1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * User interface for Resource Allocation in Resource Director Technology(RDT) 4 * 5 * Copyright (C) 2016 Intel Corporation 6 * 7 * Author: Fenghua Yu <fenghua.yu@intel.com> 8 * 9 * More information about RDT be found in the Intel (R) x86 Architecture 10 * Software Developer Manual. 11 */ 12 13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 14 15 #include <linux/cacheinfo.h> 16 #include <linux/cpu.h> 17 #include <linux/debugfs.h> 18 #include <linux/fs.h> 19 #include <linux/fs_parser.h> 20 #include <linux/sysfs.h> 21 #include <linux/kernfs.h> 22 #include <linux/seq_buf.h> 23 #include <linux/seq_file.h> 24 #include <linux/sched/signal.h> 25 #include <linux/sched/task.h> 26 #include <linux/slab.h> 27 #include <linux/task_work.h> 28 #include <linux/user_namespace.h> 29 30 #include <uapi/linux/magic.h> 31 32 #include <asm/resctrl.h> 33 #include "internal.h" 34 35 DEFINE_STATIC_KEY_FALSE(rdt_enable_key); 36 DEFINE_STATIC_KEY_FALSE(rdt_mon_enable_key); 37 DEFINE_STATIC_KEY_FALSE(rdt_alloc_enable_key); 38 static struct kernfs_root *rdt_root; 39 struct rdtgroup rdtgroup_default; 40 LIST_HEAD(rdt_all_groups); 41 42 /* list of entries for the schemata file */ 43 LIST_HEAD(resctrl_schema_all); 44 45 /* Kernel fs node for "info" directory under root */ 46 static struct kernfs_node *kn_info; 47 48 /* Kernel fs node for "mon_groups" directory under root */ 49 static struct kernfs_node *kn_mongrp; 50 51 /* Kernel fs node for "mon_data" directory under root */ 52 static struct kernfs_node *kn_mondata; 53 54 static struct seq_buf last_cmd_status; 55 static char last_cmd_status_buf[512]; 56 57 struct dentry *debugfs_resctrl; 58 59 void rdt_last_cmd_clear(void) 60 { 61 lockdep_assert_held(&rdtgroup_mutex); 62 seq_buf_clear(&last_cmd_status); 63 } 64 65 void rdt_last_cmd_puts(const char *s) 66 { 67 lockdep_assert_held(&rdtgroup_mutex); 68 seq_buf_puts(&last_cmd_status, s); 69 } 70 71 void rdt_last_cmd_printf(const char *fmt, ...) 72 { 73 va_list ap; 74 75 va_start(ap, fmt); 76 lockdep_assert_held(&rdtgroup_mutex); 77 seq_buf_vprintf(&last_cmd_status, fmt, ap); 78 va_end(ap); 79 } 80 81 void rdt_staged_configs_clear(void) 82 { 83 struct rdt_resource *r; 84 struct rdt_domain *dom; 85 86 lockdep_assert_held(&rdtgroup_mutex); 87 88 for_each_alloc_capable_rdt_resource(r) { 89 list_for_each_entry(dom, &r->domains, list) 90 memset(dom->staged_config, 0, sizeof(dom->staged_config)); 91 } 92 } 93 94 /* 95 * Trivial allocator for CLOSIDs. Since h/w only supports a small number, 96 * we can keep a bitmap of free CLOSIDs in a single integer. 97 * 98 * Using a global CLOSID across all resources has some advantages and 99 * some drawbacks: 100 * + We can simply set "current->closid" to assign a task to a resource 101 * group. 102 * + Context switch code can avoid extra memory references deciding which 103 * CLOSID to load into the PQR_ASSOC MSR 104 * - We give up some options in configuring resource groups across multi-socket 105 * systems. 106 * - Our choices on how to configure each resource become progressively more 107 * limited as the number of resources grows. 108 */ 109 static int closid_free_map; 110 static int closid_free_map_len; 111 112 int closids_supported(void) 113 { 114 return closid_free_map_len; 115 } 116 117 static void closid_init(void) 118 { 119 struct resctrl_schema *s; 120 u32 rdt_min_closid = 32; 121 122 /* Compute rdt_min_closid across all resources */ 123 list_for_each_entry(s, &resctrl_schema_all, list) 124 rdt_min_closid = min(rdt_min_closid, s->num_closid); 125 126 closid_free_map = BIT_MASK(rdt_min_closid) - 1; 127 128 /* CLOSID 0 is always reserved for the default group */ 129 closid_free_map &= ~1; 130 closid_free_map_len = rdt_min_closid; 131 } 132 133 static int closid_alloc(void) 134 { 135 u32 closid = ffs(closid_free_map); 136 137 if (closid == 0) 138 return -ENOSPC; 139 closid--; 140 closid_free_map &= ~(1 << closid); 141 142 return closid; 143 } 144 145 void closid_free(int closid) 146 { 147 closid_free_map |= 1 << closid; 148 } 149 150 /** 151 * closid_allocated - test if provided closid is in use 152 * @closid: closid to be tested 153 * 154 * Return: true if @closid is currently associated with a resource group, 155 * false if @closid is free 156 */ 157 static bool closid_allocated(unsigned int closid) 158 { 159 return (closid_free_map & (1 << closid)) == 0; 160 } 161 162 /** 163 * rdtgroup_mode_by_closid - Return mode of resource group with closid 164 * @closid: closid if the resource group 165 * 166 * Each resource group is associated with a @closid. Here the mode 167 * of a resource group can be queried by searching for it using its closid. 168 * 169 * Return: mode as &enum rdtgrp_mode of resource group with closid @closid 170 */ 171 enum rdtgrp_mode rdtgroup_mode_by_closid(int closid) 172 { 173 struct rdtgroup *rdtgrp; 174 175 list_for_each_entry(rdtgrp, &rdt_all_groups, rdtgroup_list) { 176 if (rdtgrp->closid == closid) 177 return rdtgrp->mode; 178 } 179 180 return RDT_NUM_MODES; 181 } 182 183 static const char * const rdt_mode_str[] = { 184 [RDT_MODE_SHAREABLE] = "shareable", 185 [RDT_MODE_EXCLUSIVE] = "exclusive", 186 [RDT_MODE_PSEUDO_LOCKSETUP] = "pseudo-locksetup", 187 [RDT_MODE_PSEUDO_LOCKED] = "pseudo-locked", 188 }; 189 190 /** 191 * rdtgroup_mode_str - Return the string representation of mode 192 * @mode: the resource group mode as &enum rdtgroup_mode 193 * 194 * Return: string representation of valid mode, "unknown" otherwise 195 */ 196 static const char *rdtgroup_mode_str(enum rdtgrp_mode mode) 197 { 198 if (mode < RDT_MODE_SHAREABLE || mode >= RDT_NUM_MODES) 199 return "unknown"; 200 201 return rdt_mode_str[mode]; 202 } 203 204 /* set uid and gid of rdtgroup dirs and files to that of the creator */ 205 static int rdtgroup_kn_set_ugid(struct kernfs_node *kn) 206 { 207 struct iattr iattr = { .ia_valid = ATTR_UID | ATTR_GID, 208 .ia_uid = current_fsuid(), 209 .ia_gid = current_fsgid(), }; 210 211 if (uid_eq(iattr.ia_uid, GLOBAL_ROOT_UID) && 212 gid_eq(iattr.ia_gid, GLOBAL_ROOT_GID)) 213 return 0; 214 215 return kernfs_setattr(kn, &iattr); 216 } 217 218 static int rdtgroup_add_file(struct kernfs_node *parent_kn, struct rftype *rft) 219 { 220 struct kernfs_node *kn; 221 int ret; 222 223 kn = __kernfs_create_file(parent_kn, rft->name, rft->mode, 224 GLOBAL_ROOT_UID, GLOBAL_ROOT_GID, 225 0, rft->kf_ops, rft, NULL, NULL); 226 if (IS_ERR(kn)) 227 return PTR_ERR(kn); 228 229 ret = rdtgroup_kn_set_ugid(kn); 230 if (ret) { 231 kernfs_remove(kn); 232 return ret; 233 } 234 235 return 0; 236 } 237 238 static int rdtgroup_seqfile_show(struct seq_file *m, void *arg) 239 { 240 struct kernfs_open_file *of = m->private; 241 struct rftype *rft = of->kn->priv; 242 243 if (rft->seq_show) 244 return rft->seq_show(of, m, arg); 245 return 0; 246 } 247 248 static ssize_t rdtgroup_file_write(struct kernfs_open_file *of, char *buf, 249 size_t nbytes, loff_t off) 250 { 251 struct rftype *rft = of->kn->priv; 252 253 if (rft->write) 254 return rft->write(of, buf, nbytes, off); 255 256 return -EINVAL; 257 } 258 259 static const struct kernfs_ops rdtgroup_kf_single_ops = { 260 .atomic_write_len = PAGE_SIZE, 261 .write = rdtgroup_file_write, 262 .seq_show = rdtgroup_seqfile_show, 263 }; 264 265 static const struct kernfs_ops kf_mondata_ops = { 266 .atomic_write_len = PAGE_SIZE, 267 .seq_show = rdtgroup_mondata_show, 268 }; 269 270 static bool is_cpu_list(struct kernfs_open_file *of) 271 { 272 struct rftype *rft = of->kn->priv; 273 274 return rft->flags & RFTYPE_FLAGS_CPUS_LIST; 275 } 276 277 static int rdtgroup_cpus_show(struct kernfs_open_file *of, 278 struct seq_file *s, void *v) 279 { 280 struct rdtgroup *rdtgrp; 281 struct cpumask *mask; 282 int ret = 0; 283 284 rdtgrp = rdtgroup_kn_lock_live(of->kn); 285 286 if (rdtgrp) { 287 if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED) { 288 if (!rdtgrp->plr->d) { 289 rdt_last_cmd_clear(); 290 rdt_last_cmd_puts("Cache domain offline\n"); 291 ret = -ENODEV; 292 } else { 293 mask = &rdtgrp->plr->d->cpu_mask; 294 seq_printf(s, is_cpu_list(of) ? 295 "%*pbl\n" : "%*pb\n", 296 cpumask_pr_args(mask)); 297 } 298 } else { 299 seq_printf(s, is_cpu_list(of) ? "%*pbl\n" : "%*pb\n", 300 cpumask_pr_args(&rdtgrp->cpu_mask)); 301 } 302 } else { 303 ret = -ENOENT; 304 } 305 rdtgroup_kn_unlock(of->kn); 306 307 return ret; 308 } 309 310 /* 311 * This is safe against resctrl_sched_in() called from __switch_to() 312 * because __switch_to() is executed with interrupts disabled. A local call 313 * from update_closid_rmid() is protected against __switch_to() because 314 * preemption is disabled. 315 */ 316 static void update_cpu_closid_rmid(void *info) 317 { 318 struct rdtgroup *r = info; 319 320 if (r) { 321 this_cpu_write(pqr_state.default_closid, r->closid); 322 this_cpu_write(pqr_state.default_rmid, r->mon.rmid); 323 } 324 325 /* 326 * We cannot unconditionally write the MSR because the current 327 * executing task might have its own closid selected. Just reuse 328 * the context switch code. 329 */ 330 resctrl_sched_in(current); 331 } 332 333 /* 334 * Update the PGR_ASSOC MSR on all cpus in @cpu_mask, 335 * 336 * Per task closids/rmids must have been set up before calling this function. 337 */ 338 static void 339 update_closid_rmid(const struct cpumask *cpu_mask, struct rdtgroup *r) 340 { 341 on_each_cpu_mask(cpu_mask, update_cpu_closid_rmid, r, 1); 342 } 343 344 static int cpus_mon_write(struct rdtgroup *rdtgrp, cpumask_var_t newmask, 345 cpumask_var_t tmpmask) 346 { 347 struct rdtgroup *prgrp = rdtgrp->mon.parent, *crgrp; 348 struct list_head *head; 349 350 /* Check whether cpus belong to parent ctrl group */ 351 cpumask_andnot(tmpmask, newmask, &prgrp->cpu_mask); 352 if (!cpumask_empty(tmpmask)) { 353 rdt_last_cmd_puts("Can only add CPUs to mongroup that belong to parent\n"); 354 return -EINVAL; 355 } 356 357 /* Check whether cpus are dropped from this group */ 358 cpumask_andnot(tmpmask, &rdtgrp->cpu_mask, newmask); 359 if (!cpumask_empty(tmpmask)) { 360 /* Give any dropped cpus to parent rdtgroup */ 361 cpumask_or(&prgrp->cpu_mask, &prgrp->cpu_mask, tmpmask); 362 update_closid_rmid(tmpmask, prgrp); 363 } 364 365 /* 366 * If we added cpus, remove them from previous group that owned them 367 * and update per-cpu rmid 368 */ 369 cpumask_andnot(tmpmask, newmask, &rdtgrp->cpu_mask); 370 if (!cpumask_empty(tmpmask)) { 371 head = &prgrp->mon.crdtgrp_list; 372 list_for_each_entry(crgrp, head, mon.crdtgrp_list) { 373 if (crgrp == rdtgrp) 374 continue; 375 cpumask_andnot(&crgrp->cpu_mask, &crgrp->cpu_mask, 376 tmpmask); 377 } 378 update_closid_rmid(tmpmask, rdtgrp); 379 } 380 381 /* Done pushing/pulling - update this group with new mask */ 382 cpumask_copy(&rdtgrp->cpu_mask, newmask); 383 384 return 0; 385 } 386 387 static void cpumask_rdtgrp_clear(struct rdtgroup *r, struct cpumask *m) 388 { 389 struct rdtgroup *crgrp; 390 391 cpumask_andnot(&r->cpu_mask, &r->cpu_mask, m); 392 /* update the child mon group masks as well*/ 393 list_for_each_entry(crgrp, &r->mon.crdtgrp_list, mon.crdtgrp_list) 394 cpumask_and(&crgrp->cpu_mask, &r->cpu_mask, &crgrp->cpu_mask); 395 } 396 397 static int cpus_ctrl_write(struct rdtgroup *rdtgrp, cpumask_var_t newmask, 398 cpumask_var_t tmpmask, cpumask_var_t tmpmask1) 399 { 400 struct rdtgroup *r, *crgrp; 401 struct list_head *head; 402 403 /* Check whether cpus are dropped from this group */ 404 cpumask_andnot(tmpmask, &rdtgrp->cpu_mask, newmask); 405 if (!cpumask_empty(tmpmask)) { 406 /* Can't drop from default group */ 407 if (rdtgrp == &rdtgroup_default) { 408 rdt_last_cmd_puts("Can't drop CPUs from default group\n"); 409 return -EINVAL; 410 } 411 412 /* Give any dropped cpus to rdtgroup_default */ 413 cpumask_or(&rdtgroup_default.cpu_mask, 414 &rdtgroup_default.cpu_mask, tmpmask); 415 update_closid_rmid(tmpmask, &rdtgroup_default); 416 } 417 418 /* 419 * If we added cpus, remove them from previous group and 420 * the prev group's child groups that owned them 421 * and update per-cpu closid/rmid. 422 */ 423 cpumask_andnot(tmpmask, newmask, &rdtgrp->cpu_mask); 424 if (!cpumask_empty(tmpmask)) { 425 list_for_each_entry(r, &rdt_all_groups, rdtgroup_list) { 426 if (r == rdtgrp) 427 continue; 428 cpumask_and(tmpmask1, &r->cpu_mask, tmpmask); 429 if (!cpumask_empty(tmpmask1)) 430 cpumask_rdtgrp_clear(r, tmpmask1); 431 } 432 update_closid_rmid(tmpmask, rdtgrp); 433 } 434 435 /* Done pushing/pulling - update this group with new mask */ 436 cpumask_copy(&rdtgrp->cpu_mask, newmask); 437 438 /* 439 * Clear child mon group masks since there is a new parent mask 440 * now and update the rmid for the cpus the child lost. 441 */ 442 head = &rdtgrp->mon.crdtgrp_list; 443 list_for_each_entry(crgrp, head, mon.crdtgrp_list) { 444 cpumask_and(tmpmask, &rdtgrp->cpu_mask, &crgrp->cpu_mask); 445 update_closid_rmid(tmpmask, rdtgrp); 446 cpumask_clear(&crgrp->cpu_mask); 447 } 448 449 return 0; 450 } 451 452 static ssize_t rdtgroup_cpus_write(struct kernfs_open_file *of, 453 char *buf, size_t nbytes, loff_t off) 454 { 455 cpumask_var_t tmpmask, newmask, tmpmask1; 456 struct rdtgroup *rdtgrp; 457 int ret; 458 459 if (!buf) 460 return -EINVAL; 461 462 if (!zalloc_cpumask_var(&tmpmask, GFP_KERNEL)) 463 return -ENOMEM; 464 if (!zalloc_cpumask_var(&newmask, GFP_KERNEL)) { 465 free_cpumask_var(tmpmask); 466 return -ENOMEM; 467 } 468 if (!zalloc_cpumask_var(&tmpmask1, GFP_KERNEL)) { 469 free_cpumask_var(tmpmask); 470 free_cpumask_var(newmask); 471 return -ENOMEM; 472 } 473 474 rdtgrp = rdtgroup_kn_lock_live(of->kn); 475 if (!rdtgrp) { 476 ret = -ENOENT; 477 goto unlock; 478 } 479 480 if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED || 481 rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP) { 482 ret = -EINVAL; 483 rdt_last_cmd_puts("Pseudo-locking in progress\n"); 484 goto unlock; 485 } 486 487 if (is_cpu_list(of)) 488 ret = cpulist_parse(buf, newmask); 489 else 490 ret = cpumask_parse(buf, newmask); 491 492 if (ret) { 493 rdt_last_cmd_puts("Bad CPU list/mask\n"); 494 goto unlock; 495 } 496 497 /* check that user didn't specify any offline cpus */ 498 cpumask_andnot(tmpmask, newmask, cpu_online_mask); 499 if (!cpumask_empty(tmpmask)) { 500 ret = -EINVAL; 501 rdt_last_cmd_puts("Can only assign online CPUs\n"); 502 goto unlock; 503 } 504 505 if (rdtgrp->type == RDTCTRL_GROUP) 506 ret = cpus_ctrl_write(rdtgrp, newmask, tmpmask, tmpmask1); 507 else if (rdtgrp->type == RDTMON_GROUP) 508 ret = cpus_mon_write(rdtgrp, newmask, tmpmask); 509 else 510 ret = -EINVAL; 511 512 unlock: 513 rdtgroup_kn_unlock(of->kn); 514 free_cpumask_var(tmpmask); 515 free_cpumask_var(newmask); 516 free_cpumask_var(tmpmask1); 517 518 return ret ?: nbytes; 519 } 520 521 /** 522 * rdtgroup_remove - the helper to remove resource group safely 523 * @rdtgrp: resource group to remove 524 * 525 * On resource group creation via a mkdir, an extra kernfs_node reference is 526 * taken to ensure that the rdtgroup structure remains accessible for the 527 * rdtgroup_kn_unlock() calls where it is removed. 528 * 529 * Drop the extra reference here, then free the rdtgroup structure. 530 * 531 * Return: void 532 */ 533 static void rdtgroup_remove(struct rdtgroup *rdtgrp) 534 { 535 kernfs_put(rdtgrp->kn); 536 kfree(rdtgrp); 537 } 538 539 static void _update_task_closid_rmid(void *task) 540 { 541 /* 542 * If the task is still current on this CPU, update PQR_ASSOC MSR. 543 * Otherwise, the MSR is updated when the task is scheduled in. 544 */ 545 if (task == current) 546 resctrl_sched_in(task); 547 } 548 549 static void update_task_closid_rmid(struct task_struct *t) 550 { 551 if (IS_ENABLED(CONFIG_SMP) && task_curr(t)) 552 smp_call_function_single(task_cpu(t), _update_task_closid_rmid, t, 1); 553 else 554 _update_task_closid_rmid(t); 555 } 556 557 static int __rdtgroup_move_task(struct task_struct *tsk, 558 struct rdtgroup *rdtgrp) 559 { 560 /* If the task is already in rdtgrp, no need to move the task. */ 561 if ((rdtgrp->type == RDTCTRL_GROUP && tsk->closid == rdtgrp->closid && 562 tsk->rmid == rdtgrp->mon.rmid) || 563 (rdtgrp->type == RDTMON_GROUP && tsk->rmid == rdtgrp->mon.rmid && 564 tsk->closid == rdtgrp->mon.parent->closid)) 565 return 0; 566 567 /* 568 * Set the task's closid/rmid before the PQR_ASSOC MSR can be 569 * updated by them. 570 * 571 * For ctrl_mon groups, move both closid and rmid. 572 * For monitor groups, can move the tasks only from 573 * their parent CTRL group. 574 */ 575 576 if (rdtgrp->type == RDTCTRL_GROUP) { 577 WRITE_ONCE(tsk->closid, rdtgrp->closid); 578 WRITE_ONCE(tsk->rmid, rdtgrp->mon.rmid); 579 } else if (rdtgrp->type == RDTMON_GROUP) { 580 if (rdtgrp->mon.parent->closid == tsk->closid) { 581 WRITE_ONCE(tsk->rmid, rdtgrp->mon.rmid); 582 } else { 583 rdt_last_cmd_puts("Can't move task to different control group\n"); 584 return -EINVAL; 585 } 586 } 587 588 /* 589 * Ensure the task's closid and rmid are written before determining if 590 * the task is current that will decide if it will be interrupted. 591 * This pairs with the full barrier between the rq->curr update and 592 * resctrl_sched_in() during context switch. 593 */ 594 smp_mb(); 595 596 /* 597 * By now, the task's closid and rmid are set. If the task is current 598 * on a CPU, the PQR_ASSOC MSR needs to be updated to make the resource 599 * group go into effect. If the task is not current, the MSR will be 600 * updated when the task is scheduled in. 601 */ 602 update_task_closid_rmid(tsk); 603 604 return 0; 605 } 606 607 static bool is_closid_match(struct task_struct *t, struct rdtgroup *r) 608 { 609 return (rdt_alloc_capable && 610 (r->type == RDTCTRL_GROUP) && (t->closid == r->closid)); 611 } 612 613 static bool is_rmid_match(struct task_struct *t, struct rdtgroup *r) 614 { 615 return (rdt_mon_capable && 616 (r->type == RDTMON_GROUP) && (t->rmid == r->mon.rmid)); 617 } 618 619 /** 620 * rdtgroup_tasks_assigned - Test if tasks have been assigned to resource group 621 * @r: Resource group 622 * 623 * Return: 1 if tasks have been assigned to @r, 0 otherwise 624 */ 625 int rdtgroup_tasks_assigned(struct rdtgroup *r) 626 { 627 struct task_struct *p, *t; 628 int ret = 0; 629 630 lockdep_assert_held(&rdtgroup_mutex); 631 632 rcu_read_lock(); 633 for_each_process_thread(p, t) { 634 if (is_closid_match(t, r) || is_rmid_match(t, r)) { 635 ret = 1; 636 break; 637 } 638 } 639 rcu_read_unlock(); 640 641 return ret; 642 } 643 644 static int rdtgroup_task_write_permission(struct task_struct *task, 645 struct kernfs_open_file *of) 646 { 647 const struct cred *tcred = get_task_cred(task); 648 const struct cred *cred = current_cred(); 649 int ret = 0; 650 651 /* 652 * Even if we're attaching all tasks in the thread group, we only 653 * need to check permissions on one of them. 654 */ 655 if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) && 656 !uid_eq(cred->euid, tcred->uid) && 657 !uid_eq(cred->euid, tcred->suid)) { 658 rdt_last_cmd_printf("No permission to move task %d\n", task->pid); 659 ret = -EPERM; 660 } 661 662 put_cred(tcred); 663 return ret; 664 } 665 666 static int rdtgroup_move_task(pid_t pid, struct rdtgroup *rdtgrp, 667 struct kernfs_open_file *of) 668 { 669 struct task_struct *tsk; 670 int ret; 671 672 rcu_read_lock(); 673 if (pid) { 674 tsk = find_task_by_vpid(pid); 675 if (!tsk) { 676 rcu_read_unlock(); 677 rdt_last_cmd_printf("No task %d\n", pid); 678 return -ESRCH; 679 } 680 } else { 681 tsk = current; 682 } 683 684 get_task_struct(tsk); 685 rcu_read_unlock(); 686 687 ret = rdtgroup_task_write_permission(tsk, of); 688 if (!ret) 689 ret = __rdtgroup_move_task(tsk, rdtgrp); 690 691 put_task_struct(tsk); 692 return ret; 693 } 694 695 static ssize_t rdtgroup_tasks_write(struct kernfs_open_file *of, 696 char *buf, size_t nbytes, loff_t off) 697 { 698 struct rdtgroup *rdtgrp; 699 int ret = 0; 700 pid_t pid; 701 702 if (kstrtoint(strstrip(buf), 0, &pid) || pid < 0) 703 return -EINVAL; 704 rdtgrp = rdtgroup_kn_lock_live(of->kn); 705 if (!rdtgrp) { 706 rdtgroup_kn_unlock(of->kn); 707 return -ENOENT; 708 } 709 rdt_last_cmd_clear(); 710 711 if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED || 712 rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP) { 713 ret = -EINVAL; 714 rdt_last_cmd_puts("Pseudo-locking in progress\n"); 715 goto unlock; 716 } 717 718 ret = rdtgroup_move_task(pid, rdtgrp, of); 719 720 unlock: 721 rdtgroup_kn_unlock(of->kn); 722 723 return ret ?: nbytes; 724 } 725 726 static void show_rdt_tasks(struct rdtgroup *r, struct seq_file *s) 727 { 728 struct task_struct *p, *t; 729 pid_t pid; 730 731 rcu_read_lock(); 732 for_each_process_thread(p, t) { 733 if (is_closid_match(t, r) || is_rmid_match(t, r)) { 734 pid = task_pid_vnr(t); 735 if (pid) 736 seq_printf(s, "%d\n", pid); 737 } 738 } 739 rcu_read_unlock(); 740 } 741 742 static int rdtgroup_tasks_show(struct kernfs_open_file *of, 743 struct seq_file *s, void *v) 744 { 745 struct rdtgroup *rdtgrp; 746 int ret = 0; 747 748 rdtgrp = rdtgroup_kn_lock_live(of->kn); 749 if (rdtgrp) 750 show_rdt_tasks(rdtgrp, s); 751 else 752 ret = -ENOENT; 753 rdtgroup_kn_unlock(of->kn); 754 755 return ret; 756 } 757 758 #ifdef CONFIG_PROC_CPU_RESCTRL 759 760 /* 761 * A task can only be part of one resctrl control group and of one monitor 762 * group which is associated to that control group. 763 * 764 * 1) res: 765 * mon: 766 * 767 * resctrl is not available. 768 * 769 * 2) res:/ 770 * mon: 771 * 772 * Task is part of the root resctrl control group, and it is not associated 773 * to any monitor group. 774 * 775 * 3) res:/ 776 * mon:mon0 777 * 778 * Task is part of the root resctrl control group and monitor group mon0. 779 * 780 * 4) res:group0 781 * mon: 782 * 783 * Task is part of resctrl control group group0, and it is not associated 784 * to any monitor group. 785 * 786 * 5) res:group0 787 * mon:mon1 788 * 789 * Task is part of resctrl control group group0 and monitor group mon1. 790 */ 791 int proc_resctrl_show(struct seq_file *s, struct pid_namespace *ns, 792 struct pid *pid, struct task_struct *tsk) 793 { 794 struct rdtgroup *rdtg; 795 int ret = 0; 796 797 mutex_lock(&rdtgroup_mutex); 798 799 /* Return empty if resctrl has not been mounted. */ 800 if (!static_branch_unlikely(&rdt_enable_key)) { 801 seq_puts(s, "res:\nmon:\n"); 802 goto unlock; 803 } 804 805 list_for_each_entry(rdtg, &rdt_all_groups, rdtgroup_list) { 806 struct rdtgroup *crg; 807 808 /* 809 * Task information is only relevant for shareable 810 * and exclusive groups. 811 */ 812 if (rdtg->mode != RDT_MODE_SHAREABLE && 813 rdtg->mode != RDT_MODE_EXCLUSIVE) 814 continue; 815 816 if (rdtg->closid != tsk->closid) 817 continue; 818 819 seq_printf(s, "res:%s%s\n", (rdtg == &rdtgroup_default) ? "/" : "", 820 rdtg->kn->name); 821 seq_puts(s, "mon:"); 822 list_for_each_entry(crg, &rdtg->mon.crdtgrp_list, 823 mon.crdtgrp_list) { 824 if (tsk->rmid != crg->mon.rmid) 825 continue; 826 seq_printf(s, "%s", crg->kn->name); 827 break; 828 } 829 seq_putc(s, '\n'); 830 goto unlock; 831 } 832 /* 833 * The above search should succeed. Otherwise return 834 * with an error. 835 */ 836 ret = -ENOENT; 837 unlock: 838 mutex_unlock(&rdtgroup_mutex); 839 840 return ret; 841 } 842 #endif 843 844 static int rdt_last_cmd_status_show(struct kernfs_open_file *of, 845 struct seq_file *seq, void *v) 846 { 847 int len; 848 849 mutex_lock(&rdtgroup_mutex); 850 len = seq_buf_used(&last_cmd_status); 851 if (len) 852 seq_printf(seq, "%.*s", len, last_cmd_status_buf); 853 else 854 seq_puts(seq, "ok\n"); 855 mutex_unlock(&rdtgroup_mutex); 856 return 0; 857 } 858 859 static int rdt_num_closids_show(struct kernfs_open_file *of, 860 struct seq_file *seq, void *v) 861 { 862 struct resctrl_schema *s = of->kn->parent->priv; 863 864 seq_printf(seq, "%u\n", s->num_closid); 865 return 0; 866 } 867 868 static int rdt_default_ctrl_show(struct kernfs_open_file *of, 869 struct seq_file *seq, void *v) 870 { 871 struct resctrl_schema *s = of->kn->parent->priv; 872 struct rdt_resource *r = s->res; 873 874 seq_printf(seq, "%x\n", r->default_ctrl); 875 return 0; 876 } 877 878 static int rdt_min_cbm_bits_show(struct kernfs_open_file *of, 879 struct seq_file *seq, void *v) 880 { 881 struct resctrl_schema *s = of->kn->parent->priv; 882 struct rdt_resource *r = s->res; 883 884 seq_printf(seq, "%u\n", r->cache.min_cbm_bits); 885 return 0; 886 } 887 888 static int rdt_shareable_bits_show(struct kernfs_open_file *of, 889 struct seq_file *seq, void *v) 890 { 891 struct resctrl_schema *s = of->kn->parent->priv; 892 struct rdt_resource *r = s->res; 893 894 seq_printf(seq, "%x\n", r->cache.shareable_bits); 895 return 0; 896 } 897 898 /** 899 * rdt_bit_usage_show - Display current usage of resources 900 * 901 * A domain is a shared resource that can now be allocated differently. Here 902 * we display the current regions of the domain as an annotated bitmask. 903 * For each domain of this resource its allocation bitmask 904 * is annotated as below to indicate the current usage of the corresponding bit: 905 * 0 - currently unused 906 * X - currently available for sharing and used by software and hardware 907 * H - currently used by hardware only but available for software use 908 * S - currently used and shareable by software only 909 * E - currently used exclusively by one resource group 910 * P - currently pseudo-locked by one resource group 911 */ 912 static int rdt_bit_usage_show(struct kernfs_open_file *of, 913 struct seq_file *seq, void *v) 914 { 915 struct resctrl_schema *s = of->kn->parent->priv; 916 /* 917 * Use unsigned long even though only 32 bits are used to ensure 918 * test_bit() is used safely. 919 */ 920 unsigned long sw_shareable = 0, hw_shareable = 0; 921 unsigned long exclusive = 0, pseudo_locked = 0; 922 struct rdt_resource *r = s->res; 923 struct rdt_domain *dom; 924 int i, hwb, swb, excl, psl; 925 enum rdtgrp_mode mode; 926 bool sep = false; 927 u32 ctrl_val; 928 929 mutex_lock(&rdtgroup_mutex); 930 hw_shareable = r->cache.shareable_bits; 931 list_for_each_entry(dom, &r->domains, list) { 932 if (sep) 933 seq_putc(seq, ';'); 934 sw_shareable = 0; 935 exclusive = 0; 936 seq_printf(seq, "%d=", dom->id); 937 for (i = 0; i < closids_supported(); i++) { 938 if (!closid_allocated(i)) 939 continue; 940 ctrl_val = resctrl_arch_get_config(r, dom, i, 941 s->conf_type); 942 mode = rdtgroup_mode_by_closid(i); 943 switch (mode) { 944 case RDT_MODE_SHAREABLE: 945 sw_shareable |= ctrl_val; 946 break; 947 case RDT_MODE_EXCLUSIVE: 948 exclusive |= ctrl_val; 949 break; 950 case RDT_MODE_PSEUDO_LOCKSETUP: 951 /* 952 * RDT_MODE_PSEUDO_LOCKSETUP is possible 953 * here but not included since the CBM 954 * associated with this CLOSID in this mode 955 * is not initialized and no task or cpu can be 956 * assigned this CLOSID. 957 */ 958 break; 959 case RDT_MODE_PSEUDO_LOCKED: 960 case RDT_NUM_MODES: 961 WARN(1, 962 "invalid mode for closid %d\n", i); 963 break; 964 } 965 } 966 for (i = r->cache.cbm_len - 1; i >= 0; i--) { 967 pseudo_locked = dom->plr ? dom->plr->cbm : 0; 968 hwb = test_bit(i, &hw_shareable); 969 swb = test_bit(i, &sw_shareable); 970 excl = test_bit(i, &exclusive); 971 psl = test_bit(i, &pseudo_locked); 972 if (hwb && swb) 973 seq_putc(seq, 'X'); 974 else if (hwb && !swb) 975 seq_putc(seq, 'H'); 976 else if (!hwb && swb) 977 seq_putc(seq, 'S'); 978 else if (excl) 979 seq_putc(seq, 'E'); 980 else if (psl) 981 seq_putc(seq, 'P'); 982 else /* Unused bits remain */ 983 seq_putc(seq, '0'); 984 } 985 sep = true; 986 } 987 seq_putc(seq, '\n'); 988 mutex_unlock(&rdtgroup_mutex); 989 return 0; 990 } 991 992 static int rdt_min_bw_show(struct kernfs_open_file *of, 993 struct seq_file *seq, void *v) 994 { 995 struct resctrl_schema *s = of->kn->parent->priv; 996 struct rdt_resource *r = s->res; 997 998 seq_printf(seq, "%u\n", r->membw.min_bw); 999 return 0; 1000 } 1001 1002 static int rdt_num_rmids_show(struct kernfs_open_file *of, 1003 struct seq_file *seq, void *v) 1004 { 1005 struct rdt_resource *r = of->kn->parent->priv; 1006 1007 seq_printf(seq, "%d\n", r->num_rmid); 1008 1009 return 0; 1010 } 1011 1012 static int rdt_mon_features_show(struct kernfs_open_file *of, 1013 struct seq_file *seq, void *v) 1014 { 1015 struct rdt_resource *r = of->kn->parent->priv; 1016 struct mon_evt *mevt; 1017 1018 list_for_each_entry(mevt, &r->evt_list, list) { 1019 seq_printf(seq, "%s\n", mevt->name); 1020 if (mevt->configurable) 1021 seq_printf(seq, "%s_config\n", mevt->name); 1022 } 1023 1024 return 0; 1025 } 1026 1027 static int rdt_bw_gran_show(struct kernfs_open_file *of, 1028 struct seq_file *seq, void *v) 1029 { 1030 struct resctrl_schema *s = of->kn->parent->priv; 1031 struct rdt_resource *r = s->res; 1032 1033 seq_printf(seq, "%u\n", r->membw.bw_gran); 1034 return 0; 1035 } 1036 1037 static int rdt_delay_linear_show(struct kernfs_open_file *of, 1038 struct seq_file *seq, void *v) 1039 { 1040 struct resctrl_schema *s = of->kn->parent->priv; 1041 struct rdt_resource *r = s->res; 1042 1043 seq_printf(seq, "%u\n", r->membw.delay_linear); 1044 return 0; 1045 } 1046 1047 static int max_threshold_occ_show(struct kernfs_open_file *of, 1048 struct seq_file *seq, void *v) 1049 { 1050 seq_printf(seq, "%u\n", resctrl_rmid_realloc_threshold); 1051 1052 return 0; 1053 } 1054 1055 static int rdt_thread_throttle_mode_show(struct kernfs_open_file *of, 1056 struct seq_file *seq, void *v) 1057 { 1058 struct resctrl_schema *s = of->kn->parent->priv; 1059 struct rdt_resource *r = s->res; 1060 1061 if (r->membw.throttle_mode == THREAD_THROTTLE_PER_THREAD) 1062 seq_puts(seq, "per-thread\n"); 1063 else 1064 seq_puts(seq, "max\n"); 1065 1066 return 0; 1067 } 1068 1069 static ssize_t max_threshold_occ_write(struct kernfs_open_file *of, 1070 char *buf, size_t nbytes, loff_t off) 1071 { 1072 unsigned int bytes; 1073 int ret; 1074 1075 ret = kstrtouint(buf, 0, &bytes); 1076 if (ret) 1077 return ret; 1078 1079 if (bytes > resctrl_rmid_realloc_limit) 1080 return -EINVAL; 1081 1082 resctrl_rmid_realloc_threshold = resctrl_arch_round_mon_val(bytes); 1083 1084 return nbytes; 1085 } 1086 1087 /* 1088 * rdtgroup_mode_show - Display mode of this resource group 1089 */ 1090 static int rdtgroup_mode_show(struct kernfs_open_file *of, 1091 struct seq_file *s, void *v) 1092 { 1093 struct rdtgroup *rdtgrp; 1094 1095 rdtgrp = rdtgroup_kn_lock_live(of->kn); 1096 if (!rdtgrp) { 1097 rdtgroup_kn_unlock(of->kn); 1098 return -ENOENT; 1099 } 1100 1101 seq_printf(s, "%s\n", rdtgroup_mode_str(rdtgrp->mode)); 1102 1103 rdtgroup_kn_unlock(of->kn); 1104 return 0; 1105 } 1106 1107 static enum resctrl_conf_type resctrl_peer_type(enum resctrl_conf_type my_type) 1108 { 1109 switch (my_type) { 1110 case CDP_CODE: 1111 return CDP_DATA; 1112 case CDP_DATA: 1113 return CDP_CODE; 1114 default: 1115 case CDP_NONE: 1116 return CDP_NONE; 1117 } 1118 } 1119 1120 /** 1121 * __rdtgroup_cbm_overlaps - Does CBM for intended closid overlap with other 1122 * @r: Resource to which domain instance @d belongs. 1123 * @d: The domain instance for which @closid is being tested. 1124 * @cbm: Capacity bitmask being tested. 1125 * @closid: Intended closid for @cbm. 1126 * @exclusive: Only check if overlaps with exclusive resource groups 1127 * 1128 * Checks if provided @cbm intended to be used for @closid on domain 1129 * @d overlaps with any other closids or other hardware usage associated 1130 * with this domain. If @exclusive is true then only overlaps with 1131 * resource groups in exclusive mode will be considered. If @exclusive 1132 * is false then overlaps with any resource group or hardware entities 1133 * will be considered. 1134 * 1135 * @cbm is unsigned long, even if only 32 bits are used, to make the 1136 * bitmap functions work correctly. 1137 * 1138 * Return: false if CBM does not overlap, true if it does. 1139 */ 1140 static bool __rdtgroup_cbm_overlaps(struct rdt_resource *r, struct rdt_domain *d, 1141 unsigned long cbm, int closid, 1142 enum resctrl_conf_type type, bool exclusive) 1143 { 1144 enum rdtgrp_mode mode; 1145 unsigned long ctrl_b; 1146 int i; 1147 1148 /* Check for any overlap with regions used by hardware directly */ 1149 if (!exclusive) { 1150 ctrl_b = r->cache.shareable_bits; 1151 if (bitmap_intersects(&cbm, &ctrl_b, r->cache.cbm_len)) 1152 return true; 1153 } 1154 1155 /* Check for overlap with other resource groups */ 1156 for (i = 0; i < closids_supported(); i++) { 1157 ctrl_b = resctrl_arch_get_config(r, d, i, type); 1158 mode = rdtgroup_mode_by_closid(i); 1159 if (closid_allocated(i) && i != closid && 1160 mode != RDT_MODE_PSEUDO_LOCKSETUP) { 1161 if (bitmap_intersects(&cbm, &ctrl_b, r->cache.cbm_len)) { 1162 if (exclusive) { 1163 if (mode == RDT_MODE_EXCLUSIVE) 1164 return true; 1165 continue; 1166 } 1167 return true; 1168 } 1169 } 1170 } 1171 1172 return false; 1173 } 1174 1175 /** 1176 * rdtgroup_cbm_overlaps - Does CBM overlap with other use of hardware 1177 * @s: Schema for the resource to which domain instance @d belongs. 1178 * @d: The domain instance for which @closid is being tested. 1179 * @cbm: Capacity bitmask being tested. 1180 * @closid: Intended closid for @cbm. 1181 * @exclusive: Only check if overlaps with exclusive resource groups 1182 * 1183 * Resources that can be allocated using a CBM can use the CBM to control 1184 * the overlap of these allocations. rdtgroup_cmb_overlaps() is the test 1185 * for overlap. Overlap test is not limited to the specific resource for 1186 * which the CBM is intended though - when dealing with CDP resources that 1187 * share the underlying hardware the overlap check should be performed on 1188 * the CDP resource sharing the hardware also. 1189 * 1190 * Refer to description of __rdtgroup_cbm_overlaps() for the details of the 1191 * overlap test. 1192 * 1193 * Return: true if CBM overlap detected, false if there is no overlap 1194 */ 1195 bool rdtgroup_cbm_overlaps(struct resctrl_schema *s, struct rdt_domain *d, 1196 unsigned long cbm, int closid, bool exclusive) 1197 { 1198 enum resctrl_conf_type peer_type = resctrl_peer_type(s->conf_type); 1199 struct rdt_resource *r = s->res; 1200 1201 if (__rdtgroup_cbm_overlaps(r, d, cbm, closid, s->conf_type, 1202 exclusive)) 1203 return true; 1204 1205 if (!resctrl_arch_get_cdp_enabled(r->rid)) 1206 return false; 1207 return __rdtgroup_cbm_overlaps(r, d, cbm, closid, peer_type, exclusive); 1208 } 1209 1210 /** 1211 * rdtgroup_mode_test_exclusive - Test if this resource group can be exclusive 1212 * 1213 * An exclusive resource group implies that there should be no sharing of 1214 * its allocated resources. At the time this group is considered to be 1215 * exclusive this test can determine if its current schemata supports this 1216 * setting by testing for overlap with all other resource groups. 1217 * 1218 * Return: true if resource group can be exclusive, false if there is overlap 1219 * with allocations of other resource groups and thus this resource group 1220 * cannot be exclusive. 1221 */ 1222 static bool rdtgroup_mode_test_exclusive(struct rdtgroup *rdtgrp) 1223 { 1224 int closid = rdtgrp->closid; 1225 struct resctrl_schema *s; 1226 struct rdt_resource *r; 1227 bool has_cache = false; 1228 struct rdt_domain *d; 1229 u32 ctrl; 1230 1231 list_for_each_entry(s, &resctrl_schema_all, list) { 1232 r = s->res; 1233 if (r->rid == RDT_RESOURCE_MBA || r->rid == RDT_RESOURCE_SMBA) 1234 continue; 1235 has_cache = true; 1236 list_for_each_entry(d, &r->domains, list) { 1237 ctrl = resctrl_arch_get_config(r, d, closid, 1238 s->conf_type); 1239 if (rdtgroup_cbm_overlaps(s, d, ctrl, closid, false)) { 1240 rdt_last_cmd_puts("Schemata overlaps\n"); 1241 return false; 1242 } 1243 } 1244 } 1245 1246 if (!has_cache) { 1247 rdt_last_cmd_puts("Cannot be exclusive without CAT/CDP\n"); 1248 return false; 1249 } 1250 1251 return true; 1252 } 1253 1254 /** 1255 * rdtgroup_mode_write - Modify the resource group's mode 1256 * 1257 */ 1258 static ssize_t rdtgroup_mode_write(struct kernfs_open_file *of, 1259 char *buf, size_t nbytes, loff_t off) 1260 { 1261 struct rdtgroup *rdtgrp; 1262 enum rdtgrp_mode mode; 1263 int ret = 0; 1264 1265 /* Valid input requires a trailing newline */ 1266 if (nbytes == 0 || buf[nbytes - 1] != '\n') 1267 return -EINVAL; 1268 buf[nbytes - 1] = '\0'; 1269 1270 rdtgrp = rdtgroup_kn_lock_live(of->kn); 1271 if (!rdtgrp) { 1272 rdtgroup_kn_unlock(of->kn); 1273 return -ENOENT; 1274 } 1275 1276 rdt_last_cmd_clear(); 1277 1278 mode = rdtgrp->mode; 1279 1280 if ((!strcmp(buf, "shareable") && mode == RDT_MODE_SHAREABLE) || 1281 (!strcmp(buf, "exclusive") && mode == RDT_MODE_EXCLUSIVE) || 1282 (!strcmp(buf, "pseudo-locksetup") && 1283 mode == RDT_MODE_PSEUDO_LOCKSETUP) || 1284 (!strcmp(buf, "pseudo-locked") && mode == RDT_MODE_PSEUDO_LOCKED)) 1285 goto out; 1286 1287 if (mode == RDT_MODE_PSEUDO_LOCKED) { 1288 rdt_last_cmd_puts("Cannot change pseudo-locked group\n"); 1289 ret = -EINVAL; 1290 goto out; 1291 } 1292 1293 if (!strcmp(buf, "shareable")) { 1294 if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP) { 1295 ret = rdtgroup_locksetup_exit(rdtgrp); 1296 if (ret) 1297 goto out; 1298 } 1299 rdtgrp->mode = RDT_MODE_SHAREABLE; 1300 } else if (!strcmp(buf, "exclusive")) { 1301 if (!rdtgroup_mode_test_exclusive(rdtgrp)) { 1302 ret = -EINVAL; 1303 goto out; 1304 } 1305 if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP) { 1306 ret = rdtgroup_locksetup_exit(rdtgrp); 1307 if (ret) 1308 goto out; 1309 } 1310 rdtgrp->mode = RDT_MODE_EXCLUSIVE; 1311 } else if (!strcmp(buf, "pseudo-locksetup")) { 1312 ret = rdtgroup_locksetup_enter(rdtgrp); 1313 if (ret) 1314 goto out; 1315 rdtgrp->mode = RDT_MODE_PSEUDO_LOCKSETUP; 1316 } else { 1317 rdt_last_cmd_puts("Unknown or unsupported mode\n"); 1318 ret = -EINVAL; 1319 } 1320 1321 out: 1322 rdtgroup_kn_unlock(of->kn); 1323 return ret ?: nbytes; 1324 } 1325 1326 /** 1327 * rdtgroup_cbm_to_size - Translate CBM to size in bytes 1328 * @r: RDT resource to which @d belongs. 1329 * @d: RDT domain instance. 1330 * @cbm: bitmask for which the size should be computed. 1331 * 1332 * The bitmask provided associated with the RDT domain instance @d will be 1333 * translated into how many bytes it represents. The size in bytes is 1334 * computed by first dividing the total cache size by the CBM length to 1335 * determine how many bytes each bit in the bitmask represents. The result 1336 * is multiplied with the number of bits set in the bitmask. 1337 * 1338 * @cbm is unsigned long, even if only 32 bits are used to make the 1339 * bitmap functions work correctly. 1340 */ 1341 unsigned int rdtgroup_cbm_to_size(struct rdt_resource *r, 1342 struct rdt_domain *d, unsigned long cbm) 1343 { 1344 struct cpu_cacheinfo *ci; 1345 unsigned int size = 0; 1346 int num_b, i; 1347 1348 num_b = bitmap_weight(&cbm, r->cache.cbm_len); 1349 ci = get_cpu_cacheinfo(cpumask_any(&d->cpu_mask)); 1350 for (i = 0; i < ci->num_leaves; i++) { 1351 if (ci->info_list[i].level == r->cache_level) { 1352 size = ci->info_list[i].size / r->cache.cbm_len * num_b; 1353 break; 1354 } 1355 } 1356 1357 return size; 1358 } 1359 1360 /** 1361 * rdtgroup_size_show - Display size in bytes of allocated regions 1362 * 1363 * The "size" file mirrors the layout of the "schemata" file, printing the 1364 * size in bytes of each region instead of the capacity bitmask. 1365 * 1366 */ 1367 static int rdtgroup_size_show(struct kernfs_open_file *of, 1368 struct seq_file *s, void *v) 1369 { 1370 struct resctrl_schema *schema; 1371 enum resctrl_conf_type type; 1372 struct rdtgroup *rdtgrp; 1373 struct rdt_resource *r; 1374 struct rdt_domain *d; 1375 unsigned int size; 1376 int ret = 0; 1377 u32 closid; 1378 bool sep; 1379 u32 ctrl; 1380 1381 rdtgrp = rdtgroup_kn_lock_live(of->kn); 1382 if (!rdtgrp) { 1383 rdtgroup_kn_unlock(of->kn); 1384 return -ENOENT; 1385 } 1386 1387 if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED) { 1388 if (!rdtgrp->plr->d) { 1389 rdt_last_cmd_clear(); 1390 rdt_last_cmd_puts("Cache domain offline\n"); 1391 ret = -ENODEV; 1392 } else { 1393 seq_printf(s, "%*s:", max_name_width, 1394 rdtgrp->plr->s->name); 1395 size = rdtgroup_cbm_to_size(rdtgrp->plr->s->res, 1396 rdtgrp->plr->d, 1397 rdtgrp->plr->cbm); 1398 seq_printf(s, "%d=%u\n", rdtgrp->plr->d->id, size); 1399 } 1400 goto out; 1401 } 1402 1403 closid = rdtgrp->closid; 1404 1405 list_for_each_entry(schema, &resctrl_schema_all, list) { 1406 r = schema->res; 1407 type = schema->conf_type; 1408 sep = false; 1409 seq_printf(s, "%*s:", max_name_width, schema->name); 1410 list_for_each_entry(d, &r->domains, list) { 1411 if (sep) 1412 seq_putc(s, ';'); 1413 if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP) { 1414 size = 0; 1415 } else { 1416 if (is_mba_sc(r)) 1417 ctrl = d->mbps_val[closid]; 1418 else 1419 ctrl = resctrl_arch_get_config(r, d, 1420 closid, 1421 type); 1422 if (r->rid == RDT_RESOURCE_MBA || 1423 r->rid == RDT_RESOURCE_SMBA) 1424 size = ctrl; 1425 else 1426 size = rdtgroup_cbm_to_size(r, d, ctrl); 1427 } 1428 seq_printf(s, "%d=%u", d->id, size); 1429 sep = true; 1430 } 1431 seq_putc(s, '\n'); 1432 } 1433 1434 out: 1435 rdtgroup_kn_unlock(of->kn); 1436 1437 return ret; 1438 } 1439 1440 struct mon_config_info { 1441 u32 evtid; 1442 u32 mon_config; 1443 }; 1444 1445 #define INVALID_CONFIG_INDEX UINT_MAX 1446 1447 /** 1448 * mon_event_config_index_get - get the hardware index for the 1449 * configurable event 1450 * @evtid: event id. 1451 * 1452 * Return: 0 for evtid == QOS_L3_MBM_TOTAL_EVENT_ID 1453 * 1 for evtid == QOS_L3_MBM_LOCAL_EVENT_ID 1454 * INVALID_CONFIG_INDEX for invalid evtid 1455 */ 1456 static inline unsigned int mon_event_config_index_get(u32 evtid) 1457 { 1458 switch (evtid) { 1459 case QOS_L3_MBM_TOTAL_EVENT_ID: 1460 return 0; 1461 case QOS_L3_MBM_LOCAL_EVENT_ID: 1462 return 1; 1463 default: 1464 /* Should never reach here */ 1465 return INVALID_CONFIG_INDEX; 1466 } 1467 } 1468 1469 static void mon_event_config_read(void *info) 1470 { 1471 struct mon_config_info *mon_info = info; 1472 unsigned int index; 1473 u64 msrval; 1474 1475 index = mon_event_config_index_get(mon_info->evtid); 1476 if (index == INVALID_CONFIG_INDEX) { 1477 pr_warn_once("Invalid event id %d\n", mon_info->evtid); 1478 return; 1479 } 1480 rdmsrl(MSR_IA32_EVT_CFG_BASE + index, msrval); 1481 1482 /* Report only the valid event configuration bits */ 1483 mon_info->mon_config = msrval & MAX_EVT_CONFIG_BITS; 1484 } 1485 1486 static void mondata_config_read(struct rdt_domain *d, struct mon_config_info *mon_info) 1487 { 1488 smp_call_function_any(&d->cpu_mask, mon_event_config_read, mon_info, 1); 1489 } 1490 1491 static int mbm_config_show(struct seq_file *s, struct rdt_resource *r, u32 evtid) 1492 { 1493 struct mon_config_info mon_info = {0}; 1494 struct rdt_domain *dom; 1495 bool sep = false; 1496 1497 mutex_lock(&rdtgroup_mutex); 1498 1499 list_for_each_entry(dom, &r->domains, list) { 1500 if (sep) 1501 seq_puts(s, ";"); 1502 1503 memset(&mon_info, 0, sizeof(struct mon_config_info)); 1504 mon_info.evtid = evtid; 1505 mondata_config_read(dom, &mon_info); 1506 1507 seq_printf(s, "%d=0x%02x", dom->id, mon_info.mon_config); 1508 sep = true; 1509 } 1510 seq_puts(s, "\n"); 1511 1512 mutex_unlock(&rdtgroup_mutex); 1513 1514 return 0; 1515 } 1516 1517 static int mbm_total_bytes_config_show(struct kernfs_open_file *of, 1518 struct seq_file *seq, void *v) 1519 { 1520 struct rdt_resource *r = of->kn->parent->priv; 1521 1522 mbm_config_show(seq, r, QOS_L3_MBM_TOTAL_EVENT_ID); 1523 1524 return 0; 1525 } 1526 1527 static int mbm_local_bytes_config_show(struct kernfs_open_file *of, 1528 struct seq_file *seq, void *v) 1529 { 1530 struct rdt_resource *r = of->kn->parent->priv; 1531 1532 mbm_config_show(seq, r, QOS_L3_MBM_LOCAL_EVENT_ID); 1533 1534 return 0; 1535 } 1536 1537 static void mon_event_config_write(void *info) 1538 { 1539 struct mon_config_info *mon_info = info; 1540 unsigned int index; 1541 1542 index = mon_event_config_index_get(mon_info->evtid); 1543 if (index == INVALID_CONFIG_INDEX) { 1544 pr_warn_once("Invalid event id %d\n", mon_info->evtid); 1545 return; 1546 } 1547 wrmsr(MSR_IA32_EVT_CFG_BASE + index, mon_info->mon_config, 0); 1548 } 1549 1550 static int mbm_config_write_domain(struct rdt_resource *r, 1551 struct rdt_domain *d, u32 evtid, u32 val) 1552 { 1553 struct mon_config_info mon_info = {0}; 1554 int ret = 0; 1555 1556 /* 1557 * Read the current config value first. If both are the same then 1558 * no need to write it again. 1559 */ 1560 mon_info.evtid = evtid; 1561 mondata_config_read(d, &mon_info); 1562 if (mon_info.mon_config == val) 1563 goto out; 1564 1565 mon_info.mon_config = val; 1566 1567 /* 1568 * Update MSR_IA32_EVT_CFG_BASE MSR on one of the CPUs in the 1569 * domain. The MSRs offset from MSR MSR_IA32_EVT_CFG_BASE 1570 * are scoped at the domain level. Writing any of these MSRs 1571 * on one CPU is observed by all the CPUs in the domain. 1572 */ 1573 smp_call_function_any(&d->cpu_mask, mon_event_config_write, 1574 &mon_info, 1); 1575 1576 /* 1577 * When an Event Configuration is changed, the bandwidth counters 1578 * for all RMIDs and Events will be cleared by the hardware. The 1579 * hardware also sets MSR_IA32_QM_CTR.Unavailable (bit 62) for 1580 * every RMID on the next read to any event for every RMID. 1581 * Subsequent reads will have MSR_IA32_QM_CTR.Unavailable (bit 62) 1582 * cleared while it is tracked by the hardware. Clear the 1583 * mbm_local and mbm_total counts for all the RMIDs. 1584 */ 1585 resctrl_arch_reset_rmid_all(r, d); 1586 1587 out: 1588 return ret; 1589 } 1590 1591 static int mon_config_write(struct rdt_resource *r, char *tok, u32 evtid) 1592 { 1593 struct rdt_hw_resource *hw_res = resctrl_to_arch_res(r); 1594 char *dom_str = NULL, *id_str; 1595 unsigned long dom_id, val; 1596 struct rdt_domain *d; 1597 int ret = 0; 1598 1599 next: 1600 if (!tok || tok[0] == '\0') 1601 return 0; 1602 1603 /* Start processing the strings for each domain */ 1604 dom_str = strim(strsep(&tok, ";")); 1605 id_str = strsep(&dom_str, "="); 1606 1607 if (!id_str || kstrtoul(id_str, 10, &dom_id)) { 1608 rdt_last_cmd_puts("Missing '=' or non-numeric domain id\n"); 1609 return -EINVAL; 1610 } 1611 1612 if (!dom_str || kstrtoul(dom_str, 16, &val)) { 1613 rdt_last_cmd_puts("Non-numeric event configuration value\n"); 1614 return -EINVAL; 1615 } 1616 1617 /* Value from user cannot be more than the supported set of events */ 1618 if ((val & hw_res->mbm_cfg_mask) != val) { 1619 rdt_last_cmd_printf("Invalid event configuration: max valid mask is 0x%02x\n", 1620 hw_res->mbm_cfg_mask); 1621 return -EINVAL; 1622 } 1623 1624 list_for_each_entry(d, &r->domains, list) { 1625 if (d->id == dom_id) { 1626 ret = mbm_config_write_domain(r, d, evtid, val); 1627 if (ret) 1628 return -EINVAL; 1629 goto next; 1630 } 1631 } 1632 1633 return -EINVAL; 1634 } 1635 1636 static ssize_t mbm_total_bytes_config_write(struct kernfs_open_file *of, 1637 char *buf, size_t nbytes, 1638 loff_t off) 1639 { 1640 struct rdt_resource *r = of->kn->parent->priv; 1641 int ret; 1642 1643 /* Valid input requires a trailing newline */ 1644 if (nbytes == 0 || buf[nbytes - 1] != '\n') 1645 return -EINVAL; 1646 1647 mutex_lock(&rdtgroup_mutex); 1648 1649 rdt_last_cmd_clear(); 1650 1651 buf[nbytes - 1] = '\0'; 1652 1653 ret = mon_config_write(r, buf, QOS_L3_MBM_TOTAL_EVENT_ID); 1654 1655 mutex_unlock(&rdtgroup_mutex); 1656 1657 return ret ?: nbytes; 1658 } 1659 1660 static ssize_t mbm_local_bytes_config_write(struct kernfs_open_file *of, 1661 char *buf, size_t nbytes, 1662 loff_t off) 1663 { 1664 struct rdt_resource *r = of->kn->parent->priv; 1665 int ret; 1666 1667 /* Valid input requires a trailing newline */ 1668 if (nbytes == 0 || buf[nbytes - 1] != '\n') 1669 return -EINVAL; 1670 1671 mutex_lock(&rdtgroup_mutex); 1672 1673 rdt_last_cmd_clear(); 1674 1675 buf[nbytes - 1] = '\0'; 1676 1677 ret = mon_config_write(r, buf, QOS_L3_MBM_LOCAL_EVENT_ID); 1678 1679 mutex_unlock(&rdtgroup_mutex); 1680 1681 return ret ?: nbytes; 1682 } 1683 1684 /* rdtgroup information files for one cache resource. */ 1685 static struct rftype res_common_files[] = { 1686 { 1687 .name = "last_cmd_status", 1688 .mode = 0444, 1689 .kf_ops = &rdtgroup_kf_single_ops, 1690 .seq_show = rdt_last_cmd_status_show, 1691 .fflags = RF_TOP_INFO, 1692 }, 1693 { 1694 .name = "num_closids", 1695 .mode = 0444, 1696 .kf_ops = &rdtgroup_kf_single_ops, 1697 .seq_show = rdt_num_closids_show, 1698 .fflags = RF_CTRL_INFO, 1699 }, 1700 { 1701 .name = "mon_features", 1702 .mode = 0444, 1703 .kf_ops = &rdtgroup_kf_single_ops, 1704 .seq_show = rdt_mon_features_show, 1705 .fflags = RF_MON_INFO, 1706 }, 1707 { 1708 .name = "num_rmids", 1709 .mode = 0444, 1710 .kf_ops = &rdtgroup_kf_single_ops, 1711 .seq_show = rdt_num_rmids_show, 1712 .fflags = RF_MON_INFO, 1713 }, 1714 { 1715 .name = "cbm_mask", 1716 .mode = 0444, 1717 .kf_ops = &rdtgroup_kf_single_ops, 1718 .seq_show = rdt_default_ctrl_show, 1719 .fflags = RF_CTRL_INFO | RFTYPE_RES_CACHE, 1720 }, 1721 { 1722 .name = "min_cbm_bits", 1723 .mode = 0444, 1724 .kf_ops = &rdtgroup_kf_single_ops, 1725 .seq_show = rdt_min_cbm_bits_show, 1726 .fflags = RF_CTRL_INFO | RFTYPE_RES_CACHE, 1727 }, 1728 { 1729 .name = "shareable_bits", 1730 .mode = 0444, 1731 .kf_ops = &rdtgroup_kf_single_ops, 1732 .seq_show = rdt_shareable_bits_show, 1733 .fflags = RF_CTRL_INFO | RFTYPE_RES_CACHE, 1734 }, 1735 { 1736 .name = "bit_usage", 1737 .mode = 0444, 1738 .kf_ops = &rdtgroup_kf_single_ops, 1739 .seq_show = rdt_bit_usage_show, 1740 .fflags = RF_CTRL_INFO | RFTYPE_RES_CACHE, 1741 }, 1742 { 1743 .name = "min_bandwidth", 1744 .mode = 0444, 1745 .kf_ops = &rdtgroup_kf_single_ops, 1746 .seq_show = rdt_min_bw_show, 1747 .fflags = RF_CTRL_INFO | RFTYPE_RES_MB, 1748 }, 1749 { 1750 .name = "bandwidth_gran", 1751 .mode = 0444, 1752 .kf_ops = &rdtgroup_kf_single_ops, 1753 .seq_show = rdt_bw_gran_show, 1754 .fflags = RF_CTRL_INFO | RFTYPE_RES_MB, 1755 }, 1756 { 1757 .name = "delay_linear", 1758 .mode = 0444, 1759 .kf_ops = &rdtgroup_kf_single_ops, 1760 .seq_show = rdt_delay_linear_show, 1761 .fflags = RF_CTRL_INFO | RFTYPE_RES_MB, 1762 }, 1763 /* 1764 * Platform specific which (if any) capabilities are provided by 1765 * thread_throttle_mode. Defer "fflags" initialization to platform 1766 * discovery. 1767 */ 1768 { 1769 .name = "thread_throttle_mode", 1770 .mode = 0444, 1771 .kf_ops = &rdtgroup_kf_single_ops, 1772 .seq_show = rdt_thread_throttle_mode_show, 1773 }, 1774 { 1775 .name = "max_threshold_occupancy", 1776 .mode = 0644, 1777 .kf_ops = &rdtgroup_kf_single_ops, 1778 .write = max_threshold_occ_write, 1779 .seq_show = max_threshold_occ_show, 1780 .fflags = RF_MON_INFO | RFTYPE_RES_CACHE, 1781 }, 1782 { 1783 .name = "mbm_total_bytes_config", 1784 .mode = 0644, 1785 .kf_ops = &rdtgroup_kf_single_ops, 1786 .seq_show = mbm_total_bytes_config_show, 1787 .write = mbm_total_bytes_config_write, 1788 }, 1789 { 1790 .name = "mbm_local_bytes_config", 1791 .mode = 0644, 1792 .kf_ops = &rdtgroup_kf_single_ops, 1793 .seq_show = mbm_local_bytes_config_show, 1794 .write = mbm_local_bytes_config_write, 1795 }, 1796 { 1797 .name = "cpus", 1798 .mode = 0644, 1799 .kf_ops = &rdtgroup_kf_single_ops, 1800 .write = rdtgroup_cpus_write, 1801 .seq_show = rdtgroup_cpus_show, 1802 .fflags = RFTYPE_BASE, 1803 }, 1804 { 1805 .name = "cpus_list", 1806 .mode = 0644, 1807 .kf_ops = &rdtgroup_kf_single_ops, 1808 .write = rdtgroup_cpus_write, 1809 .seq_show = rdtgroup_cpus_show, 1810 .flags = RFTYPE_FLAGS_CPUS_LIST, 1811 .fflags = RFTYPE_BASE, 1812 }, 1813 { 1814 .name = "tasks", 1815 .mode = 0644, 1816 .kf_ops = &rdtgroup_kf_single_ops, 1817 .write = rdtgroup_tasks_write, 1818 .seq_show = rdtgroup_tasks_show, 1819 .fflags = RFTYPE_BASE, 1820 }, 1821 { 1822 .name = "schemata", 1823 .mode = 0644, 1824 .kf_ops = &rdtgroup_kf_single_ops, 1825 .write = rdtgroup_schemata_write, 1826 .seq_show = rdtgroup_schemata_show, 1827 .fflags = RF_CTRL_BASE, 1828 }, 1829 { 1830 .name = "mode", 1831 .mode = 0644, 1832 .kf_ops = &rdtgroup_kf_single_ops, 1833 .write = rdtgroup_mode_write, 1834 .seq_show = rdtgroup_mode_show, 1835 .fflags = RF_CTRL_BASE, 1836 }, 1837 { 1838 .name = "size", 1839 .mode = 0444, 1840 .kf_ops = &rdtgroup_kf_single_ops, 1841 .seq_show = rdtgroup_size_show, 1842 .fflags = RF_CTRL_BASE, 1843 }, 1844 1845 }; 1846 1847 static int rdtgroup_add_files(struct kernfs_node *kn, unsigned long fflags) 1848 { 1849 struct rftype *rfts, *rft; 1850 int ret, len; 1851 1852 rfts = res_common_files; 1853 len = ARRAY_SIZE(res_common_files); 1854 1855 lockdep_assert_held(&rdtgroup_mutex); 1856 1857 for (rft = rfts; rft < rfts + len; rft++) { 1858 if (rft->fflags && ((fflags & rft->fflags) == rft->fflags)) { 1859 ret = rdtgroup_add_file(kn, rft); 1860 if (ret) 1861 goto error; 1862 } 1863 } 1864 1865 return 0; 1866 error: 1867 pr_warn("Failed to add %s, err=%d\n", rft->name, ret); 1868 while (--rft >= rfts) { 1869 if ((fflags & rft->fflags) == rft->fflags) 1870 kernfs_remove_by_name(kn, rft->name); 1871 } 1872 return ret; 1873 } 1874 1875 static struct rftype *rdtgroup_get_rftype_by_name(const char *name) 1876 { 1877 struct rftype *rfts, *rft; 1878 int len; 1879 1880 rfts = res_common_files; 1881 len = ARRAY_SIZE(res_common_files); 1882 1883 for (rft = rfts; rft < rfts + len; rft++) { 1884 if (!strcmp(rft->name, name)) 1885 return rft; 1886 } 1887 1888 return NULL; 1889 } 1890 1891 void __init thread_throttle_mode_init(void) 1892 { 1893 struct rftype *rft; 1894 1895 rft = rdtgroup_get_rftype_by_name("thread_throttle_mode"); 1896 if (!rft) 1897 return; 1898 1899 rft->fflags = RF_CTRL_INFO | RFTYPE_RES_MB; 1900 } 1901 1902 void __init mbm_config_rftype_init(const char *config) 1903 { 1904 struct rftype *rft; 1905 1906 rft = rdtgroup_get_rftype_by_name(config); 1907 if (rft) 1908 rft->fflags = RF_MON_INFO | RFTYPE_RES_CACHE; 1909 } 1910 1911 /** 1912 * rdtgroup_kn_mode_restrict - Restrict user access to named resctrl file 1913 * @r: The resource group with which the file is associated. 1914 * @name: Name of the file 1915 * 1916 * The permissions of named resctrl file, directory, or link are modified 1917 * to not allow read, write, or execute by any user. 1918 * 1919 * WARNING: This function is intended to communicate to the user that the 1920 * resctrl file has been locked down - that it is not relevant to the 1921 * particular state the system finds itself in. It should not be relied 1922 * on to protect from user access because after the file's permissions 1923 * are restricted the user can still change the permissions using chmod 1924 * from the command line. 1925 * 1926 * Return: 0 on success, <0 on failure. 1927 */ 1928 int rdtgroup_kn_mode_restrict(struct rdtgroup *r, const char *name) 1929 { 1930 struct iattr iattr = {.ia_valid = ATTR_MODE,}; 1931 struct kernfs_node *kn; 1932 int ret = 0; 1933 1934 kn = kernfs_find_and_get_ns(r->kn, name, NULL); 1935 if (!kn) 1936 return -ENOENT; 1937 1938 switch (kernfs_type(kn)) { 1939 case KERNFS_DIR: 1940 iattr.ia_mode = S_IFDIR; 1941 break; 1942 case KERNFS_FILE: 1943 iattr.ia_mode = S_IFREG; 1944 break; 1945 case KERNFS_LINK: 1946 iattr.ia_mode = S_IFLNK; 1947 break; 1948 } 1949 1950 ret = kernfs_setattr(kn, &iattr); 1951 kernfs_put(kn); 1952 return ret; 1953 } 1954 1955 /** 1956 * rdtgroup_kn_mode_restore - Restore user access to named resctrl file 1957 * @r: The resource group with which the file is associated. 1958 * @name: Name of the file 1959 * @mask: Mask of permissions that should be restored 1960 * 1961 * Restore the permissions of the named file. If @name is a directory the 1962 * permissions of its parent will be used. 1963 * 1964 * Return: 0 on success, <0 on failure. 1965 */ 1966 int rdtgroup_kn_mode_restore(struct rdtgroup *r, const char *name, 1967 umode_t mask) 1968 { 1969 struct iattr iattr = {.ia_valid = ATTR_MODE,}; 1970 struct kernfs_node *kn, *parent; 1971 struct rftype *rfts, *rft; 1972 int ret, len; 1973 1974 rfts = res_common_files; 1975 len = ARRAY_SIZE(res_common_files); 1976 1977 for (rft = rfts; rft < rfts + len; rft++) { 1978 if (!strcmp(rft->name, name)) 1979 iattr.ia_mode = rft->mode & mask; 1980 } 1981 1982 kn = kernfs_find_and_get_ns(r->kn, name, NULL); 1983 if (!kn) 1984 return -ENOENT; 1985 1986 switch (kernfs_type(kn)) { 1987 case KERNFS_DIR: 1988 parent = kernfs_get_parent(kn); 1989 if (parent) { 1990 iattr.ia_mode |= parent->mode; 1991 kernfs_put(parent); 1992 } 1993 iattr.ia_mode |= S_IFDIR; 1994 break; 1995 case KERNFS_FILE: 1996 iattr.ia_mode |= S_IFREG; 1997 break; 1998 case KERNFS_LINK: 1999 iattr.ia_mode |= S_IFLNK; 2000 break; 2001 } 2002 2003 ret = kernfs_setattr(kn, &iattr); 2004 kernfs_put(kn); 2005 return ret; 2006 } 2007 2008 static int rdtgroup_mkdir_info_resdir(void *priv, char *name, 2009 unsigned long fflags) 2010 { 2011 struct kernfs_node *kn_subdir; 2012 int ret; 2013 2014 kn_subdir = kernfs_create_dir(kn_info, name, 2015 kn_info->mode, priv); 2016 if (IS_ERR(kn_subdir)) 2017 return PTR_ERR(kn_subdir); 2018 2019 ret = rdtgroup_kn_set_ugid(kn_subdir); 2020 if (ret) 2021 return ret; 2022 2023 ret = rdtgroup_add_files(kn_subdir, fflags); 2024 if (!ret) 2025 kernfs_activate(kn_subdir); 2026 2027 return ret; 2028 } 2029 2030 static int rdtgroup_create_info_dir(struct kernfs_node *parent_kn) 2031 { 2032 struct resctrl_schema *s; 2033 struct rdt_resource *r; 2034 unsigned long fflags; 2035 char name[32]; 2036 int ret; 2037 2038 /* create the directory */ 2039 kn_info = kernfs_create_dir(parent_kn, "info", parent_kn->mode, NULL); 2040 if (IS_ERR(kn_info)) 2041 return PTR_ERR(kn_info); 2042 2043 ret = rdtgroup_add_files(kn_info, RF_TOP_INFO); 2044 if (ret) 2045 goto out_destroy; 2046 2047 /* loop over enabled controls, these are all alloc_capable */ 2048 list_for_each_entry(s, &resctrl_schema_all, list) { 2049 r = s->res; 2050 fflags = r->fflags | RF_CTRL_INFO; 2051 ret = rdtgroup_mkdir_info_resdir(s, s->name, fflags); 2052 if (ret) 2053 goto out_destroy; 2054 } 2055 2056 for_each_mon_capable_rdt_resource(r) { 2057 fflags = r->fflags | RF_MON_INFO; 2058 sprintf(name, "%s_MON", r->name); 2059 ret = rdtgroup_mkdir_info_resdir(r, name, fflags); 2060 if (ret) 2061 goto out_destroy; 2062 } 2063 2064 ret = rdtgroup_kn_set_ugid(kn_info); 2065 if (ret) 2066 goto out_destroy; 2067 2068 kernfs_activate(kn_info); 2069 2070 return 0; 2071 2072 out_destroy: 2073 kernfs_remove(kn_info); 2074 return ret; 2075 } 2076 2077 static int 2078 mongroup_create_dir(struct kernfs_node *parent_kn, struct rdtgroup *prgrp, 2079 char *name, struct kernfs_node **dest_kn) 2080 { 2081 struct kernfs_node *kn; 2082 int ret; 2083 2084 /* create the directory */ 2085 kn = kernfs_create_dir(parent_kn, name, parent_kn->mode, prgrp); 2086 if (IS_ERR(kn)) 2087 return PTR_ERR(kn); 2088 2089 if (dest_kn) 2090 *dest_kn = kn; 2091 2092 ret = rdtgroup_kn_set_ugid(kn); 2093 if (ret) 2094 goto out_destroy; 2095 2096 kernfs_activate(kn); 2097 2098 return 0; 2099 2100 out_destroy: 2101 kernfs_remove(kn); 2102 return ret; 2103 } 2104 2105 static void l3_qos_cfg_update(void *arg) 2106 { 2107 bool *enable = arg; 2108 2109 wrmsrl(MSR_IA32_L3_QOS_CFG, *enable ? L3_QOS_CDP_ENABLE : 0ULL); 2110 } 2111 2112 static void l2_qos_cfg_update(void *arg) 2113 { 2114 bool *enable = arg; 2115 2116 wrmsrl(MSR_IA32_L2_QOS_CFG, *enable ? L2_QOS_CDP_ENABLE : 0ULL); 2117 } 2118 2119 static inline bool is_mba_linear(void) 2120 { 2121 return rdt_resources_all[RDT_RESOURCE_MBA].r_resctrl.membw.delay_linear; 2122 } 2123 2124 static int set_cache_qos_cfg(int level, bool enable) 2125 { 2126 void (*update)(void *arg); 2127 struct rdt_resource *r_l; 2128 cpumask_var_t cpu_mask; 2129 struct rdt_domain *d; 2130 int cpu; 2131 2132 if (level == RDT_RESOURCE_L3) 2133 update = l3_qos_cfg_update; 2134 else if (level == RDT_RESOURCE_L2) 2135 update = l2_qos_cfg_update; 2136 else 2137 return -EINVAL; 2138 2139 if (!zalloc_cpumask_var(&cpu_mask, GFP_KERNEL)) 2140 return -ENOMEM; 2141 2142 r_l = &rdt_resources_all[level].r_resctrl; 2143 list_for_each_entry(d, &r_l->domains, list) { 2144 if (r_l->cache.arch_has_per_cpu_cfg) 2145 /* Pick all the CPUs in the domain instance */ 2146 for_each_cpu(cpu, &d->cpu_mask) 2147 cpumask_set_cpu(cpu, cpu_mask); 2148 else 2149 /* Pick one CPU from each domain instance to update MSR */ 2150 cpumask_set_cpu(cpumask_any(&d->cpu_mask), cpu_mask); 2151 } 2152 2153 /* Update QOS_CFG MSR on all the CPUs in cpu_mask */ 2154 on_each_cpu_mask(cpu_mask, update, &enable, 1); 2155 2156 free_cpumask_var(cpu_mask); 2157 2158 return 0; 2159 } 2160 2161 /* Restore the qos cfg state when a domain comes online */ 2162 void rdt_domain_reconfigure_cdp(struct rdt_resource *r) 2163 { 2164 struct rdt_hw_resource *hw_res = resctrl_to_arch_res(r); 2165 2166 if (!r->cdp_capable) 2167 return; 2168 2169 if (r->rid == RDT_RESOURCE_L2) 2170 l2_qos_cfg_update(&hw_res->cdp_enabled); 2171 2172 if (r->rid == RDT_RESOURCE_L3) 2173 l3_qos_cfg_update(&hw_res->cdp_enabled); 2174 } 2175 2176 static int mba_sc_domain_allocate(struct rdt_resource *r, struct rdt_domain *d) 2177 { 2178 u32 num_closid = resctrl_arch_get_num_closid(r); 2179 int cpu = cpumask_any(&d->cpu_mask); 2180 int i; 2181 2182 d->mbps_val = kcalloc_node(num_closid, sizeof(*d->mbps_val), 2183 GFP_KERNEL, cpu_to_node(cpu)); 2184 if (!d->mbps_val) 2185 return -ENOMEM; 2186 2187 for (i = 0; i < num_closid; i++) 2188 d->mbps_val[i] = MBA_MAX_MBPS; 2189 2190 return 0; 2191 } 2192 2193 static void mba_sc_domain_destroy(struct rdt_resource *r, 2194 struct rdt_domain *d) 2195 { 2196 kfree(d->mbps_val); 2197 d->mbps_val = NULL; 2198 } 2199 2200 /* 2201 * MBA software controller is supported only if 2202 * MBM is supported and MBA is in linear scale. 2203 */ 2204 static bool supports_mba_mbps(void) 2205 { 2206 struct rdt_resource *r = &rdt_resources_all[RDT_RESOURCE_MBA].r_resctrl; 2207 2208 return (is_mbm_local_enabled() && 2209 r->alloc_capable && is_mba_linear()); 2210 } 2211 2212 /* 2213 * Enable or disable the MBA software controller 2214 * which helps user specify bandwidth in MBps. 2215 */ 2216 static int set_mba_sc(bool mba_sc) 2217 { 2218 struct rdt_resource *r = &rdt_resources_all[RDT_RESOURCE_MBA].r_resctrl; 2219 u32 num_closid = resctrl_arch_get_num_closid(r); 2220 struct rdt_domain *d; 2221 int i; 2222 2223 if (!supports_mba_mbps() || mba_sc == is_mba_sc(r)) 2224 return -EINVAL; 2225 2226 r->membw.mba_sc = mba_sc; 2227 2228 list_for_each_entry(d, &r->domains, list) { 2229 for (i = 0; i < num_closid; i++) 2230 d->mbps_val[i] = MBA_MAX_MBPS; 2231 } 2232 2233 return 0; 2234 } 2235 2236 static int cdp_enable(int level) 2237 { 2238 struct rdt_resource *r_l = &rdt_resources_all[level].r_resctrl; 2239 int ret; 2240 2241 if (!r_l->alloc_capable) 2242 return -EINVAL; 2243 2244 ret = set_cache_qos_cfg(level, true); 2245 if (!ret) 2246 rdt_resources_all[level].cdp_enabled = true; 2247 2248 return ret; 2249 } 2250 2251 static void cdp_disable(int level) 2252 { 2253 struct rdt_hw_resource *r_hw = &rdt_resources_all[level]; 2254 2255 if (r_hw->cdp_enabled) { 2256 set_cache_qos_cfg(level, false); 2257 r_hw->cdp_enabled = false; 2258 } 2259 } 2260 2261 int resctrl_arch_set_cdp_enabled(enum resctrl_res_level l, bool enable) 2262 { 2263 struct rdt_hw_resource *hw_res = &rdt_resources_all[l]; 2264 2265 if (!hw_res->r_resctrl.cdp_capable) 2266 return -EINVAL; 2267 2268 if (enable) 2269 return cdp_enable(l); 2270 2271 cdp_disable(l); 2272 2273 return 0; 2274 } 2275 2276 static void cdp_disable_all(void) 2277 { 2278 if (resctrl_arch_get_cdp_enabled(RDT_RESOURCE_L3)) 2279 resctrl_arch_set_cdp_enabled(RDT_RESOURCE_L3, false); 2280 if (resctrl_arch_get_cdp_enabled(RDT_RESOURCE_L2)) 2281 resctrl_arch_set_cdp_enabled(RDT_RESOURCE_L2, false); 2282 } 2283 2284 /* 2285 * We don't allow rdtgroup directories to be created anywhere 2286 * except the root directory. Thus when looking for the rdtgroup 2287 * structure for a kernfs node we are either looking at a directory, 2288 * in which case the rdtgroup structure is pointed at by the "priv" 2289 * field, otherwise we have a file, and need only look to the parent 2290 * to find the rdtgroup. 2291 */ 2292 static struct rdtgroup *kernfs_to_rdtgroup(struct kernfs_node *kn) 2293 { 2294 if (kernfs_type(kn) == KERNFS_DIR) { 2295 /* 2296 * All the resource directories use "kn->priv" 2297 * to point to the "struct rdtgroup" for the 2298 * resource. "info" and its subdirectories don't 2299 * have rdtgroup structures, so return NULL here. 2300 */ 2301 if (kn == kn_info || kn->parent == kn_info) 2302 return NULL; 2303 else 2304 return kn->priv; 2305 } else { 2306 return kn->parent->priv; 2307 } 2308 } 2309 2310 static void rdtgroup_kn_get(struct rdtgroup *rdtgrp, struct kernfs_node *kn) 2311 { 2312 atomic_inc(&rdtgrp->waitcount); 2313 kernfs_break_active_protection(kn); 2314 } 2315 2316 static void rdtgroup_kn_put(struct rdtgroup *rdtgrp, struct kernfs_node *kn) 2317 { 2318 if (atomic_dec_and_test(&rdtgrp->waitcount) && 2319 (rdtgrp->flags & RDT_DELETED)) { 2320 if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP || 2321 rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED) 2322 rdtgroup_pseudo_lock_remove(rdtgrp); 2323 kernfs_unbreak_active_protection(kn); 2324 rdtgroup_remove(rdtgrp); 2325 } else { 2326 kernfs_unbreak_active_protection(kn); 2327 } 2328 } 2329 2330 struct rdtgroup *rdtgroup_kn_lock_live(struct kernfs_node *kn) 2331 { 2332 struct rdtgroup *rdtgrp = kernfs_to_rdtgroup(kn); 2333 2334 if (!rdtgrp) 2335 return NULL; 2336 2337 rdtgroup_kn_get(rdtgrp, kn); 2338 2339 mutex_lock(&rdtgroup_mutex); 2340 2341 /* Was this group deleted while we waited? */ 2342 if (rdtgrp->flags & RDT_DELETED) 2343 return NULL; 2344 2345 return rdtgrp; 2346 } 2347 2348 void rdtgroup_kn_unlock(struct kernfs_node *kn) 2349 { 2350 struct rdtgroup *rdtgrp = kernfs_to_rdtgroup(kn); 2351 2352 if (!rdtgrp) 2353 return; 2354 2355 mutex_unlock(&rdtgroup_mutex); 2356 rdtgroup_kn_put(rdtgrp, kn); 2357 } 2358 2359 static int mkdir_mondata_all(struct kernfs_node *parent_kn, 2360 struct rdtgroup *prgrp, 2361 struct kernfs_node **mon_data_kn); 2362 2363 static int rdt_enable_ctx(struct rdt_fs_context *ctx) 2364 { 2365 int ret = 0; 2366 2367 if (ctx->enable_cdpl2) 2368 ret = resctrl_arch_set_cdp_enabled(RDT_RESOURCE_L2, true); 2369 2370 if (!ret && ctx->enable_cdpl3) 2371 ret = resctrl_arch_set_cdp_enabled(RDT_RESOURCE_L3, true); 2372 2373 if (!ret && ctx->enable_mba_mbps) 2374 ret = set_mba_sc(true); 2375 2376 return ret; 2377 } 2378 2379 static int schemata_list_add(struct rdt_resource *r, enum resctrl_conf_type type) 2380 { 2381 struct resctrl_schema *s; 2382 const char *suffix = ""; 2383 int ret, cl; 2384 2385 s = kzalloc(sizeof(*s), GFP_KERNEL); 2386 if (!s) 2387 return -ENOMEM; 2388 2389 s->res = r; 2390 s->num_closid = resctrl_arch_get_num_closid(r); 2391 if (resctrl_arch_get_cdp_enabled(r->rid)) 2392 s->num_closid /= 2; 2393 2394 s->conf_type = type; 2395 switch (type) { 2396 case CDP_CODE: 2397 suffix = "CODE"; 2398 break; 2399 case CDP_DATA: 2400 suffix = "DATA"; 2401 break; 2402 case CDP_NONE: 2403 suffix = ""; 2404 break; 2405 } 2406 2407 ret = snprintf(s->name, sizeof(s->name), "%s%s", r->name, suffix); 2408 if (ret >= sizeof(s->name)) { 2409 kfree(s); 2410 return -EINVAL; 2411 } 2412 2413 cl = strlen(s->name); 2414 2415 /* 2416 * If CDP is supported by this resource, but not enabled, 2417 * include the suffix. This ensures the tabular format of the 2418 * schemata file does not change between mounts of the filesystem. 2419 */ 2420 if (r->cdp_capable && !resctrl_arch_get_cdp_enabled(r->rid)) 2421 cl += 4; 2422 2423 if (cl > max_name_width) 2424 max_name_width = cl; 2425 2426 INIT_LIST_HEAD(&s->list); 2427 list_add(&s->list, &resctrl_schema_all); 2428 2429 return 0; 2430 } 2431 2432 static int schemata_list_create(void) 2433 { 2434 struct rdt_resource *r; 2435 int ret = 0; 2436 2437 for_each_alloc_capable_rdt_resource(r) { 2438 if (resctrl_arch_get_cdp_enabled(r->rid)) { 2439 ret = schemata_list_add(r, CDP_CODE); 2440 if (ret) 2441 break; 2442 2443 ret = schemata_list_add(r, CDP_DATA); 2444 } else { 2445 ret = schemata_list_add(r, CDP_NONE); 2446 } 2447 2448 if (ret) 2449 break; 2450 } 2451 2452 return ret; 2453 } 2454 2455 static void schemata_list_destroy(void) 2456 { 2457 struct resctrl_schema *s, *tmp; 2458 2459 list_for_each_entry_safe(s, tmp, &resctrl_schema_all, list) { 2460 list_del(&s->list); 2461 kfree(s); 2462 } 2463 } 2464 2465 static int rdt_get_tree(struct fs_context *fc) 2466 { 2467 struct rdt_fs_context *ctx = rdt_fc2context(fc); 2468 struct rdt_domain *dom; 2469 struct rdt_resource *r; 2470 int ret; 2471 2472 cpus_read_lock(); 2473 mutex_lock(&rdtgroup_mutex); 2474 /* 2475 * resctrl file system can only be mounted once. 2476 */ 2477 if (static_branch_unlikely(&rdt_enable_key)) { 2478 ret = -EBUSY; 2479 goto out; 2480 } 2481 2482 ret = rdt_enable_ctx(ctx); 2483 if (ret < 0) 2484 goto out_cdp; 2485 2486 ret = schemata_list_create(); 2487 if (ret) { 2488 schemata_list_destroy(); 2489 goto out_mba; 2490 } 2491 2492 closid_init(); 2493 2494 ret = rdtgroup_create_info_dir(rdtgroup_default.kn); 2495 if (ret < 0) 2496 goto out_schemata_free; 2497 2498 if (rdt_mon_capable) { 2499 ret = mongroup_create_dir(rdtgroup_default.kn, 2500 &rdtgroup_default, "mon_groups", 2501 &kn_mongrp); 2502 if (ret < 0) 2503 goto out_info; 2504 2505 ret = mkdir_mondata_all(rdtgroup_default.kn, 2506 &rdtgroup_default, &kn_mondata); 2507 if (ret < 0) 2508 goto out_mongrp; 2509 rdtgroup_default.mon.mon_data_kn = kn_mondata; 2510 } 2511 2512 ret = rdt_pseudo_lock_init(); 2513 if (ret) 2514 goto out_mondata; 2515 2516 ret = kernfs_get_tree(fc); 2517 if (ret < 0) 2518 goto out_psl; 2519 2520 if (rdt_alloc_capable) 2521 static_branch_enable_cpuslocked(&rdt_alloc_enable_key); 2522 if (rdt_mon_capable) 2523 static_branch_enable_cpuslocked(&rdt_mon_enable_key); 2524 2525 if (rdt_alloc_capable || rdt_mon_capable) 2526 static_branch_enable_cpuslocked(&rdt_enable_key); 2527 2528 if (is_mbm_enabled()) { 2529 r = &rdt_resources_all[RDT_RESOURCE_L3].r_resctrl; 2530 list_for_each_entry(dom, &r->domains, list) 2531 mbm_setup_overflow_handler(dom, MBM_OVERFLOW_INTERVAL); 2532 } 2533 2534 goto out; 2535 2536 out_psl: 2537 rdt_pseudo_lock_release(); 2538 out_mondata: 2539 if (rdt_mon_capable) 2540 kernfs_remove(kn_mondata); 2541 out_mongrp: 2542 if (rdt_mon_capable) 2543 kernfs_remove(kn_mongrp); 2544 out_info: 2545 kernfs_remove(kn_info); 2546 out_schemata_free: 2547 schemata_list_destroy(); 2548 out_mba: 2549 if (ctx->enable_mba_mbps) 2550 set_mba_sc(false); 2551 out_cdp: 2552 cdp_disable_all(); 2553 out: 2554 rdt_last_cmd_clear(); 2555 mutex_unlock(&rdtgroup_mutex); 2556 cpus_read_unlock(); 2557 return ret; 2558 } 2559 2560 enum rdt_param { 2561 Opt_cdp, 2562 Opt_cdpl2, 2563 Opt_mba_mbps, 2564 nr__rdt_params 2565 }; 2566 2567 static const struct fs_parameter_spec rdt_fs_parameters[] = { 2568 fsparam_flag("cdp", Opt_cdp), 2569 fsparam_flag("cdpl2", Opt_cdpl2), 2570 fsparam_flag("mba_MBps", Opt_mba_mbps), 2571 {} 2572 }; 2573 2574 static int rdt_parse_param(struct fs_context *fc, struct fs_parameter *param) 2575 { 2576 struct rdt_fs_context *ctx = rdt_fc2context(fc); 2577 struct fs_parse_result result; 2578 int opt; 2579 2580 opt = fs_parse(fc, rdt_fs_parameters, param, &result); 2581 if (opt < 0) 2582 return opt; 2583 2584 switch (opt) { 2585 case Opt_cdp: 2586 ctx->enable_cdpl3 = true; 2587 return 0; 2588 case Opt_cdpl2: 2589 ctx->enable_cdpl2 = true; 2590 return 0; 2591 case Opt_mba_mbps: 2592 if (!supports_mba_mbps()) 2593 return -EINVAL; 2594 ctx->enable_mba_mbps = true; 2595 return 0; 2596 } 2597 2598 return -EINVAL; 2599 } 2600 2601 static void rdt_fs_context_free(struct fs_context *fc) 2602 { 2603 struct rdt_fs_context *ctx = rdt_fc2context(fc); 2604 2605 kernfs_free_fs_context(fc); 2606 kfree(ctx); 2607 } 2608 2609 static const struct fs_context_operations rdt_fs_context_ops = { 2610 .free = rdt_fs_context_free, 2611 .parse_param = rdt_parse_param, 2612 .get_tree = rdt_get_tree, 2613 }; 2614 2615 static int rdt_init_fs_context(struct fs_context *fc) 2616 { 2617 struct rdt_fs_context *ctx; 2618 2619 ctx = kzalloc(sizeof(struct rdt_fs_context), GFP_KERNEL); 2620 if (!ctx) 2621 return -ENOMEM; 2622 2623 ctx->kfc.root = rdt_root; 2624 ctx->kfc.magic = RDTGROUP_SUPER_MAGIC; 2625 fc->fs_private = &ctx->kfc; 2626 fc->ops = &rdt_fs_context_ops; 2627 put_user_ns(fc->user_ns); 2628 fc->user_ns = get_user_ns(&init_user_ns); 2629 fc->global = true; 2630 return 0; 2631 } 2632 2633 static int reset_all_ctrls(struct rdt_resource *r) 2634 { 2635 struct rdt_hw_resource *hw_res = resctrl_to_arch_res(r); 2636 struct rdt_hw_domain *hw_dom; 2637 struct msr_param msr_param; 2638 cpumask_var_t cpu_mask; 2639 struct rdt_domain *d; 2640 int i; 2641 2642 if (!zalloc_cpumask_var(&cpu_mask, GFP_KERNEL)) 2643 return -ENOMEM; 2644 2645 msr_param.res = r; 2646 msr_param.low = 0; 2647 msr_param.high = hw_res->num_closid; 2648 2649 /* 2650 * Disable resource control for this resource by setting all 2651 * CBMs in all domains to the maximum mask value. Pick one CPU 2652 * from each domain to update the MSRs below. 2653 */ 2654 list_for_each_entry(d, &r->domains, list) { 2655 hw_dom = resctrl_to_arch_dom(d); 2656 cpumask_set_cpu(cpumask_any(&d->cpu_mask), cpu_mask); 2657 2658 for (i = 0; i < hw_res->num_closid; i++) 2659 hw_dom->ctrl_val[i] = r->default_ctrl; 2660 } 2661 2662 /* Update CBM on all the CPUs in cpu_mask */ 2663 on_each_cpu_mask(cpu_mask, rdt_ctrl_update, &msr_param, 1); 2664 2665 free_cpumask_var(cpu_mask); 2666 2667 return 0; 2668 } 2669 2670 /* 2671 * Move tasks from one to the other group. If @from is NULL, then all tasks 2672 * in the systems are moved unconditionally (used for teardown). 2673 * 2674 * If @mask is not NULL the cpus on which moved tasks are running are set 2675 * in that mask so the update smp function call is restricted to affected 2676 * cpus. 2677 */ 2678 static void rdt_move_group_tasks(struct rdtgroup *from, struct rdtgroup *to, 2679 struct cpumask *mask) 2680 { 2681 struct task_struct *p, *t; 2682 2683 read_lock(&tasklist_lock); 2684 for_each_process_thread(p, t) { 2685 if (!from || is_closid_match(t, from) || 2686 is_rmid_match(t, from)) { 2687 WRITE_ONCE(t->closid, to->closid); 2688 WRITE_ONCE(t->rmid, to->mon.rmid); 2689 2690 /* 2691 * Order the closid/rmid stores above before the loads 2692 * in task_curr(). This pairs with the full barrier 2693 * between the rq->curr update and resctrl_sched_in() 2694 * during context switch. 2695 */ 2696 smp_mb(); 2697 2698 /* 2699 * If the task is on a CPU, set the CPU in the mask. 2700 * The detection is inaccurate as tasks might move or 2701 * schedule before the smp function call takes place. 2702 * In such a case the function call is pointless, but 2703 * there is no other side effect. 2704 */ 2705 if (IS_ENABLED(CONFIG_SMP) && mask && task_curr(t)) 2706 cpumask_set_cpu(task_cpu(t), mask); 2707 } 2708 } 2709 read_unlock(&tasklist_lock); 2710 } 2711 2712 static void free_all_child_rdtgrp(struct rdtgroup *rdtgrp) 2713 { 2714 struct rdtgroup *sentry, *stmp; 2715 struct list_head *head; 2716 2717 head = &rdtgrp->mon.crdtgrp_list; 2718 list_for_each_entry_safe(sentry, stmp, head, mon.crdtgrp_list) { 2719 free_rmid(sentry->mon.rmid); 2720 list_del(&sentry->mon.crdtgrp_list); 2721 2722 if (atomic_read(&sentry->waitcount) != 0) 2723 sentry->flags = RDT_DELETED; 2724 else 2725 rdtgroup_remove(sentry); 2726 } 2727 } 2728 2729 /* 2730 * Forcibly remove all of subdirectories under root. 2731 */ 2732 static void rmdir_all_sub(void) 2733 { 2734 struct rdtgroup *rdtgrp, *tmp; 2735 2736 /* Move all tasks to the default resource group */ 2737 rdt_move_group_tasks(NULL, &rdtgroup_default, NULL); 2738 2739 list_for_each_entry_safe(rdtgrp, tmp, &rdt_all_groups, rdtgroup_list) { 2740 /* Free any child rmids */ 2741 free_all_child_rdtgrp(rdtgrp); 2742 2743 /* Remove each rdtgroup other than root */ 2744 if (rdtgrp == &rdtgroup_default) 2745 continue; 2746 2747 if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP || 2748 rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED) 2749 rdtgroup_pseudo_lock_remove(rdtgrp); 2750 2751 /* 2752 * Give any CPUs back to the default group. We cannot copy 2753 * cpu_online_mask because a CPU might have executed the 2754 * offline callback already, but is still marked online. 2755 */ 2756 cpumask_or(&rdtgroup_default.cpu_mask, 2757 &rdtgroup_default.cpu_mask, &rdtgrp->cpu_mask); 2758 2759 free_rmid(rdtgrp->mon.rmid); 2760 2761 kernfs_remove(rdtgrp->kn); 2762 list_del(&rdtgrp->rdtgroup_list); 2763 2764 if (atomic_read(&rdtgrp->waitcount) != 0) 2765 rdtgrp->flags = RDT_DELETED; 2766 else 2767 rdtgroup_remove(rdtgrp); 2768 } 2769 /* Notify online CPUs to update per cpu storage and PQR_ASSOC MSR */ 2770 update_closid_rmid(cpu_online_mask, &rdtgroup_default); 2771 2772 kernfs_remove(kn_info); 2773 kernfs_remove(kn_mongrp); 2774 kernfs_remove(kn_mondata); 2775 } 2776 2777 static void rdt_kill_sb(struct super_block *sb) 2778 { 2779 struct rdt_resource *r; 2780 2781 cpus_read_lock(); 2782 mutex_lock(&rdtgroup_mutex); 2783 2784 set_mba_sc(false); 2785 2786 /*Put everything back to default values. */ 2787 for_each_alloc_capable_rdt_resource(r) 2788 reset_all_ctrls(r); 2789 cdp_disable_all(); 2790 rmdir_all_sub(); 2791 rdt_pseudo_lock_release(); 2792 rdtgroup_default.mode = RDT_MODE_SHAREABLE; 2793 schemata_list_destroy(); 2794 static_branch_disable_cpuslocked(&rdt_alloc_enable_key); 2795 static_branch_disable_cpuslocked(&rdt_mon_enable_key); 2796 static_branch_disable_cpuslocked(&rdt_enable_key); 2797 kernfs_kill_sb(sb); 2798 mutex_unlock(&rdtgroup_mutex); 2799 cpus_read_unlock(); 2800 } 2801 2802 static struct file_system_type rdt_fs_type = { 2803 .name = "resctrl", 2804 .init_fs_context = rdt_init_fs_context, 2805 .parameters = rdt_fs_parameters, 2806 .kill_sb = rdt_kill_sb, 2807 }; 2808 2809 static int mon_addfile(struct kernfs_node *parent_kn, const char *name, 2810 void *priv) 2811 { 2812 struct kernfs_node *kn; 2813 int ret = 0; 2814 2815 kn = __kernfs_create_file(parent_kn, name, 0444, 2816 GLOBAL_ROOT_UID, GLOBAL_ROOT_GID, 0, 2817 &kf_mondata_ops, priv, NULL, NULL); 2818 if (IS_ERR(kn)) 2819 return PTR_ERR(kn); 2820 2821 ret = rdtgroup_kn_set_ugid(kn); 2822 if (ret) { 2823 kernfs_remove(kn); 2824 return ret; 2825 } 2826 2827 return ret; 2828 } 2829 2830 /* 2831 * Remove all subdirectories of mon_data of ctrl_mon groups 2832 * and monitor groups with given domain id. 2833 */ 2834 static void rmdir_mondata_subdir_allrdtgrp(struct rdt_resource *r, 2835 unsigned int dom_id) 2836 { 2837 struct rdtgroup *prgrp, *crgrp; 2838 char name[32]; 2839 2840 list_for_each_entry(prgrp, &rdt_all_groups, rdtgroup_list) { 2841 sprintf(name, "mon_%s_%02d", r->name, dom_id); 2842 kernfs_remove_by_name(prgrp->mon.mon_data_kn, name); 2843 2844 list_for_each_entry(crgrp, &prgrp->mon.crdtgrp_list, mon.crdtgrp_list) 2845 kernfs_remove_by_name(crgrp->mon.mon_data_kn, name); 2846 } 2847 } 2848 2849 static int mkdir_mondata_subdir(struct kernfs_node *parent_kn, 2850 struct rdt_domain *d, 2851 struct rdt_resource *r, struct rdtgroup *prgrp) 2852 { 2853 union mon_data_bits priv; 2854 struct kernfs_node *kn; 2855 struct mon_evt *mevt; 2856 struct rmid_read rr; 2857 char name[32]; 2858 int ret; 2859 2860 sprintf(name, "mon_%s_%02d", r->name, d->id); 2861 /* create the directory */ 2862 kn = kernfs_create_dir(parent_kn, name, parent_kn->mode, prgrp); 2863 if (IS_ERR(kn)) 2864 return PTR_ERR(kn); 2865 2866 ret = rdtgroup_kn_set_ugid(kn); 2867 if (ret) 2868 goto out_destroy; 2869 2870 if (WARN_ON(list_empty(&r->evt_list))) { 2871 ret = -EPERM; 2872 goto out_destroy; 2873 } 2874 2875 priv.u.rid = r->rid; 2876 priv.u.domid = d->id; 2877 list_for_each_entry(mevt, &r->evt_list, list) { 2878 priv.u.evtid = mevt->evtid; 2879 ret = mon_addfile(kn, mevt->name, priv.priv); 2880 if (ret) 2881 goto out_destroy; 2882 2883 if (is_mbm_event(mevt->evtid)) 2884 mon_event_read(&rr, r, d, prgrp, mevt->evtid, true); 2885 } 2886 kernfs_activate(kn); 2887 return 0; 2888 2889 out_destroy: 2890 kernfs_remove(kn); 2891 return ret; 2892 } 2893 2894 /* 2895 * Add all subdirectories of mon_data for "ctrl_mon" groups 2896 * and "monitor" groups with given domain id. 2897 */ 2898 static void mkdir_mondata_subdir_allrdtgrp(struct rdt_resource *r, 2899 struct rdt_domain *d) 2900 { 2901 struct kernfs_node *parent_kn; 2902 struct rdtgroup *prgrp, *crgrp; 2903 struct list_head *head; 2904 2905 list_for_each_entry(prgrp, &rdt_all_groups, rdtgroup_list) { 2906 parent_kn = prgrp->mon.mon_data_kn; 2907 mkdir_mondata_subdir(parent_kn, d, r, prgrp); 2908 2909 head = &prgrp->mon.crdtgrp_list; 2910 list_for_each_entry(crgrp, head, mon.crdtgrp_list) { 2911 parent_kn = crgrp->mon.mon_data_kn; 2912 mkdir_mondata_subdir(parent_kn, d, r, crgrp); 2913 } 2914 } 2915 } 2916 2917 static int mkdir_mondata_subdir_alldom(struct kernfs_node *parent_kn, 2918 struct rdt_resource *r, 2919 struct rdtgroup *prgrp) 2920 { 2921 struct rdt_domain *dom; 2922 int ret; 2923 2924 list_for_each_entry(dom, &r->domains, list) { 2925 ret = mkdir_mondata_subdir(parent_kn, dom, r, prgrp); 2926 if (ret) 2927 return ret; 2928 } 2929 2930 return 0; 2931 } 2932 2933 /* 2934 * This creates a directory mon_data which contains the monitored data. 2935 * 2936 * mon_data has one directory for each domain which are named 2937 * in the format mon_<domain_name>_<domain_id>. For ex: A mon_data 2938 * with L3 domain looks as below: 2939 * ./mon_data: 2940 * mon_L3_00 2941 * mon_L3_01 2942 * mon_L3_02 2943 * ... 2944 * 2945 * Each domain directory has one file per event: 2946 * ./mon_L3_00/: 2947 * llc_occupancy 2948 * 2949 */ 2950 static int mkdir_mondata_all(struct kernfs_node *parent_kn, 2951 struct rdtgroup *prgrp, 2952 struct kernfs_node **dest_kn) 2953 { 2954 struct rdt_resource *r; 2955 struct kernfs_node *kn; 2956 int ret; 2957 2958 /* 2959 * Create the mon_data directory first. 2960 */ 2961 ret = mongroup_create_dir(parent_kn, prgrp, "mon_data", &kn); 2962 if (ret) 2963 return ret; 2964 2965 if (dest_kn) 2966 *dest_kn = kn; 2967 2968 /* 2969 * Create the subdirectories for each domain. Note that all events 2970 * in a domain like L3 are grouped into a resource whose domain is L3 2971 */ 2972 for_each_mon_capable_rdt_resource(r) { 2973 ret = mkdir_mondata_subdir_alldom(kn, r, prgrp); 2974 if (ret) 2975 goto out_destroy; 2976 } 2977 2978 return 0; 2979 2980 out_destroy: 2981 kernfs_remove(kn); 2982 return ret; 2983 } 2984 2985 /** 2986 * cbm_ensure_valid - Enforce validity on provided CBM 2987 * @_val: Candidate CBM 2988 * @r: RDT resource to which the CBM belongs 2989 * 2990 * The provided CBM represents all cache portions available for use. This 2991 * may be represented by a bitmap that does not consist of contiguous ones 2992 * and thus be an invalid CBM. 2993 * Here the provided CBM is forced to be a valid CBM by only considering 2994 * the first set of contiguous bits as valid and clearing all bits. 2995 * The intention here is to provide a valid default CBM with which a new 2996 * resource group is initialized. The user can follow this with a 2997 * modification to the CBM if the default does not satisfy the 2998 * requirements. 2999 */ 3000 static u32 cbm_ensure_valid(u32 _val, struct rdt_resource *r) 3001 { 3002 unsigned int cbm_len = r->cache.cbm_len; 3003 unsigned long first_bit, zero_bit; 3004 unsigned long val = _val; 3005 3006 if (!val) 3007 return 0; 3008 3009 first_bit = find_first_bit(&val, cbm_len); 3010 zero_bit = find_next_zero_bit(&val, cbm_len, first_bit); 3011 3012 /* Clear any remaining bits to ensure contiguous region */ 3013 bitmap_clear(&val, zero_bit, cbm_len - zero_bit); 3014 return (u32)val; 3015 } 3016 3017 /* 3018 * Initialize cache resources per RDT domain 3019 * 3020 * Set the RDT domain up to start off with all usable allocations. That is, 3021 * all shareable and unused bits. All-zero CBM is invalid. 3022 */ 3023 static int __init_one_rdt_domain(struct rdt_domain *d, struct resctrl_schema *s, 3024 u32 closid) 3025 { 3026 enum resctrl_conf_type peer_type = resctrl_peer_type(s->conf_type); 3027 enum resctrl_conf_type t = s->conf_type; 3028 struct resctrl_staged_config *cfg; 3029 struct rdt_resource *r = s->res; 3030 u32 used_b = 0, unused_b = 0; 3031 unsigned long tmp_cbm; 3032 enum rdtgrp_mode mode; 3033 u32 peer_ctl, ctrl_val; 3034 int i; 3035 3036 cfg = &d->staged_config[t]; 3037 cfg->have_new_ctrl = false; 3038 cfg->new_ctrl = r->cache.shareable_bits; 3039 used_b = r->cache.shareable_bits; 3040 for (i = 0; i < closids_supported(); i++) { 3041 if (closid_allocated(i) && i != closid) { 3042 mode = rdtgroup_mode_by_closid(i); 3043 if (mode == RDT_MODE_PSEUDO_LOCKSETUP) 3044 /* 3045 * ctrl values for locksetup aren't relevant 3046 * until the schemata is written, and the mode 3047 * becomes RDT_MODE_PSEUDO_LOCKED. 3048 */ 3049 continue; 3050 /* 3051 * If CDP is active include peer domain's 3052 * usage to ensure there is no overlap 3053 * with an exclusive group. 3054 */ 3055 if (resctrl_arch_get_cdp_enabled(r->rid)) 3056 peer_ctl = resctrl_arch_get_config(r, d, i, 3057 peer_type); 3058 else 3059 peer_ctl = 0; 3060 ctrl_val = resctrl_arch_get_config(r, d, i, 3061 s->conf_type); 3062 used_b |= ctrl_val | peer_ctl; 3063 if (mode == RDT_MODE_SHAREABLE) 3064 cfg->new_ctrl |= ctrl_val | peer_ctl; 3065 } 3066 } 3067 if (d->plr && d->plr->cbm > 0) 3068 used_b |= d->plr->cbm; 3069 unused_b = used_b ^ (BIT_MASK(r->cache.cbm_len) - 1); 3070 unused_b &= BIT_MASK(r->cache.cbm_len) - 1; 3071 cfg->new_ctrl |= unused_b; 3072 /* 3073 * Force the initial CBM to be valid, user can 3074 * modify the CBM based on system availability. 3075 */ 3076 cfg->new_ctrl = cbm_ensure_valid(cfg->new_ctrl, r); 3077 /* 3078 * Assign the u32 CBM to an unsigned long to ensure that 3079 * bitmap_weight() does not access out-of-bound memory. 3080 */ 3081 tmp_cbm = cfg->new_ctrl; 3082 if (bitmap_weight(&tmp_cbm, r->cache.cbm_len) < r->cache.min_cbm_bits) { 3083 rdt_last_cmd_printf("No space on %s:%d\n", s->name, d->id); 3084 return -ENOSPC; 3085 } 3086 cfg->have_new_ctrl = true; 3087 3088 return 0; 3089 } 3090 3091 /* 3092 * Initialize cache resources with default values. 3093 * 3094 * A new RDT group is being created on an allocation capable (CAT) 3095 * supporting system. Set this group up to start off with all usable 3096 * allocations. 3097 * 3098 * If there are no more shareable bits available on any domain then 3099 * the entire allocation will fail. 3100 */ 3101 static int rdtgroup_init_cat(struct resctrl_schema *s, u32 closid) 3102 { 3103 struct rdt_domain *d; 3104 int ret; 3105 3106 list_for_each_entry(d, &s->res->domains, list) { 3107 ret = __init_one_rdt_domain(d, s, closid); 3108 if (ret < 0) 3109 return ret; 3110 } 3111 3112 return 0; 3113 } 3114 3115 /* Initialize MBA resource with default values. */ 3116 static void rdtgroup_init_mba(struct rdt_resource *r, u32 closid) 3117 { 3118 struct resctrl_staged_config *cfg; 3119 struct rdt_domain *d; 3120 3121 list_for_each_entry(d, &r->domains, list) { 3122 if (is_mba_sc(r)) { 3123 d->mbps_val[closid] = MBA_MAX_MBPS; 3124 continue; 3125 } 3126 3127 cfg = &d->staged_config[CDP_NONE]; 3128 cfg->new_ctrl = r->default_ctrl; 3129 cfg->have_new_ctrl = true; 3130 } 3131 } 3132 3133 /* Initialize the RDT group's allocations. */ 3134 static int rdtgroup_init_alloc(struct rdtgroup *rdtgrp) 3135 { 3136 struct resctrl_schema *s; 3137 struct rdt_resource *r; 3138 int ret = 0; 3139 3140 rdt_staged_configs_clear(); 3141 3142 list_for_each_entry(s, &resctrl_schema_all, list) { 3143 r = s->res; 3144 if (r->rid == RDT_RESOURCE_MBA || 3145 r->rid == RDT_RESOURCE_SMBA) { 3146 rdtgroup_init_mba(r, rdtgrp->closid); 3147 if (is_mba_sc(r)) 3148 continue; 3149 } else { 3150 ret = rdtgroup_init_cat(s, rdtgrp->closid); 3151 if (ret < 0) 3152 goto out; 3153 } 3154 3155 ret = resctrl_arch_update_domains(r, rdtgrp->closid); 3156 if (ret < 0) { 3157 rdt_last_cmd_puts("Failed to initialize allocations\n"); 3158 goto out; 3159 } 3160 3161 } 3162 3163 rdtgrp->mode = RDT_MODE_SHAREABLE; 3164 3165 out: 3166 rdt_staged_configs_clear(); 3167 return ret; 3168 } 3169 3170 static int mkdir_rdt_prepare(struct kernfs_node *parent_kn, 3171 const char *name, umode_t mode, 3172 enum rdt_group_type rtype, struct rdtgroup **r) 3173 { 3174 struct rdtgroup *prdtgrp, *rdtgrp; 3175 struct kernfs_node *kn; 3176 uint files = 0; 3177 int ret; 3178 3179 prdtgrp = rdtgroup_kn_lock_live(parent_kn); 3180 if (!prdtgrp) { 3181 ret = -ENODEV; 3182 goto out_unlock; 3183 } 3184 3185 if (rtype == RDTMON_GROUP && 3186 (prdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP || 3187 prdtgrp->mode == RDT_MODE_PSEUDO_LOCKED)) { 3188 ret = -EINVAL; 3189 rdt_last_cmd_puts("Pseudo-locking in progress\n"); 3190 goto out_unlock; 3191 } 3192 3193 /* allocate the rdtgroup. */ 3194 rdtgrp = kzalloc(sizeof(*rdtgrp), GFP_KERNEL); 3195 if (!rdtgrp) { 3196 ret = -ENOSPC; 3197 rdt_last_cmd_puts("Kernel out of memory\n"); 3198 goto out_unlock; 3199 } 3200 *r = rdtgrp; 3201 rdtgrp->mon.parent = prdtgrp; 3202 rdtgrp->type = rtype; 3203 INIT_LIST_HEAD(&rdtgrp->mon.crdtgrp_list); 3204 3205 /* kernfs creates the directory for rdtgrp */ 3206 kn = kernfs_create_dir(parent_kn, name, mode, rdtgrp); 3207 if (IS_ERR(kn)) { 3208 ret = PTR_ERR(kn); 3209 rdt_last_cmd_puts("kernfs create error\n"); 3210 goto out_free_rgrp; 3211 } 3212 rdtgrp->kn = kn; 3213 3214 /* 3215 * kernfs_remove() will drop the reference count on "kn" which 3216 * will free it. But we still need it to stick around for the 3217 * rdtgroup_kn_unlock(kn) call. Take one extra reference here, 3218 * which will be dropped by kernfs_put() in rdtgroup_remove(). 3219 */ 3220 kernfs_get(kn); 3221 3222 ret = rdtgroup_kn_set_ugid(kn); 3223 if (ret) { 3224 rdt_last_cmd_puts("kernfs perm error\n"); 3225 goto out_destroy; 3226 } 3227 3228 files = RFTYPE_BASE | BIT(RF_CTRLSHIFT + rtype); 3229 ret = rdtgroup_add_files(kn, files); 3230 if (ret) { 3231 rdt_last_cmd_puts("kernfs fill error\n"); 3232 goto out_destroy; 3233 } 3234 3235 if (rdt_mon_capable) { 3236 ret = alloc_rmid(); 3237 if (ret < 0) { 3238 rdt_last_cmd_puts("Out of RMIDs\n"); 3239 goto out_destroy; 3240 } 3241 rdtgrp->mon.rmid = ret; 3242 3243 ret = mkdir_mondata_all(kn, rdtgrp, &rdtgrp->mon.mon_data_kn); 3244 if (ret) { 3245 rdt_last_cmd_puts("kernfs subdir error\n"); 3246 goto out_idfree; 3247 } 3248 } 3249 kernfs_activate(kn); 3250 3251 /* 3252 * The caller unlocks the parent_kn upon success. 3253 */ 3254 return 0; 3255 3256 out_idfree: 3257 free_rmid(rdtgrp->mon.rmid); 3258 out_destroy: 3259 kernfs_put(rdtgrp->kn); 3260 kernfs_remove(rdtgrp->kn); 3261 out_free_rgrp: 3262 kfree(rdtgrp); 3263 out_unlock: 3264 rdtgroup_kn_unlock(parent_kn); 3265 return ret; 3266 } 3267 3268 static void mkdir_rdt_prepare_clean(struct rdtgroup *rgrp) 3269 { 3270 kernfs_remove(rgrp->kn); 3271 free_rmid(rgrp->mon.rmid); 3272 rdtgroup_remove(rgrp); 3273 } 3274 3275 /* 3276 * Create a monitor group under "mon_groups" directory of a control 3277 * and monitor group(ctrl_mon). This is a resource group 3278 * to monitor a subset of tasks and cpus in its parent ctrl_mon group. 3279 */ 3280 static int rdtgroup_mkdir_mon(struct kernfs_node *parent_kn, 3281 const char *name, umode_t mode) 3282 { 3283 struct rdtgroup *rdtgrp, *prgrp; 3284 int ret; 3285 3286 ret = mkdir_rdt_prepare(parent_kn, name, mode, RDTMON_GROUP, &rdtgrp); 3287 if (ret) 3288 return ret; 3289 3290 prgrp = rdtgrp->mon.parent; 3291 rdtgrp->closid = prgrp->closid; 3292 3293 /* 3294 * Add the rdtgrp to the list of rdtgrps the parent 3295 * ctrl_mon group has to track. 3296 */ 3297 list_add_tail(&rdtgrp->mon.crdtgrp_list, &prgrp->mon.crdtgrp_list); 3298 3299 rdtgroup_kn_unlock(parent_kn); 3300 return ret; 3301 } 3302 3303 /* 3304 * These are rdtgroups created under the root directory. Can be used 3305 * to allocate and monitor resources. 3306 */ 3307 static int rdtgroup_mkdir_ctrl_mon(struct kernfs_node *parent_kn, 3308 const char *name, umode_t mode) 3309 { 3310 struct rdtgroup *rdtgrp; 3311 struct kernfs_node *kn; 3312 u32 closid; 3313 int ret; 3314 3315 ret = mkdir_rdt_prepare(parent_kn, name, mode, RDTCTRL_GROUP, &rdtgrp); 3316 if (ret) 3317 return ret; 3318 3319 kn = rdtgrp->kn; 3320 ret = closid_alloc(); 3321 if (ret < 0) { 3322 rdt_last_cmd_puts("Out of CLOSIDs\n"); 3323 goto out_common_fail; 3324 } 3325 closid = ret; 3326 ret = 0; 3327 3328 rdtgrp->closid = closid; 3329 ret = rdtgroup_init_alloc(rdtgrp); 3330 if (ret < 0) 3331 goto out_id_free; 3332 3333 list_add(&rdtgrp->rdtgroup_list, &rdt_all_groups); 3334 3335 if (rdt_mon_capable) { 3336 /* 3337 * Create an empty mon_groups directory to hold the subset 3338 * of tasks and cpus to monitor. 3339 */ 3340 ret = mongroup_create_dir(kn, rdtgrp, "mon_groups", NULL); 3341 if (ret) { 3342 rdt_last_cmd_puts("kernfs subdir error\n"); 3343 goto out_del_list; 3344 } 3345 } 3346 3347 goto out_unlock; 3348 3349 out_del_list: 3350 list_del(&rdtgrp->rdtgroup_list); 3351 out_id_free: 3352 closid_free(closid); 3353 out_common_fail: 3354 mkdir_rdt_prepare_clean(rdtgrp); 3355 out_unlock: 3356 rdtgroup_kn_unlock(parent_kn); 3357 return ret; 3358 } 3359 3360 /* 3361 * We allow creating mon groups only with in a directory called "mon_groups" 3362 * which is present in every ctrl_mon group. Check if this is a valid 3363 * "mon_groups" directory. 3364 * 3365 * 1. The directory should be named "mon_groups". 3366 * 2. The mon group itself should "not" be named "mon_groups". 3367 * This makes sure "mon_groups" directory always has a ctrl_mon group 3368 * as parent. 3369 */ 3370 static bool is_mon_groups(struct kernfs_node *kn, const char *name) 3371 { 3372 return (!strcmp(kn->name, "mon_groups") && 3373 strcmp(name, "mon_groups")); 3374 } 3375 3376 static int rdtgroup_mkdir(struct kernfs_node *parent_kn, const char *name, 3377 umode_t mode) 3378 { 3379 /* Do not accept '\n' to avoid unparsable situation. */ 3380 if (strchr(name, '\n')) 3381 return -EINVAL; 3382 3383 /* 3384 * If the parent directory is the root directory and RDT 3385 * allocation is supported, add a control and monitoring 3386 * subdirectory 3387 */ 3388 if (rdt_alloc_capable && parent_kn == rdtgroup_default.kn) 3389 return rdtgroup_mkdir_ctrl_mon(parent_kn, name, mode); 3390 3391 /* 3392 * If RDT monitoring is supported and the parent directory is a valid 3393 * "mon_groups" directory, add a monitoring subdirectory. 3394 */ 3395 if (rdt_mon_capable && is_mon_groups(parent_kn, name)) 3396 return rdtgroup_mkdir_mon(parent_kn, name, mode); 3397 3398 return -EPERM; 3399 } 3400 3401 static int rdtgroup_rmdir_mon(struct rdtgroup *rdtgrp, cpumask_var_t tmpmask) 3402 { 3403 struct rdtgroup *prdtgrp = rdtgrp->mon.parent; 3404 int cpu; 3405 3406 /* Give any tasks back to the parent group */ 3407 rdt_move_group_tasks(rdtgrp, prdtgrp, tmpmask); 3408 3409 /* Update per cpu rmid of the moved CPUs first */ 3410 for_each_cpu(cpu, &rdtgrp->cpu_mask) 3411 per_cpu(pqr_state.default_rmid, cpu) = prdtgrp->mon.rmid; 3412 /* 3413 * Update the MSR on moved CPUs and CPUs which have moved 3414 * task running on them. 3415 */ 3416 cpumask_or(tmpmask, tmpmask, &rdtgrp->cpu_mask); 3417 update_closid_rmid(tmpmask, NULL); 3418 3419 rdtgrp->flags = RDT_DELETED; 3420 free_rmid(rdtgrp->mon.rmid); 3421 3422 /* 3423 * Remove the rdtgrp from the parent ctrl_mon group's list 3424 */ 3425 WARN_ON(list_empty(&prdtgrp->mon.crdtgrp_list)); 3426 list_del(&rdtgrp->mon.crdtgrp_list); 3427 3428 kernfs_remove(rdtgrp->kn); 3429 3430 return 0; 3431 } 3432 3433 static int rdtgroup_ctrl_remove(struct rdtgroup *rdtgrp) 3434 { 3435 rdtgrp->flags = RDT_DELETED; 3436 list_del(&rdtgrp->rdtgroup_list); 3437 3438 kernfs_remove(rdtgrp->kn); 3439 return 0; 3440 } 3441 3442 static int rdtgroup_rmdir_ctrl(struct rdtgroup *rdtgrp, cpumask_var_t tmpmask) 3443 { 3444 int cpu; 3445 3446 /* Give any tasks back to the default group */ 3447 rdt_move_group_tasks(rdtgrp, &rdtgroup_default, tmpmask); 3448 3449 /* Give any CPUs back to the default group */ 3450 cpumask_or(&rdtgroup_default.cpu_mask, 3451 &rdtgroup_default.cpu_mask, &rdtgrp->cpu_mask); 3452 3453 /* Update per cpu closid and rmid of the moved CPUs first */ 3454 for_each_cpu(cpu, &rdtgrp->cpu_mask) { 3455 per_cpu(pqr_state.default_closid, cpu) = rdtgroup_default.closid; 3456 per_cpu(pqr_state.default_rmid, cpu) = rdtgroup_default.mon.rmid; 3457 } 3458 3459 /* 3460 * Update the MSR on moved CPUs and CPUs which have moved 3461 * task running on them. 3462 */ 3463 cpumask_or(tmpmask, tmpmask, &rdtgrp->cpu_mask); 3464 update_closid_rmid(tmpmask, NULL); 3465 3466 closid_free(rdtgrp->closid); 3467 free_rmid(rdtgrp->mon.rmid); 3468 3469 rdtgroup_ctrl_remove(rdtgrp); 3470 3471 /* 3472 * Free all the child monitor group rmids. 3473 */ 3474 free_all_child_rdtgrp(rdtgrp); 3475 3476 return 0; 3477 } 3478 3479 static int rdtgroup_rmdir(struct kernfs_node *kn) 3480 { 3481 struct kernfs_node *parent_kn = kn->parent; 3482 struct rdtgroup *rdtgrp; 3483 cpumask_var_t tmpmask; 3484 int ret = 0; 3485 3486 if (!zalloc_cpumask_var(&tmpmask, GFP_KERNEL)) 3487 return -ENOMEM; 3488 3489 rdtgrp = rdtgroup_kn_lock_live(kn); 3490 if (!rdtgrp) { 3491 ret = -EPERM; 3492 goto out; 3493 } 3494 3495 /* 3496 * If the rdtgroup is a ctrl_mon group and parent directory 3497 * is the root directory, remove the ctrl_mon group. 3498 * 3499 * If the rdtgroup is a mon group and parent directory 3500 * is a valid "mon_groups" directory, remove the mon group. 3501 */ 3502 if (rdtgrp->type == RDTCTRL_GROUP && parent_kn == rdtgroup_default.kn && 3503 rdtgrp != &rdtgroup_default) { 3504 if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP || 3505 rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED) { 3506 ret = rdtgroup_ctrl_remove(rdtgrp); 3507 } else { 3508 ret = rdtgroup_rmdir_ctrl(rdtgrp, tmpmask); 3509 } 3510 } else if (rdtgrp->type == RDTMON_GROUP && 3511 is_mon_groups(parent_kn, kn->name)) { 3512 ret = rdtgroup_rmdir_mon(rdtgrp, tmpmask); 3513 } else { 3514 ret = -EPERM; 3515 } 3516 3517 out: 3518 rdtgroup_kn_unlock(kn); 3519 free_cpumask_var(tmpmask); 3520 return ret; 3521 } 3522 3523 /** 3524 * mongrp_reparent() - replace parent CTRL_MON group of a MON group 3525 * @rdtgrp: the MON group whose parent should be replaced 3526 * @new_prdtgrp: replacement parent CTRL_MON group for @rdtgrp 3527 * @cpus: cpumask provided by the caller for use during this call 3528 * 3529 * Replaces the parent CTRL_MON group for a MON group, resulting in all member 3530 * tasks' CLOSID immediately changing to that of the new parent group. 3531 * Monitoring data for the group is unaffected by this operation. 3532 */ 3533 static void mongrp_reparent(struct rdtgroup *rdtgrp, 3534 struct rdtgroup *new_prdtgrp, 3535 cpumask_var_t cpus) 3536 { 3537 struct rdtgroup *prdtgrp = rdtgrp->mon.parent; 3538 3539 WARN_ON(rdtgrp->type != RDTMON_GROUP); 3540 WARN_ON(new_prdtgrp->type != RDTCTRL_GROUP); 3541 3542 /* Nothing to do when simply renaming a MON group. */ 3543 if (prdtgrp == new_prdtgrp) 3544 return; 3545 3546 WARN_ON(list_empty(&prdtgrp->mon.crdtgrp_list)); 3547 list_move_tail(&rdtgrp->mon.crdtgrp_list, 3548 &new_prdtgrp->mon.crdtgrp_list); 3549 3550 rdtgrp->mon.parent = new_prdtgrp; 3551 rdtgrp->closid = new_prdtgrp->closid; 3552 3553 /* Propagate updated closid to all tasks in this group. */ 3554 rdt_move_group_tasks(rdtgrp, rdtgrp, cpus); 3555 3556 update_closid_rmid(cpus, NULL); 3557 } 3558 3559 static int rdtgroup_rename(struct kernfs_node *kn, 3560 struct kernfs_node *new_parent, const char *new_name) 3561 { 3562 struct rdtgroup *new_prdtgrp; 3563 struct rdtgroup *rdtgrp; 3564 cpumask_var_t tmpmask; 3565 int ret; 3566 3567 rdtgrp = kernfs_to_rdtgroup(kn); 3568 new_prdtgrp = kernfs_to_rdtgroup(new_parent); 3569 if (!rdtgrp || !new_prdtgrp) 3570 return -ENOENT; 3571 3572 /* Release both kernfs active_refs before obtaining rdtgroup mutex. */ 3573 rdtgroup_kn_get(rdtgrp, kn); 3574 rdtgroup_kn_get(new_prdtgrp, new_parent); 3575 3576 mutex_lock(&rdtgroup_mutex); 3577 3578 rdt_last_cmd_clear(); 3579 3580 /* 3581 * Don't allow kernfs_to_rdtgroup() to return a parent rdtgroup if 3582 * either kernfs_node is a file. 3583 */ 3584 if (kernfs_type(kn) != KERNFS_DIR || 3585 kernfs_type(new_parent) != KERNFS_DIR) { 3586 rdt_last_cmd_puts("Source and destination must be directories"); 3587 ret = -EPERM; 3588 goto out; 3589 } 3590 3591 if ((rdtgrp->flags & RDT_DELETED) || (new_prdtgrp->flags & RDT_DELETED)) { 3592 ret = -ENOENT; 3593 goto out; 3594 } 3595 3596 if (rdtgrp->type != RDTMON_GROUP || !kn->parent || 3597 !is_mon_groups(kn->parent, kn->name)) { 3598 rdt_last_cmd_puts("Source must be a MON group\n"); 3599 ret = -EPERM; 3600 goto out; 3601 } 3602 3603 if (!is_mon_groups(new_parent, new_name)) { 3604 rdt_last_cmd_puts("Destination must be a mon_groups subdirectory\n"); 3605 ret = -EPERM; 3606 goto out; 3607 } 3608 3609 /* 3610 * If the MON group is monitoring CPUs, the CPUs must be assigned to the 3611 * current parent CTRL_MON group and therefore cannot be assigned to 3612 * the new parent, making the move illegal. 3613 */ 3614 if (!cpumask_empty(&rdtgrp->cpu_mask) && 3615 rdtgrp->mon.parent != new_prdtgrp) { 3616 rdt_last_cmd_puts("Cannot move a MON group that monitors CPUs\n"); 3617 ret = -EPERM; 3618 goto out; 3619 } 3620 3621 /* 3622 * Allocate the cpumask for use in mongrp_reparent() to avoid the 3623 * possibility of failing to allocate it after kernfs_rename() has 3624 * succeeded. 3625 */ 3626 if (!zalloc_cpumask_var(&tmpmask, GFP_KERNEL)) { 3627 ret = -ENOMEM; 3628 goto out; 3629 } 3630 3631 /* 3632 * Perform all input validation and allocations needed to ensure 3633 * mongrp_reparent() will succeed before calling kernfs_rename(), 3634 * otherwise it would be necessary to revert this call if 3635 * mongrp_reparent() failed. 3636 */ 3637 ret = kernfs_rename(kn, new_parent, new_name); 3638 if (!ret) 3639 mongrp_reparent(rdtgrp, new_prdtgrp, tmpmask); 3640 3641 free_cpumask_var(tmpmask); 3642 3643 out: 3644 mutex_unlock(&rdtgroup_mutex); 3645 rdtgroup_kn_put(rdtgrp, kn); 3646 rdtgroup_kn_put(new_prdtgrp, new_parent); 3647 return ret; 3648 } 3649 3650 static int rdtgroup_show_options(struct seq_file *seq, struct kernfs_root *kf) 3651 { 3652 if (resctrl_arch_get_cdp_enabled(RDT_RESOURCE_L3)) 3653 seq_puts(seq, ",cdp"); 3654 3655 if (resctrl_arch_get_cdp_enabled(RDT_RESOURCE_L2)) 3656 seq_puts(seq, ",cdpl2"); 3657 3658 if (is_mba_sc(&rdt_resources_all[RDT_RESOURCE_MBA].r_resctrl)) 3659 seq_puts(seq, ",mba_MBps"); 3660 3661 return 0; 3662 } 3663 3664 static struct kernfs_syscall_ops rdtgroup_kf_syscall_ops = { 3665 .mkdir = rdtgroup_mkdir, 3666 .rmdir = rdtgroup_rmdir, 3667 .rename = rdtgroup_rename, 3668 .show_options = rdtgroup_show_options, 3669 }; 3670 3671 static int __init rdtgroup_setup_root(void) 3672 { 3673 int ret; 3674 3675 rdt_root = kernfs_create_root(&rdtgroup_kf_syscall_ops, 3676 KERNFS_ROOT_CREATE_DEACTIVATED | 3677 KERNFS_ROOT_EXTRA_OPEN_PERM_CHECK, 3678 &rdtgroup_default); 3679 if (IS_ERR(rdt_root)) 3680 return PTR_ERR(rdt_root); 3681 3682 mutex_lock(&rdtgroup_mutex); 3683 3684 rdtgroup_default.closid = 0; 3685 rdtgroup_default.mon.rmid = 0; 3686 rdtgroup_default.type = RDTCTRL_GROUP; 3687 INIT_LIST_HEAD(&rdtgroup_default.mon.crdtgrp_list); 3688 3689 list_add(&rdtgroup_default.rdtgroup_list, &rdt_all_groups); 3690 3691 ret = rdtgroup_add_files(kernfs_root_to_node(rdt_root), RF_CTRL_BASE); 3692 if (ret) { 3693 kernfs_destroy_root(rdt_root); 3694 goto out; 3695 } 3696 3697 rdtgroup_default.kn = kernfs_root_to_node(rdt_root); 3698 kernfs_activate(rdtgroup_default.kn); 3699 3700 out: 3701 mutex_unlock(&rdtgroup_mutex); 3702 3703 return ret; 3704 } 3705 3706 static void domain_destroy_mon_state(struct rdt_domain *d) 3707 { 3708 bitmap_free(d->rmid_busy_llc); 3709 kfree(d->mbm_total); 3710 kfree(d->mbm_local); 3711 } 3712 3713 void resctrl_offline_domain(struct rdt_resource *r, struct rdt_domain *d) 3714 { 3715 lockdep_assert_held(&rdtgroup_mutex); 3716 3717 if (supports_mba_mbps() && r->rid == RDT_RESOURCE_MBA) 3718 mba_sc_domain_destroy(r, d); 3719 3720 if (!r->mon_capable) 3721 return; 3722 3723 /* 3724 * If resctrl is mounted, remove all the 3725 * per domain monitor data directories. 3726 */ 3727 if (static_branch_unlikely(&rdt_mon_enable_key)) 3728 rmdir_mondata_subdir_allrdtgrp(r, d->id); 3729 3730 if (is_mbm_enabled()) 3731 cancel_delayed_work(&d->mbm_over); 3732 if (is_llc_occupancy_enabled() && has_busy_rmid(r, d)) { 3733 /* 3734 * When a package is going down, forcefully 3735 * decrement rmid->ebusy. There is no way to know 3736 * that the L3 was flushed and hence may lead to 3737 * incorrect counts in rare scenarios, but leaving 3738 * the RMID as busy creates RMID leaks if the 3739 * package never comes back. 3740 */ 3741 __check_limbo(d, true); 3742 cancel_delayed_work(&d->cqm_limbo); 3743 } 3744 3745 domain_destroy_mon_state(d); 3746 } 3747 3748 static int domain_setup_mon_state(struct rdt_resource *r, struct rdt_domain *d) 3749 { 3750 size_t tsize; 3751 3752 if (is_llc_occupancy_enabled()) { 3753 d->rmid_busy_llc = bitmap_zalloc(r->num_rmid, GFP_KERNEL); 3754 if (!d->rmid_busy_llc) 3755 return -ENOMEM; 3756 } 3757 if (is_mbm_total_enabled()) { 3758 tsize = sizeof(*d->mbm_total); 3759 d->mbm_total = kcalloc(r->num_rmid, tsize, GFP_KERNEL); 3760 if (!d->mbm_total) { 3761 bitmap_free(d->rmid_busy_llc); 3762 return -ENOMEM; 3763 } 3764 } 3765 if (is_mbm_local_enabled()) { 3766 tsize = sizeof(*d->mbm_local); 3767 d->mbm_local = kcalloc(r->num_rmid, tsize, GFP_KERNEL); 3768 if (!d->mbm_local) { 3769 bitmap_free(d->rmid_busy_llc); 3770 kfree(d->mbm_total); 3771 return -ENOMEM; 3772 } 3773 } 3774 3775 return 0; 3776 } 3777 3778 int resctrl_online_domain(struct rdt_resource *r, struct rdt_domain *d) 3779 { 3780 int err; 3781 3782 lockdep_assert_held(&rdtgroup_mutex); 3783 3784 if (supports_mba_mbps() && r->rid == RDT_RESOURCE_MBA) 3785 /* RDT_RESOURCE_MBA is never mon_capable */ 3786 return mba_sc_domain_allocate(r, d); 3787 3788 if (!r->mon_capable) 3789 return 0; 3790 3791 err = domain_setup_mon_state(r, d); 3792 if (err) 3793 return err; 3794 3795 if (is_mbm_enabled()) { 3796 INIT_DELAYED_WORK(&d->mbm_over, mbm_handle_overflow); 3797 mbm_setup_overflow_handler(d, MBM_OVERFLOW_INTERVAL); 3798 } 3799 3800 if (is_llc_occupancy_enabled()) 3801 INIT_DELAYED_WORK(&d->cqm_limbo, cqm_handle_limbo); 3802 3803 /* If resctrl is mounted, add per domain monitor data directories. */ 3804 if (static_branch_unlikely(&rdt_mon_enable_key)) 3805 mkdir_mondata_subdir_allrdtgrp(r, d); 3806 3807 return 0; 3808 } 3809 3810 /* 3811 * rdtgroup_init - rdtgroup initialization 3812 * 3813 * Setup resctrl file system including set up root, create mount point, 3814 * register rdtgroup filesystem, and initialize files under root directory. 3815 * 3816 * Return: 0 on success or -errno 3817 */ 3818 int __init rdtgroup_init(void) 3819 { 3820 int ret = 0; 3821 3822 seq_buf_init(&last_cmd_status, last_cmd_status_buf, 3823 sizeof(last_cmd_status_buf)); 3824 3825 ret = rdtgroup_setup_root(); 3826 if (ret) 3827 return ret; 3828 3829 ret = sysfs_create_mount_point(fs_kobj, "resctrl"); 3830 if (ret) 3831 goto cleanup_root; 3832 3833 ret = register_filesystem(&rdt_fs_type); 3834 if (ret) 3835 goto cleanup_mountpoint; 3836 3837 /* 3838 * Adding the resctrl debugfs directory here may not be ideal since 3839 * it would let the resctrl debugfs directory appear on the debugfs 3840 * filesystem before the resctrl filesystem is mounted. 3841 * It may also be ok since that would enable debugging of RDT before 3842 * resctrl is mounted. 3843 * The reason why the debugfs directory is created here and not in 3844 * rdt_get_tree() is because rdt_get_tree() takes rdtgroup_mutex and 3845 * during the debugfs directory creation also &sb->s_type->i_mutex_key 3846 * (the lockdep class of inode->i_rwsem). Other filesystem 3847 * interactions (eg. SyS_getdents) have the lock ordering: 3848 * &sb->s_type->i_mutex_key --> &mm->mmap_lock 3849 * During mmap(), called with &mm->mmap_lock, the rdtgroup_mutex 3850 * is taken, thus creating dependency: 3851 * &mm->mmap_lock --> rdtgroup_mutex for the latter that can cause 3852 * issues considering the other two lock dependencies. 3853 * By creating the debugfs directory here we avoid a dependency 3854 * that may cause deadlock (even though file operations cannot 3855 * occur until the filesystem is mounted, but I do not know how to 3856 * tell lockdep that). 3857 */ 3858 debugfs_resctrl = debugfs_create_dir("resctrl", NULL); 3859 3860 return 0; 3861 3862 cleanup_mountpoint: 3863 sysfs_remove_mount_point(fs_kobj, "resctrl"); 3864 cleanup_root: 3865 kernfs_destroy_root(rdt_root); 3866 3867 return ret; 3868 } 3869 3870 void __exit rdtgroup_exit(void) 3871 { 3872 debugfs_remove_recursive(debugfs_resctrl); 3873 unregister_filesystem(&rdt_fs_type); 3874 sysfs_remove_mount_point(fs_kobj, "resctrl"); 3875 kernfs_destroy_root(rdt_root); 3876 } 3877