1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * User interface for Resource Allocation in Resource Director Technology(RDT) 4 * 5 * Copyright (C) 2016 Intel Corporation 6 * 7 * Author: Fenghua Yu <fenghua.yu@intel.com> 8 * 9 * More information about RDT be found in the Intel (R) x86 Architecture 10 * Software Developer Manual. 11 */ 12 13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 14 15 #include <linux/cacheinfo.h> 16 #include <linux/cpu.h> 17 #include <linux/debugfs.h> 18 #include <linux/fs.h> 19 #include <linux/fs_parser.h> 20 #include <linux/sysfs.h> 21 #include <linux/kernfs.h> 22 #include <linux/seq_buf.h> 23 #include <linux/seq_file.h> 24 #include <linux/sched/signal.h> 25 #include <linux/sched/task.h> 26 #include <linux/slab.h> 27 #include <linux/task_work.h> 28 #include <linux/user_namespace.h> 29 30 #include <uapi/linux/magic.h> 31 32 #include <asm/resctrl.h> 33 #include "internal.h" 34 35 DEFINE_STATIC_KEY_FALSE(rdt_enable_key); 36 DEFINE_STATIC_KEY_FALSE(rdt_mon_enable_key); 37 DEFINE_STATIC_KEY_FALSE(rdt_alloc_enable_key); 38 static struct kernfs_root *rdt_root; 39 struct rdtgroup rdtgroup_default; 40 LIST_HEAD(rdt_all_groups); 41 42 /* list of entries for the schemata file */ 43 LIST_HEAD(resctrl_schema_all); 44 45 /* Kernel fs node for "info" directory under root */ 46 static struct kernfs_node *kn_info; 47 48 /* Kernel fs node for "mon_groups" directory under root */ 49 static struct kernfs_node *kn_mongrp; 50 51 /* Kernel fs node for "mon_data" directory under root */ 52 static struct kernfs_node *kn_mondata; 53 54 static struct seq_buf last_cmd_status; 55 static char last_cmd_status_buf[512]; 56 57 struct dentry *debugfs_resctrl; 58 59 void rdt_last_cmd_clear(void) 60 { 61 lockdep_assert_held(&rdtgroup_mutex); 62 seq_buf_clear(&last_cmd_status); 63 } 64 65 void rdt_last_cmd_puts(const char *s) 66 { 67 lockdep_assert_held(&rdtgroup_mutex); 68 seq_buf_puts(&last_cmd_status, s); 69 } 70 71 void rdt_last_cmd_printf(const char *fmt, ...) 72 { 73 va_list ap; 74 75 va_start(ap, fmt); 76 lockdep_assert_held(&rdtgroup_mutex); 77 seq_buf_vprintf(&last_cmd_status, fmt, ap); 78 va_end(ap); 79 } 80 81 /* 82 * Trivial allocator for CLOSIDs. Since h/w only supports a small number, 83 * we can keep a bitmap of free CLOSIDs in a single integer. 84 * 85 * Using a global CLOSID across all resources has some advantages and 86 * some drawbacks: 87 * + We can simply set "current->closid" to assign a task to a resource 88 * group. 89 * + Context switch code can avoid extra memory references deciding which 90 * CLOSID to load into the PQR_ASSOC MSR 91 * - We give up some options in configuring resource groups across multi-socket 92 * systems. 93 * - Our choices on how to configure each resource become progressively more 94 * limited as the number of resources grows. 95 */ 96 static int closid_free_map; 97 static int closid_free_map_len; 98 99 int closids_supported(void) 100 { 101 return closid_free_map_len; 102 } 103 104 static void closid_init(void) 105 { 106 struct resctrl_schema *s; 107 u32 rdt_min_closid = 32; 108 109 /* Compute rdt_min_closid across all resources */ 110 list_for_each_entry(s, &resctrl_schema_all, list) 111 rdt_min_closid = min(rdt_min_closid, s->num_closid); 112 113 closid_free_map = BIT_MASK(rdt_min_closid) - 1; 114 115 /* CLOSID 0 is always reserved for the default group */ 116 closid_free_map &= ~1; 117 closid_free_map_len = rdt_min_closid; 118 } 119 120 static int closid_alloc(void) 121 { 122 u32 closid = ffs(closid_free_map); 123 124 if (closid == 0) 125 return -ENOSPC; 126 closid--; 127 closid_free_map &= ~(1 << closid); 128 129 return closid; 130 } 131 132 void closid_free(int closid) 133 { 134 closid_free_map |= 1 << closid; 135 } 136 137 /** 138 * closid_allocated - test if provided closid is in use 139 * @closid: closid to be tested 140 * 141 * Return: true if @closid is currently associated with a resource group, 142 * false if @closid is free 143 */ 144 static bool closid_allocated(unsigned int closid) 145 { 146 return (closid_free_map & (1 << closid)) == 0; 147 } 148 149 /** 150 * rdtgroup_mode_by_closid - Return mode of resource group with closid 151 * @closid: closid if the resource group 152 * 153 * Each resource group is associated with a @closid. Here the mode 154 * of a resource group can be queried by searching for it using its closid. 155 * 156 * Return: mode as &enum rdtgrp_mode of resource group with closid @closid 157 */ 158 enum rdtgrp_mode rdtgroup_mode_by_closid(int closid) 159 { 160 struct rdtgroup *rdtgrp; 161 162 list_for_each_entry(rdtgrp, &rdt_all_groups, rdtgroup_list) { 163 if (rdtgrp->closid == closid) 164 return rdtgrp->mode; 165 } 166 167 return RDT_NUM_MODES; 168 } 169 170 static const char * const rdt_mode_str[] = { 171 [RDT_MODE_SHAREABLE] = "shareable", 172 [RDT_MODE_EXCLUSIVE] = "exclusive", 173 [RDT_MODE_PSEUDO_LOCKSETUP] = "pseudo-locksetup", 174 [RDT_MODE_PSEUDO_LOCKED] = "pseudo-locked", 175 }; 176 177 /** 178 * rdtgroup_mode_str - Return the string representation of mode 179 * @mode: the resource group mode as &enum rdtgroup_mode 180 * 181 * Return: string representation of valid mode, "unknown" otherwise 182 */ 183 static const char *rdtgroup_mode_str(enum rdtgrp_mode mode) 184 { 185 if (mode < RDT_MODE_SHAREABLE || mode >= RDT_NUM_MODES) 186 return "unknown"; 187 188 return rdt_mode_str[mode]; 189 } 190 191 /* set uid and gid of rdtgroup dirs and files to that of the creator */ 192 static int rdtgroup_kn_set_ugid(struct kernfs_node *kn) 193 { 194 struct iattr iattr = { .ia_valid = ATTR_UID | ATTR_GID, 195 .ia_uid = current_fsuid(), 196 .ia_gid = current_fsgid(), }; 197 198 if (uid_eq(iattr.ia_uid, GLOBAL_ROOT_UID) && 199 gid_eq(iattr.ia_gid, GLOBAL_ROOT_GID)) 200 return 0; 201 202 return kernfs_setattr(kn, &iattr); 203 } 204 205 static int rdtgroup_add_file(struct kernfs_node *parent_kn, struct rftype *rft) 206 { 207 struct kernfs_node *kn; 208 int ret; 209 210 kn = __kernfs_create_file(parent_kn, rft->name, rft->mode, 211 GLOBAL_ROOT_UID, GLOBAL_ROOT_GID, 212 0, rft->kf_ops, rft, NULL, NULL); 213 if (IS_ERR(kn)) 214 return PTR_ERR(kn); 215 216 ret = rdtgroup_kn_set_ugid(kn); 217 if (ret) { 218 kernfs_remove(kn); 219 return ret; 220 } 221 222 return 0; 223 } 224 225 static int rdtgroup_seqfile_show(struct seq_file *m, void *arg) 226 { 227 struct kernfs_open_file *of = m->private; 228 struct rftype *rft = of->kn->priv; 229 230 if (rft->seq_show) 231 return rft->seq_show(of, m, arg); 232 return 0; 233 } 234 235 static ssize_t rdtgroup_file_write(struct kernfs_open_file *of, char *buf, 236 size_t nbytes, loff_t off) 237 { 238 struct rftype *rft = of->kn->priv; 239 240 if (rft->write) 241 return rft->write(of, buf, nbytes, off); 242 243 return -EINVAL; 244 } 245 246 static const struct kernfs_ops rdtgroup_kf_single_ops = { 247 .atomic_write_len = PAGE_SIZE, 248 .write = rdtgroup_file_write, 249 .seq_show = rdtgroup_seqfile_show, 250 }; 251 252 static const struct kernfs_ops kf_mondata_ops = { 253 .atomic_write_len = PAGE_SIZE, 254 .seq_show = rdtgroup_mondata_show, 255 }; 256 257 static bool is_cpu_list(struct kernfs_open_file *of) 258 { 259 struct rftype *rft = of->kn->priv; 260 261 return rft->flags & RFTYPE_FLAGS_CPUS_LIST; 262 } 263 264 static int rdtgroup_cpus_show(struct kernfs_open_file *of, 265 struct seq_file *s, void *v) 266 { 267 struct rdtgroup *rdtgrp; 268 struct cpumask *mask; 269 int ret = 0; 270 271 rdtgrp = rdtgroup_kn_lock_live(of->kn); 272 273 if (rdtgrp) { 274 if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED) { 275 if (!rdtgrp->plr->d) { 276 rdt_last_cmd_clear(); 277 rdt_last_cmd_puts("Cache domain offline\n"); 278 ret = -ENODEV; 279 } else { 280 mask = &rdtgrp->plr->d->cpu_mask; 281 seq_printf(s, is_cpu_list(of) ? 282 "%*pbl\n" : "%*pb\n", 283 cpumask_pr_args(mask)); 284 } 285 } else { 286 seq_printf(s, is_cpu_list(of) ? "%*pbl\n" : "%*pb\n", 287 cpumask_pr_args(&rdtgrp->cpu_mask)); 288 } 289 } else { 290 ret = -ENOENT; 291 } 292 rdtgroup_kn_unlock(of->kn); 293 294 return ret; 295 } 296 297 /* 298 * This is safe against resctrl_sched_in() called from __switch_to() 299 * because __switch_to() is executed with interrupts disabled. A local call 300 * from update_closid_rmid() is protected against __switch_to() because 301 * preemption is disabled. 302 */ 303 static void update_cpu_closid_rmid(void *info) 304 { 305 struct rdtgroup *r = info; 306 307 if (r) { 308 this_cpu_write(pqr_state.default_closid, r->closid); 309 this_cpu_write(pqr_state.default_rmid, r->mon.rmid); 310 } 311 312 /* 313 * We cannot unconditionally write the MSR because the current 314 * executing task might have its own closid selected. Just reuse 315 * the context switch code. 316 */ 317 resctrl_sched_in(); 318 } 319 320 /* 321 * Update the PGR_ASSOC MSR on all cpus in @cpu_mask, 322 * 323 * Per task closids/rmids must have been set up before calling this function. 324 */ 325 static void 326 update_closid_rmid(const struct cpumask *cpu_mask, struct rdtgroup *r) 327 { 328 int cpu = get_cpu(); 329 330 if (cpumask_test_cpu(cpu, cpu_mask)) 331 update_cpu_closid_rmid(r); 332 smp_call_function_many(cpu_mask, update_cpu_closid_rmid, r, 1); 333 put_cpu(); 334 } 335 336 static int cpus_mon_write(struct rdtgroup *rdtgrp, cpumask_var_t newmask, 337 cpumask_var_t tmpmask) 338 { 339 struct rdtgroup *prgrp = rdtgrp->mon.parent, *crgrp; 340 struct list_head *head; 341 342 /* Check whether cpus belong to parent ctrl group */ 343 cpumask_andnot(tmpmask, newmask, &prgrp->cpu_mask); 344 if (!cpumask_empty(tmpmask)) { 345 rdt_last_cmd_puts("Can only add CPUs to mongroup that belong to parent\n"); 346 return -EINVAL; 347 } 348 349 /* Check whether cpus are dropped from this group */ 350 cpumask_andnot(tmpmask, &rdtgrp->cpu_mask, newmask); 351 if (!cpumask_empty(tmpmask)) { 352 /* Give any dropped cpus to parent rdtgroup */ 353 cpumask_or(&prgrp->cpu_mask, &prgrp->cpu_mask, tmpmask); 354 update_closid_rmid(tmpmask, prgrp); 355 } 356 357 /* 358 * If we added cpus, remove them from previous group that owned them 359 * and update per-cpu rmid 360 */ 361 cpumask_andnot(tmpmask, newmask, &rdtgrp->cpu_mask); 362 if (!cpumask_empty(tmpmask)) { 363 head = &prgrp->mon.crdtgrp_list; 364 list_for_each_entry(crgrp, head, mon.crdtgrp_list) { 365 if (crgrp == rdtgrp) 366 continue; 367 cpumask_andnot(&crgrp->cpu_mask, &crgrp->cpu_mask, 368 tmpmask); 369 } 370 update_closid_rmid(tmpmask, rdtgrp); 371 } 372 373 /* Done pushing/pulling - update this group with new mask */ 374 cpumask_copy(&rdtgrp->cpu_mask, newmask); 375 376 return 0; 377 } 378 379 static void cpumask_rdtgrp_clear(struct rdtgroup *r, struct cpumask *m) 380 { 381 struct rdtgroup *crgrp; 382 383 cpumask_andnot(&r->cpu_mask, &r->cpu_mask, m); 384 /* update the child mon group masks as well*/ 385 list_for_each_entry(crgrp, &r->mon.crdtgrp_list, mon.crdtgrp_list) 386 cpumask_and(&crgrp->cpu_mask, &r->cpu_mask, &crgrp->cpu_mask); 387 } 388 389 static int cpus_ctrl_write(struct rdtgroup *rdtgrp, cpumask_var_t newmask, 390 cpumask_var_t tmpmask, cpumask_var_t tmpmask1) 391 { 392 struct rdtgroup *r, *crgrp; 393 struct list_head *head; 394 395 /* Check whether cpus are dropped from this group */ 396 cpumask_andnot(tmpmask, &rdtgrp->cpu_mask, newmask); 397 if (!cpumask_empty(tmpmask)) { 398 /* Can't drop from default group */ 399 if (rdtgrp == &rdtgroup_default) { 400 rdt_last_cmd_puts("Can't drop CPUs from default group\n"); 401 return -EINVAL; 402 } 403 404 /* Give any dropped cpus to rdtgroup_default */ 405 cpumask_or(&rdtgroup_default.cpu_mask, 406 &rdtgroup_default.cpu_mask, tmpmask); 407 update_closid_rmid(tmpmask, &rdtgroup_default); 408 } 409 410 /* 411 * If we added cpus, remove them from previous group and 412 * the prev group's child groups that owned them 413 * and update per-cpu closid/rmid. 414 */ 415 cpumask_andnot(tmpmask, newmask, &rdtgrp->cpu_mask); 416 if (!cpumask_empty(tmpmask)) { 417 list_for_each_entry(r, &rdt_all_groups, rdtgroup_list) { 418 if (r == rdtgrp) 419 continue; 420 cpumask_and(tmpmask1, &r->cpu_mask, tmpmask); 421 if (!cpumask_empty(tmpmask1)) 422 cpumask_rdtgrp_clear(r, tmpmask1); 423 } 424 update_closid_rmid(tmpmask, rdtgrp); 425 } 426 427 /* Done pushing/pulling - update this group with new mask */ 428 cpumask_copy(&rdtgrp->cpu_mask, newmask); 429 430 /* 431 * Clear child mon group masks since there is a new parent mask 432 * now and update the rmid for the cpus the child lost. 433 */ 434 head = &rdtgrp->mon.crdtgrp_list; 435 list_for_each_entry(crgrp, head, mon.crdtgrp_list) { 436 cpumask_and(tmpmask, &rdtgrp->cpu_mask, &crgrp->cpu_mask); 437 update_closid_rmid(tmpmask, rdtgrp); 438 cpumask_clear(&crgrp->cpu_mask); 439 } 440 441 return 0; 442 } 443 444 static ssize_t rdtgroup_cpus_write(struct kernfs_open_file *of, 445 char *buf, size_t nbytes, loff_t off) 446 { 447 cpumask_var_t tmpmask, newmask, tmpmask1; 448 struct rdtgroup *rdtgrp; 449 int ret; 450 451 if (!buf) 452 return -EINVAL; 453 454 if (!zalloc_cpumask_var(&tmpmask, GFP_KERNEL)) 455 return -ENOMEM; 456 if (!zalloc_cpumask_var(&newmask, GFP_KERNEL)) { 457 free_cpumask_var(tmpmask); 458 return -ENOMEM; 459 } 460 if (!zalloc_cpumask_var(&tmpmask1, GFP_KERNEL)) { 461 free_cpumask_var(tmpmask); 462 free_cpumask_var(newmask); 463 return -ENOMEM; 464 } 465 466 rdtgrp = rdtgroup_kn_lock_live(of->kn); 467 if (!rdtgrp) { 468 ret = -ENOENT; 469 goto unlock; 470 } 471 472 if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED || 473 rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP) { 474 ret = -EINVAL; 475 rdt_last_cmd_puts("Pseudo-locking in progress\n"); 476 goto unlock; 477 } 478 479 if (is_cpu_list(of)) 480 ret = cpulist_parse(buf, newmask); 481 else 482 ret = cpumask_parse(buf, newmask); 483 484 if (ret) { 485 rdt_last_cmd_puts("Bad CPU list/mask\n"); 486 goto unlock; 487 } 488 489 /* check that user didn't specify any offline cpus */ 490 cpumask_andnot(tmpmask, newmask, cpu_online_mask); 491 if (!cpumask_empty(tmpmask)) { 492 ret = -EINVAL; 493 rdt_last_cmd_puts("Can only assign online CPUs\n"); 494 goto unlock; 495 } 496 497 if (rdtgrp->type == RDTCTRL_GROUP) 498 ret = cpus_ctrl_write(rdtgrp, newmask, tmpmask, tmpmask1); 499 else if (rdtgrp->type == RDTMON_GROUP) 500 ret = cpus_mon_write(rdtgrp, newmask, tmpmask); 501 else 502 ret = -EINVAL; 503 504 unlock: 505 rdtgroup_kn_unlock(of->kn); 506 free_cpumask_var(tmpmask); 507 free_cpumask_var(newmask); 508 free_cpumask_var(tmpmask1); 509 510 return ret ?: nbytes; 511 } 512 513 /** 514 * rdtgroup_remove - the helper to remove resource group safely 515 * @rdtgrp: resource group to remove 516 * 517 * On resource group creation via a mkdir, an extra kernfs_node reference is 518 * taken to ensure that the rdtgroup structure remains accessible for the 519 * rdtgroup_kn_unlock() calls where it is removed. 520 * 521 * Drop the extra reference here, then free the rdtgroup structure. 522 * 523 * Return: void 524 */ 525 static void rdtgroup_remove(struct rdtgroup *rdtgrp) 526 { 527 kernfs_put(rdtgrp->kn); 528 kfree(rdtgrp); 529 } 530 531 static void _update_task_closid_rmid(void *task) 532 { 533 /* 534 * If the task is still current on this CPU, update PQR_ASSOC MSR. 535 * Otherwise, the MSR is updated when the task is scheduled in. 536 */ 537 if (task == current) 538 resctrl_sched_in(); 539 } 540 541 static void update_task_closid_rmid(struct task_struct *t) 542 { 543 if (IS_ENABLED(CONFIG_SMP) && task_curr(t)) 544 smp_call_function_single(task_cpu(t), _update_task_closid_rmid, t, 1); 545 else 546 _update_task_closid_rmid(t); 547 } 548 549 static int __rdtgroup_move_task(struct task_struct *tsk, 550 struct rdtgroup *rdtgrp) 551 { 552 /* If the task is already in rdtgrp, no need to move the task. */ 553 if ((rdtgrp->type == RDTCTRL_GROUP && tsk->closid == rdtgrp->closid && 554 tsk->rmid == rdtgrp->mon.rmid) || 555 (rdtgrp->type == RDTMON_GROUP && tsk->rmid == rdtgrp->mon.rmid && 556 tsk->closid == rdtgrp->mon.parent->closid)) 557 return 0; 558 559 /* 560 * Set the task's closid/rmid before the PQR_ASSOC MSR can be 561 * updated by them. 562 * 563 * For ctrl_mon groups, move both closid and rmid. 564 * For monitor groups, can move the tasks only from 565 * their parent CTRL group. 566 */ 567 568 if (rdtgrp->type == RDTCTRL_GROUP) { 569 WRITE_ONCE(tsk->closid, rdtgrp->closid); 570 WRITE_ONCE(tsk->rmid, rdtgrp->mon.rmid); 571 } else if (rdtgrp->type == RDTMON_GROUP) { 572 if (rdtgrp->mon.parent->closid == tsk->closid) { 573 WRITE_ONCE(tsk->rmid, rdtgrp->mon.rmid); 574 } else { 575 rdt_last_cmd_puts("Can't move task to different control group\n"); 576 return -EINVAL; 577 } 578 } 579 580 /* 581 * Ensure the task's closid and rmid are written before determining if 582 * the task is current that will decide if it will be interrupted. 583 */ 584 barrier(); 585 586 /* 587 * By now, the task's closid and rmid are set. If the task is current 588 * on a CPU, the PQR_ASSOC MSR needs to be updated to make the resource 589 * group go into effect. If the task is not current, the MSR will be 590 * updated when the task is scheduled in. 591 */ 592 update_task_closid_rmid(tsk); 593 594 return 0; 595 } 596 597 static bool is_closid_match(struct task_struct *t, struct rdtgroup *r) 598 { 599 return (rdt_alloc_capable && 600 (r->type == RDTCTRL_GROUP) && (t->closid == r->closid)); 601 } 602 603 static bool is_rmid_match(struct task_struct *t, struct rdtgroup *r) 604 { 605 return (rdt_mon_capable && 606 (r->type == RDTMON_GROUP) && (t->rmid == r->mon.rmid)); 607 } 608 609 /** 610 * rdtgroup_tasks_assigned - Test if tasks have been assigned to resource group 611 * @r: Resource group 612 * 613 * Return: 1 if tasks have been assigned to @r, 0 otherwise 614 */ 615 int rdtgroup_tasks_assigned(struct rdtgroup *r) 616 { 617 struct task_struct *p, *t; 618 int ret = 0; 619 620 lockdep_assert_held(&rdtgroup_mutex); 621 622 rcu_read_lock(); 623 for_each_process_thread(p, t) { 624 if (is_closid_match(t, r) || is_rmid_match(t, r)) { 625 ret = 1; 626 break; 627 } 628 } 629 rcu_read_unlock(); 630 631 return ret; 632 } 633 634 static int rdtgroup_task_write_permission(struct task_struct *task, 635 struct kernfs_open_file *of) 636 { 637 const struct cred *tcred = get_task_cred(task); 638 const struct cred *cred = current_cred(); 639 int ret = 0; 640 641 /* 642 * Even if we're attaching all tasks in the thread group, we only 643 * need to check permissions on one of them. 644 */ 645 if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) && 646 !uid_eq(cred->euid, tcred->uid) && 647 !uid_eq(cred->euid, tcred->suid)) { 648 rdt_last_cmd_printf("No permission to move task %d\n", task->pid); 649 ret = -EPERM; 650 } 651 652 put_cred(tcred); 653 return ret; 654 } 655 656 static int rdtgroup_move_task(pid_t pid, struct rdtgroup *rdtgrp, 657 struct kernfs_open_file *of) 658 { 659 struct task_struct *tsk; 660 int ret; 661 662 rcu_read_lock(); 663 if (pid) { 664 tsk = find_task_by_vpid(pid); 665 if (!tsk) { 666 rcu_read_unlock(); 667 rdt_last_cmd_printf("No task %d\n", pid); 668 return -ESRCH; 669 } 670 } else { 671 tsk = current; 672 } 673 674 get_task_struct(tsk); 675 rcu_read_unlock(); 676 677 ret = rdtgroup_task_write_permission(tsk, of); 678 if (!ret) 679 ret = __rdtgroup_move_task(tsk, rdtgrp); 680 681 put_task_struct(tsk); 682 return ret; 683 } 684 685 static ssize_t rdtgroup_tasks_write(struct kernfs_open_file *of, 686 char *buf, size_t nbytes, loff_t off) 687 { 688 struct rdtgroup *rdtgrp; 689 int ret = 0; 690 pid_t pid; 691 692 if (kstrtoint(strstrip(buf), 0, &pid) || pid < 0) 693 return -EINVAL; 694 rdtgrp = rdtgroup_kn_lock_live(of->kn); 695 if (!rdtgrp) { 696 rdtgroup_kn_unlock(of->kn); 697 return -ENOENT; 698 } 699 rdt_last_cmd_clear(); 700 701 if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED || 702 rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP) { 703 ret = -EINVAL; 704 rdt_last_cmd_puts("Pseudo-locking in progress\n"); 705 goto unlock; 706 } 707 708 ret = rdtgroup_move_task(pid, rdtgrp, of); 709 710 unlock: 711 rdtgroup_kn_unlock(of->kn); 712 713 return ret ?: nbytes; 714 } 715 716 static void show_rdt_tasks(struct rdtgroup *r, struct seq_file *s) 717 { 718 struct task_struct *p, *t; 719 720 rcu_read_lock(); 721 for_each_process_thread(p, t) { 722 if (is_closid_match(t, r) || is_rmid_match(t, r)) 723 seq_printf(s, "%d\n", t->pid); 724 } 725 rcu_read_unlock(); 726 } 727 728 static int rdtgroup_tasks_show(struct kernfs_open_file *of, 729 struct seq_file *s, void *v) 730 { 731 struct rdtgroup *rdtgrp; 732 int ret = 0; 733 734 rdtgrp = rdtgroup_kn_lock_live(of->kn); 735 if (rdtgrp) 736 show_rdt_tasks(rdtgrp, s); 737 else 738 ret = -ENOENT; 739 rdtgroup_kn_unlock(of->kn); 740 741 return ret; 742 } 743 744 #ifdef CONFIG_PROC_CPU_RESCTRL 745 746 /* 747 * A task can only be part of one resctrl control group and of one monitor 748 * group which is associated to that control group. 749 * 750 * 1) res: 751 * mon: 752 * 753 * resctrl is not available. 754 * 755 * 2) res:/ 756 * mon: 757 * 758 * Task is part of the root resctrl control group, and it is not associated 759 * to any monitor group. 760 * 761 * 3) res:/ 762 * mon:mon0 763 * 764 * Task is part of the root resctrl control group and monitor group mon0. 765 * 766 * 4) res:group0 767 * mon: 768 * 769 * Task is part of resctrl control group group0, and it is not associated 770 * to any monitor group. 771 * 772 * 5) res:group0 773 * mon:mon1 774 * 775 * Task is part of resctrl control group group0 and monitor group mon1. 776 */ 777 int proc_resctrl_show(struct seq_file *s, struct pid_namespace *ns, 778 struct pid *pid, struct task_struct *tsk) 779 { 780 struct rdtgroup *rdtg; 781 int ret = 0; 782 783 mutex_lock(&rdtgroup_mutex); 784 785 /* Return empty if resctrl has not been mounted. */ 786 if (!static_branch_unlikely(&rdt_enable_key)) { 787 seq_puts(s, "res:\nmon:\n"); 788 goto unlock; 789 } 790 791 list_for_each_entry(rdtg, &rdt_all_groups, rdtgroup_list) { 792 struct rdtgroup *crg; 793 794 /* 795 * Task information is only relevant for shareable 796 * and exclusive groups. 797 */ 798 if (rdtg->mode != RDT_MODE_SHAREABLE && 799 rdtg->mode != RDT_MODE_EXCLUSIVE) 800 continue; 801 802 if (rdtg->closid != tsk->closid) 803 continue; 804 805 seq_printf(s, "res:%s%s\n", (rdtg == &rdtgroup_default) ? "/" : "", 806 rdtg->kn->name); 807 seq_puts(s, "mon:"); 808 list_for_each_entry(crg, &rdtg->mon.crdtgrp_list, 809 mon.crdtgrp_list) { 810 if (tsk->rmid != crg->mon.rmid) 811 continue; 812 seq_printf(s, "%s", crg->kn->name); 813 break; 814 } 815 seq_putc(s, '\n'); 816 goto unlock; 817 } 818 /* 819 * The above search should succeed. Otherwise return 820 * with an error. 821 */ 822 ret = -ENOENT; 823 unlock: 824 mutex_unlock(&rdtgroup_mutex); 825 826 return ret; 827 } 828 #endif 829 830 static int rdt_last_cmd_status_show(struct kernfs_open_file *of, 831 struct seq_file *seq, void *v) 832 { 833 int len; 834 835 mutex_lock(&rdtgroup_mutex); 836 len = seq_buf_used(&last_cmd_status); 837 if (len) 838 seq_printf(seq, "%.*s", len, last_cmd_status_buf); 839 else 840 seq_puts(seq, "ok\n"); 841 mutex_unlock(&rdtgroup_mutex); 842 return 0; 843 } 844 845 static int rdt_num_closids_show(struct kernfs_open_file *of, 846 struct seq_file *seq, void *v) 847 { 848 struct resctrl_schema *s = of->kn->parent->priv; 849 850 seq_printf(seq, "%u\n", s->num_closid); 851 return 0; 852 } 853 854 static int rdt_default_ctrl_show(struct kernfs_open_file *of, 855 struct seq_file *seq, void *v) 856 { 857 struct resctrl_schema *s = of->kn->parent->priv; 858 struct rdt_resource *r = s->res; 859 860 seq_printf(seq, "%x\n", r->default_ctrl); 861 return 0; 862 } 863 864 static int rdt_min_cbm_bits_show(struct kernfs_open_file *of, 865 struct seq_file *seq, void *v) 866 { 867 struct resctrl_schema *s = of->kn->parent->priv; 868 struct rdt_resource *r = s->res; 869 870 seq_printf(seq, "%u\n", r->cache.min_cbm_bits); 871 return 0; 872 } 873 874 static int rdt_shareable_bits_show(struct kernfs_open_file *of, 875 struct seq_file *seq, void *v) 876 { 877 struct resctrl_schema *s = of->kn->parent->priv; 878 struct rdt_resource *r = s->res; 879 880 seq_printf(seq, "%x\n", r->cache.shareable_bits); 881 return 0; 882 } 883 884 /** 885 * rdt_bit_usage_show - Display current usage of resources 886 * 887 * A domain is a shared resource that can now be allocated differently. Here 888 * we display the current regions of the domain as an annotated bitmask. 889 * For each domain of this resource its allocation bitmask 890 * is annotated as below to indicate the current usage of the corresponding bit: 891 * 0 - currently unused 892 * X - currently available for sharing and used by software and hardware 893 * H - currently used by hardware only but available for software use 894 * S - currently used and shareable by software only 895 * E - currently used exclusively by one resource group 896 * P - currently pseudo-locked by one resource group 897 */ 898 static int rdt_bit_usage_show(struct kernfs_open_file *of, 899 struct seq_file *seq, void *v) 900 { 901 struct resctrl_schema *s = of->kn->parent->priv; 902 /* 903 * Use unsigned long even though only 32 bits are used to ensure 904 * test_bit() is used safely. 905 */ 906 unsigned long sw_shareable = 0, hw_shareable = 0; 907 unsigned long exclusive = 0, pseudo_locked = 0; 908 struct rdt_resource *r = s->res; 909 struct rdt_domain *dom; 910 int i, hwb, swb, excl, psl; 911 enum rdtgrp_mode mode; 912 bool sep = false; 913 u32 ctrl_val; 914 915 mutex_lock(&rdtgroup_mutex); 916 hw_shareable = r->cache.shareable_bits; 917 list_for_each_entry(dom, &r->domains, list) { 918 if (sep) 919 seq_putc(seq, ';'); 920 sw_shareable = 0; 921 exclusive = 0; 922 seq_printf(seq, "%d=", dom->id); 923 for (i = 0; i < closids_supported(); i++) { 924 if (!closid_allocated(i)) 925 continue; 926 ctrl_val = resctrl_arch_get_config(r, dom, i, 927 s->conf_type); 928 mode = rdtgroup_mode_by_closid(i); 929 switch (mode) { 930 case RDT_MODE_SHAREABLE: 931 sw_shareable |= ctrl_val; 932 break; 933 case RDT_MODE_EXCLUSIVE: 934 exclusive |= ctrl_val; 935 break; 936 case RDT_MODE_PSEUDO_LOCKSETUP: 937 /* 938 * RDT_MODE_PSEUDO_LOCKSETUP is possible 939 * here but not included since the CBM 940 * associated with this CLOSID in this mode 941 * is not initialized and no task or cpu can be 942 * assigned this CLOSID. 943 */ 944 break; 945 case RDT_MODE_PSEUDO_LOCKED: 946 case RDT_NUM_MODES: 947 WARN(1, 948 "invalid mode for closid %d\n", i); 949 break; 950 } 951 } 952 for (i = r->cache.cbm_len - 1; i >= 0; i--) { 953 pseudo_locked = dom->plr ? dom->plr->cbm : 0; 954 hwb = test_bit(i, &hw_shareable); 955 swb = test_bit(i, &sw_shareable); 956 excl = test_bit(i, &exclusive); 957 psl = test_bit(i, &pseudo_locked); 958 if (hwb && swb) 959 seq_putc(seq, 'X'); 960 else if (hwb && !swb) 961 seq_putc(seq, 'H'); 962 else if (!hwb && swb) 963 seq_putc(seq, 'S'); 964 else if (excl) 965 seq_putc(seq, 'E'); 966 else if (psl) 967 seq_putc(seq, 'P'); 968 else /* Unused bits remain */ 969 seq_putc(seq, '0'); 970 } 971 sep = true; 972 } 973 seq_putc(seq, '\n'); 974 mutex_unlock(&rdtgroup_mutex); 975 return 0; 976 } 977 978 static int rdt_min_bw_show(struct kernfs_open_file *of, 979 struct seq_file *seq, void *v) 980 { 981 struct resctrl_schema *s = of->kn->parent->priv; 982 struct rdt_resource *r = s->res; 983 984 seq_printf(seq, "%u\n", r->membw.min_bw); 985 return 0; 986 } 987 988 static int rdt_num_rmids_show(struct kernfs_open_file *of, 989 struct seq_file *seq, void *v) 990 { 991 struct rdt_resource *r = of->kn->parent->priv; 992 993 seq_printf(seq, "%d\n", r->num_rmid); 994 995 return 0; 996 } 997 998 static int rdt_mon_features_show(struct kernfs_open_file *of, 999 struct seq_file *seq, void *v) 1000 { 1001 struct rdt_resource *r = of->kn->parent->priv; 1002 struct mon_evt *mevt; 1003 1004 list_for_each_entry(mevt, &r->evt_list, list) 1005 seq_printf(seq, "%s\n", mevt->name); 1006 1007 return 0; 1008 } 1009 1010 static int rdt_bw_gran_show(struct kernfs_open_file *of, 1011 struct seq_file *seq, void *v) 1012 { 1013 struct resctrl_schema *s = of->kn->parent->priv; 1014 struct rdt_resource *r = s->res; 1015 1016 seq_printf(seq, "%u\n", r->membw.bw_gran); 1017 return 0; 1018 } 1019 1020 static int rdt_delay_linear_show(struct kernfs_open_file *of, 1021 struct seq_file *seq, void *v) 1022 { 1023 struct resctrl_schema *s = of->kn->parent->priv; 1024 struct rdt_resource *r = s->res; 1025 1026 seq_printf(seq, "%u\n", r->membw.delay_linear); 1027 return 0; 1028 } 1029 1030 static int max_threshold_occ_show(struct kernfs_open_file *of, 1031 struct seq_file *seq, void *v) 1032 { 1033 seq_printf(seq, "%u\n", resctrl_rmid_realloc_threshold); 1034 1035 return 0; 1036 } 1037 1038 static int rdt_thread_throttle_mode_show(struct kernfs_open_file *of, 1039 struct seq_file *seq, void *v) 1040 { 1041 struct resctrl_schema *s = of->kn->parent->priv; 1042 struct rdt_resource *r = s->res; 1043 1044 if (r->membw.throttle_mode == THREAD_THROTTLE_PER_THREAD) 1045 seq_puts(seq, "per-thread\n"); 1046 else 1047 seq_puts(seq, "max\n"); 1048 1049 return 0; 1050 } 1051 1052 static ssize_t max_threshold_occ_write(struct kernfs_open_file *of, 1053 char *buf, size_t nbytes, loff_t off) 1054 { 1055 unsigned int bytes; 1056 int ret; 1057 1058 ret = kstrtouint(buf, 0, &bytes); 1059 if (ret) 1060 return ret; 1061 1062 if (bytes > resctrl_rmid_realloc_limit) 1063 return -EINVAL; 1064 1065 resctrl_rmid_realloc_threshold = resctrl_arch_round_mon_val(bytes); 1066 1067 return nbytes; 1068 } 1069 1070 /* 1071 * rdtgroup_mode_show - Display mode of this resource group 1072 */ 1073 static int rdtgroup_mode_show(struct kernfs_open_file *of, 1074 struct seq_file *s, void *v) 1075 { 1076 struct rdtgroup *rdtgrp; 1077 1078 rdtgrp = rdtgroup_kn_lock_live(of->kn); 1079 if (!rdtgrp) { 1080 rdtgroup_kn_unlock(of->kn); 1081 return -ENOENT; 1082 } 1083 1084 seq_printf(s, "%s\n", rdtgroup_mode_str(rdtgrp->mode)); 1085 1086 rdtgroup_kn_unlock(of->kn); 1087 return 0; 1088 } 1089 1090 static enum resctrl_conf_type resctrl_peer_type(enum resctrl_conf_type my_type) 1091 { 1092 switch (my_type) { 1093 case CDP_CODE: 1094 return CDP_DATA; 1095 case CDP_DATA: 1096 return CDP_CODE; 1097 default: 1098 case CDP_NONE: 1099 return CDP_NONE; 1100 } 1101 } 1102 1103 /** 1104 * __rdtgroup_cbm_overlaps - Does CBM for intended closid overlap with other 1105 * @r: Resource to which domain instance @d belongs. 1106 * @d: The domain instance for which @closid is being tested. 1107 * @cbm: Capacity bitmask being tested. 1108 * @closid: Intended closid for @cbm. 1109 * @exclusive: Only check if overlaps with exclusive resource groups 1110 * 1111 * Checks if provided @cbm intended to be used for @closid on domain 1112 * @d overlaps with any other closids or other hardware usage associated 1113 * with this domain. If @exclusive is true then only overlaps with 1114 * resource groups in exclusive mode will be considered. If @exclusive 1115 * is false then overlaps with any resource group or hardware entities 1116 * will be considered. 1117 * 1118 * @cbm is unsigned long, even if only 32 bits are used, to make the 1119 * bitmap functions work correctly. 1120 * 1121 * Return: false if CBM does not overlap, true if it does. 1122 */ 1123 static bool __rdtgroup_cbm_overlaps(struct rdt_resource *r, struct rdt_domain *d, 1124 unsigned long cbm, int closid, 1125 enum resctrl_conf_type type, bool exclusive) 1126 { 1127 enum rdtgrp_mode mode; 1128 unsigned long ctrl_b; 1129 int i; 1130 1131 /* Check for any overlap with regions used by hardware directly */ 1132 if (!exclusive) { 1133 ctrl_b = r->cache.shareable_bits; 1134 if (bitmap_intersects(&cbm, &ctrl_b, r->cache.cbm_len)) 1135 return true; 1136 } 1137 1138 /* Check for overlap with other resource groups */ 1139 for (i = 0; i < closids_supported(); i++) { 1140 ctrl_b = resctrl_arch_get_config(r, d, i, type); 1141 mode = rdtgroup_mode_by_closid(i); 1142 if (closid_allocated(i) && i != closid && 1143 mode != RDT_MODE_PSEUDO_LOCKSETUP) { 1144 if (bitmap_intersects(&cbm, &ctrl_b, r->cache.cbm_len)) { 1145 if (exclusive) { 1146 if (mode == RDT_MODE_EXCLUSIVE) 1147 return true; 1148 continue; 1149 } 1150 return true; 1151 } 1152 } 1153 } 1154 1155 return false; 1156 } 1157 1158 /** 1159 * rdtgroup_cbm_overlaps - Does CBM overlap with other use of hardware 1160 * @s: Schema for the resource to which domain instance @d belongs. 1161 * @d: The domain instance for which @closid is being tested. 1162 * @cbm: Capacity bitmask being tested. 1163 * @closid: Intended closid for @cbm. 1164 * @exclusive: Only check if overlaps with exclusive resource groups 1165 * 1166 * Resources that can be allocated using a CBM can use the CBM to control 1167 * the overlap of these allocations. rdtgroup_cmb_overlaps() is the test 1168 * for overlap. Overlap test is not limited to the specific resource for 1169 * which the CBM is intended though - when dealing with CDP resources that 1170 * share the underlying hardware the overlap check should be performed on 1171 * the CDP resource sharing the hardware also. 1172 * 1173 * Refer to description of __rdtgroup_cbm_overlaps() for the details of the 1174 * overlap test. 1175 * 1176 * Return: true if CBM overlap detected, false if there is no overlap 1177 */ 1178 bool rdtgroup_cbm_overlaps(struct resctrl_schema *s, struct rdt_domain *d, 1179 unsigned long cbm, int closid, bool exclusive) 1180 { 1181 enum resctrl_conf_type peer_type = resctrl_peer_type(s->conf_type); 1182 struct rdt_resource *r = s->res; 1183 1184 if (__rdtgroup_cbm_overlaps(r, d, cbm, closid, s->conf_type, 1185 exclusive)) 1186 return true; 1187 1188 if (!resctrl_arch_get_cdp_enabled(r->rid)) 1189 return false; 1190 return __rdtgroup_cbm_overlaps(r, d, cbm, closid, peer_type, exclusive); 1191 } 1192 1193 /** 1194 * rdtgroup_mode_test_exclusive - Test if this resource group can be exclusive 1195 * 1196 * An exclusive resource group implies that there should be no sharing of 1197 * its allocated resources. At the time this group is considered to be 1198 * exclusive this test can determine if its current schemata supports this 1199 * setting by testing for overlap with all other resource groups. 1200 * 1201 * Return: true if resource group can be exclusive, false if there is overlap 1202 * with allocations of other resource groups and thus this resource group 1203 * cannot be exclusive. 1204 */ 1205 static bool rdtgroup_mode_test_exclusive(struct rdtgroup *rdtgrp) 1206 { 1207 int closid = rdtgrp->closid; 1208 struct resctrl_schema *s; 1209 struct rdt_resource *r; 1210 bool has_cache = false; 1211 struct rdt_domain *d; 1212 u32 ctrl; 1213 1214 list_for_each_entry(s, &resctrl_schema_all, list) { 1215 r = s->res; 1216 if (r->rid == RDT_RESOURCE_MBA) 1217 continue; 1218 has_cache = true; 1219 list_for_each_entry(d, &r->domains, list) { 1220 ctrl = resctrl_arch_get_config(r, d, closid, 1221 s->conf_type); 1222 if (rdtgroup_cbm_overlaps(s, d, ctrl, closid, false)) { 1223 rdt_last_cmd_puts("Schemata overlaps\n"); 1224 return false; 1225 } 1226 } 1227 } 1228 1229 if (!has_cache) { 1230 rdt_last_cmd_puts("Cannot be exclusive without CAT/CDP\n"); 1231 return false; 1232 } 1233 1234 return true; 1235 } 1236 1237 /** 1238 * rdtgroup_mode_write - Modify the resource group's mode 1239 * 1240 */ 1241 static ssize_t rdtgroup_mode_write(struct kernfs_open_file *of, 1242 char *buf, size_t nbytes, loff_t off) 1243 { 1244 struct rdtgroup *rdtgrp; 1245 enum rdtgrp_mode mode; 1246 int ret = 0; 1247 1248 /* Valid input requires a trailing newline */ 1249 if (nbytes == 0 || buf[nbytes - 1] != '\n') 1250 return -EINVAL; 1251 buf[nbytes - 1] = '\0'; 1252 1253 rdtgrp = rdtgroup_kn_lock_live(of->kn); 1254 if (!rdtgrp) { 1255 rdtgroup_kn_unlock(of->kn); 1256 return -ENOENT; 1257 } 1258 1259 rdt_last_cmd_clear(); 1260 1261 mode = rdtgrp->mode; 1262 1263 if ((!strcmp(buf, "shareable") && mode == RDT_MODE_SHAREABLE) || 1264 (!strcmp(buf, "exclusive") && mode == RDT_MODE_EXCLUSIVE) || 1265 (!strcmp(buf, "pseudo-locksetup") && 1266 mode == RDT_MODE_PSEUDO_LOCKSETUP) || 1267 (!strcmp(buf, "pseudo-locked") && mode == RDT_MODE_PSEUDO_LOCKED)) 1268 goto out; 1269 1270 if (mode == RDT_MODE_PSEUDO_LOCKED) { 1271 rdt_last_cmd_puts("Cannot change pseudo-locked group\n"); 1272 ret = -EINVAL; 1273 goto out; 1274 } 1275 1276 if (!strcmp(buf, "shareable")) { 1277 if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP) { 1278 ret = rdtgroup_locksetup_exit(rdtgrp); 1279 if (ret) 1280 goto out; 1281 } 1282 rdtgrp->mode = RDT_MODE_SHAREABLE; 1283 } else if (!strcmp(buf, "exclusive")) { 1284 if (!rdtgroup_mode_test_exclusive(rdtgrp)) { 1285 ret = -EINVAL; 1286 goto out; 1287 } 1288 if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP) { 1289 ret = rdtgroup_locksetup_exit(rdtgrp); 1290 if (ret) 1291 goto out; 1292 } 1293 rdtgrp->mode = RDT_MODE_EXCLUSIVE; 1294 } else if (!strcmp(buf, "pseudo-locksetup")) { 1295 ret = rdtgroup_locksetup_enter(rdtgrp); 1296 if (ret) 1297 goto out; 1298 rdtgrp->mode = RDT_MODE_PSEUDO_LOCKSETUP; 1299 } else { 1300 rdt_last_cmd_puts("Unknown or unsupported mode\n"); 1301 ret = -EINVAL; 1302 } 1303 1304 out: 1305 rdtgroup_kn_unlock(of->kn); 1306 return ret ?: nbytes; 1307 } 1308 1309 /** 1310 * rdtgroup_cbm_to_size - Translate CBM to size in bytes 1311 * @r: RDT resource to which @d belongs. 1312 * @d: RDT domain instance. 1313 * @cbm: bitmask for which the size should be computed. 1314 * 1315 * The bitmask provided associated with the RDT domain instance @d will be 1316 * translated into how many bytes it represents. The size in bytes is 1317 * computed by first dividing the total cache size by the CBM length to 1318 * determine how many bytes each bit in the bitmask represents. The result 1319 * is multiplied with the number of bits set in the bitmask. 1320 * 1321 * @cbm is unsigned long, even if only 32 bits are used to make the 1322 * bitmap functions work correctly. 1323 */ 1324 unsigned int rdtgroup_cbm_to_size(struct rdt_resource *r, 1325 struct rdt_domain *d, unsigned long cbm) 1326 { 1327 struct cpu_cacheinfo *ci; 1328 unsigned int size = 0; 1329 int num_b, i; 1330 1331 num_b = bitmap_weight(&cbm, r->cache.cbm_len); 1332 ci = get_cpu_cacheinfo(cpumask_any(&d->cpu_mask)); 1333 for (i = 0; i < ci->num_leaves; i++) { 1334 if (ci->info_list[i].level == r->cache_level) { 1335 size = ci->info_list[i].size / r->cache.cbm_len * num_b; 1336 break; 1337 } 1338 } 1339 1340 return size; 1341 } 1342 1343 /** 1344 * rdtgroup_size_show - Display size in bytes of allocated regions 1345 * 1346 * The "size" file mirrors the layout of the "schemata" file, printing the 1347 * size in bytes of each region instead of the capacity bitmask. 1348 * 1349 */ 1350 static int rdtgroup_size_show(struct kernfs_open_file *of, 1351 struct seq_file *s, void *v) 1352 { 1353 struct resctrl_schema *schema; 1354 enum resctrl_conf_type type; 1355 struct rdtgroup *rdtgrp; 1356 struct rdt_resource *r; 1357 struct rdt_domain *d; 1358 unsigned int size; 1359 int ret = 0; 1360 u32 closid; 1361 bool sep; 1362 u32 ctrl; 1363 1364 rdtgrp = rdtgroup_kn_lock_live(of->kn); 1365 if (!rdtgrp) { 1366 rdtgroup_kn_unlock(of->kn); 1367 return -ENOENT; 1368 } 1369 1370 if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED) { 1371 if (!rdtgrp->plr->d) { 1372 rdt_last_cmd_clear(); 1373 rdt_last_cmd_puts("Cache domain offline\n"); 1374 ret = -ENODEV; 1375 } else { 1376 seq_printf(s, "%*s:", max_name_width, 1377 rdtgrp->plr->s->name); 1378 size = rdtgroup_cbm_to_size(rdtgrp->plr->s->res, 1379 rdtgrp->plr->d, 1380 rdtgrp->plr->cbm); 1381 seq_printf(s, "%d=%u\n", rdtgrp->plr->d->id, size); 1382 } 1383 goto out; 1384 } 1385 1386 closid = rdtgrp->closid; 1387 1388 list_for_each_entry(schema, &resctrl_schema_all, list) { 1389 r = schema->res; 1390 type = schema->conf_type; 1391 sep = false; 1392 seq_printf(s, "%*s:", max_name_width, schema->name); 1393 list_for_each_entry(d, &r->domains, list) { 1394 if (sep) 1395 seq_putc(s, ';'); 1396 if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP) { 1397 size = 0; 1398 } else { 1399 if (is_mba_sc(r)) 1400 ctrl = d->mbps_val[closid]; 1401 else 1402 ctrl = resctrl_arch_get_config(r, d, 1403 closid, 1404 type); 1405 if (r->rid == RDT_RESOURCE_MBA) 1406 size = ctrl; 1407 else 1408 size = rdtgroup_cbm_to_size(r, d, ctrl); 1409 } 1410 seq_printf(s, "%d=%u", d->id, size); 1411 sep = true; 1412 } 1413 seq_putc(s, '\n'); 1414 } 1415 1416 out: 1417 rdtgroup_kn_unlock(of->kn); 1418 1419 return ret; 1420 } 1421 1422 /* rdtgroup information files for one cache resource. */ 1423 static struct rftype res_common_files[] = { 1424 { 1425 .name = "last_cmd_status", 1426 .mode = 0444, 1427 .kf_ops = &rdtgroup_kf_single_ops, 1428 .seq_show = rdt_last_cmd_status_show, 1429 .fflags = RF_TOP_INFO, 1430 }, 1431 { 1432 .name = "num_closids", 1433 .mode = 0444, 1434 .kf_ops = &rdtgroup_kf_single_ops, 1435 .seq_show = rdt_num_closids_show, 1436 .fflags = RF_CTRL_INFO, 1437 }, 1438 { 1439 .name = "mon_features", 1440 .mode = 0444, 1441 .kf_ops = &rdtgroup_kf_single_ops, 1442 .seq_show = rdt_mon_features_show, 1443 .fflags = RF_MON_INFO, 1444 }, 1445 { 1446 .name = "num_rmids", 1447 .mode = 0444, 1448 .kf_ops = &rdtgroup_kf_single_ops, 1449 .seq_show = rdt_num_rmids_show, 1450 .fflags = RF_MON_INFO, 1451 }, 1452 { 1453 .name = "cbm_mask", 1454 .mode = 0444, 1455 .kf_ops = &rdtgroup_kf_single_ops, 1456 .seq_show = rdt_default_ctrl_show, 1457 .fflags = RF_CTRL_INFO | RFTYPE_RES_CACHE, 1458 }, 1459 { 1460 .name = "min_cbm_bits", 1461 .mode = 0444, 1462 .kf_ops = &rdtgroup_kf_single_ops, 1463 .seq_show = rdt_min_cbm_bits_show, 1464 .fflags = RF_CTRL_INFO | RFTYPE_RES_CACHE, 1465 }, 1466 { 1467 .name = "shareable_bits", 1468 .mode = 0444, 1469 .kf_ops = &rdtgroup_kf_single_ops, 1470 .seq_show = rdt_shareable_bits_show, 1471 .fflags = RF_CTRL_INFO | RFTYPE_RES_CACHE, 1472 }, 1473 { 1474 .name = "bit_usage", 1475 .mode = 0444, 1476 .kf_ops = &rdtgroup_kf_single_ops, 1477 .seq_show = rdt_bit_usage_show, 1478 .fflags = RF_CTRL_INFO | RFTYPE_RES_CACHE, 1479 }, 1480 { 1481 .name = "min_bandwidth", 1482 .mode = 0444, 1483 .kf_ops = &rdtgroup_kf_single_ops, 1484 .seq_show = rdt_min_bw_show, 1485 .fflags = RF_CTRL_INFO | RFTYPE_RES_MB, 1486 }, 1487 { 1488 .name = "bandwidth_gran", 1489 .mode = 0444, 1490 .kf_ops = &rdtgroup_kf_single_ops, 1491 .seq_show = rdt_bw_gran_show, 1492 .fflags = RF_CTRL_INFO | RFTYPE_RES_MB, 1493 }, 1494 { 1495 .name = "delay_linear", 1496 .mode = 0444, 1497 .kf_ops = &rdtgroup_kf_single_ops, 1498 .seq_show = rdt_delay_linear_show, 1499 .fflags = RF_CTRL_INFO | RFTYPE_RES_MB, 1500 }, 1501 /* 1502 * Platform specific which (if any) capabilities are provided by 1503 * thread_throttle_mode. Defer "fflags" initialization to platform 1504 * discovery. 1505 */ 1506 { 1507 .name = "thread_throttle_mode", 1508 .mode = 0444, 1509 .kf_ops = &rdtgroup_kf_single_ops, 1510 .seq_show = rdt_thread_throttle_mode_show, 1511 }, 1512 { 1513 .name = "max_threshold_occupancy", 1514 .mode = 0644, 1515 .kf_ops = &rdtgroup_kf_single_ops, 1516 .write = max_threshold_occ_write, 1517 .seq_show = max_threshold_occ_show, 1518 .fflags = RF_MON_INFO | RFTYPE_RES_CACHE, 1519 }, 1520 { 1521 .name = "cpus", 1522 .mode = 0644, 1523 .kf_ops = &rdtgroup_kf_single_ops, 1524 .write = rdtgroup_cpus_write, 1525 .seq_show = rdtgroup_cpus_show, 1526 .fflags = RFTYPE_BASE, 1527 }, 1528 { 1529 .name = "cpus_list", 1530 .mode = 0644, 1531 .kf_ops = &rdtgroup_kf_single_ops, 1532 .write = rdtgroup_cpus_write, 1533 .seq_show = rdtgroup_cpus_show, 1534 .flags = RFTYPE_FLAGS_CPUS_LIST, 1535 .fflags = RFTYPE_BASE, 1536 }, 1537 { 1538 .name = "tasks", 1539 .mode = 0644, 1540 .kf_ops = &rdtgroup_kf_single_ops, 1541 .write = rdtgroup_tasks_write, 1542 .seq_show = rdtgroup_tasks_show, 1543 .fflags = RFTYPE_BASE, 1544 }, 1545 { 1546 .name = "schemata", 1547 .mode = 0644, 1548 .kf_ops = &rdtgroup_kf_single_ops, 1549 .write = rdtgroup_schemata_write, 1550 .seq_show = rdtgroup_schemata_show, 1551 .fflags = RF_CTRL_BASE, 1552 }, 1553 { 1554 .name = "mode", 1555 .mode = 0644, 1556 .kf_ops = &rdtgroup_kf_single_ops, 1557 .write = rdtgroup_mode_write, 1558 .seq_show = rdtgroup_mode_show, 1559 .fflags = RF_CTRL_BASE, 1560 }, 1561 { 1562 .name = "size", 1563 .mode = 0444, 1564 .kf_ops = &rdtgroup_kf_single_ops, 1565 .seq_show = rdtgroup_size_show, 1566 .fflags = RF_CTRL_BASE, 1567 }, 1568 1569 }; 1570 1571 static int rdtgroup_add_files(struct kernfs_node *kn, unsigned long fflags) 1572 { 1573 struct rftype *rfts, *rft; 1574 int ret, len; 1575 1576 rfts = res_common_files; 1577 len = ARRAY_SIZE(res_common_files); 1578 1579 lockdep_assert_held(&rdtgroup_mutex); 1580 1581 for (rft = rfts; rft < rfts + len; rft++) { 1582 if (rft->fflags && ((fflags & rft->fflags) == rft->fflags)) { 1583 ret = rdtgroup_add_file(kn, rft); 1584 if (ret) 1585 goto error; 1586 } 1587 } 1588 1589 return 0; 1590 error: 1591 pr_warn("Failed to add %s, err=%d\n", rft->name, ret); 1592 while (--rft >= rfts) { 1593 if ((fflags & rft->fflags) == rft->fflags) 1594 kernfs_remove_by_name(kn, rft->name); 1595 } 1596 return ret; 1597 } 1598 1599 static struct rftype *rdtgroup_get_rftype_by_name(const char *name) 1600 { 1601 struct rftype *rfts, *rft; 1602 int len; 1603 1604 rfts = res_common_files; 1605 len = ARRAY_SIZE(res_common_files); 1606 1607 for (rft = rfts; rft < rfts + len; rft++) { 1608 if (!strcmp(rft->name, name)) 1609 return rft; 1610 } 1611 1612 return NULL; 1613 } 1614 1615 void __init thread_throttle_mode_init(void) 1616 { 1617 struct rftype *rft; 1618 1619 rft = rdtgroup_get_rftype_by_name("thread_throttle_mode"); 1620 if (!rft) 1621 return; 1622 1623 rft->fflags = RF_CTRL_INFO | RFTYPE_RES_MB; 1624 } 1625 1626 /** 1627 * rdtgroup_kn_mode_restrict - Restrict user access to named resctrl file 1628 * @r: The resource group with which the file is associated. 1629 * @name: Name of the file 1630 * 1631 * The permissions of named resctrl file, directory, or link are modified 1632 * to not allow read, write, or execute by any user. 1633 * 1634 * WARNING: This function is intended to communicate to the user that the 1635 * resctrl file has been locked down - that it is not relevant to the 1636 * particular state the system finds itself in. It should not be relied 1637 * on to protect from user access because after the file's permissions 1638 * are restricted the user can still change the permissions using chmod 1639 * from the command line. 1640 * 1641 * Return: 0 on success, <0 on failure. 1642 */ 1643 int rdtgroup_kn_mode_restrict(struct rdtgroup *r, const char *name) 1644 { 1645 struct iattr iattr = {.ia_valid = ATTR_MODE,}; 1646 struct kernfs_node *kn; 1647 int ret = 0; 1648 1649 kn = kernfs_find_and_get_ns(r->kn, name, NULL); 1650 if (!kn) 1651 return -ENOENT; 1652 1653 switch (kernfs_type(kn)) { 1654 case KERNFS_DIR: 1655 iattr.ia_mode = S_IFDIR; 1656 break; 1657 case KERNFS_FILE: 1658 iattr.ia_mode = S_IFREG; 1659 break; 1660 case KERNFS_LINK: 1661 iattr.ia_mode = S_IFLNK; 1662 break; 1663 } 1664 1665 ret = kernfs_setattr(kn, &iattr); 1666 kernfs_put(kn); 1667 return ret; 1668 } 1669 1670 /** 1671 * rdtgroup_kn_mode_restore - Restore user access to named resctrl file 1672 * @r: The resource group with which the file is associated. 1673 * @name: Name of the file 1674 * @mask: Mask of permissions that should be restored 1675 * 1676 * Restore the permissions of the named file. If @name is a directory the 1677 * permissions of its parent will be used. 1678 * 1679 * Return: 0 on success, <0 on failure. 1680 */ 1681 int rdtgroup_kn_mode_restore(struct rdtgroup *r, const char *name, 1682 umode_t mask) 1683 { 1684 struct iattr iattr = {.ia_valid = ATTR_MODE,}; 1685 struct kernfs_node *kn, *parent; 1686 struct rftype *rfts, *rft; 1687 int ret, len; 1688 1689 rfts = res_common_files; 1690 len = ARRAY_SIZE(res_common_files); 1691 1692 for (rft = rfts; rft < rfts + len; rft++) { 1693 if (!strcmp(rft->name, name)) 1694 iattr.ia_mode = rft->mode & mask; 1695 } 1696 1697 kn = kernfs_find_and_get_ns(r->kn, name, NULL); 1698 if (!kn) 1699 return -ENOENT; 1700 1701 switch (kernfs_type(kn)) { 1702 case KERNFS_DIR: 1703 parent = kernfs_get_parent(kn); 1704 if (parent) { 1705 iattr.ia_mode |= parent->mode; 1706 kernfs_put(parent); 1707 } 1708 iattr.ia_mode |= S_IFDIR; 1709 break; 1710 case KERNFS_FILE: 1711 iattr.ia_mode |= S_IFREG; 1712 break; 1713 case KERNFS_LINK: 1714 iattr.ia_mode |= S_IFLNK; 1715 break; 1716 } 1717 1718 ret = kernfs_setattr(kn, &iattr); 1719 kernfs_put(kn); 1720 return ret; 1721 } 1722 1723 static int rdtgroup_mkdir_info_resdir(void *priv, char *name, 1724 unsigned long fflags) 1725 { 1726 struct kernfs_node *kn_subdir; 1727 int ret; 1728 1729 kn_subdir = kernfs_create_dir(kn_info, name, 1730 kn_info->mode, priv); 1731 if (IS_ERR(kn_subdir)) 1732 return PTR_ERR(kn_subdir); 1733 1734 ret = rdtgroup_kn_set_ugid(kn_subdir); 1735 if (ret) 1736 return ret; 1737 1738 ret = rdtgroup_add_files(kn_subdir, fflags); 1739 if (!ret) 1740 kernfs_activate(kn_subdir); 1741 1742 return ret; 1743 } 1744 1745 static int rdtgroup_create_info_dir(struct kernfs_node *parent_kn) 1746 { 1747 struct resctrl_schema *s; 1748 struct rdt_resource *r; 1749 unsigned long fflags; 1750 char name[32]; 1751 int ret; 1752 1753 /* create the directory */ 1754 kn_info = kernfs_create_dir(parent_kn, "info", parent_kn->mode, NULL); 1755 if (IS_ERR(kn_info)) 1756 return PTR_ERR(kn_info); 1757 1758 ret = rdtgroup_add_files(kn_info, RF_TOP_INFO); 1759 if (ret) 1760 goto out_destroy; 1761 1762 /* loop over enabled controls, these are all alloc_capable */ 1763 list_for_each_entry(s, &resctrl_schema_all, list) { 1764 r = s->res; 1765 fflags = r->fflags | RF_CTRL_INFO; 1766 ret = rdtgroup_mkdir_info_resdir(s, s->name, fflags); 1767 if (ret) 1768 goto out_destroy; 1769 } 1770 1771 for_each_mon_capable_rdt_resource(r) { 1772 fflags = r->fflags | RF_MON_INFO; 1773 sprintf(name, "%s_MON", r->name); 1774 ret = rdtgroup_mkdir_info_resdir(r, name, fflags); 1775 if (ret) 1776 goto out_destroy; 1777 } 1778 1779 ret = rdtgroup_kn_set_ugid(kn_info); 1780 if (ret) 1781 goto out_destroy; 1782 1783 kernfs_activate(kn_info); 1784 1785 return 0; 1786 1787 out_destroy: 1788 kernfs_remove(kn_info); 1789 return ret; 1790 } 1791 1792 static int 1793 mongroup_create_dir(struct kernfs_node *parent_kn, struct rdtgroup *prgrp, 1794 char *name, struct kernfs_node **dest_kn) 1795 { 1796 struct kernfs_node *kn; 1797 int ret; 1798 1799 /* create the directory */ 1800 kn = kernfs_create_dir(parent_kn, name, parent_kn->mode, prgrp); 1801 if (IS_ERR(kn)) 1802 return PTR_ERR(kn); 1803 1804 if (dest_kn) 1805 *dest_kn = kn; 1806 1807 ret = rdtgroup_kn_set_ugid(kn); 1808 if (ret) 1809 goto out_destroy; 1810 1811 kernfs_activate(kn); 1812 1813 return 0; 1814 1815 out_destroy: 1816 kernfs_remove(kn); 1817 return ret; 1818 } 1819 1820 static void l3_qos_cfg_update(void *arg) 1821 { 1822 bool *enable = arg; 1823 1824 wrmsrl(MSR_IA32_L3_QOS_CFG, *enable ? L3_QOS_CDP_ENABLE : 0ULL); 1825 } 1826 1827 static void l2_qos_cfg_update(void *arg) 1828 { 1829 bool *enable = arg; 1830 1831 wrmsrl(MSR_IA32_L2_QOS_CFG, *enable ? L2_QOS_CDP_ENABLE : 0ULL); 1832 } 1833 1834 static inline bool is_mba_linear(void) 1835 { 1836 return rdt_resources_all[RDT_RESOURCE_MBA].r_resctrl.membw.delay_linear; 1837 } 1838 1839 static int set_cache_qos_cfg(int level, bool enable) 1840 { 1841 void (*update)(void *arg); 1842 struct rdt_resource *r_l; 1843 cpumask_var_t cpu_mask; 1844 struct rdt_domain *d; 1845 int cpu; 1846 1847 if (level == RDT_RESOURCE_L3) 1848 update = l3_qos_cfg_update; 1849 else if (level == RDT_RESOURCE_L2) 1850 update = l2_qos_cfg_update; 1851 else 1852 return -EINVAL; 1853 1854 if (!zalloc_cpumask_var(&cpu_mask, GFP_KERNEL)) 1855 return -ENOMEM; 1856 1857 r_l = &rdt_resources_all[level].r_resctrl; 1858 list_for_each_entry(d, &r_l->domains, list) { 1859 if (r_l->cache.arch_has_per_cpu_cfg) 1860 /* Pick all the CPUs in the domain instance */ 1861 for_each_cpu(cpu, &d->cpu_mask) 1862 cpumask_set_cpu(cpu, cpu_mask); 1863 else 1864 /* Pick one CPU from each domain instance to update MSR */ 1865 cpumask_set_cpu(cpumask_any(&d->cpu_mask), cpu_mask); 1866 } 1867 cpu = get_cpu(); 1868 /* Update QOS_CFG MSR on this cpu if it's in cpu_mask. */ 1869 if (cpumask_test_cpu(cpu, cpu_mask)) 1870 update(&enable); 1871 /* Update QOS_CFG MSR on all other cpus in cpu_mask. */ 1872 smp_call_function_many(cpu_mask, update, &enable, 1); 1873 put_cpu(); 1874 1875 free_cpumask_var(cpu_mask); 1876 1877 return 0; 1878 } 1879 1880 /* Restore the qos cfg state when a domain comes online */ 1881 void rdt_domain_reconfigure_cdp(struct rdt_resource *r) 1882 { 1883 struct rdt_hw_resource *hw_res = resctrl_to_arch_res(r); 1884 1885 if (!r->cdp_capable) 1886 return; 1887 1888 if (r->rid == RDT_RESOURCE_L2) 1889 l2_qos_cfg_update(&hw_res->cdp_enabled); 1890 1891 if (r->rid == RDT_RESOURCE_L3) 1892 l3_qos_cfg_update(&hw_res->cdp_enabled); 1893 } 1894 1895 static int mba_sc_domain_allocate(struct rdt_resource *r, struct rdt_domain *d) 1896 { 1897 u32 num_closid = resctrl_arch_get_num_closid(r); 1898 int cpu = cpumask_any(&d->cpu_mask); 1899 int i; 1900 1901 d->mbps_val = kcalloc_node(num_closid, sizeof(*d->mbps_val), 1902 GFP_KERNEL, cpu_to_node(cpu)); 1903 if (!d->mbps_val) 1904 return -ENOMEM; 1905 1906 for (i = 0; i < num_closid; i++) 1907 d->mbps_val[i] = MBA_MAX_MBPS; 1908 1909 return 0; 1910 } 1911 1912 static void mba_sc_domain_destroy(struct rdt_resource *r, 1913 struct rdt_domain *d) 1914 { 1915 kfree(d->mbps_val); 1916 d->mbps_val = NULL; 1917 } 1918 1919 /* 1920 * MBA software controller is supported only if 1921 * MBM is supported and MBA is in linear scale. 1922 */ 1923 static bool supports_mba_mbps(void) 1924 { 1925 struct rdt_resource *r = &rdt_resources_all[RDT_RESOURCE_MBA].r_resctrl; 1926 1927 return (is_mbm_local_enabled() && 1928 r->alloc_capable && is_mba_linear()); 1929 } 1930 1931 /* 1932 * Enable or disable the MBA software controller 1933 * which helps user specify bandwidth in MBps. 1934 */ 1935 static int set_mba_sc(bool mba_sc) 1936 { 1937 struct rdt_resource *r = &rdt_resources_all[RDT_RESOURCE_MBA].r_resctrl; 1938 u32 num_closid = resctrl_arch_get_num_closid(r); 1939 struct rdt_domain *d; 1940 int i; 1941 1942 if (!supports_mba_mbps() || mba_sc == is_mba_sc(r)) 1943 return -EINVAL; 1944 1945 r->membw.mba_sc = mba_sc; 1946 1947 list_for_each_entry(d, &r->domains, list) { 1948 for (i = 0; i < num_closid; i++) 1949 d->mbps_val[i] = MBA_MAX_MBPS; 1950 } 1951 1952 return 0; 1953 } 1954 1955 static int cdp_enable(int level) 1956 { 1957 struct rdt_resource *r_l = &rdt_resources_all[level].r_resctrl; 1958 int ret; 1959 1960 if (!r_l->alloc_capable) 1961 return -EINVAL; 1962 1963 ret = set_cache_qos_cfg(level, true); 1964 if (!ret) 1965 rdt_resources_all[level].cdp_enabled = true; 1966 1967 return ret; 1968 } 1969 1970 static void cdp_disable(int level) 1971 { 1972 struct rdt_hw_resource *r_hw = &rdt_resources_all[level]; 1973 1974 if (r_hw->cdp_enabled) { 1975 set_cache_qos_cfg(level, false); 1976 r_hw->cdp_enabled = false; 1977 } 1978 } 1979 1980 int resctrl_arch_set_cdp_enabled(enum resctrl_res_level l, bool enable) 1981 { 1982 struct rdt_hw_resource *hw_res = &rdt_resources_all[l]; 1983 1984 if (!hw_res->r_resctrl.cdp_capable) 1985 return -EINVAL; 1986 1987 if (enable) 1988 return cdp_enable(l); 1989 1990 cdp_disable(l); 1991 1992 return 0; 1993 } 1994 1995 static void cdp_disable_all(void) 1996 { 1997 if (resctrl_arch_get_cdp_enabled(RDT_RESOURCE_L3)) 1998 resctrl_arch_set_cdp_enabled(RDT_RESOURCE_L3, false); 1999 if (resctrl_arch_get_cdp_enabled(RDT_RESOURCE_L2)) 2000 resctrl_arch_set_cdp_enabled(RDT_RESOURCE_L2, false); 2001 } 2002 2003 /* 2004 * We don't allow rdtgroup directories to be created anywhere 2005 * except the root directory. Thus when looking for the rdtgroup 2006 * structure for a kernfs node we are either looking at a directory, 2007 * in which case the rdtgroup structure is pointed at by the "priv" 2008 * field, otherwise we have a file, and need only look to the parent 2009 * to find the rdtgroup. 2010 */ 2011 static struct rdtgroup *kernfs_to_rdtgroup(struct kernfs_node *kn) 2012 { 2013 if (kernfs_type(kn) == KERNFS_DIR) { 2014 /* 2015 * All the resource directories use "kn->priv" 2016 * to point to the "struct rdtgroup" for the 2017 * resource. "info" and its subdirectories don't 2018 * have rdtgroup structures, so return NULL here. 2019 */ 2020 if (kn == kn_info || kn->parent == kn_info) 2021 return NULL; 2022 else 2023 return kn->priv; 2024 } else { 2025 return kn->parent->priv; 2026 } 2027 } 2028 2029 struct rdtgroup *rdtgroup_kn_lock_live(struct kernfs_node *kn) 2030 { 2031 struct rdtgroup *rdtgrp = kernfs_to_rdtgroup(kn); 2032 2033 if (!rdtgrp) 2034 return NULL; 2035 2036 atomic_inc(&rdtgrp->waitcount); 2037 kernfs_break_active_protection(kn); 2038 2039 mutex_lock(&rdtgroup_mutex); 2040 2041 /* Was this group deleted while we waited? */ 2042 if (rdtgrp->flags & RDT_DELETED) 2043 return NULL; 2044 2045 return rdtgrp; 2046 } 2047 2048 void rdtgroup_kn_unlock(struct kernfs_node *kn) 2049 { 2050 struct rdtgroup *rdtgrp = kernfs_to_rdtgroup(kn); 2051 2052 if (!rdtgrp) 2053 return; 2054 2055 mutex_unlock(&rdtgroup_mutex); 2056 2057 if (atomic_dec_and_test(&rdtgrp->waitcount) && 2058 (rdtgrp->flags & RDT_DELETED)) { 2059 if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP || 2060 rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED) 2061 rdtgroup_pseudo_lock_remove(rdtgrp); 2062 kernfs_unbreak_active_protection(kn); 2063 rdtgroup_remove(rdtgrp); 2064 } else { 2065 kernfs_unbreak_active_protection(kn); 2066 } 2067 } 2068 2069 static int mkdir_mondata_all(struct kernfs_node *parent_kn, 2070 struct rdtgroup *prgrp, 2071 struct kernfs_node **mon_data_kn); 2072 2073 static int rdt_enable_ctx(struct rdt_fs_context *ctx) 2074 { 2075 int ret = 0; 2076 2077 if (ctx->enable_cdpl2) 2078 ret = resctrl_arch_set_cdp_enabled(RDT_RESOURCE_L2, true); 2079 2080 if (!ret && ctx->enable_cdpl3) 2081 ret = resctrl_arch_set_cdp_enabled(RDT_RESOURCE_L3, true); 2082 2083 if (!ret && ctx->enable_mba_mbps) 2084 ret = set_mba_sc(true); 2085 2086 return ret; 2087 } 2088 2089 static int schemata_list_add(struct rdt_resource *r, enum resctrl_conf_type type) 2090 { 2091 struct resctrl_schema *s; 2092 const char *suffix = ""; 2093 int ret, cl; 2094 2095 s = kzalloc(sizeof(*s), GFP_KERNEL); 2096 if (!s) 2097 return -ENOMEM; 2098 2099 s->res = r; 2100 s->num_closid = resctrl_arch_get_num_closid(r); 2101 if (resctrl_arch_get_cdp_enabled(r->rid)) 2102 s->num_closid /= 2; 2103 2104 s->conf_type = type; 2105 switch (type) { 2106 case CDP_CODE: 2107 suffix = "CODE"; 2108 break; 2109 case CDP_DATA: 2110 suffix = "DATA"; 2111 break; 2112 case CDP_NONE: 2113 suffix = ""; 2114 break; 2115 } 2116 2117 ret = snprintf(s->name, sizeof(s->name), "%s%s", r->name, suffix); 2118 if (ret >= sizeof(s->name)) { 2119 kfree(s); 2120 return -EINVAL; 2121 } 2122 2123 cl = strlen(s->name); 2124 2125 /* 2126 * If CDP is supported by this resource, but not enabled, 2127 * include the suffix. This ensures the tabular format of the 2128 * schemata file does not change between mounts of the filesystem. 2129 */ 2130 if (r->cdp_capable && !resctrl_arch_get_cdp_enabled(r->rid)) 2131 cl += 4; 2132 2133 if (cl > max_name_width) 2134 max_name_width = cl; 2135 2136 INIT_LIST_HEAD(&s->list); 2137 list_add(&s->list, &resctrl_schema_all); 2138 2139 return 0; 2140 } 2141 2142 static int schemata_list_create(void) 2143 { 2144 struct rdt_resource *r; 2145 int ret = 0; 2146 2147 for_each_alloc_capable_rdt_resource(r) { 2148 if (resctrl_arch_get_cdp_enabled(r->rid)) { 2149 ret = schemata_list_add(r, CDP_CODE); 2150 if (ret) 2151 break; 2152 2153 ret = schemata_list_add(r, CDP_DATA); 2154 } else { 2155 ret = schemata_list_add(r, CDP_NONE); 2156 } 2157 2158 if (ret) 2159 break; 2160 } 2161 2162 return ret; 2163 } 2164 2165 static void schemata_list_destroy(void) 2166 { 2167 struct resctrl_schema *s, *tmp; 2168 2169 list_for_each_entry_safe(s, tmp, &resctrl_schema_all, list) { 2170 list_del(&s->list); 2171 kfree(s); 2172 } 2173 } 2174 2175 static int rdt_get_tree(struct fs_context *fc) 2176 { 2177 struct rdt_fs_context *ctx = rdt_fc2context(fc); 2178 struct rdt_domain *dom; 2179 struct rdt_resource *r; 2180 int ret; 2181 2182 cpus_read_lock(); 2183 mutex_lock(&rdtgroup_mutex); 2184 /* 2185 * resctrl file system can only be mounted once. 2186 */ 2187 if (static_branch_unlikely(&rdt_enable_key)) { 2188 ret = -EBUSY; 2189 goto out; 2190 } 2191 2192 ret = rdt_enable_ctx(ctx); 2193 if (ret < 0) 2194 goto out_cdp; 2195 2196 ret = schemata_list_create(); 2197 if (ret) { 2198 schemata_list_destroy(); 2199 goto out_mba; 2200 } 2201 2202 closid_init(); 2203 2204 ret = rdtgroup_create_info_dir(rdtgroup_default.kn); 2205 if (ret < 0) 2206 goto out_schemata_free; 2207 2208 if (rdt_mon_capable) { 2209 ret = mongroup_create_dir(rdtgroup_default.kn, 2210 &rdtgroup_default, "mon_groups", 2211 &kn_mongrp); 2212 if (ret < 0) 2213 goto out_info; 2214 2215 ret = mkdir_mondata_all(rdtgroup_default.kn, 2216 &rdtgroup_default, &kn_mondata); 2217 if (ret < 0) 2218 goto out_mongrp; 2219 rdtgroup_default.mon.mon_data_kn = kn_mondata; 2220 } 2221 2222 ret = rdt_pseudo_lock_init(); 2223 if (ret) 2224 goto out_mondata; 2225 2226 ret = kernfs_get_tree(fc); 2227 if (ret < 0) 2228 goto out_psl; 2229 2230 if (rdt_alloc_capable) 2231 static_branch_enable_cpuslocked(&rdt_alloc_enable_key); 2232 if (rdt_mon_capable) 2233 static_branch_enable_cpuslocked(&rdt_mon_enable_key); 2234 2235 if (rdt_alloc_capable || rdt_mon_capable) 2236 static_branch_enable_cpuslocked(&rdt_enable_key); 2237 2238 if (is_mbm_enabled()) { 2239 r = &rdt_resources_all[RDT_RESOURCE_L3].r_resctrl; 2240 list_for_each_entry(dom, &r->domains, list) 2241 mbm_setup_overflow_handler(dom, MBM_OVERFLOW_INTERVAL); 2242 } 2243 2244 goto out; 2245 2246 out_psl: 2247 rdt_pseudo_lock_release(); 2248 out_mondata: 2249 if (rdt_mon_capable) 2250 kernfs_remove(kn_mondata); 2251 out_mongrp: 2252 if (rdt_mon_capable) 2253 kernfs_remove(kn_mongrp); 2254 out_info: 2255 kernfs_remove(kn_info); 2256 out_schemata_free: 2257 schemata_list_destroy(); 2258 out_mba: 2259 if (ctx->enable_mba_mbps) 2260 set_mba_sc(false); 2261 out_cdp: 2262 cdp_disable_all(); 2263 out: 2264 rdt_last_cmd_clear(); 2265 mutex_unlock(&rdtgroup_mutex); 2266 cpus_read_unlock(); 2267 return ret; 2268 } 2269 2270 enum rdt_param { 2271 Opt_cdp, 2272 Opt_cdpl2, 2273 Opt_mba_mbps, 2274 nr__rdt_params 2275 }; 2276 2277 static const struct fs_parameter_spec rdt_fs_parameters[] = { 2278 fsparam_flag("cdp", Opt_cdp), 2279 fsparam_flag("cdpl2", Opt_cdpl2), 2280 fsparam_flag("mba_MBps", Opt_mba_mbps), 2281 {} 2282 }; 2283 2284 static int rdt_parse_param(struct fs_context *fc, struct fs_parameter *param) 2285 { 2286 struct rdt_fs_context *ctx = rdt_fc2context(fc); 2287 struct fs_parse_result result; 2288 int opt; 2289 2290 opt = fs_parse(fc, rdt_fs_parameters, param, &result); 2291 if (opt < 0) 2292 return opt; 2293 2294 switch (opt) { 2295 case Opt_cdp: 2296 ctx->enable_cdpl3 = true; 2297 return 0; 2298 case Opt_cdpl2: 2299 ctx->enable_cdpl2 = true; 2300 return 0; 2301 case Opt_mba_mbps: 2302 if (!supports_mba_mbps()) 2303 return -EINVAL; 2304 ctx->enable_mba_mbps = true; 2305 return 0; 2306 } 2307 2308 return -EINVAL; 2309 } 2310 2311 static void rdt_fs_context_free(struct fs_context *fc) 2312 { 2313 struct rdt_fs_context *ctx = rdt_fc2context(fc); 2314 2315 kernfs_free_fs_context(fc); 2316 kfree(ctx); 2317 } 2318 2319 static const struct fs_context_operations rdt_fs_context_ops = { 2320 .free = rdt_fs_context_free, 2321 .parse_param = rdt_parse_param, 2322 .get_tree = rdt_get_tree, 2323 }; 2324 2325 static int rdt_init_fs_context(struct fs_context *fc) 2326 { 2327 struct rdt_fs_context *ctx; 2328 2329 ctx = kzalloc(sizeof(struct rdt_fs_context), GFP_KERNEL); 2330 if (!ctx) 2331 return -ENOMEM; 2332 2333 ctx->kfc.root = rdt_root; 2334 ctx->kfc.magic = RDTGROUP_SUPER_MAGIC; 2335 fc->fs_private = &ctx->kfc; 2336 fc->ops = &rdt_fs_context_ops; 2337 put_user_ns(fc->user_ns); 2338 fc->user_ns = get_user_ns(&init_user_ns); 2339 fc->global = true; 2340 return 0; 2341 } 2342 2343 static int reset_all_ctrls(struct rdt_resource *r) 2344 { 2345 struct rdt_hw_resource *hw_res = resctrl_to_arch_res(r); 2346 struct rdt_hw_domain *hw_dom; 2347 struct msr_param msr_param; 2348 cpumask_var_t cpu_mask; 2349 struct rdt_domain *d; 2350 int i, cpu; 2351 2352 if (!zalloc_cpumask_var(&cpu_mask, GFP_KERNEL)) 2353 return -ENOMEM; 2354 2355 msr_param.res = r; 2356 msr_param.low = 0; 2357 msr_param.high = hw_res->num_closid; 2358 2359 /* 2360 * Disable resource control for this resource by setting all 2361 * CBMs in all domains to the maximum mask value. Pick one CPU 2362 * from each domain to update the MSRs below. 2363 */ 2364 list_for_each_entry(d, &r->domains, list) { 2365 hw_dom = resctrl_to_arch_dom(d); 2366 cpumask_set_cpu(cpumask_any(&d->cpu_mask), cpu_mask); 2367 2368 for (i = 0; i < hw_res->num_closid; i++) 2369 hw_dom->ctrl_val[i] = r->default_ctrl; 2370 } 2371 cpu = get_cpu(); 2372 /* Update CBM on this cpu if it's in cpu_mask. */ 2373 if (cpumask_test_cpu(cpu, cpu_mask)) 2374 rdt_ctrl_update(&msr_param); 2375 /* Update CBM on all other cpus in cpu_mask. */ 2376 smp_call_function_many(cpu_mask, rdt_ctrl_update, &msr_param, 1); 2377 put_cpu(); 2378 2379 free_cpumask_var(cpu_mask); 2380 2381 return 0; 2382 } 2383 2384 /* 2385 * Move tasks from one to the other group. If @from is NULL, then all tasks 2386 * in the systems are moved unconditionally (used for teardown). 2387 * 2388 * If @mask is not NULL the cpus on which moved tasks are running are set 2389 * in that mask so the update smp function call is restricted to affected 2390 * cpus. 2391 */ 2392 static void rdt_move_group_tasks(struct rdtgroup *from, struct rdtgroup *to, 2393 struct cpumask *mask) 2394 { 2395 struct task_struct *p, *t; 2396 2397 read_lock(&tasklist_lock); 2398 for_each_process_thread(p, t) { 2399 if (!from || is_closid_match(t, from) || 2400 is_rmid_match(t, from)) { 2401 WRITE_ONCE(t->closid, to->closid); 2402 WRITE_ONCE(t->rmid, to->mon.rmid); 2403 2404 /* 2405 * If the task is on a CPU, set the CPU in the mask. 2406 * The detection is inaccurate as tasks might move or 2407 * schedule before the smp function call takes place. 2408 * In such a case the function call is pointless, but 2409 * there is no other side effect. 2410 */ 2411 if (IS_ENABLED(CONFIG_SMP) && mask && task_curr(t)) 2412 cpumask_set_cpu(task_cpu(t), mask); 2413 } 2414 } 2415 read_unlock(&tasklist_lock); 2416 } 2417 2418 static void free_all_child_rdtgrp(struct rdtgroup *rdtgrp) 2419 { 2420 struct rdtgroup *sentry, *stmp; 2421 struct list_head *head; 2422 2423 head = &rdtgrp->mon.crdtgrp_list; 2424 list_for_each_entry_safe(sentry, stmp, head, mon.crdtgrp_list) { 2425 free_rmid(sentry->mon.rmid); 2426 list_del(&sentry->mon.crdtgrp_list); 2427 2428 if (atomic_read(&sentry->waitcount) != 0) 2429 sentry->flags = RDT_DELETED; 2430 else 2431 rdtgroup_remove(sentry); 2432 } 2433 } 2434 2435 /* 2436 * Forcibly remove all of subdirectories under root. 2437 */ 2438 static void rmdir_all_sub(void) 2439 { 2440 struct rdtgroup *rdtgrp, *tmp; 2441 2442 /* Move all tasks to the default resource group */ 2443 rdt_move_group_tasks(NULL, &rdtgroup_default, NULL); 2444 2445 list_for_each_entry_safe(rdtgrp, tmp, &rdt_all_groups, rdtgroup_list) { 2446 /* Free any child rmids */ 2447 free_all_child_rdtgrp(rdtgrp); 2448 2449 /* Remove each rdtgroup other than root */ 2450 if (rdtgrp == &rdtgroup_default) 2451 continue; 2452 2453 if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP || 2454 rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED) 2455 rdtgroup_pseudo_lock_remove(rdtgrp); 2456 2457 /* 2458 * Give any CPUs back to the default group. We cannot copy 2459 * cpu_online_mask because a CPU might have executed the 2460 * offline callback already, but is still marked online. 2461 */ 2462 cpumask_or(&rdtgroup_default.cpu_mask, 2463 &rdtgroup_default.cpu_mask, &rdtgrp->cpu_mask); 2464 2465 free_rmid(rdtgrp->mon.rmid); 2466 2467 kernfs_remove(rdtgrp->kn); 2468 list_del(&rdtgrp->rdtgroup_list); 2469 2470 if (atomic_read(&rdtgrp->waitcount) != 0) 2471 rdtgrp->flags = RDT_DELETED; 2472 else 2473 rdtgroup_remove(rdtgrp); 2474 } 2475 /* Notify online CPUs to update per cpu storage and PQR_ASSOC MSR */ 2476 update_closid_rmid(cpu_online_mask, &rdtgroup_default); 2477 2478 kernfs_remove(kn_info); 2479 kernfs_remove(kn_mongrp); 2480 kernfs_remove(kn_mondata); 2481 } 2482 2483 static void rdt_kill_sb(struct super_block *sb) 2484 { 2485 struct rdt_resource *r; 2486 2487 cpus_read_lock(); 2488 mutex_lock(&rdtgroup_mutex); 2489 2490 set_mba_sc(false); 2491 2492 /*Put everything back to default values. */ 2493 for_each_alloc_capable_rdt_resource(r) 2494 reset_all_ctrls(r); 2495 cdp_disable_all(); 2496 rmdir_all_sub(); 2497 rdt_pseudo_lock_release(); 2498 rdtgroup_default.mode = RDT_MODE_SHAREABLE; 2499 schemata_list_destroy(); 2500 static_branch_disable_cpuslocked(&rdt_alloc_enable_key); 2501 static_branch_disable_cpuslocked(&rdt_mon_enable_key); 2502 static_branch_disable_cpuslocked(&rdt_enable_key); 2503 kernfs_kill_sb(sb); 2504 mutex_unlock(&rdtgroup_mutex); 2505 cpus_read_unlock(); 2506 } 2507 2508 static struct file_system_type rdt_fs_type = { 2509 .name = "resctrl", 2510 .init_fs_context = rdt_init_fs_context, 2511 .parameters = rdt_fs_parameters, 2512 .kill_sb = rdt_kill_sb, 2513 }; 2514 2515 static int mon_addfile(struct kernfs_node *parent_kn, const char *name, 2516 void *priv) 2517 { 2518 struct kernfs_node *kn; 2519 int ret = 0; 2520 2521 kn = __kernfs_create_file(parent_kn, name, 0444, 2522 GLOBAL_ROOT_UID, GLOBAL_ROOT_GID, 0, 2523 &kf_mondata_ops, priv, NULL, NULL); 2524 if (IS_ERR(kn)) 2525 return PTR_ERR(kn); 2526 2527 ret = rdtgroup_kn_set_ugid(kn); 2528 if (ret) { 2529 kernfs_remove(kn); 2530 return ret; 2531 } 2532 2533 return ret; 2534 } 2535 2536 /* 2537 * Remove all subdirectories of mon_data of ctrl_mon groups 2538 * and monitor groups with given domain id. 2539 */ 2540 static void rmdir_mondata_subdir_allrdtgrp(struct rdt_resource *r, 2541 unsigned int dom_id) 2542 { 2543 struct rdtgroup *prgrp, *crgrp; 2544 char name[32]; 2545 2546 list_for_each_entry(prgrp, &rdt_all_groups, rdtgroup_list) { 2547 sprintf(name, "mon_%s_%02d", r->name, dom_id); 2548 kernfs_remove_by_name(prgrp->mon.mon_data_kn, name); 2549 2550 list_for_each_entry(crgrp, &prgrp->mon.crdtgrp_list, mon.crdtgrp_list) 2551 kernfs_remove_by_name(crgrp->mon.mon_data_kn, name); 2552 } 2553 } 2554 2555 static int mkdir_mondata_subdir(struct kernfs_node *parent_kn, 2556 struct rdt_domain *d, 2557 struct rdt_resource *r, struct rdtgroup *prgrp) 2558 { 2559 union mon_data_bits priv; 2560 struct kernfs_node *kn; 2561 struct mon_evt *mevt; 2562 struct rmid_read rr; 2563 char name[32]; 2564 int ret; 2565 2566 sprintf(name, "mon_%s_%02d", r->name, d->id); 2567 /* create the directory */ 2568 kn = kernfs_create_dir(parent_kn, name, parent_kn->mode, prgrp); 2569 if (IS_ERR(kn)) 2570 return PTR_ERR(kn); 2571 2572 ret = rdtgroup_kn_set_ugid(kn); 2573 if (ret) 2574 goto out_destroy; 2575 2576 if (WARN_ON(list_empty(&r->evt_list))) { 2577 ret = -EPERM; 2578 goto out_destroy; 2579 } 2580 2581 priv.u.rid = r->rid; 2582 priv.u.domid = d->id; 2583 list_for_each_entry(mevt, &r->evt_list, list) { 2584 priv.u.evtid = mevt->evtid; 2585 ret = mon_addfile(kn, mevt->name, priv.priv); 2586 if (ret) 2587 goto out_destroy; 2588 2589 if (is_mbm_event(mevt->evtid)) 2590 mon_event_read(&rr, r, d, prgrp, mevt->evtid, true); 2591 } 2592 kernfs_activate(kn); 2593 return 0; 2594 2595 out_destroy: 2596 kernfs_remove(kn); 2597 return ret; 2598 } 2599 2600 /* 2601 * Add all subdirectories of mon_data for "ctrl_mon" groups 2602 * and "monitor" groups with given domain id. 2603 */ 2604 static void mkdir_mondata_subdir_allrdtgrp(struct rdt_resource *r, 2605 struct rdt_domain *d) 2606 { 2607 struct kernfs_node *parent_kn; 2608 struct rdtgroup *prgrp, *crgrp; 2609 struct list_head *head; 2610 2611 list_for_each_entry(prgrp, &rdt_all_groups, rdtgroup_list) { 2612 parent_kn = prgrp->mon.mon_data_kn; 2613 mkdir_mondata_subdir(parent_kn, d, r, prgrp); 2614 2615 head = &prgrp->mon.crdtgrp_list; 2616 list_for_each_entry(crgrp, head, mon.crdtgrp_list) { 2617 parent_kn = crgrp->mon.mon_data_kn; 2618 mkdir_mondata_subdir(parent_kn, d, r, crgrp); 2619 } 2620 } 2621 } 2622 2623 static int mkdir_mondata_subdir_alldom(struct kernfs_node *parent_kn, 2624 struct rdt_resource *r, 2625 struct rdtgroup *prgrp) 2626 { 2627 struct rdt_domain *dom; 2628 int ret; 2629 2630 list_for_each_entry(dom, &r->domains, list) { 2631 ret = mkdir_mondata_subdir(parent_kn, dom, r, prgrp); 2632 if (ret) 2633 return ret; 2634 } 2635 2636 return 0; 2637 } 2638 2639 /* 2640 * This creates a directory mon_data which contains the monitored data. 2641 * 2642 * mon_data has one directory for each domain which are named 2643 * in the format mon_<domain_name>_<domain_id>. For ex: A mon_data 2644 * with L3 domain looks as below: 2645 * ./mon_data: 2646 * mon_L3_00 2647 * mon_L3_01 2648 * mon_L3_02 2649 * ... 2650 * 2651 * Each domain directory has one file per event: 2652 * ./mon_L3_00/: 2653 * llc_occupancy 2654 * 2655 */ 2656 static int mkdir_mondata_all(struct kernfs_node *parent_kn, 2657 struct rdtgroup *prgrp, 2658 struct kernfs_node **dest_kn) 2659 { 2660 struct rdt_resource *r; 2661 struct kernfs_node *kn; 2662 int ret; 2663 2664 /* 2665 * Create the mon_data directory first. 2666 */ 2667 ret = mongroup_create_dir(parent_kn, prgrp, "mon_data", &kn); 2668 if (ret) 2669 return ret; 2670 2671 if (dest_kn) 2672 *dest_kn = kn; 2673 2674 /* 2675 * Create the subdirectories for each domain. Note that all events 2676 * in a domain like L3 are grouped into a resource whose domain is L3 2677 */ 2678 for_each_mon_capable_rdt_resource(r) { 2679 ret = mkdir_mondata_subdir_alldom(kn, r, prgrp); 2680 if (ret) 2681 goto out_destroy; 2682 } 2683 2684 return 0; 2685 2686 out_destroy: 2687 kernfs_remove(kn); 2688 return ret; 2689 } 2690 2691 /** 2692 * cbm_ensure_valid - Enforce validity on provided CBM 2693 * @_val: Candidate CBM 2694 * @r: RDT resource to which the CBM belongs 2695 * 2696 * The provided CBM represents all cache portions available for use. This 2697 * may be represented by a bitmap that does not consist of contiguous ones 2698 * and thus be an invalid CBM. 2699 * Here the provided CBM is forced to be a valid CBM by only considering 2700 * the first set of contiguous bits as valid and clearing all bits. 2701 * The intention here is to provide a valid default CBM with which a new 2702 * resource group is initialized. The user can follow this with a 2703 * modification to the CBM if the default does not satisfy the 2704 * requirements. 2705 */ 2706 static u32 cbm_ensure_valid(u32 _val, struct rdt_resource *r) 2707 { 2708 unsigned int cbm_len = r->cache.cbm_len; 2709 unsigned long first_bit, zero_bit; 2710 unsigned long val = _val; 2711 2712 if (!val) 2713 return 0; 2714 2715 first_bit = find_first_bit(&val, cbm_len); 2716 zero_bit = find_next_zero_bit(&val, cbm_len, first_bit); 2717 2718 /* Clear any remaining bits to ensure contiguous region */ 2719 bitmap_clear(&val, zero_bit, cbm_len - zero_bit); 2720 return (u32)val; 2721 } 2722 2723 /* 2724 * Initialize cache resources per RDT domain 2725 * 2726 * Set the RDT domain up to start off with all usable allocations. That is, 2727 * all shareable and unused bits. All-zero CBM is invalid. 2728 */ 2729 static int __init_one_rdt_domain(struct rdt_domain *d, struct resctrl_schema *s, 2730 u32 closid) 2731 { 2732 enum resctrl_conf_type peer_type = resctrl_peer_type(s->conf_type); 2733 enum resctrl_conf_type t = s->conf_type; 2734 struct resctrl_staged_config *cfg; 2735 struct rdt_resource *r = s->res; 2736 u32 used_b = 0, unused_b = 0; 2737 unsigned long tmp_cbm; 2738 enum rdtgrp_mode mode; 2739 u32 peer_ctl, ctrl_val; 2740 int i; 2741 2742 cfg = &d->staged_config[t]; 2743 cfg->have_new_ctrl = false; 2744 cfg->new_ctrl = r->cache.shareable_bits; 2745 used_b = r->cache.shareable_bits; 2746 for (i = 0; i < closids_supported(); i++) { 2747 if (closid_allocated(i) && i != closid) { 2748 mode = rdtgroup_mode_by_closid(i); 2749 if (mode == RDT_MODE_PSEUDO_LOCKSETUP) 2750 /* 2751 * ctrl values for locksetup aren't relevant 2752 * until the schemata is written, and the mode 2753 * becomes RDT_MODE_PSEUDO_LOCKED. 2754 */ 2755 continue; 2756 /* 2757 * If CDP is active include peer domain's 2758 * usage to ensure there is no overlap 2759 * with an exclusive group. 2760 */ 2761 if (resctrl_arch_get_cdp_enabled(r->rid)) 2762 peer_ctl = resctrl_arch_get_config(r, d, i, 2763 peer_type); 2764 else 2765 peer_ctl = 0; 2766 ctrl_val = resctrl_arch_get_config(r, d, i, 2767 s->conf_type); 2768 used_b |= ctrl_val | peer_ctl; 2769 if (mode == RDT_MODE_SHAREABLE) 2770 cfg->new_ctrl |= ctrl_val | peer_ctl; 2771 } 2772 } 2773 if (d->plr && d->plr->cbm > 0) 2774 used_b |= d->plr->cbm; 2775 unused_b = used_b ^ (BIT_MASK(r->cache.cbm_len) - 1); 2776 unused_b &= BIT_MASK(r->cache.cbm_len) - 1; 2777 cfg->new_ctrl |= unused_b; 2778 /* 2779 * Force the initial CBM to be valid, user can 2780 * modify the CBM based on system availability. 2781 */ 2782 cfg->new_ctrl = cbm_ensure_valid(cfg->new_ctrl, r); 2783 /* 2784 * Assign the u32 CBM to an unsigned long to ensure that 2785 * bitmap_weight() does not access out-of-bound memory. 2786 */ 2787 tmp_cbm = cfg->new_ctrl; 2788 if (bitmap_weight(&tmp_cbm, r->cache.cbm_len) < r->cache.min_cbm_bits) { 2789 rdt_last_cmd_printf("No space on %s:%d\n", s->name, d->id); 2790 return -ENOSPC; 2791 } 2792 cfg->have_new_ctrl = true; 2793 2794 return 0; 2795 } 2796 2797 /* 2798 * Initialize cache resources with default values. 2799 * 2800 * A new RDT group is being created on an allocation capable (CAT) 2801 * supporting system. Set this group up to start off with all usable 2802 * allocations. 2803 * 2804 * If there are no more shareable bits available on any domain then 2805 * the entire allocation will fail. 2806 */ 2807 static int rdtgroup_init_cat(struct resctrl_schema *s, u32 closid) 2808 { 2809 struct rdt_domain *d; 2810 int ret; 2811 2812 list_for_each_entry(d, &s->res->domains, list) { 2813 ret = __init_one_rdt_domain(d, s, closid); 2814 if (ret < 0) 2815 return ret; 2816 } 2817 2818 return 0; 2819 } 2820 2821 /* Initialize MBA resource with default values. */ 2822 static void rdtgroup_init_mba(struct rdt_resource *r, u32 closid) 2823 { 2824 struct resctrl_staged_config *cfg; 2825 struct rdt_domain *d; 2826 2827 list_for_each_entry(d, &r->domains, list) { 2828 if (is_mba_sc(r)) { 2829 d->mbps_val[closid] = MBA_MAX_MBPS; 2830 continue; 2831 } 2832 2833 cfg = &d->staged_config[CDP_NONE]; 2834 cfg->new_ctrl = r->default_ctrl; 2835 cfg->have_new_ctrl = true; 2836 } 2837 } 2838 2839 /* Initialize the RDT group's allocations. */ 2840 static int rdtgroup_init_alloc(struct rdtgroup *rdtgrp) 2841 { 2842 struct resctrl_schema *s; 2843 struct rdt_resource *r; 2844 int ret; 2845 2846 list_for_each_entry(s, &resctrl_schema_all, list) { 2847 r = s->res; 2848 if (r->rid == RDT_RESOURCE_MBA) { 2849 rdtgroup_init_mba(r, rdtgrp->closid); 2850 if (is_mba_sc(r)) 2851 continue; 2852 } else { 2853 ret = rdtgroup_init_cat(s, rdtgrp->closid); 2854 if (ret < 0) 2855 return ret; 2856 } 2857 2858 ret = resctrl_arch_update_domains(r, rdtgrp->closid); 2859 if (ret < 0) { 2860 rdt_last_cmd_puts("Failed to initialize allocations\n"); 2861 return ret; 2862 } 2863 2864 } 2865 2866 rdtgrp->mode = RDT_MODE_SHAREABLE; 2867 2868 return 0; 2869 } 2870 2871 static int mkdir_rdt_prepare(struct kernfs_node *parent_kn, 2872 const char *name, umode_t mode, 2873 enum rdt_group_type rtype, struct rdtgroup **r) 2874 { 2875 struct rdtgroup *prdtgrp, *rdtgrp; 2876 struct kernfs_node *kn; 2877 uint files = 0; 2878 int ret; 2879 2880 prdtgrp = rdtgroup_kn_lock_live(parent_kn); 2881 if (!prdtgrp) { 2882 ret = -ENODEV; 2883 goto out_unlock; 2884 } 2885 2886 if (rtype == RDTMON_GROUP && 2887 (prdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP || 2888 prdtgrp->mode == RDT_MODE_PSEUDO_LOCKED)) { 2889 ret = -EINVAL; 2890 rdt_last_cmd_puts("Pseudo-locking in progress\n"); 2891 goto out_unlock; 2892 } 2893 2894 /* allocate the rdtgroup. */ 2895 rdtgrp = kzalloc(sizeof(*rdtgrp), GFP_KERNEL); 2896 if (!rdtgrp) { 2897 ret = -ENOSPC; 2898 rdt_last_cmd_puts("Kernel out of memory\n"); 2899 goto out_unlock; 2900 } 2901 *r = rdtgrp; 2902 rdtgrp->mon.parent = prdtgrp; 2903 rdtgrp->type = rtype; 2904 INIT_LIST_HEAD(&rdtgrp->mon.crdtgrp_list); 2905 2906 /* kernfs creates the directory for rdtgrp */ 2907 kn = kernfs_create_dir(parent_kn, name, mode, rdtgrp); 2908 if (IS_ERR(kn)) { 2909 ret = PTR_ERR(kn); 2910 rdt_last_cmd_puts("kernfs create error\n"); 2911 goto out_free_rgrp; 2912 } 2913 rdtgrp->kn = kn; 2914 2915 /* 2916 * kernfs_remove() will drop the reference count on "kn" which 2917 * will free it. But we still need it to stick around for the 2918 * rdtgroup_kn_unlock(kn) call. Take one extra reference here, 2919 * which will be dropped by kernfs_put() in rdtgroup_remove(). 2920 */ 2921 kernfs_get(kn); 2922 2923 ret = rdtgroup_kn_set_ugid(kn); 2924 if (ret) { 2925 rdt_last_cmd_puts("kernfs perm error\n"); 2926 goto out_destroy; 2927 } 2928 2929 files = RFTYPE_BASE | BIT(RF_CTRLSHIFT + rtype); 2930 ret = rdtgroup_add_files(kn, files); 2931 if (ret) { 2932 rdt_last_cmd_puts("kernfs fill error\n"); 2933 goto out_destroy; 2934 } 2935 2936 if (rdt_mon_capable) { 2937 ret = alloc_rmid(); 2938 if (ret < 0) { 2939 rdt_last_cmd_puts("Out of RMIDs\n"); 2940 goto out_destroy; 2941 } 2942 rdtgrp->mon.rmid = ret; 2943 2944 ret = mkdir_mondata_all(kn, rdtgrp, &rdtgrp->mon.mon_data_kn); 2945 if (ret) { 2946 rdt_last_cmd_puts("kernfs subdir error\n"); 2947 goto out_idfree; 2948 } 2949 } 2950 kernfs_activate(kn); 2951 2952 /* 2953 * The caller unlocks the parent_kn upon success. 2954 */ 2955 return 0; 2956 2957 out_idfree: 2958 free_rmid(rdtgrp->mon.rmid); 2959 out_destroy: 2960 kernfs_put(rdtgrp->kn); 2961 kernfs_remove(rdtgrp->kn); 2962 out_free_rgrp: 2963 kfree(rdtgrp); 2964 out_unlock: 2965 rdtgroup_kn_unlock(parent_kn); 2966 return ret; 2967 } 2968 2969 static void mkdir_rdt_prepare_clean(struct rdtgroup *rgrp) 2970 { 2971 kernfs_remove(rgrp->kn); 2972 free_rmid(rgrp->mon.rmid); 2973 rdtgroup_remove(rgrp); 2974 } 2975 2976 /* 2977 * Create a monitor group under "mon_groups" directory of a control 2978 * and monitor group(ctrl_mon). This is a resource group 2979 * to monitor a subset of tasks and cpus in its parent ctrl_mon group. 2980 */ 2981 static int rdtgroup_mkdir_mon(struct kernfs_node *parent_kn, 2982 const char *name, umode_t mode) 2983 { 2984 struct rdtgroup *rdtgrp, *prgrp; 2985 int ret; 2986 2987 ret = mkdir_rdt_prepare(parent_kn, name, mode, RDTMON_GROUP, &rdtgrp); 2988 if (ret) 2989 return ret; 2990 2991 prgrp = rdtgrp->mon.parent; 2992 rdtgrp->closid = prgrp->closid; 2993 2994 /* 2995 * Add the rdtgrp to the list of rdtgrps the parent 2996 * ctrl_mon group has to track. 2997 */ 2998 list_add_tail(&rdtgrp->mon.crdtgrp_list, &prgrp->mon.crdtgrp_list); 2999 3000 rdtgroup_kn_unlock(parent_kn); 3001 return ret; 3002 } 3003 3004 /* 3005 * These are rdtgroups created under the root directory. Can be used 3006 * to allocate and monitor resources. 3007 */ 3008 static int rdtgroup_mkdir_ctrl_mon(struct kernfs_node *parent_kn, 3009 const char *name, umode_t mode) 3010 { 3011 struct rdtgroup *rdtgrp; 3012 struct kernfs_node *kn; 3013 u32 closid; 3014 int ret; 3015 3016 ret = mkdir_rdt_prepare(parent_kn, name, mode, RDTCTRL_GROUP, &rdtgrp); 3017 if (ret) 3018 return ret; 3019 3020 kn = rdtgrp->kn; 3021 ret = closid_alloc(); 3022 if (ret < 0) { 3023 rdt_last_cmd_puts("Out of CLOSIDs\n"); 3024 goto out_common_fail; 3025 } 3026 closid = ret; 3027 ret = 0; 3028 3029 rdtgrp->closid = closid; 3030 ret = rdtgroup_init_alloc(rdtgrp); 3031 if (ret < 0) 3032 goto out_id_free; 3033 3034 list_add(&rdtgrp->rdtgroup_list, &rdt_all_groups); 3035 3036 if (rdt_mon_capable) { 3037 /* 3038 * Create an empty mon_groups directory to hold the subset 3039 * of tasks and cpus to monitor. 3040 */ 3041 ret = mongroup_create_dir(kn, rdtgrp, "mon_groups", NULL); 3042 if (ret) { 3043 rdt_last_cmd_puts("kernfs subdir error\n"); 3044 goto out_del_list; 3045 } 3046 } 3047 3048 goto out_unlock; 3049 3050 out_del_list: 3051 list_del(&rdtgrp->rdtgroup_list); 3052 out_id_free: 3053 closid_free(closid); 3054 out_common_fail: 3055 mkdir_rdt_prepare_clean(rdtgrp); 3056 out_unlock: 3057 rdtgroup_kn_unlock(parent_kn); 3058 return ret; 3059 } 3060 3061 /* 3062 * We allow creating mon groups only with in a directory called "mon_groups" 3063 * which is present in every ctrl_mon group. Check if this is a valid 3064 * "mon_groups" directory. 3065 * 3066 * 1. The directory should be named "mon_groups". 3067 * 2. The mon group itself should "not" be named "mon_groups". 3068 * This makes sure "mon_groups" directory always has a ctrl_mon group 3069 * as parent. 3070 */ 3071 static bool is_mon_groups(struct kernfs_node *kn, const char *name) 3072 { 3073 return (!strcmp(kn->name, "mon_groups") && 3074 strcmp(name, "mon_groups")); 3075 } 3076 3077 static int rdtgroup_mkdir(struct kernfs_node *parent_kn, const char *name, 3078 umode_t mode) 3079 { 3080 /* Do not accept '\n' to avoid unparsable situation. */ 3081 if (strchr(name, '\n')) 3082 return -EINVAL; 3083 3084 /* 3085 * If the parent directory is the root directory and RDT 3086 * allocation is supported, add a control and monitoring 3087 * subdirectory 3088 */ 3089 if (rdt_alloc_capable && parent_kn == rdtgroup_default.kn) 3090 return rdtgroup_mkdir_ctrl_mon(parent_kn, name, mode); 3091 3092 /* 3093 * If RDT monitoring is supported and the parent directory is a valid 3094 * "mon_groups" directory, add a monitoring subdirectory. 3095 */ 3096 if (rdt_mon_capable && is_mon_groups(parent_kn, name)) 3097 return rdtgroup_mkdir_mon(parent_kn, name, mode); 3098 3099 return -EPERM; 3100 } 3101 3102 static int rdtgroup_rmdir_mon(struct rdtgroup *rdtgrp, cpumask_var_t tmpmask) 3103 { 3104 struct rdtgroup *prdtgrp = rdtgrp->mon.parent; 3105 int cpu; 3106 3107 /* Give any tasks back to the parent group */ 3108 rdt_move_group_tasks(rdtgrp, prdtgrp, tmpmask); 3109 3110 /* Update per cpu rmid of the moved CPUs first */ 3111 for_each_cpu(cpu, &rdtgrp->cpu_mask) 3112 per_cpu(pqr_state.default_rmid, cpu) = prdtgrp->mon.rmid; 3113 /* 3114 * Update the MSR on moved CPUs and CPUs which have moved 3115 * task running on them. 3116 */ 3117 cpumask_or(tmpmask, tmpmask, &rdtgrp->cpu_mask); 3118 update_closid_rmid(tmpmask, NULL); 3119 3120 rdtgrp->flags = RDT_DELETED; 3121 free_rmid(rdtgrp->mon.rmid); 3122 3123 /* 3124 * Remove the rdtgrp from the parent ctrl_mon group's list 3125 */ 3126 WARN_ON(list_empty(&prdtgrp->mon.crdtgrp_list)); 3127 list_del(&rdtgrp->mon.crdtgrp_list); 3128 3129 kernfs_remove(rdtgrp->kn); 3130 3131 return 0; 3132 } 3133 3134 static int rdtgroup_ctrl_remove(struct rdtgroup *rdtgrp) 3135 { 3136 rdtgrp->flags = RDT_DELETED; 3137 list_del(&rdtgrp->rdtgroup_list); 3138 3139 kernfs_remove(rdtgrp->kn); 3140 return 0; 3141 } 3142 3143 static int rdtgroup_rmdir_ctrl(struct rdtgroup *rdtgrp, cpumask_var_t tmpmask) 3144 { 3145 int cpu; 3146 3147 /* Give any tasks back to the default group */ 3148 rdt_move_group_tasks(rdtgrp, &rdtgroup_default, tmpmask); 3149 3150 /* Give any CPUs back to the default group */ 3151 cpumask_or(&rdtgroup_default.cpu_mask, 3152 &rdtgroup_default.cpu_mask, &rdtgrp->cpu_mask); 3153 3154 /* Update per cpu closid and rmid of the moved CPUs first */ 3155 for_each_cpu(cpu, &rdtgrp->cpu_mask) { 3156 per_cpu(pqr_state.default_closid, cpu) = rdtgroup_default.closid; 3157 per_cpu(pqr_state.default_rmid, cpu) = rdtgroup_default.mon.rmid; 3158 } 3159 3160 /* 3161 * Update the MSR on moved CPUs and CPUs which have moved 3162 * task running on them. 3163 */ 3164 cpumask_or(tmpmask, tmpmask, &rdtgrp->cpu_mask); 3165 update_closid_rmid(tmpmask, NULL); 3166 3167 closid_free(rdtgrp->closid); 3168 free_rmid(rdtgrp->mon.rmid); 3169 3170 rdtgroup_ctrl_remove(rdtgrp); 3171 3172 /* 3173 * Free all the child monitor group rmids. 3174 */ 3175 free_all_child_rdtgrp(rdtgrp); 3176 3177 return 0; 3178 } 3179 3180 static int rdtgroup_rmdir(struct kernfs_node *kn) 3181 { 3182 struct kernfs_node *parent_kn = kn->parent; 3183 struct rdtgroup *rdtgrp; 3184 cpumask_var_t tmpmask; 3185 int ret = 0; 3186 3187 if (!zalloc_cpumask_var(&tmpmask, GFP_KERNEL)) 3188 return -ENOMEM; 3189 3190 rdtgrp = rdtgroup_kn_lock_live(kn); 3191 if (!rdtgrp) { 3192 ret = -EPERM; 3193 goto out; 3194 } 3195 3196 /* 3197 * If the rdtgroup is a ctrl_mon group and parent directory 3198 * is the root directory, remove the ctrl_mon group. 3199 * 3200 * If the rdtgroup is a mon group and parent directory 3201 * is a valid "mon_groups" directory, remove the mon group. 3202 */ 3203 if (rdtgrp->type == RDTCTRL_GROUP && parent_kn == rdtgroup_default.kn && 3204 rdtgrp != &rdtgroup_default) { 3205 if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP || 3206 rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED) { 3207 ret = rdtgroup_ctrl_remove(rdtgrp); 3208 } else { 3209 ret = rdtgroup_rmdir_ctrl(rdtgrp, tmpmask); 3210 } 3211 } else if (rdtgrp->type == RDTMON_GROUP && 3212 is_mon_groups(parent_kn, kn->name)) { 3213 ret = rdtgroup_rmdir_mon(rdtgrp, tmpmask); 3214 } else { 3215 ret = -EPERM; 3216 } 3217 3218 out: 3219 rdtgroup_kn_unlock(kn); 3220 free_cpumask_var(tmpmask); 3221 return ret; 3222 } 3223 3224 static int rdtgroup_show_options(struct seq_file *seq, struct kernfs_root *kf) 3225 { 3226 if (resctrl_arch_get_cdp_enabled(RDT_RESOURCE_L3)) 3227 seq_puts(seq, ",cdp"); 3228 3229 if (resctrl_arch_get_cdp_enabled(RDT_RESOURCE_L2)) 3230 seq_puts(seq, ",cdpl2"); 3231 3232 if (is_mba_sc(&rdt_resources_all[RDT_RESOURCE_MBA].r_resctrl)) 3233 seq_puts(seq, ",mba_MBps"); 3234 3235 return 0; 3236 } 3237 3238 static struct kernfs_syscall_ops rdtgroup_kf_syscall_ops = { 3239 .mkdir = rdtgroup_mkdir, 3240 .rmdir = rdtgroup_rmdir, 3241 .show_options = rdtgroup_show_options, 3242 }; 3243 3244 static int __init rdtgroup_setup_root(void) 3245 { 3246 int ret; 3247 3248 rdt_root = kernfs_create_root(&rdtgroup_kf_syscall_ops, 3249 KERNFS_ROOT_CREATE_DEACTIVATED | 3250 KERNFS_ROOT_EXTRA_OPEN_PERM_CHECK, 3251 &rdtgroup_default); 3252 if (IS_ERR(rdt_root)) 3253 return PTR_ERR(rdt_root); 3254 3255 mutex_lock(&rdtgroup_mutex); 3256 3257 rdtgroup_default.closid = 0; 3258 rdtgroup_default.mon.rmid = 0; 3259 rdtgroup_default.type = RDTCTRL_GROUP; 3260 INIT_LIST_HEAD(&rdtgroup_default.mon.crdtgrp_list); 3261 3262 list_add(&rdtgroup_default.rdtgroup_list, &rdt_all_groups); 3263 3264 ret = rdtgroup_add_files(kernfs_root_to_node(rdt_root), RF_CTRL_BASE); 3265 if (ret) { 3266 kernfs_destroy_root(rdt_root); 3267 goto out; 3268 } 3269 3270 rdtgroup_default.kn = kernfs_root_to_node(rdt_root); 3271 kernfs_activate(rdtgroup_default.kn); 3272 3273 out: 3274 mutex_unlock(&rdtgroup_mutex); 3275 3276 return ret; 3277 } 3278 3279 static void domain_destroy_mon_state(struct rdt_domain *d) 3280 { 3281 bitmap_free(d->rmid_busy_llc); 3282 kfree(d->mbm_total); 3283 kfree(d->mbm_local); 3284 } 3285 3286 void resctrl_offline_domain(struct rdt_resource *r, struct rdt_domain *d) 3287 { 3288 lockdep_assert_held(&rdtgroup_mutex); 3289 3290 if (supports_mba_mbps() && r->rid == RDT_RESOURCE_MBA) 3291 mba_sc_domain_destroy(r, d); 3292 3293 if (!r->mon_capable) 3294 return; 3295 3296 /* 3297 * If resctrl is mounted, remove all the 3298 * per domain monitor data directories. 3299 */ 3300 if (static_branch_unlikely(&rdt_mon_enable_key)) 3301 rmdir_mondata_subdir_allrdtgrp(r, d->id); 3302 3303 if (is_mbm_enabled()) 3304 cancel_delayed_work(&d->mbm_over); 3305 if (is_llc_occupancy_enabled() && has_busy_rmid(r, d)) { 3306 /* 3307 * When a package is going down, forcefully 3308 * decrement rmid->ebusy. There is no way to know 3309 * that the L3 was flushed and hence may lead to 3310 * incorrect counts in rare scenarios, but leaving 3311 * the RMID as busy creates RMID leaks if the 3312 * package never comes back. 3313 */ 3314 __check_limbo(d, true); 3315 cancel_delayed_work(&d->cqm_limbo); 3316 } 3317 3318 domain_destroy_mon_state(d); 3319 } 3320 3321 static int domain_setup_mon_state(struct rdt_resource *r, struct rdt_domain *d) 3322 { 3323 size_t tsize; 3324 3325 if (is_llc_occupancy_enabled()) { 3326 d->rmid_busy_llc = bitmap_zalloc(r->num_rmid, GFP_KERNEL); 3327 if (!d->rmid_busy_llc) 3328 return -ENOMEM; 3329 } 3330 if (is_mbm_total_enabled()) { 3331 tsize = sizeof(*d->mbm_total); 3332 d->mbm_total = kcalloc(r->num_rmid, tsize, GFP_KERNEL); 3333 if (!d->mbm_total) { 3334 bitmap_free(d->rmid_busy_llc); 3335 return -ENOMEM; 3336 } 3337 } 3338 if (is_mbm_local_enabled()) { 3339 tsize = sizeof(*d->mbm_local); 3340 d->mbm_local = kcalloc(r->num_rmid, tsize, GFP_KERNEL); 3341 if (!d->mbm_local) { 3342 bitmap_free(d->rmid_busy_llc); 3343 kfree(d->mbm_total); 3344 return -ENOMEM; 3345 } 3346 } 3347 3348 return 0; 3349 } 3350 3351 int resctrl_online_domain(struct rdt_resource *r, struct rdt_domain *d) 3352 { 3353 int err; 3354 3355 lockdep_assert_held(&rdtgroup_mutex); 3356 3357 if (supports_mba_mbps() && r->rid == RDT_RESOURCE_MBA) 3358 /* RDT_RESOURCE_MBA is never mon_capable */ 3359 return mba_sc_domain_allocate(r, d); 3360 3361 if (!r->mon_capable) 3362 return 0; 3363 3364 err = domain_setup_mon_state(r, d); 3365 if (err) 3366 return err; 3367 3368 if (is_mbm_enabled()) { 3369 INIT_DELAYED_WORK(&d->mbm_over, mbm_handle_overflow); 3370 mbm_setup_overflow_handler(d, MBM_OVERFLOW_INTERVAL); 3371 } 3372 3373 if (is_llc_occupancy_enabled()) 3374 INIT_DELAYED_WORK(&d->cqm_limbo, cqm_handle_limbo); 3375 3376 /* If resctrl is mounted, add per domain monitor data directories. */ 3377 if (static_branch_unlikely(&rdt_mon_enable_key)) 3378 mkdir_mondata_subdir_allrdtgrp(r, d); 3379 3380 return 0; 3381 } 3382 3383 /* 3384 * rdtgroup_init - rdtgroup initialization 3385 * 3386 * Setup resctrl file system including set up root, create mount point, 3387 * register rdtgroup filesystem, and initialize files under root directory. 3388 * 3389 * Return: 0 on success or -errno 3390 */ 3391 int __init rdtgroup_init(void) 3392 { 3393 int ret = 0; 3394 3395 seq_buf_init(&last_cmd_status, last_cmd_status_buf, 3396 sizeof(last_cmd_status_buf)); 3397 3398 ret = rdtgroup_setup_root(); 3399 if (ret) 3400 return ret; 3401 3402 ret = sysfs_create_mount_point(fs_kobj, "resctrl"); 3403 if (ret) 3404 goto cleanup_root; 3405 3406 ret = register_filesystem(&rdt_fs_type); 3407 if (ret) 3408 goto cleanup_mountpoint; 3409 3410 /* 3411 * Adding the resctrl debugfs directory here may not be ideal since 3412 * it would let the resctrl debugfs directory appear on the debugfs 3413 * filesystem before the resctrl filesystem is mounted. 3414 * It may also be ok since that would enable debugging of RDT before 3415 * resctrl is mounted. 3416 * The reason why the debugfs directory is created here and not in 3417 * rdt_get_tree() is because rdt_get_tree() takes rdtgroup_mutex and 3418 * during the debugfs directory creation also &sb->s_type->i_mutex_key 3419 * (the lockdep class of inode->i_rwsem). Other filesystem 3420 * interactions (eg. SyS_getdents) have the lock ordering: 3421 * &sb->s_type->i_mutex_key --> &mm->mmap_lock 3422 * During mmap(), called with &mm->mmap_lock, the rdtgroup_mutex 3423 * is taken, thus creating dependency: 3424 * &mm->mmap_lock --> rdtgroup_mutex for the latter that can cause 3425 * issues considering the other two lock dependencies. 3426 * By creating the debugfs directory here we avoid a dependency 3427 * that may cause deadlock (even though file operations cannot 3428 * occur until the filesystem is mounted, but I do not know how to 3429 * tell lockdep that). 3430 */ 3431 debugfs_resctrl = debugfs_create_dir("resctrl", NULL); 3432 3433 return 0; 3434 3435 cleanup_mountpoint: 3436 sysfs_remove_mount_point(fs_kobj, "resctrl"); 3437 cleanup_root: 3438 kernfs_destroy_root(rdt_root); 3439 3440 return ret; 3441 } 3442 3443 void __exit rdtgroup_exit(void) 3444 { 3445 debugfs_remove_recursive(debugfs_resctrl); 3446 unregister_filesystem(&rdt_fs_type); 3447 sysfs_remove_mount_point(fs_kobj, "resctrl"); 3448 kernfs_destroy_root(rdt_root); 3449 } 3450