup *sgx_encl_get_mem_cgroup(struct sgx_encl *encl) 964 { 965 struct mem_cgroup *memcg = NULL; 966 struct sgx_encl_mm *encl_mm; 967 int idx; 968 969 /* 970 * If called from normal task context, return the mem_cgroup 971 * of the current task's mm. The remainder of the handling is for 972 * ksgxd. 973 */ 974 if (!current_is_ksgxd()) 975 return get_mem_cgroup_from_mm(current->mm); 976 977 /* 978 * Search the enclave's mm_list to find an mm associated with 979 * this enclave to charge the allocation to. 980 */ 981 idx = srcu_read_lock(&encl->srcu); 982 983 list_for_each_entry_rcu(encl_mm, &encl->mm_list, list) { 984 if (!mmget_not_zero(encl_mm->mm)) 985 continue; 986 987 memcg = get_mem_cgroup_from_mm(encl_mm->mm); 988 989 mmput_async(encl_mm->mm); 990 991 break; 992 } 993 994 srcu_read_unlock(&encl->srcu, idx); 995 996 /* 997 * In the rare case that there isn't an mm associated with 998 * the enclave, set memcg to the current active mem_cgroup. 999 * This will be the root mem_cgroup if there is no active 1000 * mem_cgroup. 1001 */ 1002 if (!memcg) 1003 return get_mem_cgroup_from_mm(NULL); 1004 1005 return memcg; 1006 } 1007 1008 /** 1009 * sgx_encl_alloc_backing() - create a new backing storage page 1010 * @encl: an enclave pointer 1011 * @page_index: enclave page index 1012 * @backing: data for accessing backing storage for the page 1013 * 1014 * When called from ksgxd, sets the active memcg from one of the 1015 * mms in the enclave's mm_list prior to any backing page allocation, 1016 * in order to ensure that shmem page allocations are charged to the 1017 * enclave. Create a backing page for loading data back into an EPC page with 1018 * ELDU. This function takes a reference on a new backing page which 1019 * must be dropped with a corresponding call to sgx_encl_put_backing(). 1020 * 1021 * Return: 1022 * 0 on success, 1023 * -errno otherwise. 1024 */ 1025 int sgx_encl_alloc_backing(struct sgx_encl *encl, unsigned long page_index, 1026 struct sgx_backing *backing) 1027 { 1028 struct mem_cgroup *encl_memcg = sgx_encl_get_mem_cgroup(encl); 1029 struct mem_cgroup *memcg = set_active_memcg(encl_memcg); 1030 int ret; 1031 1032 ret = __sgx_encl_get_backing(encl, page_index, backing); 1033 1034 set_active_memcg(memcg); 1035 mem_cgroup_put(encl_memcg); 1036 1037 return ret; 1038 } 1039 1040 /** 1041 * sgx_encl_lookup_backing() - retrieve an existing backing storage page 1042 * @encl: an enclave pointer 1043 * @page_index: enclave page index 1044 * @backing: data for accessing backing storage for the page 1045 * 1046 * Retrieve a backing page for loading data back into an EPC page with ELDU. 1047 * It is the caller's responsibility to ensure that it is appropriate to use 1048 * sgx_encl_lookup_backing() rather than sgx_encl_alloc_backing(). If lookup is 1049 * not used correctly, this will cause an allocation which is not accounted for. 1050 * This function takes a reference on an existing backing page which must be 1051 * dropped with a corresponding call to sgx_encl_put_backing(). 1052 * 1053 * Return: 1054 * 0 on success, 1055 * -errno otherwise. 1056 */ 1057 static int sgx_encl_lookup_backing(struct sgx_encl *encl, unsigned long page_index, 1058 struct sgx_backing *backing) 1059 { 1060 return __sgx_encl_get_backing(encl, page_index, backing); 1061 } 1062 1063 /** 1064 * sgx_encl_put_backing() - Unpin the backing storage 1065 * @backing: data for accessing backing storage for the page 1066 */ 1067 void sgx_encl_put_backing(struct sgx_backing *backing) 1068 { 1069 put_page(backing->pcmd); 1070 put_page(backing->contents); 1071 } 1072 1073 static int sgx_encl_test_and_clear_young_cb(pte_t *ptep, unsigned long addr, 1074 void *data) 1075 { 1076 pte_t pte; 1077 int ret; 1078 1079 ret = pte_young(*ptep); 1080 if (ret) { 1081 pte = pte_mkold(*ptep); 1082 set_pte_at((struct mm_struct *)data, addr, ptep, pte); 1083 } 1084 1085 return ret; 1086 } 1087 1088 /** 1089 * sgx_encl_test_and_clear_young() - Test and reset the accessed bit 1090 * @mm: mm_struct that is checked 1091 * @page: enclave page to be tested for recent access 1092 * 1093 * Checks the Access (A) bit from the PTE corresponding to the enclave page and 1094 * clears it. 1095 * 1096 * Return: 1 if the page has been recently accessed and 0 if not. 1097 */ 1098 int sgx_encl_test_and_clear_young(struct mm_struct *mm, 1099 struct sgx_encl_page *page) 1100 { 1101 unsigned long addr = page->desc & PAGE_MASK; 1102 struct sgx_encl *encl = page->encl; 1103 struct vm_area_struct *vma; 1104 int ret; 1105 1106 ret = sgx_encl_find(mm, addr, &vma); 1107 if (ret) 1108 return 0; 1109 1110 if (encl != vma->vm_private_data) 1111 return 0; 1112 1113 ret = apply_to_page_range(vma->vm_mm, addr, PAGE_SIZE, 1114 sgx_encl_test_and_clear_young_cb, vma->vm_mm); 1115 if (ret < 0) 1116 return 0; 1117 1118 return ret; 1119 } 1120 1121 struct sgx_encl_page *sgx_encl_page_alloc(struct sgx_encl *encl, 1122 unsigned long offset, 1123 u64 secinfo_flags) 1124 { 1125 struct sgx_encl_page *encl_page; 1126 unsigned long prot; 1127 1128 encl_page = kzalloc(sizeof(*encl_page), GFP_KERNEL); 1129 if (!encl_page) 1130 return ERR_PTR(-ENOMEM); 1131 1132 encl_page->desc = encl->base + offset; 1133 encl_page->encl = encl; 1134 1135 prot = _calc_vm_trans(secinfo_flags, SGX_SECINFO_R, PROT_READ) | 1136 _calc_vm_trans(secinfo_flags, SGX_SECINFO_W, PROT_WRITE) | 1137 _calc_vm_trans(secinfo_flags, SGX_SECINFO_X, PROT_EXEC); 1138 1139 /* 1140 * TCS pages must always RW set for CPU access while the SECINFO 1141 * permissions are *always* zero - the CPU ignores the user provided 1142 * values and silently overwrites them with zero permissions. 1143 */ 1144 if ((secinfo_flags & SGX_SECINFO_PAGE_TYPE_MASK) == SGX_SECINFO_TCS) 1145 prot |= PROT_READ | PROT_WRITE; 1146 1147 /* Calculate maximum of the VM flags for the page. */ 1148 encl_page->vm_max_prot_bits = calc_vm_prot_bits(prot, 0); 1149 1150 return encl_page; 1151 } 1152 1153 /** 1154 * sgx_zap_enclave_ptes() - remove PTEs mapping the address from enclave 1155 * @encl: the enclave 1156 * @addr: page aligned pointer to single page for which PTEs will be removed 1157 * 1158 * Multiple VMAs may have an enclave page mapped. Remove the PTE mapping 1159 * @addr from each VMA. Ensure that page fault handler is ready to handle 1160 * new mappings of @addr before calling this function. 1161 */ 1162 void sgx_zap_enclave_ptes(struct sgx_encl *encl, unsigned long addr) 1163 { 1164 unsigned long mm_list_version; 1165 struct sgx_encl_mm *encl_mm; 1166 struct vm_area_struct *vma; 1167 int idx, ret; 1168 1169 do { 1170 mm_list_version = encl->mm_list_version; 1171 1172 /* Pairs with smp_wmb() in sgx_encl_mm_add(). */ 1173 smp_rmb(); 1174 1175 idx = srcu_read_lock(&encl->srcu); 1176 1177 list_for_each_entry_rcu(encl_mm, &encl->mm_list, list) { 1178 if (!mmget_not_zero(encl_mm->mm)) 1179 continue; 1180 1181 mmap_read_lock(encl_mm->mm); 1182 1183 ret = sgx_encl_find(encl_mm->mm, addr, &vma); 1184 if (!ret && encl == vma->vm_private_data) 1185 zap_vma_ptes(vma, addr, PAGE_SIZE); 1186 1187 mmap_read_unlock(encl_mm->mm); 1188 1189 mmput_async(encl_mm->mm); 1190 } 1191 1192 srcu_read_unlock(&encl->srcu, idx); 1193 } while (unlikely(encl->mm_list_version != mm_list_version)); 1194 } 1195 1196 /** 1197 * sgx_alloc_va_page() - Allocate a Version Array (VA) page 1198 * @reclaim: Reclaim EPC pages directly if none available. Enclave 1199 * mutex should not be held if this is set. 1200 * 1201 * Allocate a free EPC page and convert it to a Version Array (VA) page. 1202 * 1203 * Return: 1204 * a VA page, 1205 * -errno otherwise 1206 */ 1207 struct sgx_epc_page *sgx_alloc_va_page(bool reclaim) 1208 { 1209 struct sgx_epc_page *epc_page; 1210 int ret; 1211 1212 epc_page = sgx_alloc_epc_page(NULL, reclaim); 1213 if (IS_ERR(epc_page)) 1214 return ERR_CAST(epc_page); 1215 1216 ret = __epa(sgx_get_epc_virt_addr(epc_page)); 1217 if (ret) { 1218 WARN_ONCE(1, "EPA returned %d (0x%x)", ret, ret); 1219 sgx_encl_free_epc_page(epc_page); 1220 return ERR_PTR(-EFAULT); 1221 } 1222 1223 return epc_page; 1224 } 1225 1226 /** 1227 * sgx_alloc_va_slot - allocate a VA slot 1228 * @va_page: a &struct sgx_va_page instance 1229 * 1230 * Allocates a slot from a &struct sgx_va_page instance. 1231 * 1232 * Return: offset of the slot inside the VA page 1233 */ 1234 unsigned int sgx_alloc_va_slot(struct sgx_va_page *va_page) 1235 { 1236 int slot = find_first_zero_bit(va_page->slots, SGX_VA_SLOT_COUNT); 1237 1238 if (slot < SGX_VA_SLOT_COUNT) 1239 set_bit(slot, va_page->slots); 1240 1241 return slot << 3; 1242 } 1243 1244 /** 1245 * sgx_free_va_slot - free a VA slot 1246 * @va_page: a &struct sgx_va_page instance 1247 * @offset: offset of the slot inside the VA page 1248 * 1249 * Frees a slot from a &struct sgx_va_page instance. 1250 */ 1251 void sgx_free_va_slot(struct sgx_va_page *va_page, unsigned int offset) 1252 { 1253 clear_bit(offset >> 3, va_page->slots); 1254 } 1255 1256 /** 1257 * sgx_va_page_full - is the VA page full? 1258 * @va_page: a &struct sgx_va_page instance 1259 * 1260 * Return: true if all slots have been taken 1261 */ 1262 bool sgx_va_page_full(struct sgx_va_page *va_page) 1263 { 1264 int slot = find_first_zero_bit(va_page->slots, SGX_VA_SLOT_COUNT); 1265 1266 return slot == SGX_VA_SLOT_COUNT; 1267 } 1268 1269 /** 1270 * sgx_encl_free_epc_page - free an EPC page assigned to an enclave 1271 * @page: EPC page to be freed 1272 * 1273 * Free an EPC page assigned to an enclave. It does EREMOVE for the page, and 1274 * only upon success, it puts the page back to free page list. Otherwise, it 1275 * gives a WARNING to indicate page is leaked. 1276 */ 1277 void sgx_encl_free_epc_page(struct sgx_epc_page *page) 1278 { 1279 int ret; 1280 1281 WARN_ON_ONCE(page->flags & SGX_EPC_PAGE_RECLAIMER_TRACKED); 1282 1283 ret = __eremove(sgx_get_epc_virt_addr(page)); 1284 if (WARN_ONCE(ret, EREMOVE_ERROR_MESSAGE, ret, ret)) 1285 return; 1286 1287 sgx_free_epc_page(page); 1288 } 1289