xref: /openbmc/linux/arch/x86/kernel/cpu/sgx/encl.c (revision 414772b8f7d7a9ccbfb5f0f3fd51bbfb8d54501a)
1 // SPDX-License-Identifier: GPL-2.0
2 /*  Copyright(c) 2016-20 Intel Corporation. */
3 
4 #include <linux/lockdep.h>
5 #include <linux/mm.h>
6 #include <linux/mman.h>
7 #include <linux/shmem_fs.h>
8 #include <linux/suspend.h>
9 #include <linux/sched/mm.h>
10 #include <asm/sgx.h>
11 #include "encl.h"
12 #include "encls.h"
13 #include "sgx.h"
14 
15 static int sgx_encl_lookup_backing(struct sgx_encl *encl, unsigned long page_index,
16 			    struct sgx_backing *backing);
17 
18 #define PCMDS_PER_PAGE (PAGE_SIZE / sizeof(struct sgx_pcmd))
19 /*
20  * 32 PCMD entries share a PCMD page. PCMD_FIRST_MASK is used to
21  * determine the page index associated with the first PCMD entry
22  * within a PCMD page.
23  */
24 #define PCMD_FIRST_MASK GENMASK(4, 0)
25 
26 /**
27  * reclaimer_writing_to_pcmd() - Query if any enclave page associated with
28  *                               a PCMD page is in process of being reclaimed.
29  * @encl:        Enclave to which PCMD page belongs
30  * @start_addr:  Address of enclave page using first entry within the PCMD page
31  *
32  * When an enclave page is reclaimed some Paging Crypto MetaData (PCMD) is
33  * stored. The PCMD data of a reclaimed enclave page contains enough
34  * information for the processor to verify the page at the time
35  * it is loaded back into the Enclave Page Cache (EPC).
36  *
37  * The backing storage to which enclave pages are reclaimed is laid out as
38  * follows:
39  * Encrypted enclave pages:SECS page:PCMD pages
40  *
41  * Each PCMD page contains the PCMD metadata of
42  * PAGE_SIZE/sizeof(struct sgx_pcmd) enclave pages.
43  *
44  * A PCMD page can only be truncated if it is (a) empty, and (b) not in the
45  * process of getting data (and thus soon being non-empty). (b) is tested with
46  * a check if an enclave page sharing the PCMD page is in the process of being
47  * reclaimed.
48  *
49  * The reclaimer sets the SGX_ENCL_PAGE_BEING_RECLAIMED flag when it
50  * intends to reclaim that enclave page - it means that the PCMD page
51  * associated with that enclave page is about to get some data and thus
52  * even if the PCMD page is empty, it should not be truncated.
53  *
54  * Context: Enclave mutex (&sgx_encl->lock) must be held.
55  * Return: 1 if the reclaimer is about to write to the PCMD page
56  *         0 if the reclaimer has no intention to write to the PCMD page
57  */
58 static int reclaimer_writing_to_pcmd(struct sgx_encl *encl,
59 				     unsigned long start_addr)
60 {
61 	int reclaimed = 0;
62 	int i;
63 
64 	/*
65 	 * PCMD_FIRST_MASK is based on number of PCMD entries within
66 	 * PCMD page being 32.
67 	 */
68 	BUILD_BUG_ON(PCMDS_PER_PAGE != 32);
69 
70 	for (i = 0; i < PCMDS_PER_PAGE; i++) {
71 		struct sgx_encl_page *entry;
72 		unsigned long addr;
73 
74 		addr = start_addr + i * PAGE_SIZE;
75 
76 		/*
77 		 * Stop when reaching the SECS page - it does not
78 		 * have a page_array entry and its reclaim is
79 		 * started and completed with enclave mutex held so
80 		 * it does not use the SGX_ENCL_PAGE_BEING_RECLAIMED
81 		 * flag.
82 		 */
83 		if (addr == encl->base + encl->size)
84 			break;
85 
86 		entry = xa_load(&encl->page_array, PFN_DOWN(addr));
87 		if (!entry)
88 			continue;
89 
90 		/*
91 		 * VA page slot ID uses same bit as the flag so it is important
92 		 * to ensure that the page is not already in backing store.
93 		 */
94 		if (entry->epc_page &&
95 		    (entry->desc & SGX_ENCL_PAGE_BEING_RECLAIMED)) {
96 			reclaimed = 1;
97 			break;
98 		}
99 	}
100 
101 	return reclaimed;
102 }
103 
104 /*
105  * Calculate byte offset of a PCMD struct associated with an enclave page. PCMD's
106  * follow right after the EPC data in the backing storage. In addition to the
107  * visible enclave pages, there's one extra page slot for SECS, before PCMD
108  * structs.
109  */
110 static inline pgoff_t sgx_encl_get_backing_page_pcmd_offset(struct sgx_encl *encl,
111 							    unsigned long page_index)
112 {
113 	pgoff_t epc_end_off = encl->size + sizeof(struct sgx_secs);
114 
115 	return epc_end_off + page_index * sizeof(struct sgx_pcmd);
116 }
117 
118 /*
119  * Free a page from the backing storage in the given page index.
120  */
121 static inline void sgx_encl_truncate_backing_page(struct sgx_encl *encl, unsigned long page_index)
122 {
123 	struct inode *inode = file_inode(encl->backing);
124 
125 	shmem_truncate_range(inode, PFN_PHYS(page_index), PFN_PHYS(page_index) + PAGE_SIZE - 1);
126 }
127 
128 /*
129  * ELDU: Load an EPC page as unblocked. For more info, see "OS Management of EPC
130  * Pages" in the SDM.
131  */
132 static int __sgx_encl_eldu(struct sgx_encl_page *encl_page,
133 			   struct sgx_epc_page *epc_page,
134 			   struct sgx_epc_page *secs_page)
135 {
136 	unsigned long va_offset = encl_page->desc & SGX_ENCL_PAGE_VA_OFFSET_MASK;
137 	struct sgx_encl *encl = encl_page->encl;
138 	pgoff_t page_index, page_pcmd_off;
139 	unsigned long pcmd_first_page;
140 	struct sgx_pageinfo pginfo;
141 	struct sgx_backing b;
142 	bool pcmd_page_empty;
143 	u8 *pcmd_page;
144 	int ret;
145 
146 	if (secs_page)
147 		page_index = PFN_DOWN(encl_page->desc - encl_page->encl->base);
148 	else
149 		page_index = PFN_DOWN(encl->size);
150 
151 	/*
152 	 * Address of enclave page using the first entry within the PCMD page.
153 	 */
154 	pcmd_first_page = PFN_PHYS(page_index & ~PCMD_FIRST_MASK) + encl->base;
155 
156 	page_pcmd_off = sgx_encl_get_backing_page_pcmd_offset(encl, page_index);
157 
158 	ret = sgx_encl_lookup_backing(encl, page_index, &b);
159 	if (ret)
160 		return ret;
161 
162 	pginfo.addr = encl_page->desc & PAGE_MASK;
163 	pginfo.contents = (unsigned long)kmap_local_page(b.contents);
164 	pcmd_page = kmap_local_page(b.pcmd);
165 	pginfo.metadata = (unsigned long)pcmd_page + b.pcmd_offset;
166 
167 	if (secs_page)
168 		pginfo.secs = (u64)sgx_get_epc_virt_addr(secs_page);
169 	else
170 		pginfo.secs = 0;
171 
172 	ret = __eldu(&pginfo, sgx_get_epc_virt_addr(epc_page),
173 		     sgx_get_epc_virt_addr(encl_page->va_page->epc_page) + va_offset);
174 	if (ret) {
175 		if (encls_failed(ret))
176 			ENCLS_WARN(ret, "ELDU");
177 
178 		ret = -EFAULT;
179 	}
180 
181 	memset(pcmd_page + b.pcmd_offset, 0, sizeof(struct sgx_pcmd));
182 	set_page_dirty(b.pcmd);
183 
184 	/*
185 	 * The area for the PCMD in the page was zeroed above.  Check if the
186 	 * whole page is now empty meaning that all PCMD's have been zeroed:
187 	 */
188 	pcmd_page_empty = !memchr_inv(pcmd_page, 0, PAGE_SIZE);
189 
190 	kunmap_local(pcmd_page);
191 	kunmap_local((void *)(unsigned long)pginfo.contents);
192 
193 	get_page(b.pcmd);
194 	sgx_encl_put_backing(&b);
195 
196 	sgx_encl_truncate_backing_page(encl, page_index);
197 
198 	if (pcmd_page_empty && !reclaimer_writing_to_pcmd(encl, pcmd_first_page)) {
199 		sgx_encl_truncate_backing_page(encl, PFN_DOWN(page_pcmd_off));
200 		pcmd_page = kmap_local_page(b.pcmd);
201 		if (memchr_inv(pcmd_page, 0, PAGE_SIZE))
202 			pr_warn("PCMD page not empty after truncate.\n");
203 		kunmap_local(pcmd_page);
204 	}
205 
206 	put_page(b.pcmd);
207 
208 	return ret;
209 }
210 
211 static struct sgx_epc_page *sgx_encl_eldu(struct sgx_encl_page *encl_page,
212 					  struct sgx_epc_page *secs_page)
213 {
214 
215 	unsigned long va_offset = encl_page->desc & SGX_ENCL_PAGE_VA_OFFSET_MASK;
216 	struct sgx_encl *encl = encl_page->encl;
217 	struct sgx_epc_page *epc_page;
218 	int ret;
219 
220 	epc_page = sgx_alloc_epc_page(encl_page, false);
221 	if (IS_ERR(epc_page))
222 		return epc_page;
223 
224 	ret = __sgx_encl_eldu(encl_page, epc_page, secs_page);
225 	if (ret) {
226 		sgx_encl_free_epc_page(epc_page);
227 		return ERR_PTR(ret);
228 	}
229 
230 	sgx_free_va_slot(encl_page->va_page, va_offset);
231 	list_move(&encl_page->va_page->list, &encl->va_pages);
232 	encl_page->desc &= ~SGX_ENCL_PAGE_VA_OFFSET_MASK;
233 	encl_page->epc_page = epc_page;
234 
235 	return epc_page;
236 }
237 
238 static struct sgx_encl_page *__sgx_encl_load_page(struct sgx_encl *encl,
239 						  struct sgx_encl_page *entry)
240 {
241 	struct sgx_epc_page *epc_page;
242 
243 	/* Entry successfully located. */
244 	if (entry->epc_page) {
245 		if (entry->desc & SGX_ENCL_PAGE_BEING_RECLAIMED)
246 			return ERR_PTR(-EBUSY);
247 
248 		return entry;
249 	}
250 
251 	if (!(encl->secs.epc_page)) {
252 		epc_page = sgx_encl_eldu(&encl->secs, NULL);
253 		if (IS_ERR(epc_page))
254 			return ERR_CAST(epc_page);
255 	}
256 
257 	epc_page = sgx_encl_eldu(entry, encl->secs.epc_page);
258 	if (IS_ERR(epc_page))
259 		return ERR_CAST(epc_page);
260 
261 	encl->secs_child_cnt++;
262 	sgx_mark_page_reclaimable(entry->epc_page);
263 
264 	return entry;
265 }
266 
267 static struct sgx_encl_page *sgx_encl_load_page_in_vma(struct sgx_encl *encl,
268 						       unsigned long addr,
269 						       unsigned long vm_flags)
270 {
271 	unsigned long vm_prot_bits = vm_flags & VM_ACCESS_FLAGS;
272 	struct sgx_encl_page *entry;
273 
274 	entry = xa_load(&encl->page_array, PFN_DOWN(addr));
275 	if (!entry)
276 		return ERR_PTR(-EFAULT);
277 
278 	/*
279 	 * Verify that the page has equal or higher build time
280 	 * permissions than the VMA permissions (i.e. the subset of {VM_READ,
281 	 * VM_WRITE, VM_EXECUTE} in vma->vm_flags).
282 	 */
283 	if ((entry->vm_max_prot_bits & vm_prot_bits) != vm_prot_bits)
284 		return ERR_PTR(-EFAULT);
285 
286 	return __sgx_encl_load_page(encl, entry);
287 }
288 
289 struct sgx_encl_page *sgx_encl_load_page(struct sgx_encl *encl,
290 					 unsigned long addr)
291 {
292 	struct sgx_encl_page *entry;
293 
294 	entry = xa_load(&encl->page_array, PFN_DOWN(addr));
295 	if (!entry)
296 		return ERR_PTR(-EFAULT);
297 
298 	return __sgx_encl_load_page(encl, entry);
299 }
300 
301 /**
302  * sgx_encl_eaug_page() - Dynamically add page to initialized enclave
303  * @vma:	VMA obtained from fault info from where page is accessed
304  * @encl:	enclave accessing the page
305  * @addr:	address that triggered the page fault
306  *
307  * When an initialized enclave accesses a page with no backing EPC page
308  * on a SGX2 system then the EPC can be added dynamically via the SGX2
309  * ENCLS[EAUG] instruction.
310  *
311  * Returns: Appropriate vm_fault_t: VM_FAULT_NOPAGE when PTE was installed
312  * successfully, VM_FAULT_SIGBUS or VM_FAULT_OOM as error otherwise.
313  */
314 static vm_fault_t sgx_encl_eaug_page(struct vm_area_struct *vma,
315 				     struct sgx_encl *encl, unsigned long addr)
316 {
317 	vm_fault_t vmret = VM_FAULT_SIGBUS;
318 	struct sgx_pageinfo pginfo = {0};
319 	struct sgx_encl_page *encl_page;
320 	struct sgx_epc_page *epc_page;
321 	struct sgx_va_page *va_page;
322 	unsigned long phys_addr;
323 	u64 secinfo_flags;
324 	int ret;
325 
326 	if (!test_bit(SGX_ENCL_INITIALIZED, &encl->flags))
327 		return VM_FAULT_SIGBUS;
328 
329 	/*
330 	 * Ignore internal permission checking for dynamically added pages.
331 	 * They matter only for data added during the pre-initialization
332 	 * phase. The enclave decides the permissions by the means of
333 	 * EACCEPT, EACCEPTCOPY and EMODPE.
334 	 */
335 	secinfo_flags = SGX_SECINFO_R | SGX_SECINFO_W | SGX_SECINFO_X;
336 	encl_page = sgx_encl_page_alloc(encl, addr - encl->base, secinfo_flags);
337 	if (IS_ERR(encl_page))
338 		return VM_FAULT_OOM;
339 
340 	mutex_lock(&encl->lock);
341 
342 	epc_page = sgx_alloc_epc_page(encl_page, false);
343 	if (IS_ERR(epc_page)) {
344 		if (PTR_ERR(epc_page) == -EBUSY)
345 			vmret =  VM_FAULT_NOPAGE;
346 		goto err_out_unlock;
347 	}
348 
349 	va_page = sgx_encl_grow(encl, false);
350 	if (IS_ERR(va_page)) {
351 		if (PTR_ERR(va_page) == -EBUSY)
352 			vmret = VM_FAULT_NOPAGE;
353 		goto err_out_epc;
354 	}
355 
356 	if (va_page)
357 		list_add(&va_page->list, &encl->va_pages);
358 
359 	ret = xa_insert(&encl->page_array, PFN_DOWN(encl_page->desc),
360 			encl_page, GFP_KERNEL);
361 	/*
362 	 * If ret == -EBUSY then page was created in another flow while
363 	 * running without encl->lock
364 	 */
365 	if (ret)
366 		goto err_out_shrink;
367 
368 	pginfo.secs = (unsigned long)sgx_get_epc_virt_addr(encl->secs.epc_page);
369 	pginfo.addr = encl_page->desc & PAGE_MASK;
370 	pginfo.metadata = 0;
371 
372 	ret = __eaug(&pginfo, sgx_get_epc_virt_addr(epc_page));
373 	if (ret)
374 		goto err_out;
375 
376 	encl_page->encl = encl;
377 	encl_page->epc_page = epc_page;
378 	encl_page->type = SGX_PAGE_TYPE_REG;
379 	encl->secs_child_cnt++;
380 
381 	sgx_mark_page_reclaimable(encl_page->epc_page);
382 
383 	phys_addr = sgx_get_epc_phys_addr(epc_page);
384 	/*
385 	 * Do not undo everything when creating PTE entry fails - next #PF
386 	 * would find page ready for a PTE.
387 	 */
388 	vmret = vmf_insert_pfn(vma, addr, PFN_DOWN(phys_addr));
389 	if (vmret != VM_FAULT_NOPAGE) {
390 		mutex_unlock(&encl->lock);
391 		return VM_FAULT_SIGBUS;
392 	}
393 	mutex_unlock(&encl->lock);
394 	return VM_FAULT_NOPAGE;
395 
396 err_out:
397 	xa_erase(&encl->page_array, PFN_DOWN(encl_page->desc));
398 
399 err_out_shrink:
400 	sgx_encl_shrink(encl, va_page);
401 err_out_epc:
402 	sgx_encl_free_epc_page(epc_page);
403 err_out_unlock:
404 	mutex_unlock(&encl->lock);
405 	kfree(encl_page);
406 
407 	return vmret;
408 }
409 
410 static vm_fault_t sgx_vma_fault(struct vm_fault *vmf)
411 {
412 	unsigned long addr = (unsigned long)vmf->address;
413 	struct vm_area_struct *vma = vmf->vma;
414 	struct sgx_encl_page *entry;
415 	unsigned long phys_addr;
416 	struct sgx_encl *encl;
417 	vm_fault_t ret;
418 
419 	encl = vma->vm_private_data;
420 
421 	/*
422 	 * It's very unlikely but possible that allocating memory for the
423 	 * mm_list entry of a forked process failed in sgx_vma_open(). When
424 	 * this happens, vm_private_data is set to NULL.
425 	 */
426 	if (unlikely(!encl))
427 		return VM_FAULT_SIGBUS;
428 
429 	/*
430 	 * The page_array keeps track of all enclave pages, whether they
431 	 * are swapped out or not. If there is no entry for this page and
432 	 * the system supports SGX2 then it is possible to dynamically add
433 	 * a new enclave page. This is only possible for an initialized
434 	 * enclave that will be checked for right away.
435 	 */
436 	if (cpu_feature_enabled(X86_FEATURE_SGX2) &&
437 	    (!xa_load(&encl->page_array, PFN_DOWN(addr))))
438 		return sgx_encl_eaug_page(vma, encl, addr);
439 
440 	mutex_lock(&encl->lock);
441 
442 	entry = sgx_encl_load_page_in_vma(encl, addr, vma->vm_flags);
443 	if (IS_ERR(entry)) {
444 		mutex_unlock(&encl->lock);
445 
446 		if (PTR_ERR(entry) == -EBUSY)
447 			return VM_FAULT_NOPAGE;
448 
449 		return VM_FAULT_SIGBUS;
450 	}
451 
452 	phys_addr = sgx_get_epc_phys_addr(entry->epc_page);
453 
454 	ret = vmf_insert_pfn(vma, addr, PFN_DOWN(phys_addr));
455 	if (ret != VM_FAULT_NOPAGE) {
456 		mutex_unlock(&encl->lock);
457 
458 		return VM_FAULT_SIGBUS;
459 	}
460 
461 	sgx_encl_test_and_clear_young(vma->vm_mm, entry);
462 	mutex_unlock(&encl->lock);
463 
464 	return VM_FAULT_NOPAGE;
465 }
466 
467 static void sgx_vma_open(struct vm_area_struct *vma)
468 {
469 	struct sgx_encl *encl = vma->vm_private_data;
470 
471 	/*
472 	 * It's possible but unlikely that vm_private_data is NULL. This can
473 	 * happen in a grandchild of a process, when sgx_encl_mm_add() had
474 	 * failed to allocate memory in this callback.
475 	 */
476 	if (unlikely(!encl))
477 		return;
478 
479 	if (sgx_encl_mm_add(encl, vma->vm_mm))
480 		vma->vm_private_data = NULL;
481 }
482 
483 
484 /**
485  * sgx_encl_may_map() - Check if a requested VMA mapping is allowed
486  * @encl:		an enclave pointer
487  * @start:		lower bound of the address range, inclusive
488  * @end:		upper bound of the address range, exclusive
489  * @vm_flags:		VMA flags
490  *
491  * Iterate through the enclave pages contained within [@start, @end) to verify
492  * that the permissions requested by a subset of {VM_READ, VM_WRITE, VM_EXEC}
493  * do not contain any permissions that are not contained in the build time
494  * permissions of any of the enclave pages within the given address range.
495  *
496  * An enclave creator must declare the strongest permissions that will be
497  * needed for each enclave page. This ensures that mappings have the identical
498  * or weaker permissions than the earlier declared permissions.
499  *
500  * Return: 0 on success, -EACCES otherwise
501  */
502 int sgx_encl_may_map(struct sgx_encl *encl, unsigned long start,
503 		     unsigned long end, unsigned long vm_flags)
504 {
505 	unsigned long vm_prot_bits = vm_flags & VM_ACCESS_FLAGS;
506 	struct sgx_encl_page *page;
507 	unsigned long count = 0;
508 	int ret = 0;
509 
510 	XA_STATE(xas, &encl->page_array, PFN_DOWN(start));
511 
512 	/* Disallow mapping outside enclave's address range. */
513 	if (test_bit(SGX_ENCL_INITIALIZED, &encl->flags) &&
514 	    (start < encl->base || end > encl->base + encl->size))
515 		return -EACCES;
516 
517 	/*
518 	 * Disallow READ_IMPLIES_EXEC tasks as their VMA permissions might
519 	 * conflict with the enclave page permissions.
520 	 */
521 	if (current->personality & READ_IMPLIES_EXEC)
522 		return -EACCES;
523 
524 	mutex_lock(&encl->lock);
525 	xas_lock(&xas);
526 	xas_for_each(&xas, page, PFN_DOWN(end - 1)) {
527 		if (~page->vm_max_prot_bits & vm_prot_bits) {
528 			ret = -EACCES;
529 			break;
530 		}
531 
532 		/* Reschedule on every XA_CHECK_SCHED iteration. */
533 		if (!(++count % XA_CHECK_SCHED)) {
534 			xas_pause(&xas);
535 			xas_unlock(&xas);
536 			mutex_unlock(&encl->lock);
537 
538 			cond_resched();
539 
540 			mutex_lock(&encl->lock);
541 			xas_lock(&xas);
542 		}
543 	}
544 	xas_unlock(&xas);
545 	mutex_unlock(&encl->lock);
546 
547 	return ret;
548 }
549 
550 static int sgx_vma_mprotect(struct vm_area_struct *vma, unsigned long start,
551 			    unsigned long end, unsigned long newflags)
552 {
553 	return sgx_encl_may_map(vma->vm_private_data, start, end, newflags);
554 }
555 
556 static int sgx_encl_debug_read(struct sgx_encl *encl, struct sgx_encl_page *page,
557 			       unsigned long addr, void *data)
558 {
559 	unsigned long offset = addr & ~PAGE_MASK;
560 	int ret;
561 
562 
563 	ret = __edbgrd(sgx_get_epc_virt_addr(page->epc_page) + offset, data);
564 	if (ret)
565 		return -EIO;
566 
567 	return 0;
568 }
569 
570 static int sgx_encl_debug_write(struct sgx_encl *encl, struct sgx_encl_page *page,
571 				unsigned long addr, void *data)
572 {
573 	unsigned long offset = addr & ~PAGE_MASK;
574 	int ret;
575 
576 	ret = __edbgwr(sgx_get_epc_virt_addr(page->epc_page) + offset, data);
577 	if (ret)
578 		return -EIO;
579 
580 	return 0;
581 }
582 
583 /*
584  * Load an enclave page to EPC if required, and take encl->lock.
585  */
586 static struct sgx_encl_page *sgx_encl_reserve_page(struct sgx_encl *encl,
587 						   unsigned long addr,
588 						   unsigned long vm_flags)
589 {
590 	struct sgx_encl_page *entry;
591 
592 	for ( ; ; ) {
593 		mutex_lock(&encl->lock);
594 
595 		entry = sgx_encl_load_page_in_vma(encl, addr, vm_flags);
596 		if (PTR_ERR(entry) != -EBUSY)
597 			break;
598 
599 		mutex_unlock(&encl->lock);
600 	}
601 
602 	if (IS_ERR(entry))
603 		mutex_unlock(&encl->lock);
604 
605 	return entry;
606 }
607 
608 static int sgx_vma_access(struct vm_area_struct *vma, unsigned long addr,
609 			  void *buf, int len, int write)
610 {
611 	struct sgx_encl *encl = vma->vm_private_data;
612 	struct sgx_encl_page *entry = NULL;
613 	char data[sizeof(unsigned long)];
614 	unsigned long align;
615 	int offset;
616 	int cnt;
617 	int ret = 0;
618 	int i;
619 
620 	/*
621 	 * If process was forked, VMA is still there but vm_private_data is set
622 	 * to NULL.
623 	 */
624 	if (!encl)
625 		return -EFAULT;
626 
627 	if (!test_bit(SGX_ENCL_DEBUG, &encl->flags))
628 		return -EFAULT;
629 
630 	for (i = 0; i < len; i += cnt) {
631 		entry = sgx_encl_reserve_page(encl, (addr + i) & PAGE_MASK,
632 					      vma->vm_flags);
633 		if (IS_ERR(entry)) {
634 			ret = PTR_ERR(entry);
635 			break;
636 		}
637 
638 		align = ALIGN_DOWN(addr + i, sizeof(unsigned long));
639 		offset = (addr + i) & (sizeof(unsigned long) - 1);
640 		cnt = sizeof(unsigned long) - offset;
641 		cnt = min(cnt, len - i);
642 
643 		ret = sgx_encl_debug_read(encl, entry, align, data);
644 		if (ret)
645 			goto out;
646 
647 		if (write) {
648 			memcpy(data + offset, buf + i, cnt);
649 			ret = sgx_encl_debug_write(encl, entry, align, data);
650 			if (ret)
651 				goto out;
652 		} else {
653 			memcpy(buf + i, data + offset, cnt);
654 		}
655 
656 out:
657 		mutex_unlock(&encl->lock);
658 
659 		if (ret)
660 			break;
661 	}
662 
663 	return ret < 0 ? ret : i;
664 }
665 
666 const struct vm_operations_struct sgx_vm_ops = {
667 	.fault = sgx_vma_fault,
668 	.mprotect = sgx_vma_mprotect,
669 	.open = sgx_vma_open,
670 	.access = sgx_vma_access,
671 };
672 
673 /**
674  * sgx_encl_release - Destroy an enclave instance
675  * @ref:	address of a kref inside &sgx_encl
676  *
677  * Used together with kref_put(). Frees all the resources associated with the
678  * enclave and the instance itself.
679  */
680 void sgx_encl_release(struct kref *ref)
681 {
682 	struct sgx_encl *encl = container_of(ref, struct sgx_encl, refcount);
683 	unsigned long max_page_index = PFN_DOWN(encl->base + encl->size - 1);
684 	struct sgx_va_page *va_page;
685 	struct sgx_encl_page *entry;
686 	unsigned long count = 0;
687 
688 	XA_STATE(xas, &encl->page_array, PFN_DOWN(encl->base));
689 
690 	xas_lock(&xas);
691 	xas_for_each(&xas, entry, max_page_index) {
692 		if (entry->epc_page) {
693 			/*
694 			 * The page and its radix tree entry cannot be freed
695 			 * if the page is being held by the reclaimer.
696 			 */
697 			if (sgx_unmark_page_reclaimable(entry->epc_page))
698 				continue;
699 
700 			sgx_encl_free_epc_page(entry->epc_page);
701 			encl->secs_child_cnt--;
702 			entry->epc_page = NULL;
703 		}
704 
705 		kfree(entry);
706 		/*
707 		 * Invoke scheduler on every XA_CHECK_SCHED iteration
708 		 * to prevent soft lockups.
709 		 */
710 		if (!(++count % XA_CHECK_SCHED)) {
711 			xas_pause(&xas);
712 			xas_unlock(&xas);
713 
714 			cond_resched();
715 
716 			xas_lock(&xas);
717 		}
718 	}
719 	xas_unlock(&xas);
720 
721 	xa_destroy(&encl->page_array);
722 
723 	if (!encl->secs_child_cnt && encl->secs.epc_page) {
724 		sgx_encl_free_epc_page(encl->secs.epc_page);
725 		encl->secs.epc_page = NULL;
726 	}
727 
728 	while (!list_empty(&encl->va_pages)) {
729 		va_page = list_first_entry(&encl->va_pages, struct sgx_va_page,
730 					   list);
731 		list_del(&va_page->list);
732 		sgx_encl_free_epc_page(va_page->epc_page);
733 		kfree(va_page);
734 	}
735 
736 	if (encl->backing)
737 		fput(encl->backing);
738 
739 	cleanup_srcu_struct(&encl->srcu);
740 
741 	WARN_ON_ONCE(!list_empty(&encl->mm_list));
742 
743 	/* Detect EPC page leak's. */
744 	WARN_ON_ONCE(encl->secs_child_cnt);
745 	WARN_ON_ONCE(encl->secs.epc_page);
746 
747 	kfree(encl);
748 }
749 
750 /*
751  * 'mm' is exiting and no longer needs mmu notifications.
752  */
753 static void sgx_mmu_notifier_release(struct mmu_notifier *mn,
754 				     struct mm_struct *mm)
755 {
756 	struct sgx_encl_mm *encl_mm = container_of(mn, struct sgx_encl_mm, mmu_notifier);
757 	struct sgx_encl_mm *tmp = NULL;
758 	bool found = false;
759 
760 	/*
761 	 * The enclave itself can remove encl_mm.  Note, objects can't be moved
762 	 * off an RCU protected list, but deletion is ok.
763 	 */
764 	spin_lock(&encl_mm->encl->mm_lock);
765 	list_for_each_entry(tmp, &encl_mm->encl->mm_list, list) {
766 		if (tmp == encl_mm) {
767 			list_del_rcu(&encl_mm->list);
768 			found = true;
769 			break;
770 		}
771 	}
772 	spin_unlock(&encl_mm->encl->mm_lock);
773 
774 	if (found) {
775 		synchronize_srcu(&encl_mm->encl->srcu);
776 		mmu_notifier_put(mn);
777 	}
778 }
779 
780 static void sgx_mmu_notifier_free(struct mmu_notifier *mn)
781 {
782 	struct sgx_encl_mm *encl_mm = container_of(mn, struct sgx_encl_mm, mmu_notifier);
783 
784 	/* 'encl_mm' is going away, put encl_mm->encl reference: */
785 	kref_put(&encl_mm->encl->refcount, sgx_encl_release);
786 
787 	kfree(encl_mm);
788 }
789 
790 static const struct mmu_notifier_ops sgx_mmu_notifier_ops = {
791 	.release		= sgx_mmu_notifier_release,
792 	.free_notifier		= sgx_mmu_notifier_free,
793 };
794 
795 static struct sgx_encl_mm *sgx_encl_find_mm(struct sgx_encl *encl,
796 					    struct mm_struct *mm)
797 {
798 	struct sgx_encl_mm *encl_mm = NULL;
799 	struct sgx_encl_mm *tmp;
800 	int idx;
801 
802 	idx = srcu_read_lock(&encl->srcu);
803 
804 	list_for_each_entry_rcu(tmp, &encl->mm_list, list) {
805 		if (tmp->mm == mm) {
806 			encl_mm = tmp;
807 			break;
808 		}
809 	}
810 
811 	srcu_read_unlock(&encl->srcu, idx);
812 
813 	return encl_mm;
814 }
815 
816 int sgx_encl_mm_add(struct sgx_encl *encl, struct mm_struct *mm)
817 {
818 	struct sgx_encl_mm *encl_mm;
819 	int ret;
820 
821 	/*
822 	 * Even though a single enclave may be mapped into an mm more than once,
823 	 * each 'mm' only appears once on encl->mm_list. This is guaranteed by
824 	 * holding the mm's mmap lock for write before an mm can be added or
825 	 * remove to an encl->mm_list.
826 	 */
827 	mmap_assert_write_locked(mm);
828 
829 	/*
830 	 * It's possible that an entry already exists in the mm_list, because it
831 	 * is removed only on VFS release or process exit.
832 	 */
833 	if (sgx_encl_find_mm(encl, mm))
834 		return 0;
835 
836 	encl_mm = kzalloc(sizeof(*encl_mm), GFP_KERNEL);
837 	if (!encl_mm)
838 		return -ENOMEM;
839 
840 	/* Grab a refcount for the encl_mm->encl reference: */
841 	kref_get(&encl->refcount);
842 	encl_mm->encl = encl;
843 	encl_mm->mm = mm;
844 	encl_mm->mmu_notifier.ops = &sgx_mmu_notifier_ops;
845 
846 	ret = __mmu_notifier_register(&encl_mm->mmu_notifier, mm);
847 	if (ret) {
848 		kfree(encl_mm);
849 		return ret;
850 	}
851 
852 	spin_lock(&encl->mm_lock);
853 	list_add_rcu(&encl_mm->list, &encl->mm_list);
854 	/* Pairs with smp_rmb() in sgx_zap_enclave_ptes(). */
855 	smp_wmb();
856 	encl->mm_list_version++;
857 	spin_unlock(&encl->mm_lock);
858 
859 	return 0;
860 }
861 
862 /**
863  * sgx_encl_cpumask() - Query which CPUs might be accessing the enclave
864  * @encl: the enclave
865  *
866  * Some SGX functions require that no cached linear-to-physical address
867  * mappings are present before they can succeed. For example, ENCLS[EWB]
868  * copies a page from the enclave page cache to regular main memory but
869  * it fails if it cannot ensure that there are no cached
870  * linear-to-physical address mappings referring to the page.
871  *
872  * SGX hardware flushes all cached linear-to-physical mappings on a CPU
873  * when an enclave is exited via ENCLU[EEXIT] or an Asynchronous Enclave
874  * Exit (AEX). Exiting an enclave will thus ensure cached linear-to-physical
875  * address mappings are cleared but coordination with the tracking done within
876  * the SGX hardware is needed to support the SGX functions that depend on this
877  * cache clearing.
878  *
879  * When the ENCLS[ETRACK] function is issued on an enclave the hardware
880  * tracks threads operating inside the enclave at that time. The SGX
881  * hardware tracking require that all the identified threads must have
882  * exited the enclave in order to flush the mappings before a function such
883  * as ENCLS[EWB] will be permitted
884  *
885  * The following flow is used to support SGX functions that require that
886  * no cached linear-to-physical address mappings are present:
887  * 1) Execute ENCLS[ETRACK] to initiate hardware tracking.
888  * 2) Use this function (sgx_encl_cpumask()) to query which CPUs might be
889  *    accessing the enclave.
890  * 3) Send IPI to identified CPUs, kicking them out of the enclave and
891  *    thus flushing all locally cached linear-to-physical address mappings.
892  * 4) Execute SGX function.
893  *
894  * Context: It is required to call this function after ENCLS[ETRACK].
895  *          This will ensure that if any new mm appears (racing with
896  *          sgx_encl_mm_add()) then the new mm will enter into the
897  *          enclave with fresh linear-to-physical address mappings.
898  *
899  *          It is required that all IPIs are completed before a new
900  *          ENCLS[ETRACK] is issued so be sure to protect steps 1 to 3
901  *          of the above flow with the enclave's mutex.
902  *
903  * Return: cpumask of CPUs that might be accessing @encl
904  */
905 const cpumask_t *sgx_encl_cpumask(struct sgx_encl *encl)
906 {
907 	cpumask_t *cpumask = &encl->cpumask;
908 	struct sgx_encl_mm *encl_mm;
909 	int idx;
910 
911 	cpumask_clear(cpumask);
912 
913 	idx = srcu_read_lock(&encl->srcu);
914 
915 	list_for_each_entry_rcu(encl_mm, &encl->mm_list, list) {
916 		if (!mmget_not_zero(encl_mm->mm))
917 			continue;
918 
919 		cpumask_or(cpumask, cpumask, mm_cpumask(encl_mm->mm));
920 
921 		mmput_async(encl_mm->mm);
922 	}
923 
924 	srcu_read_unlock(&encl->srcu, idx);
925 
926 	return cpumask;
927 }
928 
929 static struct page *sgx_encl_get_backing_page(struct sgx_encl *encl,
930 					      pgoff_t index)
931 {
932 	struct address_space *mapping = encl->backing->f_mapping;
933 	gfp_t gfpmask = mapping_gfp_mask(mapping);
934 
935 	return shmem_read_mapping_page_gfp(mapping, index, gfpmask);
936 }
937 
938 /**
939  * __sgx_encl_get_backing() - Pin the backing storage
940  * @encl:	an enclave pointer
941  * @page_index:	enclave page index
942  * @backing:	data for accessing backing storage for the page
943  *
944  * Pin the backing storage pages for storing the encrypted contents and Paging
945  * Crypto MetaData (PCMD) of an enclave page.
946  *
947  * Return:
948  *   0 on success,
949  *   -errno otherwise.
950  */
951 static int __sgx_encl_get_backing(struct sgx_encl *encl, unsigned long page_index,
952 			 struct sgx_backing *backing)
953 {
954 	pgoff_t page_pcmd_off = sgx_encl_get_backing_page_pcmd_offset(encl, page_index);
955 	struct page *contents;
956 	struct page *pcmd;
957 
958 	contents = sgx_encl_get_backing_page(encl, page_index);
959 	if (IS_ERR(contents))
960 		return PTR_ERR(contents);
961 
962 	pcmd = sgx_encl_get_backing_page(encl, PFN_DOWN(page_pcmd_off));
963 	if (IS_ERR(pcmd)) {
964 		put_page(contents);
965 		return PTR_ERR(pcmd);
966 	}
967 
968 	backing->contents = contents;
969 	backing->pcmd = pcmd;
970 	backing->pcmd_offset = page_pcmd_off & (PAGE_SIZE - 1);
971 
972 	return 0;
973 }
974 
975 /*
976  * When called from ksgxd, returns the mem_cgroup of a struct mm stored
977  * in the enclave's mm_list. When not called from ksgxd, just returns
978  * the mem_cgroup of the current task.
979  */
980 static struct mem_cgroup *sgx_encl_get_mem_cgroup(struct sgx_encl *encl)
981 {
982 	struct mem_cgroup *memcg = NULL;
983 	struct sgx_encl_mm *encl_mm;
984 	int idx;
985 
986 	/*
987 	 * If called from normal task context, return the mem_cgroup
988 	 * of the current task's mm. The remainder of the handling is for
989 	 * ksgxd.
990 	 */
991 	if (!current_is_ksgxd())
992 		return get_mem_cgroup_from_mm(current->mm);
993 
994 	/*
995 	 * Search the enclave's mm_list to find an mm associated with
996 	 * this enclave to charge the allocation to.
997 	 */
998 	idx = srcu_read_lock(&encl->srcu);
999 
1000 	list_for_each_entry_rcu(encl_mm, &encl->mm_list, list) {
1001 		if (!mmget_not_zero(encl_mm->mm))
1002 			continue;
1003 
1004 		memcg = get_mem_cgroup_from_mm(encl_mm->mm);
1005 
1006 		mmput_async(encl_mm->mm);
1007 
1008 		break;
1009 	}
1010 
1011 	srcu_read_unlock(&encl->srcu, idx);
1012 
1013 	/*
1014 	 * In the rare case that there isn't an mm associated with
1015 	 * the enclave, set memcg to the current active mem_cgroup.
1016 	 * This will be the root mem_cgroup if there is no active
1017 	 * mem_cgroup.
1018 	 */
1019 	if (!memcg)
1020 		return get_mem_cgroup_from_mm(NULL);
1021 
1022 	return memcg;
1023 }
1024 
1025 /**
1026  * sgx_encl_alloc_backing() - create a new backing storage page
1027  * @encl:	an enclave pointer
1028  * @page_index:	enclave page index
1029  * @backing:	data for accessing backing storage for the page
1030  *
1031  * When called from ksgxd, sets the active memcg from one of the
1032  * mms in the enclave's mm_list prior to any backing page allocation,
1033  * in order to ensure that shmem page allocations are charged to the
1034  * enclave.  Create a backing page for loading data back into an EPC page with
1035  * ELDU.  This function takes a reference on a new backing page which
1036  * must be dropped with a corresponding call to sgx_encl_put_backing().
1037  *
1038  * Return:
1039  *   0 on success,
1040  *   -errno otherwise.
1041  */
1042 int sgx_encl_alloc_backing(struct sgx_encl *encl, unsigned long page_index,
1043 			   struct sgx_backing *backing)
1044 {
1045 	struct mem_cgroup *encl_memcg = sgx_encl_get_mem_cgroup(encl);
1046 	struct mem_cgroup *memcg = set_active_memcg(encl_memcg);
1047 	int ret;
1048 
1049 	ret = __sgx_encl_get_backing(encl, page_index, backing);
1050 
1051 	set_active_memcg(memcg);
1052 	mem_cgroup_put(encl_memcg);
1053 
1054 	return ret;
1055 }
1056 
1057 /**
1058  * sgx_encl_lookup_backing() - retrieve an existing backing storage page
1059  * @encl:	an enclave pointer
1060  * @page_index:	enclave page index
1061  * @backing:	data for accessing backing storage for the page
1062  *
1063  * Retrieve a backing page for loading data back into an EPC page with ELDU.
1064  * It is the caller's responsibility to ensure that it is appropriate to use
1065  * sgx_encl_lookup_backing() rather than sgx_encl_alloc_backing(). If lookup is
1066  * not used correctly, this will cause an allocation which is not accounted for.
1067  * This function takes a reference on an existing backing page which must be
1068  * dropped with a corresponding call to sgx_encl_put_backing().
1069  *
1070  * Return:
1071  *   0 on success,
1072  *   -errno otherwise.
1073  */
1074 static int sgx_encl_lookup_backing(struct sgx_encl *encl, unsigned long page_index,
1075 			   struct sgx_backing *backing)
1076 {
1077 	return __sgx_encl_get_backing(encl, page_index, backing);
1078 }
1079 
1080 /**
1081  * sgx_encl_put_backing() - Unpin the backing storage
1082  * @backing:	data for accessing backing storage for the page
1083  */
1084 void sgx_encl_put_backing(struct sgx_backing *backing)
1085 {
1086 	put_page(backing->pcmd);
1087 	put_page(backing->contents);
1088 }
1089 
1090 static int sgx_encl_test_and_clear_young_cb(pte_t *ptep, unsigned long addr,
1091 					    void *data)
1092 {
1093 	pte_t pte;
1094 	int ret;
1095 
1096 	ret = pte_young(*ptep);
1097 	if (ret) {
1098 		pte = pte_mkold(*ptep);
1099 		set_pte_at((struct mm_struct *)data, addr, ptep, pte);
1100 	}
1101 
1102 	return ret;
1103 }
1104 
1105 /**
1106  * sgx_encl_test_and_clear_young() - Test and reset the accessed bit
1107  * @mm:		mm_struct that is checked
1108  * @page:	enclave page to be tested for recent access
1109  *
1110  * Checks the Access (A) bit from the PTE corresponding to the enclave page and
1111  * clears it.
1112  *
1113  * Return: 1 if the page has been recently accessed and 0 if not.
1114  */
1115 int sgx_encl_test_and_clear_young(struct mm_struct *mm,
1116 				  struct sgx_encl_page *page)
1117 {
1118 	unsigned long addr = page->desc & PAGE_MASK;
1119 	struct sgx_encl *encl = page->encl;
1120 	struct vm_area_struct *vma;
1121 	int ret;
1122 
1123 	ret = sgx_encl_find(mm, addr, &vma);
1124 	if (ret)
1125 		return 0;
1126 
1127 	if (encl != vma->vm_private_data)
1128 		return 0;
1129 
1130 	ret = apply_to_page_range(vma->vm_mm, addr, PAGE_SIZE,
1131 				  sgx_encl_test_and_clear_young_cb, vma->vm_mm);
1132 	if (ret < 0)
1133 		return 0;
1134 
1135 	return ret;
1136 }
1137 
1138 struct sgx_encl_page *sgx_encl_page_alloc(struct sgx_encl *encl,
1139 					  unsigned long offset,
1140 					  u64 secinfo_flags)
1141 {
1142 	struct sgx_encl_page *encl_page;
1143 	unsigned long prot;
1144 
1145 	encl_page = kzalloc(sizeof(*encl_page), GFP_KERNEL);
1146 	if (!encl_page)
1147 		return ERR_PTR(-ENOMEM);
1148 
1149 	encl_page->desc = encl->base + offset;
1150 	encl_page->encl = encl;
1151 
1152 	prot = _calc_vm_trans(secinfo_flags, SGX_SECINFO_R, PROT_READ)  |
1153 	       _calc_vm_trans(secinfo_flags, SGX_SECINFO_W, PROT_WRITE) |
1154 	       _calc_vm_trans(secinfo_flags, SGX_SECINFO_X, PROT_EXEC);
1155 
1156 	/*
1157 	 * TCS pages must always RW set for CPU access while the SECINFO
1158 	 * permissions are *always* zero - the CPU ignores the user provided
1159 	 * values and silently overwrites them with zero permissions.
1160 	 */
1161 	if ((secinfo_flags & SGX_SECINFO_PAGE_TYPE_MASK) == SGX_SECINFO_TCS)
1162 		prot |= PROT_READ | PROT_WRITE;
1163 
1164 	/* Calculate maximum of the VM flags for the page. */
1165 	encl_page->vm_max_prot_bits = calc_vm_prot_bits(prot, 0);
1166 
1167 	return encl_page;
1168 }
1169 
1170 /**
1171  * sgx_zap_enclave_ptes() - remove PTEs mapping the address from enclave
1172  * @encl: the enclave
1173  * @addr: page aligned pointer to single page for which PTEs will be removed
1174  *
1175  * Multiple VMAs may have an enclave page mapped. Remove the PTE mapping
1176  * @addr from each VMA. Ensure that page fault handler is ready to handle
1177  * new mappings of @addr before calling this function.
1178  */
1179 void sgx_zap_enclave_ptes(struct sgx_encl *encl, unsigned long addr)
1180 {
1181 	unsigned long mm_list_version;
1182 	struct sgx_encl_mm *encl_mm;
1183 	struct vm_area_struct *vma;
1184 	int idx, ret;
1185 
1186 	do {
1187 		mm_list_version = encl->mm_list_version;
1188 
1189 		/* Pairs with smp_wmb() in sgx_encl_mm_add(). */
1190 		smp_rmb();
1191 
1192 		idx = srcu_read_lock(&encl->srcu);
1193 
1194 		list_for_each_entry_rcu(encl_mm, &encl->mm_list, list) {
1195 			if (!mmget_not_zero(encl_mm->mm))
1196 				continue;
1197 
1198 			mmap_read_lock(encl_mm->mm);
1199 
1200 			ret = sgx_encl_find(encl_mm->mm, addr, &vma);
1201 			if (!ret && encl == vma->vm_private_data)
1202 				zap_vma_ptes(vma, addr, PAGE_SIZE);
1203 
1204 			mmap_read_unlock(encl_mm->mm);
1205 
1206 			mmput_async(encl_mm->mm);
1207 		}
1208 
1209 		srcu_read_unlock(&encl->srcu, idx);
1210 	} while (unlikely(encl->mm_list_version != mm_list_version));
1211 }
1212 
1213 /**
1214  * sgx_alloc_va_page() - Allocate a Version Array (VA) page
1215  * @reclaim: Reclaim EPC pages directly if none available. Enclave
1216  *           mutex should not be held if this is set.
1217  *
1218  * Allocate a free EPC page and convert it to a Version Array (VA) page.
1219  *
1220  * Return:
1221  *   a VA page,
1222  *   -errno otherwise
1223  */
1224 struct sgx_epc_page *sgx_alloc_va_page(bool reclaim)
1225 {
1226 	struct sgx_epc_page *epc_page;
1227 	int ret;
1228 
1229 	epc_page = sgx_alloc_epc_page(NULL, reclaim);
1230 	if (IS_ERR(epc_page))
1231 		return ERR_CAST(epc_page);
1232 
1233 	ret = __epa(sgx_get_epc_virt_addr(epc_page));
1234 	if (ret) {
1235 		WARN_ONCE(1, "EPA returned %d (0x%x)", ret, ret);
1236 		sgx_encl_free_epc_page(epc_page);
1237 		return ERR_PTR(-EFAULT);
1238 	}
1239 
1240 	return epc_page;
1241 }
1242 
1243 /**
1244  * sgx_alloc_va_slot - allocate a VA slot
1245  * @va_page:	a &struct sgx_va_page instance
1246  *
1247  * Allocates a slot from a &struct sgx_va_page instance.
1248  *
1249  * Return: offset of the slot inside the VA page
1250  */
1251 unsigned int sgx_alloc_va_slot(struct sgx_va_page *va_page)
1252 {
1253 	int slot = find_first_zero_bit(va_page->slots, SGX_VA_SLOT_COUNT);
1254 
1255 	if (slot < SGX_VA_SLOT_COUNT)
1256 		set_bit(slot, va_page->slots);
1257 
1258 	return slot << 3;
1259 }
1260 
1261 /**
1262  * sgx_free_va_slot - free a VA slot
1263  * @va_page:	a &struct sgx_va_page instance
1264  * @offset:	offset of the slot inside the VA page
1265  *
1266  * Frees a slot from a &struct sgx_va_page instance.
1267  */
1268 void sgx_free_va_slot(struct sgx_va_page *va_page, unsigned int offset)
1269 {
1270 	clear_bit(offset >> 3, va_page->slots);
1271 }
1272 
1273 /**
1274  * sgx_va_page_full - is the VA page full?
1275  * @va_page:	a &struct sgx_va_page instance
1276  *
1277  * Return: true if all slots have been taken
1278  */
1279 bool sgx_va_page_full(struct sgx_va_page *va_page)
1280 {
1281 	int slot = find_first_zero_bit(va_page->slots, SGX_VA_SLOT_COUNT);
1282 
1283 	return slot == SGX_VA_SLOT_COUNT;
1284 }
1285 
1286 /**
1287  * sgx_encl_free_epc_page - free an EPC page assigned to an enclave
1288  * @page:	EPC page to be freed
1289  *
1290  * Free an EPC page assigned to an enclave. It does EREMOVE for the page, and
1291  * only upon success, it puts the page back to free page list.  Otherwise, it
1292  * gives a WARNING to indicate page is leaked.
1293  */
1294 void sgx_encl_free_epc_page(struct sgx_epc_page *page)
1295 {
1296 	int ret;
1297 
1298 	WARN_ON_ONCE(page->flags & SGX_EPC_PAGE_RECLAIMER_TRACKED);
1299 
1300 	ret = __eremove(sgx_get_epc_virt_addr(page));
1301 	if (WARN_ONCE(ret, EREMOVE_ERROR_MESSAGE, ret, ret))
1302 		return;
1303 
1304 	sgx_free_epc_page(page);
1305 }
1306