xref: /openbmc/linux/arch/x86/kernel/cpu/sgx/encl.c (revision 2dfb62d6ce80b3536d1a915177ae82496bd7ac4a)
1 // SPDX-License-Identifier: GPL-2.0
2 /*  Copyright(c) 2016-20 Intel Corporation. */
3 
4 #include <linux/lockdep.h>
5 #include <linux/mm.h>
6 #include <linux/mman.h>
7 #include <linux/shmem_fs.h>
8 #include <linux/suspend.h>
9 #include <linux/sched/mm.h>
10 #include <asm/sgx.h>
11 #include "encl.h"
12 #include "encls.h"
13 #include "sgx.h"
14 
15 #define PCMDS_PER_PAGE (PAGE_SIZE / sizeof(struct sgx_pcmd))
16 /*
17  * 32 PCMD entries share a PCMD page. PCMD_FIRST_MASK is used to
18  * determine the page index associated with the first PCMD entry
19  * within a PCMD page.
20  */
21 #define PCMD_FIRST_MASK GENMASK(4, 0)
22 
23 /**
24  * reclaimer_writing_to_pcmd() - Query if any enclave page associated with
25  *                               a PCMD page is in process of being reclaimed.
26  * @encl:        Enclave to which PCMD page belongs
27  * @start_addr:  Address of enclave page using first entry within the PCMD page
28  *
29  * When an enclave page is reclaimed some Paging Crypto MetaData (PCMD) is
30  * stored. The PCMD data of a reclaimed enclave page contains enough
31  * information for the processor to verify the page at the time
32  * it is loaded back into the Enclave Page Cache (EPC).
33  *
34  * The backing storage to which enclave pages are reclaimed is laid out as
35  * follows:
36  * Encrypted enclave pages:SECS page:PCMD pages
37  *
38  * Each PCMD page contains the PCMD metadata of
39  * PAGE_SIZE/sizeof(struct sgx_pcmd) enclave pages.
40  *
41  * A PCMD page can only be truncated if it is (a) empty, and (b) not in the
42  * process of getting data (and thus soon being non-empty). (b) is tested with
43  * a check if an enclave page sharing the PCMD page is in the process of being
44  * reclaimed.
45  *
46  * The reclaimer sets the SGX_ENCL_PAGE_BEING_RECLAIMED flag when it
47  * intends to reclaim that enclave page - it means that the PCMD page
48  * associated with that enclave page is about to get some data and thus
49  * even if the PCMD page is empty, it should not be truncated.
50  *
51  * Context: Enclave mutex (&sgx_encl->lock) must be held.
52  * Return: 1 if the reclaimer is about to write to the PCMD page
53  *         0 if the reclaimer has no intention to write to the PCMD page
54  */
55 static int reclaimer_writing_to_pcmd(struct sgx_encl *encl,
56 				     unsigned long start_addr)
57 {
58 	int reclaimed = 0;
59 	int i;
60 
61 	/*
62 	 * PCMD_FIRST_MASK is based on number of PCMD entries within
63 	 * PCMD page being 32.
64 	 */
65 	BUILD_BUG_ON(PCMDS_PER_PAGE != 32);
66 
67 	for (i = 0; i < PCMDS_PER_PAGE; i++) {
68 		struct sgx_encl_page *entry;
69 		unsigned long addr;
70 
71 		addr = start_addr + i * PAGE_SIZE;
72 
73 		/*
74 		 * Stop when reaching the SECS page - it does not
75 		 * have a page_array entry and its reclaim is
76 		 * started and completed with enclave mutex held so
77 		 * it does not use the SGX_ENCL_PAGE_BEING_RECLAIMED
78 		 * flag.
79 		 */
80 		if (addr == encl->base + encl->size)
81 			break;
82 
83 		entry = xa_load(&encl->page_array, PFN_DOWN(addr));
84 		if (!entry)
85 			continue;
86 
87 		/*
88 		 * VA page slot ID uses same bit as the flag so it is important
89 		 * to ensure that the page is not already in backing store.
90 		 */
91 		if (entry->epc_page &&
92 		    (entry->desc & SGX_ENCL_PAGE_BEING_RECLAIMED)) {
93 			reclaimed = 1;
94 			break;
95 		}
96 	}
97 
98 	return reclaimed;
99 }
100 
101 /*
102  * Calculate byte offset of a PCMD struct associated with an enclave page. PCMD's
103  * follow right after the EPC data in the backing storage. In addition to the
104  * visible enclave pages, there's one extra page slot for SECS, before PCMD
105  * structs.
106  */
107 static inline pgoff_t sgx_encl_get_backing_page_pcmd_offset(struct sgx_encl *encl,
108 							    unsigned long page_index)
109 {
110 	pgoff_t epc_end_off = encl->size + sizeof(struct sgx_secs);
111 
112 	return epc_end_off + page_index * sizeof(struct sgx_pcmd);
113 }
114 
115 /*
116  * Free a page from the backing storage in the given page index.
117  */
118 static inline void sgx_encl_truncate_backing_page(struct sgx_encl *encl, unsigned long page_index)
119 {
120 	struct inode *inode = file_inode(encl->backing);
121 
122 	shmem_truncate_range(inode, PFN_PHYS(page_index), PFN_PHYS(page_index) + PAGE_SIZE - 1);
123 }
124 
125 /*
126  * ELDU: Load an EPC page as unblocked. For more info, see "OS Management of EPC
127  * Pages" in the SDM.
128  */
129 static int __sgx_encl_eldu(struct sgx_encl_page *encl_page,
130 			   struct sgx_epc_page *epc_page,
131 			   struct sgx_epc_page *secs_page)
132 {
133 	unsigned long va_offset = encl_page->desc & SGX_ENCL_PAGE_VA_OFFSET_MASK;
134 	struct sgx_encl *encl = encl_page->encl;
135 	pgoff_t page_index, page_pcmd_off;
136 	unsigned long pcmd_first_page;
137 	struct sgx_pageinfo pginfo;
138 	struct sgx_backing b;
139 	bool pcmd_page_empty;
140 	u8 *pcmd_page;
141 	int ret;
142 
143 	if (secs_page)
144 		page_index = PFN_DOWN(encl_page->desc - encl_page->encl->base);
145 	else
146 		page_index = PFN_DOWN(encl->size);
147 
148 	/*
149 	 * Address of enclave page using the first entry within the PCMD page.
150 	 */
151 	pcmd_first_page = PFN_PHYS(page_index & ~PCMD_FIRST_MASK) + encl->base;
152 
153 	page_pcmd_off = sgx_encl_get_backing_page_pcmd_offset(encl, page_index);
154 
155 	ret = sgx_encl_lookup_backing(encl, page_index, &b);
156 	if (ret)
157 		return ret;
158 
159 	pginfo.addr = encl_page->desc & PAGE_MASK;
160 	pginfo.contents = (unsigned long)kmap_atomic(b.contents);
161 	pcmd_page = kmap_atomic(b.pcmd);
162 	pginfo.metadata = (unsigned long)pcmd_page + b.pcmd_offset;
163 
164 	if (secs_page)
165 		pginfo.secs = (u64)sgx_get_epc_virt_addr(secs_page);
166 	else
167 		pginfo.secs = 0;
168 
169 	ret = __eldu(&pginfo, sgx_get_epc_virt_addr(epc_page),
170 		     sgx_get_epc_virt_addr(encl_page->va_page->epc_page) + va_offset);
171 	if (ret) {
172 		if (encls_failed(ret))
173 			ENCLS_WARN(ret, "ELDU");
174 
175 		ret = -EFAULT;
176 	}
177 
178 	memset(pcmd_page + b.pcmd_offset, 0, sizeof(struct sgx_pcmd));
179 	set_page_dirty(b.pcmd);
180 
181 	/*
182 	 * The area for the PCMD in the page was zeroed above.  Check if the
183 	 * whole page is now empty meaning that all PCMD's have been zeroed:
184 	 */
185 	pcmd_page_empty = !memchr_inv(pcmd_page, 0, PAGE_SIZE);
186 
187 	kunmap_atomic(pcmd_page);
188 	kunmap_atomic((void *)(unsigned long)pginfo.contents);
189 
190 	get_page(b.pcmd);
191 	sgx_encl_put_backing(&b);
192 
193 	sgx_encl_truncate_backing_page(encl, page_index);
194 
195 	if (pcmd_page_empty && !reclaimer_writing_to_pcmd(encl, pcmd_first_page)) {
196 		sgx_encl_truncate_backing_page(encl, PFN_DOWN(page_pcmd_off));
197 		pcmd_page = kmap_atomic(b.pcmd);
198 		if (memchr_inv(pcmd_page, 0, PAGE_SIZE))
199 			pr_warn("PCMD page not empty after truncate.\n");
200 		kunmap_atomic(pcmd_page);
201 	}
202 
203 	put_page(b.pcmd);
204 
205 	return ret;
206 }
207 
208 static struct sgx_epc_page *sgx_encl_eldu(struct sgx_encl_page *encl_page,
209 					  struct sgx_epc_page *secs_page)
210 {
211 
212 	unsigned long va_offset = encl_page->desc & SGX_ENCL_PAGE_VA_OFFSET_MASK;
213 	struct sgx_encl *encl = encl_page->encl;
214 	struct sgx_epc_page *epc_page;
215 	int ret;
216 
217 	epc_page = sgx_alloc_epc_page(encl_page, false);
218 	if (IS_ERR(epc_page))
219 		return epc_page;
220 
221 	ret = __sgx_encl_eldu(encl_page, epc_page, secs_page);
222 	if (ret) {
223 		sgx_encl_free_epc_page(epc_page);
224 		return ERR_PTR(ret);
225 	}
226 
227 	sgx_free_va_slot(encl_page->va_page, va_offset);
228 	list_move(&encl_page->va_page->list, &encl->va_pages);
229 	encl_page->desc &= ~SGX_ENCL_PAGE_VA_OFFSET_MASK;
230 	encl_page->epc_page = epc_page;
231 
232 	return epc_page;
233 }
234 
235 static struct sgx_encl_page *__sgx_encl_load_page(struct sgx_encl *encl,
236 						  struct sgx_encl_page *entry)
237 {
238 	struct sgx_epc_page *epc_page;
239 
240 	/* Entry successfully located. */
241 	if (entry->epc_page) {
242 		if (entry->desc & SGX_ENCL_PAGE_BEING_RECLAIMED)
243 			return ERR_PTR(-EBUSY);
244 
245 		return entry;
246 	}
247 
248 	if (!(encl->secs.epc_page)) {
249 		epc_page = sgx_encl_eldu(&encl->secs, NULL);
250 		if (IS_ERR(epc_page))
251 			return ERR_CAST(epc_page);
252 	}
253 
254 	epc_page = sgx_encl_eldu(entry, encl->secs.epc_page);
255 	if (IS_ERR(epc_page))
256 		return ERR_CAST(epc_page);
257 
258 	encl->secs_child_cnt++;
259 	sgx_mark_page_reclaimable(entry->epc_page);
260 
261 	return entry;
262 }
263 
264 static struct sgx_encl_page *sgx_encl_load_page_in_vma(struct sgx_encl *encl,
265 						       unsigned long addr,
266 						       unsigned long vm_flags)
267 {
268 	unsigned long vm_prot_bits = vm_flags & (VM_READ | VM_WRITE | VM_EXEC);
269 	struct sgx_encl_page *entry;
270 
271 	entry = xa_load(&encl->page_array, PFN_DOWN(addr));
272 	if (!entry)
273 		return ERR_PTR(-EFAULT);
274 
275 	/*
276 	 * Verify that the page has equal or higher build time
277 	 * permissions than the VMA permissions (i.e. the subset of {VM_READ,
278 	 * VM_WRITE, VM_EXECUTE} in vma->vm_flags).
279 	 */
280 	if ((entry->vm_max_prot_bits & vm_prot_bits) != vm_prot_bits)
281 		return ERR_PTR(-EFAULT);
282 
283 	return __sgx_encl_load_page(encl, entry);
284 }
285 
286 struct sgx_encl_page *sgx_encl_load_page(struct sgx_encl *encl,
287 					 unsigned long addr)
288 {
289 	struct sgx_encl_page *entry;
290 
291 	entry = xa_load(&encl->page_array, PFN_DOWN(addr));
292 	if (!entry)
293 		return ERR_PTR(-EFAULT);
294 
295 	return __sgx_encl_load_page(encl, entry);
296 }
297 
298 /**
299  * sgx_encl_eaug_page() - Dynamically add page to initialized enclave
300  * @vma:	VMA obtained from fault info from where page is accessed
301  * @encl:	enclave accessing the page
302  * @addr:	address that triggered the page fault
303  *
304  * When an initialized enclave accesses a page with no backing EPC page
305  * on a SGX2 system then the EPC can be added dynamically via the SGX2
306  * ENCLS[EAUG] instruction.
307  *
308  * Returns: Appropriate vm_fault_t: VM_FAULT_NOPAGE when PTE was installed
309  * successfully, VM_FAULT_SIGBUS or VM_FAULT_OOM as error otherwise.
310  */
311 static vm_fault_t sgx_encl_eaug_page(struct vm_area_struct *vma,
312 				     struct sgx_encl *encl, unsigned long addr)
313 {
314 	vm_fault_t vmret = VM_FAULT_SIGBUS;
315 	struct sgx_pageinfo pginfo = {0};
316 	struct sgx_encl_page *encl_page;
317 	struct sgx_epc_page *epc_page;
318 	struct sgx_va_page *va_page;
319 	unsigned long phys_addr;
320 	u64 secinfo_flags;
321 	int ret;
322 
323 	if (!test_bit(SGX_ENCL_INITIALIZED, &encl->flags))
324 		return VM_FAULT_SIGBUS;
325 
326 	/*
327 	 * Ignore internal permission checking for dynamically added pages.
328 	 * They matter only for data added during the pre-initialization
329 	 * phase. The enclave decides the permissions by the means of
330 	 * EACCEPT, EACCEPTCOPY and EMODPE.
331 	 */
332 	secinfo_flags = SGX_SECINFO_R | SGX_SECINFO_W | SGX_SECINFO_X;
333 	encl_page = sgx_encl_page_alloc(encl, addr - encl->base, secinfo_flags);
334 	if (IS_ERR(encl_page))
335 		return VM_FAULT_OOM;
336 
337 	mutex_lock(&encl->lock);
338 
339 	epc_page = sgx_alloc_epc_page(encl_page, false);
340 	if (IS_ERR(epc_page)) {
341 		if (PTR_ERR(epc_page) == -EBUSY)
342 			vmret =  VM_FAULT_NOPAGE;
343 		goto err_out_unlock;
344 	}
345 
346 	va_page = sgx_encl_grow(encl, false);
347 	if (IS_ERR(va_page))
348 		goto err_out_epc;
349 
350 	if (va_page)
351 		list_add(&va_page->list, &encl->va_pages);
352 
353 	ret = xa_insert(&encl->page_array, PFN_DOWN(encl_page->desc),
354 			encl_page, GFP_KERNEL);
355 	/*
356 	 * If ret == -EBUSY then page was created in another flow while
357 	 * running without encl->lock
358 	 */
359 	if (ret)
360 		goto err_out_shrink;
361 
362 	pginfo.secs = (unsigned long)sgx_get_epc_virt_addr(encl->secs.epc_page);
363 	pginfo.addr = encl_page->desc & PAGE_MASK;
364 	pginfo.metadata = 0;
365 
366 	ret = __eaug(&pginfo, sgx_get_epc_virt_addr(epc_page));
367 	if (ret)
368 		goto err_out;
369 
370 	encl_page->encl = encl;
371 	encl_page->epc_page = epc_page;
372 	encl_page->type = SGX_PAGE_TYPE_REG;
373 	encl->secs_child_cnt++;
374 
375 	sgx_mark_page_reclaimable(encl_page->epc_page);
376 
377 	phys_addr = sgx_get_epc_phys_addr(epc_page);
378 	/*
379 	 * Do not undo everything when creating PTE entry fails - next #PF
380 	 * would find page ready for a PTE.
381 	 */
382 	vmret = vmf_insert_pfn(vma, addr, PFN_DOWN(phys_addr));
383 	if (vmret != VM_FAULT_NOPAGE) {
384 		mutex_unlock(&encl->lock);
385 		return VM_FAULT_SIGBUS;
386 	}
387 	mutex_unlock(&encl->lock);
388 	return VM_FAULT_NOPAGE;
389 
390 err_out:
391 	xa_erase(&encl->page_array, PFN_DOWN(encl_page->desc));
392 
393 err_out_shrink:
394 	sgx_encl_shrink(encl, va_page);
395 err_out_epc:
396 	sgx_encl_free_epc_page(epc_page);
397 err_out_unlock:
398 	mutex_unlock(&encl->lock);
399 	kfree(encl_page);
400 
401 	return vmret;
402 }
403 
404 static vm_fault_t sgx_vma_fault(struct vm_fault *vmf)
405 {
406 	unsigned long addr = (unsigned long)vmf->address;
407 	struct vm_area_struct *vma = vmf->vma;
408 	struct sgx_encl_page *entry;
409 	unsigned long phys_addr;
410 	struct sgx_encl *encl;
411 	vm_fault_t ret;
412 
413 	encl = vma->vm_private_data;
414 
415 	/*
416 	 * It's very unlikely but possible that allocating memory for the
417 	 * mm_list entry of a forked process failed in sgx_vma_open(). When
418 	 * this happens, vm_private_data is set to NULL.
419 	 */
420 	if (unlikely(!encl))
421 		return VM_FAULT_SIGBUS;
422 
423 	/*
424 	 * The page_array keeps track of all enclave pages, whether they
425 	 * are swapped out or not. If there is no entry for this page and
426 	 * the system supports SGX2 then it is possible to dynamically add
427 	 * a new enclave page. This is only possible for an initialized
428 	 * enclave that will be checked for right away.
429 	 */
430 	if (cpu_feature_enabled(X86_FEATURE_SGX2) &&
431 	    (!xa_load(&encl->page_array, PFN_DOWN(addr))))
432 		return sgx_encl_eaug_page(vma, encl, addr);
433 
434 	mutex_lock(&encl->lock);
435 
436 	entry = sgx_encl_load_page_in_vma(encl, addr, vma->vm_flags);
437 	if (IS_ERR(entry)) {
438 		mutex_unlock(&encl->lock);
439 
440 		if (PTR_ERR(entry) == -EBUSY)
441 			return VM_FAULT_NOPAGE;
442 
443 		return VM_FAULT_SIGBUS;
444 	}
445 
446 	phys_addr = sgx_get_epc_phys_addr(entry->epc_page);
447 
448 	ret = vmf_insert_pfn(vma, addr, PFN_DOWN(phys_addr));
449 	if (ret != VM_FAULT_NOPAGE) {
450 		mutex_unlock(&encl->lock);
451 
452 		return VM_FAULT_SIGBUS;
453 	}
454 
455 	sgx_encl_test_and_clear_young(vma->vm_mm, entry);
456 	mutex_unlock(&encl->lock);
457 
458 	return VM_FAULT_NOPAGE;
459 }
460 
461 static void sgx_vma_open(struct vm_area_struct *vma)
462 {
463 	struct sgx_encl *encl = vma->vm_private_data;
464 
465 	/*
466 	 * It's possible but unlikely that vm_private_data is NULL. This can
467 	 * happen in a grandchild of a process, when sgx_encl_mm_add() had
468 	 * failed to allocate memory in this callback.
469 	 */
470 	if (unlikely(!encl))
471 		return;
472 
473 	if (sgx_encl_mm_add(encl, vma->vm_mm))
474 		vma->vm_private_data = NULL;
475 }
476 
477 
478 /**
479  * sgx_encl_may_map() - Check if a requested VMA mapping is allowed
480  * @encl:		an enclave pointer
481  * @start:		lower bound of the address range, inclusive
482  * @end:		upper bound of the address range, exclusive
483  * @vm_flags:		VMA flags
484  *
485  * Iterate through the enclave pages contained within [@start, @end) to verify
486  * that the permissions requested by a subset of {VM_READ, VM_WRITE, VM_EXEC}
487  * do not contain any permissions that are not contained in the build time
488  * permissions of any of the enclave pages within the given address range.
489  *
490  * An enclave creator must declare the strongest permissions that will be
491  * needed for each enclave page. This ensures that mappings have the identical
492  * or weaker permissions than the earlier declared permissions.
493  *
494  * Return: 0 on success, -EACCES otherwise
495  */
496 int sgx_encl_may_map(struct sgx_encl *encl, unsigned long start,
497 		     unsigned long end, unsigned long vm_flags)
498 {
499 	unsigned long vm_prot_bits = vm_flags & (VM_READ | VM_WRITE | VM_EXEC);
500 	struct sgx_encl_page *page;
501 	unsigned long count = 0;
502 	int ret = 0;
503 
504 	XA_STATE(xas, &encl->page_array, PFN_DOWN(start));
505 
506 	/* Disallow mapping outside enclave's address range. */
507 	if (test_bit(SGX_ENCL_INITIALIZED, &encl->flags) &&
508 	    (start < encl->base || end > encl->base + encl->size))
509 		return -EACCES;
510 
511 	/*
512 	 * Disallow READ_IMPLIES_EXEC tasks as their VMA permissions might
513 	 * conflict with the enclave page permissions.
514 	 */
515 	if (current->personality & READ_IMPLIES_EXEC)
516 		return -EACCES;
517 
518 	mutex_lock(&encl->lock);
519 	xas_lock(&xas);
520 	xas_for_each(&xas, page, PFN_DOWN(end - 1)) {
521 		if (~page->vm_max_prot_bits & vm_prot_bits) {
522 			ret = -EACCES;
523 			break;
524 		}
525 
526 		/* Reschedule on every XA_CHECK_SCHED iteration. */
527 		if (!(++count % XA_CHECK_SCHED)) {
528 			xas_pause(&xas);
529 			xas_unlock(&xas);
530 			mutex_unlock(&encl->lock);
531 
532 			cond_resched();
533 
534 			mutex_lock(&encl->lock);
535 			xas_lock(&xas);
536 		}
537 	}
538 	xas_unlock(&xas);
539 	mutex_unlock(&encl->lock);
540 
541 	return ret;
542 }
543 
544 static int sgx_vma_mprotect(struct vm_area_struct *vma, unsigned long start,
545 			    unsigned long end, unsigned long newflags)
546 {
547 	return sgx_encl_may_map(vma->vm_private_data, start, end, newflags);
548 }
549 
550 static int sgx_encl_debug_read(struct sgx_encl *encl, struct sgx_encl_page *page,
551 			       unsigned long addr, void *data)
552 {
553 	unsigned long offset = addr & ~PAGE_MASK;
554 	int ret;
555 
556 
557 	ret = __edbgrd(sgx_get_epc_virt_addr(page->epc_page) + offset, data);
558 	if (ret)
559 		return -EIO;
560 
561 	return 0;
562 }
563 
564 static int sgx_encl_debug_write(struct sgx_encl *encl, struct sgx_encl_page *page,
565 				unsigned long addr, void *data)
566 {
567 	unsigned long offset = addr & ~PAGE_MASK;
568 	int ret;
569 
570 	ret = __edbgwr(sgx_get_epc_virt_addr(page->epc_page) + offset, data);
571 	if (ret)
572 		return -EIO;
573 
574 	return 0;
575 }
576 
577 /*
578  * Load an enclave page to EPC if required, and take encl->lock.
579  */
580 static struct sgx_encl_page *sgx_encl_reserve_page(struct sgx_encl *encl,
581 						   unsigned long addr,
582 						   unsigned long vm_flags)
583 {
584 	struct sgx_encl_page *entry;
585 
586 	for ( ; ; ) {
587 		mutex_lock(&encl->lock);
588 
589 		entry = sgx_encl_load_page_in_vma(encl, addr, vm_flags);
590 		if (PTR_ERR(entry) != -EBUSY)
591 			break;
592 
593 		mutex_unlock(&encl->lock);
594 	}
595 
596 	if (IS_ERR(entry))
597 		mutex_unlock(&encl->lock);
598 
599 	return entry;
600 }
601 
602 static int sgx_vma_access(struct vm_area_struct *vma, unsigned long addr,
603 			  void *buf, int len, int write)
604 {
605 	struct sgx_encl *encl = vma->vm_private_data;
606 	struct sgx_encl_page *entry = NULL;
607 	char data[sizeof(unsigned long)];
608 	unsigned long align;
609 	int offset;
610 	int cnt;
611 	int ret = 0;
612 	int i;
613 
614 	/*
615 	 * If process was forked, VMA is still there but vm_private_data is set
616 	 * to NULL.
617 	 */
618 	if (!encl)
619 		return -EFAULT;
620 
621 	if (!test_bit(SGX_ENCL_DEBUG, &encl->flags))
622 		return -EFAULT;
623 
624 	for (i = 0; i < len; i += cnt) {
625 		entry = sgx_encl_reserve_page(encl, (addr + i) & PAGE_MASK,
626 					      vma->vm_flags);
627 		if (IS_ERR(entry)) {
628 			ret = PTR_ERR(entry);
629 			break;
630 		}
631 
632 		align = ALIGN_DOWN(addr + i, sizeof(unsigned long));
633 		offset = (addr + i) & (sizeof(unsigned long) - 1);
634 		cnt = sizeof(unsigned long) - offset;
635 		cnt = min(cnt, len - i);
636 
637 		ret = sgx_encl_debug_read(encl, entry, align, data);
638 		if (ret)
639 			goto out;
640 
641 		if (write) {
642 			memcpy(data + offset, buf + i, cnt);
643 			ret = sgx_encl_debug_write(encl, entry, align, data);
644 			if (ret)
645 				goto out;
646 		} else {
647 			memcpy(buf + i, data + offset, cnt);
648 		}
649 
650 out:
651 		mutex_unlock(&encl->lock);
652 
653 		if (ret)
654 			break;
655 	}
656 
657 	return ret < 0 ? ret : i;
658 }
659 
660 const struct vm_operations_struct sgx_vm_ops = {
661 	.fault = sgx_vma_fault,
662 	.mprotect = sgx_vma_mprotect,
663 	.open = sgx_vma_open,
664 	.access = sgx_vma_access,
665 };
666 
667 /**
668  * sgx_encl_release - Destroy an enclave instance
669  * @ref:	address of a kref inside &sgx_encl
670  *
671  * Used together with kref_put(). Frees all the resources associated with the
672  * enclave and the instance itself.
673  */
674 void sgx_encl_release(struct kref *ref)
675 {
676 	struct sgx_encl *encl = container_of(ref, struct sgx_encl, refcount);
677 	struct sgx_va_page *va_page;
678 	struct sgx_encl_page *entry;
679 	unsigned long index;
680 
681 	xa_for_each(&encl->page_array, index, entry) {
682 		if (entry->epc_page) {
683 			/*
684 			 * The page and its radix tree entry cannot be freed
685 			 * if the page is being held by the reclaimer.
686 			 */
687 			if (sgx_unmark_page_reclaimable(entry->epc_page))
688 				continue;
689 
690 			sgx_encl_free_epc_page(entry->epc_page);
691 			encl->secs_child_cnt--;
692 			entry->epc_page = NULL;
693 		}
694 
695 		kfree(entry);
696 		/* Invoke scheduler to prevent soft lockups. */
697 		cond_resched();
698 	}
699 
700 	xa_destroy(&encl->page_array);
701 
702 	if (!encl->secs_child_cnt && encl->secs.epc_page) {
703 		sgx_encl_free_epc_page(encl->secs.epc_page);
704 		encl->secs.epc_page = NULL;
705 	}
706 
707 	while (!list_empty(&encl->va_pages)) {
708 		va_page = list_first_entry(&encl->va_pages, struct sgx_va_page,
709 					   list);
710 		list_del(&va_page->list);
711 		sgx_encl_free_epc_page(va_page->epc_page);
712 		kfree(va_page);
713 	}
714 
715 	if (encl->backing)
716 		fput(encl->backing);
717 
718 	cleanup_srcu_struct(&encl->srcu);
719 
720 	WARN_ON_ONCE(!list_empty(&encl->mm_list));
721 
722 	/* Detect EPC page leak's. */
723 	WARN_ON_ONCE(encl->secs_child_cnt);
724 	WARN_ON_ONCE(encl->secs.epc_page);
725 
726 	kfree(encl);
727 }
728 
729 /*
730  * 'mm' is exiting and no longer needs mmu notifications.
731  */
732 static void sgx_mmu_notifier_release(struct mmu_notifier *mn,
733 				     struct mm_struct *mm)
734 {
735 	struct sgx_encl_mm *encl_mm = container_of(mn, struct sgx_encl_mm, mmu_notifier);
736 	struct sgx_encl_mm *tmp = NULL;
737 
738 	/*
739 	 * The enclave itself can remove encl_mm.  Note, objects can't be moved
740 	 * off an RCU protected list, but deletion is ok.
741 	 */
742 	spin_lock(&encl_mm->encl->mm_lock);
743 	list_for_each_entry(tmp, &encl_mm->encl->mm_list, list) {
744 		if (tmp == encl_mm) {
745 			list_del_rcu(&encl_mm->list);
746 			break;
747 		}
748 	}
749 	spin_unlock(&encl_mm->encl->mm_lock);
750 
751 	if (tmp == encl_mm) {
752 		synchronize_srcu(&encl_mm->encl->srcu);
753 		mmu_notifier_put(mn);
754 	}
755 }
756 
757 static void sgx_mmu_notifier_free(struct mmu_notifier *mn)
758 {
759 	struct sgx_encl_mm *encl_mm = container_of(mn, struct sgx_encl_mm, mmu_notifier);
760 
761 	/* 'encl_mm' is going away, put encl_mm->encl reference: */
762 	kref_put(&encl_mm->encl->refcount, sgx_encl_release);
763 
764 	kfree(encl_mm);
765 }
766 
767 static const struct mmu_notifier_ops sgx_mmu_notifier_ops = {
768 	.release		= sgx_mmu_notifier_release,
769 	.free_notifier		= sgx_mmu_notifier_free,
770 };
771 
772 static struct sgx_encl_mm *sgx_encl_find_mm(struct sgx_encl *encl,
773 					    struct mm_struct *mm)
774 {
775 	struct sgx_encl_mm *encl_mm = NULL;
776 	struct sgx_encl_mm *tmp;
777 	int idx;
778 
779 	idx = srcu_read_lock(&encl->srcu);
780 
781 	list_for_each_entry_rcu(tmp, &encl->mm_list, list) {
782 		if (tmp->mm == mm) {
783 			encl_mm = tmp;
784 			break;
785 		}
786 	}
787 
788 	srcu_read_unlock(&encl->srcu, idx);
789 
790 	return encl_mm;
791 }
792 
793 int sgx_encl_mm_add(struct sgx_encl *encl, struct mm_struct *mm)
794 {
795 	struct sgx_encl_mm *encl_mm;
796 	int ret;
797 
798 	/*
799 	 * Even though a single enclave may be mapped into an mm more than once,
800 	 * each 'mm' only appears once on encl->mm_list. This is guaranteed by
801 	 * holding the mm's mmap lock for write before an mm can be added or
802 	 * remove to an encl->mm_list.
803 	 */
804 	mmap_assert_write_locked(mm);
805 
806 	/*
807 	 * It's possible that an entry already exists in the mm_list, because it
808 	 * is removed only on VFS release or process exit.
809 	 */
810 	if (sgx_encl_find_mm(encl, mm))
811 		return 0;
812 
813 	encl_mm = kzalloc(sizeof(*encl_mm), GFP_KERNEL);
814 	if (!encl_mm)
815 		return -ENOMEM;
816 
817 	/* Grab a refcount for the encl_mm->encl reference: */
818 	kref_get(&encl->refcount);
819 	encl_mm->encl = encl;
820 	encl_mm->mm = mm;
821 	encl_mm->mmu_notifier.ops = &sgx_mmu_notifier_ops;
822 
823 	ret = __mmu_notifier_register(&encl_mm->mmu_notifier, mm);
824 	if (ret) {
825 		kfree(encl_mm);
826 		return ret;
827 	}
828 
829 	spin_lock(&encl->mm_lock);
830 	list_add_rcu(&encl_mm->list, &encl->mm_list);
831 	/* Pairs with smp_rmb() in sgx_zap_enclave_ptes(). */
832 	smp_wmb();
833 	encl->mm_list_version++;
834 	spin_unlock(&encl->mm_lock);
835 
836 	return 0;
837 }
838 
839 /**
840  * sgx_encl_cpumask() - Query which CPUs might be accessing the enclave
841  * @encl: the enclave
842  *
843  * Some SGX functions require that no cached linear-to-physical address
844  * mappings are present before they can succeed. For example, ENCLS[EWB]
845  * copies a page from the enclave page cache to regular main memory but
846  * it fails if it cannot ensure that there are no cached
847  * linear-to-physical address mappings referring to the page.
848  *
849  * SGX hardware flushes all cached linear-to-physical mappings on a CPU
850  * when an enclave is exited via ENCLU[EEXIT] or an Asynchronous Enclave
851  * Exit (AEX). Exiting an enclave will thus ensure cached linear-to-physical
852  * address mappings are cleared but coordination with the tracking done within
853  * the SGX hardware is needed to support the SGX functions that depend on this
854  * cache clearing.
855  *
856  * When the ENCLS[ETRACK] function is issued on an enclave the hardware
857  * tracks threads operating inside the enclave at that time. The SGX
858  * hardware tracking require that all the identified threads must have
859  * exited the enclave in order to flush the mappings before a function such
860  * as ENCLS[EWB] will be permitted
861  *
862  * The following flow is used to support SGX functions that require that
863  * no cached linear-to-physical address mappings are present:
864  * 1) Execute ENCLS[ETRACK] to initiate hardware tracking.
865  * 2) Use this function (sgx_encl_cpumask()) to query which CPUs might be
866  *    accessing the enclave.
867  * 3) Send IPI to identified CPUs, kicking them out of the enclave and
868  *    thus flushing all locally cached linear-to-physical address mappings.
869  * 4) Execute SGX function.
870  *
871  * Context: It is required to call this function after ENCLS[ETRACK].
872  *          This will ensure that if any new mm appears (racing with
873  *          sgx_encl_mm_add()) then the new mm will enter into the
874  *          enclave with fresh linear-to-physical address mappings.
875  *
876  *          It is required that all IPIs are completed before a new
877  *          ENCLS[ETRACK] is issued so be sure to protect steps 1 to 3
878  *          of the above flow with the enclave's mutex.
879  *
880  * Return: cpumask of CPUs that might be accessing @encl
881  */
882 const cpumask_t *sgx_encl_cpumask(struct sgx_encl *encl)
883 {
884 	cpumask_t *cpumask = &encl->cpumask;
885 	struct sgx_encl_mm *encl_mm;
886 	int idx;
887 
888 	cpumask_clear(cpumask);
889 
890 	idx = srcu_read_lock(&encl->srcu);
891 
892 	list_for_each_entry_rcu(encl_mm, &encl->mm_list, list) {
893 		if (!mmget_not_zero(encl_mm->mm))
894 			continue;
895 
896 		cpumask_or(cpumask, cpumask, mm_cpumask(encl_mm->mm));
897 
898 		mmput_async(encl_mm->mm);
899 	}
900 
901 	srcu_read_unlock(&encl->srcu, idx);
902 
903 	return cpumask;
904 }
905 
906 static struct page *sgx_encl_get_backing_page(struct sgx_encl *encl,
907 					      pgoff_t index)
908 {
909 	struct inode *inode = encl->backing->f_path.dentry->d_inode;
910 	struct address_space *mapping = inode->i_mapping;
911 	gfp_t gfpmask = mapping_gfp_mask(mapping);
912 
913 	return shmem_read_mapping_page_gfp(mapping, index, gfpmask);
914 }
915 
916 /**
917  * sgx_encl_get_backing() - Pin the backing storage
918  * @encl:	an enclave pointer
919  * @page_index:	enclave page index
920  * @backing:	data for accessing backing storage for the page
921  *
922  * Pin the backing storage pages for storing the encrypted contents and Paging
923  * Crypto MetaData (PCMD) of an enclave page.
924  *
925  * Return:
926  *   0 on success,
927  *   -errno otherwise.
928  */
929 static int sgx_encl_get_backing(struct sgx_encl *encl, unsigned long page_index,
930 			 struct sgx_backing *backing)
931 {
932 	pgoff_t page_pcmd_off = sgx_encl_get_backing_page_pcmd_offset(encl, page_index);
933 	struct page *contents;
934 	struct page *pcmd;
935 
936 	contents = sgx_encl_get_backing_page(encl, page_index);
937 	if (IS_ERR(contents))
938 		return PTR_ERR(contents);
939 
940 	pcmd = sgx_encl_get_backing_page(encl, PFN_DOWN(page_pcmd_off));
941 	if (IS_ERR(pcmd)) {
942 		put_page(contents);
943 		return PTR_ERR(pcmd);
944 	}
945 
946 	backing->contents = contents;
947 	backing->pcmd = pcmd;
948 	backing->pcmd_offset = page_pcmd_off & (PAGE_SIZE - 1);
949 
950 	return 0;
951 }
952 
953 /*
954  * When called from ksgxd, returns the mem_cgroup of a struct mm stored
955  * in the enclave's mm_list. When not called from ksgxd, just returns
956  * the mem_cgroup of the current task.
957  */
958 static struct mem_cgroup *sgx_encl_get_mem_cgroup(struct sgx_encl *encl)
959 {
960 	struct mem_cgroup *memcg = NULL;
961 	struct sgx_encl_mm *encl_mm;
962 	int idx;
963 
964 	/*
965 	 * If called from normal task context, return the mem_cgroup
966 	 * of the current task's mm. The remainder of the handling is for
967 	 * ksgxd.
968 	 */
969 	if (!current_is_ksgxd())
970 		return get_mem_cgroup_from_mm(current->mm);
971 
972 	/*
973 	 * Search the enclave's mm_list to find an mm associated with
974 	 * this enclave to charge the allocation to.
975 	 */
976 	idx = srcu_read_lock(&encl->srcu);
977 
978 	list_for_each_entry_rcu(encl_mm, &encl->mm_list, list) {
979 		if (!mmget_not_zero(encl_mm->mm))
980 			continue;
981 
982 		memcg = get_mem_cgroup_from_mm(encl_mm->mm);
983 
984 		mmput_async(encl_mm->mm);
985 
986 		break;
987 	}
988 
989 	srcu_read_unlock(&encl->srcu, idx);
990 
991 	/*
992 	 * In the rare case that there isn't an mm associated with
993 	 * the enclave, set memcg to the current active mem_cgroup.
994 	 * This will be the root mem_cgroup if there is no active
995 	 * mem_cgroup.
996 	 */
997 	if (!memcg)
998 		return get_mem_cgroup_from_mm(NULL);
999 
1000 	return memcg;
1001 }
1002 
1003 /**
1004  * sgx_encl_alloc_backing() - allocate a new backing storage page
1005  * @encl:	an enclave pointer
1006  * @page_index:	enclave page index
1007  * @backing:	data for accessing backing storage for the page
1008  *
1009  * When called from ksgxd, sets the active memcg from one of the
1010  * mms in the enclave's mm_list prior to any backing page allocation,
1011  * in order to ensure that shmem page allocations are charged to the
1012  * enclave.
1013  *
1014  * Return:
1015  *   0 on success,
1016  *   -errno otherwise.
1017  */
1018 int sgx_encl_alloc_backing(struct sgx_encl *encl, unsigned long page_index,
1019 			   struct sgx_backing *backing)
1020 {
1021 	struct mem_cgroup *encl_memcg = sgx_encl_get_mem_cgroup(encl);
1022 	struct mem_cgroup *memcg = set_active_memcg(encl_memcg);
1023 	int ret;
1024 
1025 	ret = sgx_encl_get_backing(encl, page_index, backing);
1026 
1027 	set_active_memcg(memcg);
1028 	mem_cgroup_put(encl_memcg);
1029 
1030 	return ret;
1031 }
1032 
1033 /**
1034  * sgx_encl_lookup_backing() - retrieve an existing backing storage page
1035  * @encl:	an enclave pointer
1036  * @page_index:	enclave page index
1037  * @backing:	data for accessing backing storage for the page
1038  *
1039  * Retrieve a backing page for loading data back into an EPC page with ELDU.
1040  * It is the caller's responsibility to ensure that it is appropriate to use
1041  * sgx_encl_lookup_backing() rather than sgx_encl_alloc_backing(). If lookup is
1042  * not used correctly, this will cause an allocation which is not accounted for.
1043  *
1044  * Return:
1045  *   0 on success,
1046  *   -errno otherwise.
1047  */
1048 int sgx_encl_lookup_backing(struct sgx_encl *encl, unsigned long page_index,
1049 			   struct sgx_backing *backing)
1050 {
1051 	return sgx_encl_get_backing(encl, page_index, backing);
1052 }
1053 
1054 /**
1055  * sgx_encl_put_backing() - Unpin the backing storage
1056  * @backing:	data for accessing backing storage for the page
1057  */
1058 void sgx_encl_put_backing(struct sgx_backing *backing)
1059 {
1060 	put_page(backing->pcmd);
1061 	put_page(backing->contents);
1062 }
1063 
1064 static int sgx_encl_test_and_clear_young_cb(pte_t *ptep, unsigned long addr,
1065 					    void *data)
1066 {
1067 	pte_t pte;
1068 	int ret;
1069 
1070 	ret = pte_young(*ptep);
1071 	if (ret) {
1072 		pte = pte_mkold(*ptep);
1073 		set_pte_at((struct mm_struct *)data, addr, ptep, pte);
1074 	}
1075 
1076 	return ret;
1077 }
1078 
1079 /**
1080  * sgx_encl_test_and_clear_young() - Test and reset the accessed bit
1081  * @mm:		mm_struct that is checked
1082  * @page:	enclave page to be tested for recent access
1083  *
1084  * Checks the Access (A) bit from the PTE corresponding to the enclave page and
1085  * clears it.
1086  *
1087  * Return: 1 if the page has been recently accessed and 0 if not.
1088  */
1089 int sgx_encl_test_and_clear_young(struct mm_struct *mm,
1090 				  struct sgx_encl_page *page)
1091 {
1092 	unsigned long addr = page->desc & PAGE_MASK;
1093 	struct sgx_encl *encl = page->encl;
1094 	struct vm_area_struct *vma;
1095 	int ret;
1096 
1097 	ret = sgx_encl_find(mm, addr, &vma);
1098 	if (ret)
1099 		return 0;
1100 
1101 	if (encl != vma->vm_private_data)
1102 		return 0;
1103 
1104 	ret = apply_to_page_range(vma->vm_mm, addr, PAGE_SIZE,
1105 				  sgx_encl_test_and_clear_young_cb, vma->vm_mm);
1106 	if (ret < 0)
1107 		return 0;
1108 
1109 	return ret;
1110 }
1111 
1112 struct sgx_encl_page *sgx_encl_page_alloc(struct sgx_encl *encl,
1113 					  unsigned long offset,
1114 					  u64 secinfo_flags)
1115 {
1116 	struct sgx_encl_page *encl_page;
1117 	unsigned long prot;
1118 
1119 	encl_page = kzalloc(sizeof(*encl_page), GFP_KERNEL);
1120 	if (!encl_page)
1121 		return ERR_PTR(-ENOMEM);
1122 
1123 	encl_page->desc = encl->base + offset;
1124 	encl_page->encl = encl;
1125 
1126 	prot = _calc_vm_trans(secinfo_flags, SGX_SECINFO_R, PROT_READ)  |
1127 	       _calc_vm_trans(secinfo_flags, SGX_SECINFO_W, PROT_WRITE) |
1128 	       _calc_vm_trans(secinfo_flags, SGX_SECINFO_X, PROT_EXEC);
1129 
1130 	/*
1131 	 * TCS pages must always RW set for CPU access while the SECINFO
1132 	 * permissions are *always* zero - the CPU ignores the user provided
1133 	 * values and silently overwrites them with zero permissions.
1134 	 */
1135 	if ((secinfo_flags & SGX_SECINFO_PAGE_TYPE_MASK) == SGX_SECINFO_TCS)
1136 		prot |= PROT_READ | PROT_WRITE;
1137 
1138 	/* Calculate maximum of the VM flags for the page. */
1139 	encl_page->vm_max_prot_bits = calc_vm_prot_bits(prot, 0);
1140 
1141 	return encl_page;
1142 }
1143 
1144 /**
1145  * sgx_zap_enclave_ptes() - remove PTEs mapping the address from enclave
1146  * @encl: the enclave
1147  * @addr: page aligned pointer to single page for which PTEs will be removed
1148  *
1149  * Multiple VMAs may have an enclave page mapped. Remove the PTE mapping
1150  * @addr from each VMA. Ensure that page fault handler is ready to handle
1151  * new mappings of @addr before calling this function.
1152  */
1153 void sgx_zap_enclave_ptes(struct sgx_encl *encl, unsigned long addr)
1154 {
1155 	unsigned long mm_list_version;
1156 	struct sgx_encl_mm *encl_mm;
1157 	struct vm_area_struct *vma;
1158 	int idx, ret;
1159 
1160 	do {
1161 		mm_list_version = encl->mm_list_version;
1162 
1163 		/* Pairs with smp_wmb() in sgx_encl_mm_add(). */
1164 		smp_rmb();
1165 
1166 		idx = srcu_read_lock(&encl->srcu);
1167 
1168 		list_for_each_entry_rcu(encl_mm, &encl->mm_list, list) {
1169 			if (!mmget_not_zero(encl_mm->mm))
1170 				continue;
1171 
1172 			mmap_read_lock(encl_mm->mm);
1173 
1174 			ret = sgx_encl_find(encl_mm->mm, addr, &vma);
1175 			if (!ret && encl == vma->vm_private_data)
1176 				zap_vma_ptes(vma, addr, PAGE_SIZE);
1177 
1178 			mmap_read_unlock(encl_mm->mm);
1179 
1180 			mmput_async(encl_mm->mm);
1181 		}
1182 
1183 		srcu_read_unlock(&encl->srcu, idx);
1184 	} while (unlikely(encl->mm_list_version != mm_list_version));
1185 }
1186 
1187 /**
1188  * sgx_alloc_va_page() - Allocate a Version Array (VA) page
1189  * @reclaim: Reclaim EPC pages directly if none available. Enclave
1190  *           mutex should not be held if this is set.
1191  *
1192  * Allocate a free EPC page and convert it to a Version Array (VA) page.
1193  *
1194  * Return:
1195  *   a VA page,
1196  *   -errno otherwise
1197  */
1198 struct sgx_epc_page *sgx_alloc_va_page(bool reclaim)
1199 {
1200 	struct sgx_epc_page *epc_page;
1201 	int ret;
1202 
1203 	epc_page = sgx_alloc_epc_page(NULL, reclaim);
1204 	if (IS_ERR(epc_page))
1205 		return ERR_CAST(epc_page);
1206 
1207 	ret = __epa(sgx_get_epc_virt_addr(epc_page));
1208 	if (ret) {
1209 		WARN_ONCE(1, "EPA returned %d (0x%x)", ret, ret);
1210 		sgx_encl_free_epc_page(epc_page);
1211 		return ERR_PTR(-EFAULT);
1212 	}
1213 
1214 	return epc_page;
1215 }
1216 
1217 /**
1218  * sgx_alloc_va_slot - allocate a VA slot
1219  * @va_page:	a &struct sgx_va_page instance
1220  *
1221  * Allocates a slot from a &struct sgx_va_page instance.
1222  *
1223  * Return: offset of the slot inside the VA page
1224  */
1225 unsigned int sgx_alloc_va_slot(struct sgx_va_page *va_page)
1226 {
1227 	int slot = find_first_zero_bit(va_page->slots, SGX_VA_SLOT_COUNT);
1228 
1229 	if (slot < SGX_VA_SLOT_COUNT)
1230 		set_bit(slot, va_page->slots);
1231 
1232 	return slot << 3;
1233 }
1234 
1235 /**
1236  * sgx_free_va_slot - free a VA slot
1237  * @va_page:	a &struct sgx_va_page instance
1238  * @offset:	offset of the slot inside the VA page
1239  *
1240  * Frees a slot from a &struct sgx_va_page instance.
1241  */
1242 void sgx_free_va_slot(struct sgx_va_page *va_page, unsigned int offset)
1243 {
1244 	clear_bit(offset >> 3, va_page->slots);
1245 }
1246 
1247 /**
1248  * sgx_va_page_full - is the VA page full?
1249  * @va_page:	a &struct sgx_va_page instance
1250  *
1251  * Return: true if all slots have been taken
1252  */
1253 bool sgx_va_page_full(struct sgx_va_page *va_page)
1254 {
1255 	int slot = find_first_zero_bit(va_page->slots, SGX_VA_SLOT_COUNT);
1256 
1257 	return slot == SGX_VA_SLOT_COUNT;
1258 }
1259 
1260 /**
1261  * sgx_encl_free_epc_page - free an EPC page assigned to an enclave
1262  * @page:	EPC page to be freed
1263  *
1264  * Free an EPC page assigned to an enclave. It does EREMOVE for the page, and
1265  * only upon success, it puts the page back to free page list.  Otherwise, it
1266  * gives a WARNING to indicate page is leaked.
1267  */
1268 void sgx_encl_free_epc_page(struct sgx_epc_page *page)
1269 {
1270 	int ret;
1271 
1272 	WARN_ON_ONCE(page->flags & SGX_EPC_PAGE_RECLAIMER_TRACKED);
1273 
1274 	ret = __eremove(sgx_get_epc_virt_addr(page));
1275 	if (WARN_ONCE(ret, EREMOVE_ERROR_MESSAGE, ret, ret))
1276 		return;
1277 
1278 	sgx_free_epc_page(page);
1279 }
1280