1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * User interface for Resource Alloction in Resource Director Technology(RDT)
4  *
5  * Copyright (C) 2016 Intel Corporation
6  *
7  * Author: Fenghua Yu <fenghua.yu@intel.com>
8  *
9  * More information about RDT be found in the Intel (R) x86 Architecture
10  * Software Developer Manual.
11  */
12 
13 #define pr_fmt(fmt)	KBUILD_MODNAME ": " fmt
14 
15 #include <linux/cacheinfo.h>
16 #include <linux/cpu.h>
17 #include <linux/debugfs.h>
18 #include <linux/fs.h>
19 #include <linux/fs_parser.h>
20 #include <linux/sysfs.h>
21 #include <linux/kernfs.h>
22 #include <linux/seq_buf.h>
23 #include <linux/seq_file.h>
24 #include <linux/sched/signal.h>
25 #include <linux/sched/task.h>
26 #include <linux/slab.h>
27 #include <linux/task_work.h>
28 #include <linux/user_namespace.h>
29 
30 #include <uapi/linux/magic.h>
31 
32 #include <asm/resctrl_sched.h>
33 #include "internal.h"
34 
35 DEFINE_STATIC_KEY_FALSE(rdt_enable_key);
36 DEFINE_STATIC_KEY_FALSE(rdt_mon_enable_key);
37 DEFINE_STATIC_KEY_FALSE(rdt_alloc_enable_key);
38 static struct kernfs_root *rdt_root;
39 struct rdtgroup rdtgroup_default;
40 LIST_HEAD(rdt_all_groups);
41 
42 /* Kernel fs node for "info" directory under root */
43 static struct kernfs_node *kn_info;
44 
45 /* Kernel fs node for "mon_groups" directory under root */
46 static struct kernfs_node *kn_mongrp;
47 
48 /* Kernel fs node for "mon_data" directory under root */
49 static struct kernfs_node *kn_mondata;
50 
51 static struct seq_buf last_cmd_status;
52 static char last_cmd_status_buf[512];
53 
54 struct dentry *debugfs_resctrl;
55 
56 void rdt_last_cmd_clear(void)
57 {
58 	lockdep_assert_held(&rdtgroup_mutex);
59 	seq_buf_clear(&last_cmd_status);
60 }
61 
62 void rdt_last_cmd_puts(const char *s)
63 {
64 	lockdep_assert_held(&rdtgroup_mutex);
65 	seq_buf_puts(&last_cmd_status, s);
66 }
67 
68 void rdt_last_cmd_printf(const char *fmt, ...)
69 {
70 	va_list ap;
71 
72 	va_start(ap, fmt);
73 	lockdep_assert_held(&rdtgroup_mutex);
74 	seq_buf_vprintf(&last_cmd_status, fmt, ap);
75 	va_end(ap);
76 }
77 
78 /*
79  * Trivial allocator for CLOSIDs. Since h/w only supports a small number,
80  * we can keep a bitmap of free CLOSIDs in a single integer.
81  *
82  * Using a global CLOSID across all resources has some advantages and
83  * some drawbacks:
84  * + We can simply set "current->closid" to assign a task to a resource
85  *   group.
86  * + Context switch code can avoid extra memory references deciding which
87  *   CLOSID to load into the PQR_ASSOC MSR
88  * - We give up some options in configuring resource groups across multi-socket
89  *   systems.
90  * - Our choices on how to configure each resource become progressively more
91  *   limited as the number of resources grows.
92  */
93 static int closid_free_map;
94 static int closid_free_map_len;
95 
96 int closids_supported(void)
97 {
98 	return closid_free_map_len;
99 }
100 
101 static void closid_init(void)
102 {
103 	struct rdt_resource *r;
104 	int rdt_min_closid = 32;
105 
106 	/* Compute rdt_min_closid across all resources */
107 	for_each_alloc_enabled_rdt_resource(r)
108 		rdt_min_closid = min(rdt_min_closid, r->num_closid);
109 
110 	closid_free_map = BIT_MASK(rdt_min_closid) - 1;
111 
112 	/* CLOSID 0 is always reserved for the default group */
113 	closid_free_map &= ~1;
114 	closid_free_map_len = rdt_min_closid;
115 }
116 
117 static int closid_alloc(void)
118 {
119 	u32 closid = ffs(closid_free_map);
120 
121 	if (closid == 0)
122 		return -ENOSPC;
123 	closid--;
124 	closid_free_map &= ~(1 << closid);
125 
126 	return closid;
127 }
128 
129 void closid_free(int closid)
130 {
131 	closid_free_map |= 1 << closid;
132 }
133 
134 /**
135  * closid_allocated - test if provided closid is in use
136  * @closid: closid to be tested
137  *
138  * Return: true if @closid is currently associated with a resource group,
139  * false if @closid is free
140  */
141 static bool closid_allocated(unsigned int closid)
142 {
143 	return (closid_free_map & (1 << closid)) == 0;
144 }
145 
146 /**
147  * rdtgroup_mode_by_closid - Return mode of resource group with closid
148  * @closid: closid if the resource group
149  *
150  * Each resource group is associated with a @closid. Here the mode
151  * of a resource group can be queried by searching for it using its closid.
152  *
153  * Return: mode as &enum rdtgrp_mode of resource group with closid @closid
154  */
155 enum rdtgrp_mode rdtgroup_mode_by_closid(int closid)
156 {
157 	struct rdtgroup *rdtgrp;
158 
159 	list_for_each_entry(rdtgrp, &rdt_all_groups, rdtgroup_list) {
160 		if (rdtgrp->closid == closid)
161 			return rdtgrp->mode;
162 	}
163 
164 	return RDT_NUM_MODES;
165 }
166 
167 static const char * const rdt_mode_str[] = {
168 	[RDT_MODE_SHAREABLE]		= "shareable",
169 	[RDT_MODE_EXCLUSIVE]		= "exclusive",
170 	[RDT_MODE_PSEUDO_LOCKSETUP]	= "pseudo-locksetup",
171 	[RDT_MODE_PSEUDO_LOCKED]	= "pseudo-locked",
172 };
173 
174 /**
175  * rdtgroup_mode_str - Return the string representation of mode
176  * @mode: the resource group mode as &enum rdtgroup_mode
177  *
178  * Return: string representation of valid mode, "unknown" otherwise
179  */
180 static const char *rdtgroup_mode_str(enum rdtgrp_mode mode)
181 {
182 	if (mode < RDT_MODE_SHAREABLE || mode >= RDT_NUM_MODES)
183 		return "unknown";
184 
185 	return rdt_mode_str[mode];
186 }
187 
188 /* set uid and gid of rdtgroup dirs and files to that of the creator */
189 static int rdtgroup_kn_set_ugid(struct kernfs_node *kn)
190 {
191 	struct iattr iattr = { .ia_valid = ATTR_UID | ATTR_GID,
192 				.ia_uid = current_fsuid(),
193 				.ia_gid = current_fsgid(), };
194 
195 	if (uid_eq(iattr.ia_uid, GLOBAL_ROOT_UID) &&
196 	    gid_eq(iattr.ia_gid, GLOBAL_ROOT_GID))
197 		return 0;
198 
199 	return kernfs_setattr(kn, &iattr);
200 }
201 
202 static int rdtgroup_add_file(struct kernfs_node *parent_kn, struct rftype *rft)
203 {
204 	struct kernfs_node *kn;
205 	int ret;
206 
207 	kn = __kernfs_create_file(parent_kn, rft->name, rft->mode,
208 				  GLOBAL_ROOT_UID, GLOBAL_ROOT_GID,
209 				  0, rft->kf_ops, rft, NULL, NULL);
210 	if (IS_ERR(kn))
211 		return PTR_ERR(kn);
212 
213 	ret = rdtgroup_kn_set_ugid(kn);
214 	if (ret) {
215 		kernfs_remove(kn);
216 		return ret;
217 	}
218 
219 	return 0;
220 }
221 
222 static int rdtgroup_seqfile_show(struct seq_file *m, void *arg)
223 {
224 	struct kernfs_open_file *of = m->private;
225 	struct rftype *rft = of->kn->priv;
226 
227 	if (rft->seq_show)
228 		return rft->seq_show(of, m, arg);
229 	return 0;
230 }
231 
232 static ssize_t rdtgroup_file_write(struct kernfs_open_file *of, char *buf,
233 				   size_t nbytes, loff_t off)
234 {
235 	struct rftype *rft = of->kn->priv;
236 
237 	if (rft->write)
238 		return rft->write(of, buf, nbytes, off);
239 
240 	return -EINVAL;
241 }
242 
243 static struct kernfs_ops rdtgroup_kf_single_ops = {
244 	.atomic_write_len	= PAGE_SIZE,
245 	.write			= rdtgroup_file_write,
246 	.seq_show		= rdtgroup_seqfile_show,
247 };
248 
249 static struct kernfs_ops kf_mondata_ops = {
250 	.atomic_write_len	= PAGE_SIZE,
251 	.seq_show		= rdtgroup_mondata_show,
252 };
253 
254 static bool is_cpu_list(struct kernfs_open_file *of)
255 {
256 	struct rftype *rft = of->kn->priv;
257 
258 	return rft->flags & RFTYPE_FLAGS_CPUS_LIST;
259 }
260 
261 static int rdtgroup_cpus_show(struct kernfs_open_file *of,
262 			      struct seq_file *s, void *v)
263 {
264 	struct rdtgroup *rdtgrp;
265 	struct cpumask *mask;
266 	int ret = 0;
267 
268 	rdtgrp = rdtgroup_kn_lock_live(of->kn);
269 
270 	if (rdtgrp) {
271 		if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED) {
272 			if (!rdtgrp->plr->d) {
273 				rdt_last_cmd_clear();
274 				rdt_last_cmd_puts("Cache domain offline\n");
275 				ret = -ENODEV;
276 			} else {
277 				mask = &rdtgrp->plr->d->cpu_mask;
278 				seq_printf(s, is_cpu_list(of) ?
279 					   "%*pbl\n" : "%*pb\n",
280 					   cpumask_pr_args(mask));
281 			}
282 		} else {
283 			seq_printf(s, is_cpu_list(of) ? "%*pbl\n" : "%*pb\n",
284 				   cpumask_pr_args(&rdtgrp->cpu_mask));
285 		}
286 	} else {
287 		ret = -ENOENT;
288 	}
289 	rdtgroup_kn_unlock(of->kn);
290 
291 	return ret;
292 }
293 
294 /*
295  * This is safe against resctrl_sched_in() called from __switch_to()
296  * because __switch_to() is executed with interrupts disabled. A local call
297  * from update_closid_rmid() is proteced against __switch_to() because
298  * preemption is disabled.
299  */
300 static void update_cpu_closid_rmid(void *info)
301 {
302 	struct rdtgroup *r = info;
303 
304 	if (r) {
305 		this_cpu_write(pqr_state.default_closid, r->closid);
306 		this_cpu_write(pqr_state.default_rmid, r->mon.rmid);
307 	}
308 
309 	/*
310 	 * We cannot unconditionally write the MSR because the current
311 	 * executing task might have its own closid selected. Just reuse
312 	 * the context switch code.
313 	 */
314 	resctrl_sched_in();
315 }
316 
317 /*
318  * Update the PGR_ASSOC MSR on all cpus in @cpu_mask,
319  *
320  * Per task closids/rmids must have been set up before calling this function.
321  */
322 static void
323 update_closid_rmid(const struct cpumask *cpu_mask, struct rdtgroup *r)
324 {
325 	int cpu = get_cpu();
326 
327 	if (cpumask_test_cpu(cpu, cpu_mask))
328 		update_cpu_closid_rmid(r);
329 	smp_call_function_many(cpu_mask, update_cpu_closid_rmid, r, 1);
330 	put_cpu();
331 }
332 
333 static int cpus_mon_write(struct rdtgroup *rdtgrp, cpumask_var_t newmask,
334 			  cpumask_var_t tmpmask)
335 {
336 	struct rdtgroup *prgrp = rdtgrp->mon.parent, *crgrp;
337 	struct list_head *head;
338 
339 	/* Check whether cpus belong to parent ctrl group */
340 	cpumask_andnot(tmpmask, newmask, &prgrp->cpu_mask);
341 	if (cpumask_weight(tmpmask)) {
342 		rdt_last_cmd_puts("Can only add CPUs to mongroup that belong to parent\n");
343 		return -EINVAL;
344 	}
345 
346 	/* Check whether cpus are dropped from this group */
347 	cpumask_andnot(tmpmask, &rdtgrp->cpu_mask, newmask);
348 	if (cpumask_weight(tmpmask)) {
349 		/* Give any dropped cpus to parent rdtgroup */
350 		cpumask_or(&prgrp->cpu_mask, &prgrp->cpu_mask, tmpmask);
351 		update_closid_rmid(tmpmask, prgrp);
352 	}
353 
354 	/*
355 	 * If we added cpus, remove them from previous group that owned them
356 	 * and update per-cpu rmid
357 	 */
358 	cpumask_andnot(tmpmask, newmask, &rdtgrp->cpu_mask);
359 	if (cpumask_weight(tmpmask)) {
360 		head = &prgrp->mon.crdtgrp_list;
361 		list_for_each_entry(crgrp, head, mon.crdtgrp_list) {
362 			if (crgrp == rdtgrp)
363 				continue;
364 			cpumask_andnot(&crgrp->cpu_mask, &crgrp->cpu_mask,
365 				       tmpmask);
366 		}
367 		update_closid_rmid(tmpmask, rdtgrp);
368 	}
369 
370 	/* Done pushing/pulling - update this group with new mask */
371 	cpumask_copy(&rdtgrp->cpu_mask, newmask);
372 
373 	return 0;
374 }
375 
376 static void cpumask_rdtgrp_clear(struct rdtgroup *r, struct cpumask *m)
377 {
378 	struct rdtgroup *crgrp;
379 
380 	cpumask_andnot(&r->cpu_mask, &r->cpu_mask, m);
381 	/* update the child mon group masks as well*/
382 	list_for_each_entry(crgrp, &r->mon.crdtgrp_list, mon.crdtgrp_list)
383 		cpumask_and(&crgrp->cpu_mask, &r->cpu_mask, &crgrp->cpu_mask);
384 }
385 
386 static int cpus_ctrl_write(struct rdtgroup *rdtgrp, cpumask_var_t newmask,
387 			   cpumask_var_t tmpmask, cpumask_var_t tmpmask1)
388 {
389 	struct rdtgroup *r, *crgrp;
390 	struct list_head *head;
391 
392 	/* Check whether cpus are dropped from this group */
393 	cpumask_andnot(tmpmask, &rdtgrp->cpu_mask, newmask);
394 	if (cpumask_weight(tmpmask)) {
395 		/* Can't drop from default group */
396 		if (rdtgrp == &rdtgroup_default) {
397 			rdt_last_cmd_puts("Can't drop CPUs from default group\n");
398 			return -EINVAL;
399 		}
400 
401 		/* Give any dropped cpus to rdtgroup_default */
402 		cpumask_or(&rdtgroup_default.cpu_mask,
403 			   &rdtgroup_default.cpu_mask, tmpmask);
404 		update_closid_rmid(tmpmask, &rdtgroup_default);
405 	}
406 
407 	/*
408 	 * If we added cpus, remove them from previous group and
409 	 * the prev group's child groups that owned them
410 	 * and update per-cpu closid/rmid.
411 	 */
412 	cpumask_andnot(tmpmask, newmask, &rdtgrp->cpu_mask);
413 	if (cpumask_weight(tmpmask)) {
414 		list_for_each_entry(r, &rdt_all_groups, rdtgroup_list) {
415 			if (r == rdtgrp)
416 				continue;
417 			cpumask_and(tmpmask1, &r->cpu_mask, tmpmask);
418 			if (cpumask_weight(tmpmask1))
419 				cpumask_rdtgrp_clear(r, tmpmask1);
420 		}
421 		update_closid_rmid(tmpmask, rdtgrp);
422 	}
423 
424 	/* Done pushing/pulling - update this group with new mask */
425 	cpumask_copy(&rdtgrp->cpu_mask, newmask);
426 
427 	/*
428 	 * Clear child mon group masks since there is a new parent mask
429 	 * now and update the rmid for the cpus the child lost.
430 	 */
431 	head = &rdtgrp->mon.crdtgrp_list;
432 	list_for_each_entry(crgrp, head, mon.crdtgrp_list) {
433 		cpumask_and(tmpmask, &rdtgrp->cpu_mask, &crgrp->cpu_mask);
434 		update_closid_rmid(tmpmask, rdtgrp);
435 		cpumask_clear(&crgrp->cpu_mask);
436 	}
437 
438 	return 0;
439 }
440 
441 static ssize_t rdtgroup_cpus_write(struct kernfs_open_file *of,
442 				   char *buf, size_t nbytes, loff_t off)
443 {
444 	cpumask_var_t tmpmask, newmask, tmpmask1;
445 	struct rdtgroup *rdtgrp;
446 	int ret;
447 
448 	if (!buf)
449 		return -EINVAL;
450 
451 	if (!zalloc_cpumask_var(&tmpmask, GFP_KERNEL))
452 		return -ENOMEM;
453 	if (!zalloc_cpumask_var(&newmask, GFP_KERNEL)) {
454 		free_cpumask_var(tmpmask);
455 		return -ENOMEM;
456 	}
457 	if (!zalloc_cpumask_var(&tmpmask1, GFP_KERNEL)) {
458 		free_cpumask_var(tmpmask);
459 		free_cpumask_var(newmask);
460 		return -ENOMEM;
461 	}
462 
463 	rdtgrp = rdtgroup_kn_lock_live(of->kn);
464 	if (!rdtgrp) {
465 		ret = -ENOENT;
466 		goto unlock;
467 	}
468 
469 	if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED ||
470 	    rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP) {
471 		ret = -EINVAL;
472 		rdt_last_cmd_puts("Pseudo-locking in progress\n");
473 		goto unlock;
474 	}
475 
476 	if (is_cpu_list(of))
477 		ret = cpulist_parse(buf, newmask);
478 	else
479 		ret = cpumask_parse(buf, newmask);
480 
481 	if (ret) {
482 		rdt_last_cmd_puts("Bad CPU list/mask\n");
483 		goto unlock;
484 	}
485 
486 	/* check that user didn't specify any offline cpus */
487 	cpumask_andnot(tmpmask, newmask, cpu_online_mask);
488 	if (cpumask_weight(tmpmask)) {
489 		ret = -EINVAL;
490 		rdt_last_cmd_puts("Can only assign online CPUs\n");
491 		goto unlock;
492 	}
493 
494 	if (rdtgrp->type == RDTCTRL_GROUP)
495 		ret = cpus_ctrl_write(rdtgrp, newmask, tmpmask, tmpmask1);
496 	else if (rdtgrp->type == RDTMON_GROUP)
497 		ret = cpus_mon_write(rdtgrp, newmask, tmpmask);
498 	else
499 		ret = -EINVAL;
500 
501 unlock:
502 	rdtgroup_kn_unlock(of->kn);
503 	free_cpumask_var(tmpmask);
504 	free_cpumask_var(newmask);
505 	free_cpumask_var(tmpmask1);
506 
507 	return ret ?: nbytes;
508 }
509 
510 struct task_move_callback {
511 	struct callback_head	work;
512 	struct rdtgroup		*rdtgrp;
513 };
514 
515 static void move_myself(struct callback_head *head)
516 {
517 	struct task_move_callback *callback;
518 	struct rdtgroup *rdtgrp;
519 
520 	callback = container_of(head, struct task_move_callback, work);
521 	rdtgrp = callback->rdtgrp;
522 
523 	/*
524 	 * If resource group was deleted before this task work callback
525 	 * was invoked, then assign the task to root group and free the
526 	 * resource group.
527 	 */
528 	if (atomic_dec_and_test(&rdtgrp->waitcount) &&
529 	    (rdtgrp->flags & RDT_DELETED)) {
530 		current->closid = 0;
531 		current->rmid = 0;
532 		kfree(rdtgrp);
533 	}
534 
535 	if (unlikely(current->flags & PF_EXITING))
536 		goto out;
537 
538 	preempt_disable();
539 	/* update PQR_ASSOC MSR to make resource group go into effect */
540 	resctrl_sched_in();
541 	preempt_enable();
542 
543 out:
544 	kfree(callback);
545 }
546 
547 static int __rdtgroup_move_task(struct task_struct *tsk,
548 				struct rdtgroup *rdtgrp)
549 {
550 	struct task_move_callback *callback;
551 	int ret;
552 
553 	callback = kzalloc(sizeof(*callback), GFP_KERNEL);
554 	if (!callback)
555 		return -ENOMEM;
556 	callback->work.func = move_myself;
557 	callback->rdtgrp = rdtgrp;
558 
559 	/*
560 	 * Take a refcount, so rdtgrp cannot be freed before the
561 	 * callback has been invoked.
562 	 */
563 	atomic_inc(&rdtgrp->waitcount);
564 	ret = task_work_add(tsk, &callback->work, true);
565 	if (ret) {
566 		/*
567 		 * Task is exiting. Drop the refcount and free the callback.
568 		 * No need to check the refcount as the group cannot be
569 		 * deleted before the write function unlocks rdtgroup_mutex.
570 		 */
571 		atomic_dec(&rdtgrp->waitcount);
572 		kfree(callback);
573 		rdt_last_cmd_puts("Task exited\n");
574 	} else {
575 		/*
576 		 * For ctrl_mon groups move both closid and rmid.
577 		 * For monitor groups, can move the tasks only from
578 		 * their parent CTRL group.
579 		 */
580 		if (rdtgrp->type == RDTCTRL_GROUP) {
581 			tsk->closid = rdtgrp->closid;
582 			tsk->rmid = rdtgrp->mon.rmid;
583 		} else if (rdtgrp->type == RDTMON_GROUP) {
584 			if (rdtgrp->mon.parent->closid == tsk->closid) {
585 				tsk->rmid = rdtgrp->mon.rmid;
586 			} else {
587 				rdt_last_cmd_puts("Can't move task to different control group\n");
588 				ret = -EINVAL;
589 			}
590 		}
591 	}
592 	return ret;
593 }
594 
595 /**
596  * rdtgroup_tasks_assigned - Test if tasks have been assigned to resource group
597  * @r: Resource group
598  *
599  * Return: 1 if tasks have been assigned to @r, 0 otherwise
600  */
601 int rdtgroup_tasks_assigned(struct rdtgroup *r)
602 {
603 	struct task_struct *p, *t;
604 	int ret = 0;
605 
606 	lockdep_assert_held(&rdtgroup_mutex);
607 
608 	rcu_read_lock();
609 	for_each_process_thread(p, t) {
610 		if ((r->type == RDTCTRL_GROUP && t->closid == r->closid) ||
611 		    (r->type == RDTMON_GROUP && t->rmid == r->mon.rmid)) {
612 			ret = 1;
613 			break;
614 		}
615 	}
616 	rcu_read_unlock();
617 
618 	return ret;
619 }
620 
621 static int rdtgroup_task_write_permission(struct task_struct *task,
622 					  struct kernfs_open_file *of)
623 {
624 	const struct cred *tcred = get_task_cred(task);
625 	const struct cred *cred = current_cred();
626 	int ret = 0;
627 
628 	/*
629 	 * Even if we're attaching all tasks in the thread group, we only
630 	 * need to check permissions on one of them.
631 	 */
632 	if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) &&
633 	    !uid_eq(cred->euid, tcred->uid) &&
634 	    !uid_eq(cred->euid, tcred->suid)) {
635 		rdt_last_cmd_printf("No permission to move task %d\n", task->pid);
636 		ret = -EPERM;
637 	}
638 
639 	put_cred(tcred);
640 	return ret;
641 }
642 
643 static int rdtgroup_move_task(pid_t pid, struct rdtgroup *rdtgrp,
644 			      struct kernfs_open_file *of)
645 {
646 	struct task_struct *tsk;
647 	int ret;
648 
649 	rcu_read_lock();
650 	if (pid) {
651 		tsk = find_task_by_vpid(pid);
652 		if (!tsk) {
653 			rcu_read_unlock();
654 			rdt_last_cmd_printf("No task %d\n", pid);
655 			return -ESRCH;
656 		}
657 	} else {
658 		tsk = current;
659 	}
660 
661 	get_task_struct(tsk);
662 	rcu_read_unlock();
663 
664 	ret = rdtgroup_task_write_permission(tsk, of);
665 	if (!ret)
666 		ret = __rdtgroup_move_task(tsk, rdtgrp);
667 
668 	put_task_struct(tsk);
669 	return ret;
670 }
671 
672 static ssize_t rdtgroup_tasks_write(struct kernfs_open_file *of,
673 				    char *buf, size_t nbytes, loff_t off)
674 {
675 	struct rdtgroup *rdtgrp;
676 	int ret = 0;
677 	pid_t pid;
678 
679 	if (kstrtoint(strstrip(buf), 0, &pid) || pid < 0)
680 		return -EINVAL;
681 	rdtgrp = rdtgroup_kn_lock_live(of->kn);
682 	if (!rdtgrp) {
683 		rdtgroup_kn_unlock(of->kn);
684 		return -ENOENT;
685 	}
686 	rdt_last_cmd_clear();
687 
688 	if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED ||
689 	    rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP) {
690 		ret = -EINVAL;
691 		rdt_last_cmd_puts("Pseudo-locking in progress\n");
692 		goto unlock;
693 	}
694 
695 	ret = rdtgroup_move_task(pid, rdtgrp, of);
696 
697 unlock:
698 	rdtgroup_kn_unlock(of->kn);
699 
700 	return ret ?: nbytes;
701 }
702 
703 static void show_rdt_tasks(struct rdtgroup *r, struct seq_file *s)
704 {
705 	struct task_struct *p, *t;
706 
707 	rcu_read_lock();
708 	for_each_process_thread(p, t) {
709 		if ((r->type == RDTCTRL_GROUP && t->closid == r->closid) ||
710 		    (r->type == RDTMON_GROUP && t->rmid == r->mon.rmid))
711 			seq_printf(s, "%d\n", t->pid);
712 	}
713 	rcu_read_unlock();
714 }
715 
716 static int rdtgroup_tasks_show(struct kernfs_open_file *of,
717 			       struct seq_file *s, void *v)
718 {
719 	struct rdtgroup *rdtgrp;
720 	int ret = 0;
721 
722 	rdtgrp = rdtgroup_kn_lock_live(of->kn);
723 	if (rdtgrp)
724 		show_rdt_tasks(rdtgrp, s);
725 	else
726 		ret = -ENOENT;
727 	rdtgroup_kn_unlock(of->kn);
728 
729 	return ret;
730 }
731 
732 static int rdt_last_cmd_status_show(struct kernfs_open_file *of,
733 				    struct seq_file *seq, void *v)
734 {
735 	int len;
736 
737 	mutex_lock(&rdtgroup_mutex);
738 	len = seq_buf_used(&last_cmd_status);
739 	if (len)
740 		seq_printf(seq, "%.*s", len, last_cmd_status_buf);
741 	else
742 		seq_puts(seq, "ok\n");
743 	mutex_unlock(&rdtgroup_mutex);
744 	return 0;
745 }
746 
747 static int rdt_num_closids_show(struct kernfs_open_file *of,
748 				struct seq_file *seq, void *v)
749 {
750 	struct rdt_resource *r = of->kn->parent->priv;
751 
752 	seq_printf(seq, "%d\n", r->num_closid);
753 	return 0;
754 }
755 
756 static int rdt_default_ctrl_show(struct kernfs_open_file *of,
757 			     struct seq_file *seq, void *v)
758 {
759 	struct rdt_resource *r = of->kn->parent->priv;
760 
761 	seq_printf(seq, "%x\n", r->default_ctrl);
762 	return 0;
763 }
764 
765 static int rdt_min_cbm_bits_show(struct kernfs_open_file *of,
766 			     struct seq_file *seq, void *v)
767 {
768 	struct rdt_resource *r = of->kn->parent->priv;
769 
770 	seq_printf(seq, "%u\n", r->cache.min_cbm_bits);
771 	return 0;
772 }
773 
774 static int rdt_shareable_bits_show(struct kernfs_open_file *of,
775 				   struct seq_file *seq, void *v)
776 {
777 	struct rdt_resource *r = of->kn->parent->priv;
778 
779 	seq_printf(seq, "%x\n", r->cache.shareable_bits);
780 	return 0;
781 }
782 
783 /**
784  * rdt_bit_usage_show - Display current usage of resources
785  *
786  * A domain is a shared resource that can now be allocated differently. Here
787  * we display the current regions of the domain as an annotated bitmask.
788  * For each domain of this resource its allocation bitmask
789  * is annotated as below to indicate the current usage of the corresponding bit:
790  *   0 - currently unused
791  *   X - currently available for sharing and used by software and hardware
792  *   H - currently used by hardware only but available for software use
793  *   S - currently used and shareable by software only
794  *   E - currently used exclusively by one resource group
795  *   P - currently pseudo-locked by one resource group
796  */
797 static int rdt_bit_usage_show(struct kernfs_open_file *of,
798 			      struct seq_file *seq, void *v)
799 {
800 	struct rdt_resource *r = of->kn->parent->priv;
801 	/*
802 	 * Use unsigned long even though only 32 bits are used to ensure
803 	 * test_bit() is used safely.
804 	 */
805 	unsigned long sw_shareable = 0, hw_shareable = 0;
806 	unsigned long exclusive = 0, pseudo_locked = 0;
807 	struct rdt_domain *dom;
808 	int i, hwb, swb, excl, psl;
809 	enum rdtgrp_mode mode;
810 	bool sep = false;
811 	u32 *ctrl;
812 
813 	mutex_lock(&rdtgroup_mutex);
814 	hw_shareable = r->cache.shareable_bits;
815 	list_for_each_entry(dom, &r->domains, list) {
816 		if (sep)
817 			seq_putc(seq, ';');
818 		ctrl = dom->ctrl_val;
819 		sw_shareable = 0;
820 		exclusive = 0;
821 		seq_printf(seq, "%d=", dom->id);
822 		for (i = 0; i < closids_supported(); i++, ctrl++) {
823 			if (!closid_allocated(i))
824 				continue;
825 			mode = rdtgroup_mode_by_closid(i);
826 			switch (mode) {
827 			case RDT_MODE_SHAREABLE:
828 				sw_shareable |= *ctrl;
829 				break;
830 			case RDT_MODE_EXCLUSIVE:
831 				exclusive |= *ctrl;
832 				break;
833 			case RDT_MODE_PSEUDO_LOCKSETUP:
834 			/*
835 			 * RDT_MODE_PSEUDO_LOCKSETUP is possible
836 			 * here but not included since the CBM
837 			 * associated with this CLOSID in this mode
838 			 * is not initialized and no task or cpu can be
839 			 * assigned this CLOSID.
840 			 */
841 				break;
842 			case RDT_MODE_PSEUDO_LOCKED:
843 			case RDT_NUM_MODES:
844 				WARN(1,
845 				     "invalid mode for closid %d\n", i);
846 				break;
847 			}
848 		}
849 		for (i = r->cache.cbm_len - 1; i >= 0; i--) {
850 			pseudo_locked = dom->plr ? dom->plr->cbm : 0;
851 			hwb = test_bit(i, &hw_shareable);
852 			swb = test_bit(i, &sw_shareable);
853 			excl = test_bit(i, &exclusive);
854 			psl = test_bit(i, &pseudo_locked);
855 			if (hwb && swb)
856 				seq_putc(seq, 'X');
857 			else if (hwb && !swb)
858 				seq_putc(seq, 'H');
859 			else if (!hwb && swb)
860 				seq_putc(seq, 'S');
861 			else if (excl)
862 				seq_putc(seq, 'E');
863 			else if (psl)
864 				seq_putc(seq, 'P');
865 			else /* Unused bits remain */
866 				seq_putc(seq, '0');
867 		}
868 		sep = true;
869 	}
870 	seq_putc(seq, '\n');
871 	mutex_unlock(&rdtgroup_mutex);
872 	return 0;
873 }
874 
875 static int rdt_min_bw_show(struct kernfs_open_file *of,
876 			     struct seq_file *seq, void *v)
877 {
878 	struct rdt_resource *r = of->kn->parent->priv;
879 
880 	seq_printf(seq, "%u\n", r->membw.min_bw);
881 	return 0;
882 }
883 
884 static int rdt_num_rmids_show(struct kernfs_open_file *of,
885 			      struct seq_file *seq, void *v)
886 {
887 	struct rdt_resource *r = of->kn->parent->priv;
888 
889 	seq_printf(seq, "%d\n", r->num_rmid);
890 
891 	return 0;
892 }
893 
894 static int rdt_mon_features_show(struct kernfs_open_file *of,
895 				 struct seq_file *seq, void *v)
896 {
897 	struct rdt_resource *r = of->kn->parent->priv;
898 	struct mon_evt *mevt;
899 
900 	list_for_each_entry(mevt, &r->evt_list, list)
901 		seq_printf(seq, "%s\n", mevt->name);
902 
903 	return 0;
904 }
905 
906 static int rdt_bw_gran_show(struct kernfs_open_file *of,
907 			     struct seq_file *seq, void *v)
908 {
909 	struct rdt_resource *r = of->kn->parent->priv;
910 
911 	seq_printf(seq, "%u\n", r->membw.bw_gran);
912 	return 0;
913 }
914 
915 static int rdt_delay_linear_show(struct kernfs_open_file *of,
916 			     struct seq_file *seq, void *v)
917 {
918 	struct rdt_resource *r = of->kn->parent->priv;
919 
920 	seq_printf(seq, "%u\n", r->membw.delay_linear);
921 	return 0;
922 }
923 
924 static int max_threshold_occ_show(struct kernfs_open_file *of,
925 				  struct seq_file *seq, void *v)
926 {
927 	struct rdt_resource *r = of->kn->parent->priv;
928 
929 	seq_printf(seq, "%u\n", resctrl_cqm_threshold * r->mon_scale);
930 
931 	return 0;
932 }
933 
934 static ssize_t max_threshold_occ_write(struct kernfs_open_file *of,
935 				       char *buf, size_t nbytes, loff_t off)
936 {
937 	struct rdt_resource *r = of->kn->parent->priv;
938 	unsigned int bytes;
939 	int ret;
940 
941 	ret = kstrtouint(buf, 0, &bytes);
942 	if (ret)
943 		return ret;
944 
945 	if (bytes > (boot_cpu_data.x86_cache_size * 1024))
946 		return -EINVAL;
947 
948 	resctrl_cqm_threshold = bytes / r->mon_scale;
949 
950 	return nbytes;
951 }
952 
953 /*
954  * rdtgroup_mode_show - Display mode of this resource group
955  */
956 static int rdtgroup_mode_show(struct kernfs_open_file *of,
957 			      struct seq_file *s, void *v)
958 {
959 	struct rdtgroup *rdtgrp;
960 
961 	rdtgrp = rdtgroup_kn_lock_live(of->kn);
962 	if (!rdtgrp) {
963 		rdtgroup_kn_unlock(of->kn);
964 		return -ENOENT;
965 	}
966 
967 	seq_printf(s, "%s\n", rdtgroup_mode_str(rdtgrp->mode));
968 
969 	rdtgroup_kn_unlock(of->kn);
970 	return 0;
971 }
972 
973 /**
974  * rdt_cdp_peer_get - Retrieve CDP peer if it exists
975  * @r: RDT resource to which RDT domain @d belongs
976  * @d: Cache instance for which a CDP peer is requested
977  * @r_cdp: RDT resource that shares hardware with @r (RDT resource peer)
978  *         Used to return the result.
979  * @d_cdp: RDT domain that shares hardware with @d (RDT domain peer)
980  *         Used to return the result.
981  *
982  * RDT resources are managed independently and by extension the RDT domains
983  * (RDT resource instances) are managed independently also. The Code and
984  * Data Prioritization (CDP) RDT resources, while managed independently,
985  * could refer to the same underlying hardware. For example,
986  * RDT_RESOURCE_L2CODE and RDT_RESOURCE_L2DATA both refer to the L2 cache.
987  *
988  * When provided with an RDT resource @r and an instance of that RDT
989  * resource @d rdt_cdp_peer_get() will return if there is a peer RDT
990  * resource and the exact instance that shares the same hardware.
991  *
992  * Return: 0 if a CDP peer was found, <0 on error or if no CDP peer exists.
993  *         If a CDP peer was found, @r_cdp will point to the peer RDT resource
994  *         and @d_cdp will point to the peer RDT domain.
995  */
996 static int rdt_cdp_peer_get(struct rdt_resource *r, struct rdt_domain *d,
997 			    struct rdt_resource **r_cdp,
998 			    struct rdt_domain **d_cdp)
999 {
1000 	struct rdt_resource *_r_cdp = NULL;
1001 	struct rdt_domain *_d_cdp = NULL;
1002 	int ret = 0;
1003 
1004 	switch (r->rid) {
1005 	case RDT_RESOURCE_L3DATA:
1006 		_r_cdp = &rdt_resources_all[RDT_RESOURCE_L3CODE];
1007 		break;
1008 	case RDT_RESOURCE_L3CODE:
1009 		_r_cdp =  &rdt_resources_all[RDT_RESOURCE_L3DATA];
1010 		break;
1011 	case RDT_RESOURCE_L2DATA:
1012 		_r_cdp =  &rdt_resources_all[RDT_RESOURCE_L2CODE];
1013 		break;
1014 	case RDT_RESOURCE_L2CODE:
1015 		_r_cdp =  &rdt_resources_all[RDT_RESOURCE_L2DATA];
1016 		break;
1017 	default:
1018 		ret = -ENOENT;
1019 		goto out;
1020 	}
1021 
1022 	/*
1023 	 * When a new CPU comes online and CDP is enabled then the new
1024 	 * RDT domains (if any) associated with both CDP RDT resources
1025 	 * are added in the same CPU online routine while the
1026 	 * rdtgroup_mutex is held. It should thus not happen for one
1027 	 * RDT domain to exist and be associated with its RDT CDP
1028 	 * resource but there is no RDT domain associated with the
1029 	 * peer RDT CDP resource. Hence the WARN.
1030 	 */
1031 	_d_cdp = rdt_find_domain(_r_cdp, d->id, NULL);
1032 	if (WARN_ON(IS_ERR_OR_NULL(_d_cdp))) {
1033 		_r_cdp = NULL;
1034 		ret = -EINVAL;
1035 	}
1036 
1037 out:
1038 	*r_cdp = _r_cdp;
1039 	*d_cdp = _d_cdp;
1040 
1041 	return ret;
1042 }
1043 
1044 /**
1045  * __rdtgroup_cbm_overlaps - Does CBM for intended closid overlap with other
1046  * @r: Resource to which domain instance @d belongs.
1047  * @d: The domain instance for which @closid is being tested.
1048  * @cbm: Capacity bitmask being tested.
1049  * @closid: Intended closid for @cbm.
1050  * @exclusive: Only check if overlaps with exclusive resource groups
1051  *
1052  * Checks if provided @cbm intended to be used for @closid on domain
1053  * @d overlaps with any other closids or other hardware usage associated
1054  * with this domain. If @exclusive is true then only overlaps with
1055  * resource groups in exclusive mode will be considered. If @exclusive
1056  * is false then overlaps with any resource group or hardware entities
1057  * will be considered.
1058  *
1059  * @cbm is unsigned long, even if only 32 bits are used, to make the
1060  * bitmap functions work correctly.
1061  *
1062  * Return: false if CBM does not overlap, true if it does.
1063  */
1064 static bool __rdtgroup_cbm_overlaps(struct rdt_resource *r, struct rdt_domain *d,
1065 				    unsigned long cbm, int closid, bool exclusive)
1066 {
1067 	enum rdtgrp_mode mode;
1068 	unsigned long ctrl_b;
1069 	u32 *ctrl;
1070 	int i;
1071 
1072 	/* Check for any overlap with regions used by hardware directly */
1073 	if (!exclusive) {
1074 		ctrl_b = r->cache.shareable_bits;
1075 		if (bitmap_intersects(&cbm, &ctrl_b, r->cache.cbm_len))
1076 			return true;
1077 	}
1078 
1079 	/* Check for overlap with other resource groups */
1080 	ctrl = d->ctrl_val;
1081 	for (i = 0; i < closids_supported(); i++, ctrl++) {
1082 		ctrl_b = *ctrl;
1083 		mode = rdtgroup_mode_by_closid(i);
1084 		if (closid_allocated(i) && i != closid &&
1085 		    mode != RDT_MODE_PSEUDO_LOCKSETUP) {
1086 			if (bitmap_intersects(&cbm, &ctrl_b, r->cache.cbm_len)) {
1087 				if (exclusive) {
1088 					if (mode == RDT_MODE_EXCLUSIVE)
1089 						return true;
1090 					continue;
1091 				}
1092 				return true;
1093 			}
1094 		}
1095 	}
1096 
1097 	return false;
1098 }
1099 
1100 /**
1101  * rdtgroup_cbm_overlaps - Does CBM overlap with other use of hardware
1102  * @r: Resource to which domain instance @d belongs.
1103  * @d: The domain instance for which @closid is being tested.
1104  * @cbm: Capacity bitmask being tested.
1105  * @closid: Intended closid for @cbm.
1106  * @exclusive: Only check if overlaps with exclusive resource groups
1107  *
1108  * Resources that can be allocated using a CBM can use the CBM to control
1109  * the overlap of these allocations. rdtgroup_cmb_overlaps() is the test
1110  * for overlap. Overlap test is not limited to the specific resource for
1111  * which the CBM is intended though - when dealing with CDP resources that
1112  * share the underlying hardware the overlap check should be performed on
1113  * the CDP resource sharing the hardware also.
1114  *
1115  * Refer to description of __rdtgroup_cbm_overlaps() for the details of the
1116  * overlap test.
1117  *
1118  * Return: true if CBM overlap detected, false if there is no overlap
1119  */
1120 bool rdtgroup_cbm_overlaps(struct rdt_resource *r, struct rdt_domain *d,
1121 			   unsigned long cbm, int closid, bool exclusive)
1122 {
1123 	struct rdt_resource *r_cdp;
1124 	struct rdt_domain *d_cdp;
1125 
1126 	if (__rdtgroup_cbm_overlaps(r, d, cbm, closid, exclusive))
1127 		return true;
1128 
1129 	if (rdt_cdp_peer_get(r, d, &r_cdp, &d_cdp) < 0)
1130 		return false;
1131 
1132 	return  __rdtgroup_cbm_overlaps(r_cdp, d_cdp, cbm, closid, exclusive);
1133 }
1134 
1135 /**
1136  * rdtgroup_mode_test_exclusive - Test if this resource group can be exclusive
1137  *
1138  * An exclusive resource group implies that there should be no sharing of
1139  * its allocated resources. At the time this group is considered to be
1140  * exclusive this test can determine if its current schemata supports this
1141  * setting by testing for overlap with all other resource groups.
1142  *
1143  * Return: true if resource group can be exclusive, false if there is overlap
1144  * with allocations of other resource groups and thus this resource group
1145  * cannot be exclusive.
1146  */
1147 static bool rdtgroup_mode_test_exclusive(struct rdtgroup *rdtgrp)
1148 {
1149 	int closid = rdtgrp->closid;
1150 	struct rdt_resource *r;
1151 	bool has_cache = false;
1152 	struct rdt_domain *d;
1153 
1154 	for_each_alloc_enabled_rdt_resource(r) {
1155 		if (r->rid == RDT_RESOURCE_MBA)
1156 			continue;
1157 		has_cache = true;
1158 		list_for_each_entry(d, &r->domains, list) {
1159 			if (rdtgroup_cbm_overlaps(r, d, d->ctrl_val[closid],
1160 						  rdtgrp->closid, false)) {
1161 				rdt_last_cmd_puts("Schemata overlaps\n");
1162 				return false;
1163 			}
1164 		}
1165 	}
1166 
1167 	if (!has_cache) {
1168 		rdt_last_cmd_puts("Cannot be exclusive without CAT/CDP\n");
1169 		return false;
1170 	}
1171 
1172 	return true;
1173 }
1174 
1175 /**
1176  * rdtgroup_mode_write - Modify the resource group's mode
1177  *
1178  */
1179 static ssize_t rdtgroup_mode_write(struct kernfs_open_file *of,
1180 				   char *buf, size_t nbytes, loff_t off)
1181 {
1182 	struct rdtgroup *rdtgrp;
1183 	enum rdtgrp_mode mode;
1184 	int ret = 0;
1185 
1186 	/* Valid input requires a trailing newline */
1187 	if (nbytes == 0 || buf[nbytes - 1] != '\n')
1188 		return -EINVAL;
1189 	buf[nbytes - 1] = '\0';
1190 
1191 	rdtgrp = rdtgroup_kn_lock_live(of->kn);
1192 	if (!rdtgrp) {
1193 		rdtgroup_kn_unlock(of->kn);
1194 		return -ENOENT;
1195 	}
1196 
1197 	rdt_last_cmd_clear();
1198 
1199 	mode = rdtgrp->mode;
1200 
1201 	if ((!strcmp(buf, "shareable") && mode == RDT_MODE_SHAREABLE) ||
1202 	    (!strcmp(buf, "exclusive") && mode == RDT_MODE_EXCLUSIVE) ||
1203 	    (!strcmp(buf, "pseudo-locksetup") &&
1204 	     mode == RDT_MODE_PSEUDO_LOCKSETUP) ||
1205 	    (!strcmp(buf, "pseudo-locked") && mode == RDT_MODE_PSEUDO_LOCKED))
1206 		goto out;
1207 
1208 	if (mode == RDT_MODE_PSEUDO_LOCKED) {
1209 		rdt_last_cmd_puts("Cannot change pseudo-locked group\n");
1210 		ret = -EINVAL;
1211 		goto out;
1212 	}
1213 
1214 	if (!strcmp(buf, "shareable")) {
1215 		if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP) {
1216 			ret = rdtgroup_locksetup_exit(rdtgrp);
1217 			if (ret)
1218 				goto out;
1219 		}
1220 		rdtgrp->mode = RDT_MODE_SHAREABLE;
1221 	} else if (!strcmp(buf, "exclusive")) {
1222 		if (!rdtgroup_mode_test_exclusive(rdtgrp)) {
1223 			ret = -EINVAL;
1224 			goto out;
1225 		}
1226 		if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP) {
1227 			ret = rdtgroup_locksetup_exit(rdtgrp);
1228 			if (ret)
1229 				goto out;
1230 		}
1231 		rdtgrp->mode = RDT_MODE_EXCLUSIVE;
1232 	} else if (!strcmp(buf, "pseudo-locksetup")) {
1233 		ret = rdtgroup_locksetup_enter(rdtgrp);
1234 		if (ret)
1235 			goto out;
1236 		rdtgrp->mode = RDT_MODE_PSEUDO_LOCKSETUP;
1237 	} else {
1238 		rdt_last_cmd_puts("Unknown or unsupported mode\n");
1239 		ret = -EINVAL;
1240 	}
1241 
1242 out:
1243 	rdtgroup_kn_unlock(of->kn);
1244 	return ret ?: nbytes;
1245 }
1246 
1247 /**
1248  * rdtgroup_cbm_to_size - Translate CBM to size in bytes
1249  * @r: RDT resource to which @d belongs.
1250  * @d: RDT domain instance.
1251  * @cbm: bitmask for which the size should be computed.
1252  *
1253  * The bitmask provided associated with the RDT domain instance @d will be
1254  * translated into how many bytes it represents. The size in bytes is
1255  * computed by first dividing the total cache size by the CBM length to
1256  * determine how many bytes each bit in the bitmask represents. The result
1257  * is multiplied with the number of bits set in the bitmask.
1258  *
1259  * @cbm is unsigned long, even if only 32 bits are used to make the
1260  * bitmap functions work correctly.
1261  */
1262 unsigned int rdtgroup_cbm_to_size(struct rdt_resource *r,
1263 				  struct rdt_domain *d, unsigned long cbm)
1264 {
1265 	struct cpu_cacheinfo *ci;
1266 	unsigned int size = 0;
1267 	int num_b, i;
1268 
1269 	num_b = bitmap_weight(&cbm, r->cache.cbm_len);
1270 	ci = get_cpu_cacheinfo(cpumask_any(&d->cpu_mask));
1271 	for (i = 0; i < ci->num_leaves; i++) {
1272 		if (ci->info_list[i].level == r->cache_level) {
1273 			size = ci->info_list[i].size / r->cache.cbm_len * num_b;
1274 			break;
1275 		}
1276 	}
1277 
1278 	return size;
1279 }
1280 
1281 /**
1282  * rdtgroup_size_show - Display size in bytes of allocated regions
1283  *
1284  * The "size" file mirrors the layout of the "schemata" file, printing the
1285  * size in bytes of each region instead of the capacity bitmask.
1286  *
1287  */
1288 static int rdtgroup_size_show(struct kernfs_open_file *of,
1289 			      struct seq_file *s, void *v)
1290 {
1291 	struct rdtgroup *rdtgrp;
1292 	struct rdt_resource *r;
1293 	struct rdt_domain *d;
1294 	unsigned int size;
1295 	int ret = 0;
1296 	bool sep;
1297 	u32 ctrl;
1298 
1299 	rdtgrp = rdtgroup_kn_lock_live(of->kn);
1300 	if (!rdtgrp) {
1301 		rdtgroup_kn_unlock(of->kn);
1302 		return -ENOENT;
1303 	}
1304 
1305 	if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED) {
1306 		if (!rdtgrp->plr->d) {
1307 			rdt_last_cmd_clear();
1308 			rdt_last_cmd_puts("Cache domain offline\n");
1309 			ret = -ENODEV;
1310 		} else {
1311 			seq_printf(s, "%*s:", max_name_width,
1312 				   rdtgrp->plr->r->name);
1313 			size = rdtgroup_cbm_to_size(rdtgrp->plr->r,
1314 						    rdtgrp->plr->d,
1315 						    rdtgrp->plr->cbm);
1316 			seq_printf(s, "%d=%u\n", rdtgrp->plr->d->id, size);
1317 		}
1318 		goto out;
1319 	}
1320 
1321 	for_each_alloc_enabled_rdt_resource(r) {
1322 		sep = false;
1323 		seq_printf(s, "%*s:", max_name_width, r->name);
1324 		list_for_each_entry(d, &r->domains, list) {
1325 			if (sep)
1326 				seq_putc(s, ';');
1327 			if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP) {
1328 				size = 0;
1329 			} else {
1330 				ctrl = (!is_mba_sc(r) ?
1331 						d->ctrl_val[rdtgrp->closid] :
1332 						d->mbps_val[rdtgrp->closid]);
1333 				if (r->rid == RDT_RESOURCE_MBA)
1334 					size = ctrl;
1335 				else
1336 					size = rdtgroup_cbm_to_size(r, d, ctrl);
1337 			}
1338 			seq_printf(s, "%d=%u", d->id, size);
1339 			sep = true;
1340 		}
1341 		seq_putc(s, '\n');
1342 	}
1343 
1344 out:
1345 	rdtgroup_kn_unlock(of->kn);
1346 
1347 	return ret;
1348 }
1349 
1350 /* rdtgroup information files for one cache resource. */
1351 static struct rftype res_common_files[] = {
1352 	{
1353 		.name		= "last_cmd_status",
1354 		.mode		= 0444,
1355 		.kf_ops		= &rdtgroup_kf_single_ops,
1356 		.seq_show	= rdt_last_cmd_status_show,
1357 		.fflags		= RF_TOP_INFO,
1358 	},
1359 	{
1360 		.name		= "num_closids",
1361 		.mode		= 0444,
1362 		.kf_ops		= &rdtgroup_kf_single_ops,
1363 		.seq_show	= rdt_num_closids_show,
1364 		.fflags		= RF_CTRL_INFO,
1365 	},
1366 	{
1367 		.name		= "mon_features",
1368 		.mode		= 0444,
1369 		.kf_ops		= &rdtgroup_kf_single_ops,
1370 		.seq_show	= rdt_mon_features_show,
1371 		.fflags		= RF_MON_INFO,
1372 	},
1373 	{
1374 		.name		= "num_rmids",
1375 		.mode		= 0444,
1376 		.kf_ops		= &rdtgroup_kf_single_ops,
1377 		.seq_show	= rdt_num_rmids_show,
1378 		.fflags		= RF_MON_INFO,
1379 	},
1380 	{
1381 		.name		= "cbm_mask",
1382 		.mode		= 0444,
1383 		.kf_ops		= &rdtgroup_kf_single_ops,
1384 		.seq_show	= rdt_default_ctrl_show,
1385 		.fflags		= RF_CTRL_INFO | RFTYPE_RES_CACHE,
1386 	},
1387 	{
1388 		.name		= "min_cbm_bits",
1389 		.mode		= 0444,
1390 		.kf_ops		= &rdtgroup_kf_single_ops,
1391 		.seq_show	= rdt_min_cbm_bits_show,
1392 		.fflags		= RF_CTRL_INFO | RFTYPE_RES_CACHE,
1393 	},
1394 	{
1395 		.name		= "shareable_bits",
1396 		.mode		= 0444,
1397 		.kf_ops		= &rdtgroup_kf_single_ops,
1398 		.seq_show	= rdt_shareable_bits_show,
1399 		.fflags		= RF_CTRL_INFO | RFTYPE_RES_CACHE,
1400 	},
1401 	{
1402 		.name		= "bit_usage",
1403 		.mode		= 0444,
1404 		.kf_ops		= &rdtgroup_kf_single_ops,
1405 		.seq_show	= rdt_bit_usage_show,
1406 		.fflags		= RF_CTRL_INFO | RFTYPE_RES_CACHE,
1407 	},
1408 	{
1409 		.name		= "min_bandwidth",
1410 		.mode		= 0444,
1411 		.kf_ops		= &rdtgroup_kf_single_ops,
1412 		.seq_show	= rdt_min_bw_show,
1413 		.fflags		= RF_CTRL_INFO | RFTYPE_RES_MB,
1414 	},
1415 	{
1416 		.name		= "bandwidth_gran",
1417 		.mode		= 0444,
1418 		.kf_ops		= &rdtgroup_kf_single_ops,
1419 		.seq_show	= rdt_bw_gran_show,
1420 		.fflags		= RF_CTRL_INFO | RFTYPE_RES_MB,
1421 	},
1422 	{
1423 		.name		= "delay_linear",
1424 		.mode		= 0444,
1425 		.kf_ops		= &rdtgroup_kf_single_ops,
1426 		.seq_show	= rdt_delay_linear_show,
1427 		.fflags		= RF_CTRL_INFO | RFTYPE_RES_MB,
1428 	},
1429 	{
1430 		.name		= "max_threshold_occupancy",
1431 		.mode		= 0644,
1432 		.kf_ops		= &rdtgroup_kf_single_ops,
1433 		.write		= max_threshold_occ_write,
1434 		.seq_show	= max_threshold_occ_show,
1435 		.fflags		= RF_MON_INFO | RFTYPE_RES_CACHE,
1436 	},
1437 	{
1438 		.name		= "cpus",
1439 		.mode		= 0644,
1440 		.kf_ops		= &rdtgroup_kf_single_ops,
1441 		.write		= rdtgroup_cpus_write,
1442 		.seq_show	= rdtgroup_cpus_show,
1443 		.fflags		= RFTYPE_BASE,
1444 	},
1445 	{
1446 		.name		= "cpus_list",
1447 		.mode		= 0644,
1448 		.kf_ops		= &rdtgroup_kf_single_ops,
1449 		.write		= rdtgroup_cpus_write,
1450 		.seq_show	= rdtgroup_cpus_show,
1451 		.flags		= RFTYPE_FLAGS_CPUS_LIST,
1452 		.fflags		= RFTYPE_BASE,
1453 	},
1454 	{
1455 		.name		= "tasks",
1456 		.mode		= 0644,
1457 		.kf_ops		= &rdtgroup_kf_single_ops,
1458 		.write		= rdtgroup_tasks_write,
1459 		.seq_show	= rdtgroup_tasks_show,
1460 		.fflags		= RFTYPE_BASE,
1461 	},
1462 	{
1463 		.name		= "schemata",
1464 		.mode		= 0644,
1465 		.kf_ops		= &rdtgroup_kf_single_ops,
1466 		.write		= rdtgroup_schemata_write,
1467 		.seq_show	= rdtgroup_schemata_show,
1468 		.fflags		= RF_CTRL_BASE,
1469 	},
1470 	{
1471 		.name		= "mode",
1472 		.mode		= 0644,
1473 		.kf_ops		= &rdtgroup_kf_single_ops,
1474 		.write		= rdtgroup_mode_write,
1475 		.seq_show	= rdtgroup_mode_show,
1476 		.fflags		= RF_CTRL_BASE,
1477 	},
1478 	{
1479 		.name		= "size",
1480 		.mode		= 0444,
1481 		.kf_ops		= &rdtgroup_kf_single_ops,
1482 		.seq_show	= rdtgroup_size_show,
1483 		.fflags		= RF_CTRL_BASE,
1484 	},
1485 
1486 };
1487 
1488 static int rdtgroup_add_files(struct kernfs_node *kn, unsigned long fflags)
1489 {
1490 	struct rftype *rfts, *rft;
1491 	int ret, len;
1492 
1493 	rfts = res_common_files;
1494 	len = ARRAY_SIZE(res_common_files);
1495 
1496 	lockdep_assert_held(&rdtgroup_mutex);
1497 
1498 	for (rft = rfts; rft < rfts + len; rft++) {
1499 		if ((fflags & rft->fflags) == rft->fflags) {
1500 			ret = rdtgroup_add_file(kn, rft);
1501 			if (ret)
1502 				goto error;
1503 		}
1504 	}
1505 
1506 	return 0;
1507 error:
1508 	pr_warn("Failed to add %s, err=%d\n", rft->name, ret);
1509 	while (--rft >= rfts) {
1510 		if ((fflags & rft->fflags) == rft->fflags)
1511 			kernfs_remove_by_name(kn, rft->name);
1512 	}
1513 	return ret;
1514 }
1515 
1516 /**
1517  * rdtgroup_kn_mode_restrict - Restrict user access to named resctrl file
1518  * @r: The resource group with which the file is associated.
1519  * @name: Name of the file
1520  *
1521  * The permissions of named resctrl file, directory, or link are modified
1522  * to not allow read, write, or execute by any user.
1523  *
1524  * WARNING: This function is intended to communicate to the user that the
1525  * resctrl file has been locked down - that it is not relevant to the
1526  * particular state the system finds itself in. It should not be relied
1527  * on to protect from user access because after the file's permissions
1528  * are restricted the user can still change the permissions using chmod
1529  * from the command line.
1530  *
1531  * Return: 0 on success, <0 on failure.
1532  */
1533 int rdtgroup_kn_mode_restrict(struct rdtgroup *r, const char *name)
1534 {
1535 	struct iattr iattr = {.ia_valid = ATTR_MODE,};
1536 	struct kernfs_node *kn;
1537 	int ret = 0;
1538 
1539 	kn = kernfs_find_and_get_ns(r->kn, name, NULL);
1540 	if (!kn)
1541 		return -ENOENT;
1542 
1543 	switch (kernfs_type(kn)) {
1544 	case KERNFS_DIR:
1545 		iattr.ia_mode = S_IFDIR;
1546 		break;
1547 	case KERNFS_FILE:
1548 		iattr.ia_mode = S_IFREG;
1549 		break;
1550 	case KERNFS_LINK:
1551 		iattr.ia_mode = S_IFLNK;
1552 		break;
1553 	}
1554 
1555 	ret = kernfs_setattr(kn, &iattr);
1556 	kernfs_put(kn);
1557 	return ret;
1558 }
1559 
1560 /**
1561  * rdtgroup_kn_mode_restore - Restore user access to named resctrl file
1562  * @r: The resource group with which the file is associated.
1563  * @name: Name of the file
1564  * @mask: Mask of permissions that should be restored
1565  *
1566  * Restore the permissions of the named file. If @name is a directory the
1567  * permissions of its parent will be used.
1568  *
1569  * Return: 0 on success, <0 on failure.
1570  */
1571 int rdtgroup_kn_mode_restore(struct rdtgroup *r, const char *name,
1572 			     umode_t mask)
1573 {
1574 	struct iattr iattr = {.ia_valid = ATTR_MODE,};
1575 	struct kernfs_node *kn, *parent;
1576 	struct rftype *rfts, *rft;
1577 	int ret, len;
1578 
1579 	rfts = res_common_files;
1580 	len = ARRAY_SIZE(res_common_files);
1581 
1582 	for (rft = rfts; rft < rfts + len; rft++) {
1583 		if (!strcmp(rft->name, name))
1584 			iattr.ia_mode = rft->mode & mask;
1585 	}
1586 
1587 	kn = kernfs_find_and_get_ns(r->kn, name, NULL);
1588 	if (!kn)
1589 		return -ENOENT;
1590 
1591 	switch (kernfs_type(kn)) {
1592 	case KERNFS_DIR:
1593 		parent = kernfs_get_parent(kn);
1594 		if (parent) {
1595 			iattr.ia_mode |= parent->mode;
1596 			kernfs_put(parent);
1597 		}
1598 		iattr.ia_mode |= S_IFDIR;
1599 		break;
1600 	case KERNFS_FILE:
1601 		iattr.ia_mode |= S_IFREG;
1602 		break;
1603 	case KERNFS_LINK:
1604 		iattr.ia_mode |= S_IFLNK;
1605 		break;
1606 	}
1607 
1608 	ret = kernfs_setattr(kn, &iattr);
1609 	kernfs_put(kn);
1610 	return ret;
1611 }
1612 
1613 static int rdtgroup_mkdir_info_resdir(struct rdt_resource *r, char *name,
1614 				      unsigned long fflags)
1615 {
1616 	struct kernfs_node *kn_subdir;
1617 	int ret;
1618 
1619 	kn_subdir = kernfs_create_dir(kn_info, name,
1620 				      kn_info->mode, r);
1621 	if (IS_ERR(kn_subdir))
1622 		return PTR_ERR(kn_subdir);
1623 
1624 	kernfs_get(kn_subdir);
1625 	ret = rdtgroup_kn_set_ugid(kn_subdir);
1626 	if (ret)
1627 		return ret;
1628 
1629 	ret = rdtgroup_add_files(kn_subdir, fflags);
1630 	if (!ret)
1631 		kernfs_activate(kn_subdir);
1632 
1633 	return ret;
1634 }
1635 
1636 static int rdtgroup_create_info_dir(struct kernfs_node *parent_kn)
1637 {
1638 	struct rdt_resource *r;
1639 	unsigned long fflags;
1640 	char name[32];
1641 	int ret;
1642 
1643 	/* create the directory */
1644 	kn_info = kernfs_create_dir(parent_kn, "info", parent_kn->mode, NULL);
1645 	if (IS_ERR(kn_info))
1646 		return PTR_ERR(kn_info);
1647 	kernfs_get(kn_info);
1648 
1649 	ret = rdtgroup_add_files(kn_info, RF_TOP_INFO);
1650 	if (ret)
1651 		goto out_destroy;
1652 
1653 	for_each_alloc_enabled_rdt_resource(r) {
1654 		fflags =  r->fflags | RF_CTRL_INFO;
1655 		ret = rdtgroup_mkdir_info_resdir(r, r->name, fflags);
1656 		if (ret)
1657 			goto out_destroy;
1658 	}
1659 
1660 	for_each_mon_enabled_rdt_resource(r) {
1661 		fflags =  r->fflags | RF_MON_INFO;
1662 		sprintf(name, "%s_MON", r->name);
1663 		ret = rdtgroup_mkdir_info_resdir(r, name, fflags);
1664 		if (ret)
1665 			goto out_destroy;
1666 	}
1667 
1668 	/*
1669 	 * This extra ref will be put in kernfs_remove() and guarantees
1670 	 * that @rdtgrp->kn is always accessible.
1671 	 */
1672 	kernfs_get(kn_info);
1673 
1674 	ret = rdtgroup_kn_set_ugid(kn_info);
1675 	if (ret)
1676 		goto out_destroy;
1677 
1678 	kernfs_activate(kn_info);
1679 
1680 	return 0;
1681 
1682 out_destroy:
1683 	kernfs_remove(kn_info);
1684 	return ret;
1685 }
1686 
1687 static int
1688 mongroup_create_dir(struct kernfs_node *parent_kn, struct rdtgroup *prgrp,
1689 		    char *name, struct kernfs_node **dest_kn)
1690 {
1691 	struct kernfs_node *kn;
1692 	int ret;
1693 
1694 	/* create the directory */
1695 	kn = kernfs_create_dir(parent_kn, name, parent_kn->mode, prgrp);
1696 	if (IS_ERR(kn))
1697 		return PTR_ERR(kn);
1698 
1699 	if (dest_kn)
1700 		*dest_kn = kn;
1701 
1702 	/*
1703 	 * This extra ref will be put in kernfs_remove() and guarantees
1704 	 * that @rdtgrp->kn is always accessible.
1705 	 */
1706 	kernfs_get(kn);
1707 
1708 	ret = rdtgroup_kn_set_ugid(kn);
1709 	if (ret)
1710 		goto out_destroy;
1711 
1712 	kernfs_activate(kn);
1713 
1714 	return 0;
1715 
1716 out_destroy:
1717 	kernfs_remove(kn);
1718 	return ret;
1719 }
1720 
1721 static void l3_qos_cfg_update(void *arg)
1722 {
1723 	bool *enable = arg;
1724 
1725 	wrmsrl(MSR_IA32_L3_QOS_CFG, *enable ? L3_QOS_CDP_ENABLE : 0ULL);
1726 }
1727 
1728 static void l2_qos_cfg_update(void *arg)
1729 {
1730 	bool *enable = arg;
1731 
1732 	wrmsrl(MSR_IA32_L2_QOS_CFG, *enable ? L2_QOS_CDP_ENABLE : 0ULL);
1733 }
1734 
1735 static inline bool is_mba_linear(void)
1736 {
1737 	return rdt_resources_all[RDT_RESOURCE_MBA].membw.delay_linear;
1738 }
1739 
1740 static int set_cache_qos_cfg(int level, bool enable)
1741 {
1742 	void (*update)(void *arg);
1743 	struct rdt_resource *r_l;
1744 	cpumask_var_t cpu_mask;
1745 	struct rdt_domain *d;
1746 	int cpu;
1747 
1748 	if (!zalloc_cpumask_var(&cpu_mask, GFP_KERNEL))
1749 		return -ENOMEM;
1750 
1751 	if (level == RDT_RESOURCE_L3)
1752 		update = l3_qos_cfg_update;
1753 	else if (level == RDT_RESOURCE_L2)
1754 		update = l2_qos_cfg_update;
1755 	else
1756 		return -EINVAL;
1757 
1758 	r_l = &rdt_resources_all[level];
1759 	list_for_each_entry(d, &r_l->domains, list) {
1760 		/* Pick one CPU from each domain instance to update MSR */
1761 		cpumask_set_cpu(cpumask_any(&d->cpu_mask), cpu_mask);
1762 	}
1763 	cpu = get_cpu();
1764 	/* Update QOS_CFG MSR on this cpu if it's in cpu_mask. */
1765 	if (cpumask_test_cpu(cpu, cpu_mask))
1766 		update(&enable);
1767 	/* Update QOS_CFG MSR on all other cpus in cpu_mask. */
1768 	smp_call_function_many(cpu_mask, update, &enable, 1);
1769 	put_cpu();
1770 
1771 	free_cpumask_var(cpu_mask);
1772 
1773 	return 0;
1774 }
1775 
1776 /*
1777  * Enable or disable the MBA software controller
1778  * which helps user specify bandwidth in MBps.
1779  * MBA software controller is supported only if
1780  * MBM is supported and MBA is in linear scale.
1781  */
1782 static int set_mba_sc(bool mba_sc)
1783 {
1784 	struct rdt_resource *r = &rdt_resources_all[RDT_RESOURCE_MBA];
1785 	struct rdt_domain *d;
1786 
1787 	if (!is_mbm_enabled() || !is_mba_linear() ||
1788 	    mba_sc == is_mba_sc(r))
1789 		return -EINVAL;
1790 
1791 	r->membw.mba_sc = mba_sc;
1792 	list_for_each_entry(d, &r->domains, list)
1793 		setup_default_ctrlval(r, d->ctrl_val, d->mbps_val);
1794 
1795 	return 0;
1796 }
1797 
1798 static int cdp_enable(int level, int data_type, int code_type)
1799 {
1800 	struct rdt_resource *r_ldata = &rdt_resources_all[data_type];
1801 	struct rdt_resource *r_lcode = &rdt_resources_all[code_type];
1802 	struct rdt_resource *r_l = &rdt_resources_all[level];
1803 	int ret;
1804 
1805 	if (!r_l->alloc_capable || !r_ldata->alloc_capable ||
1806 	    !r_lcode->alloc_capable)
1807 		return -EINVAL;
1808 
1809 	ret = set_cache_qos_cfg(level, true);
1810 	if (!ret) {
1811 		r_l->alloc_enabled = false;
1812 		r_ldata->alloc_enabled = true;
1813 		r_lcode->alloc_enabled = true;
1814 	}
1815 	return ret;
1816 }
1817 
1818 static int cdpl3_enable(void)
1819 {
1820 	return cdp_enable(RDT_RESOURCE_L3, RDT_RESOURCE_L3DATA,
1821 			  RDT_RESOURCE_L3CODE);
1822 }
1823 
1824 static int cdpl2_enable(void)
1825 {
1826 	return cdp_enable(RDT_RESOURCE_L2, RDT_RESOURCE_L2DATA,
1827 			  RDT_RESOURCE_L2CODE);
1828 }
1829 
1830 static void cdp_disable(int level, int data_type, int code_type)
1831 {
1832 	struct rdt_resource *r = &rdt_resources_all[level];
1833 
1834 	r->alloc_enabled = r->alloc_capable;
1835 
1836 	if (rdt_resources_all[data_type].alloc_enabled) {
1837 		rdt_resources_all[data_type].alloc_enabled = false;
1838 		rdt_resources_all[code_type].alloc_enabled = false;
1839 		set_cache_qos_cfg(level, false);
1840 	}
1841 }
1842 
1843 static void cdpl3_disable(void)
1844 {
1845 	cdp_disable(RDT_RESOURCE_L3, RDT_RESOURCE_L3DATA, RDT_RESOURCE_L3CODE);
1846 }
1847 
1848 static void cdpl2_disable(void)
1849 {
1850 	cdp_disable(RDT_RESOURCE_L2, RDT_RESOURCE_L2DATA, RDT_RESOURCE_L2CODE);
1851 }
1852 
1853 static void cdp_disable_all(void)
1854 {
1855 	if (rdt_resources_all[RDT_RESOURCE_L3DATA].alloc_enabled)
1856 		cdpl3_disable();
1857 	if (rdt_resources_all[RDT_RESOURCE_L2DATA].alloc_enabled)
1858 		cdpl2_disable();
1859 }
1860 
1861 /*
1862  * We don't allow rdtgroup directories to be created anywhere
1863  * except the root directory. Thus when looking for the rdtgroup
1864  * structure for a kernfs node we are either looking at a directory,
1865  * in which case the rdtgroup structure is pointed at by the "priv"
1866  * field, otherwise we have a file, and need only look to the parent
1867  * to find the rdtgroup.
1868  */
1869 static struct rdtgroup *kernfs_to_rdtgroup(struct kernfs_node *kn)
1870 {
1871 	if (kernfs_type(kn) == KERNFS_DIR) {
1872 		/*
1873 		 * All the resource directories use "kn->priv"
1874 		 * to point to the "struct rdtgroup" for the
1875 		 * resource. "info" and its subdirectories don't
1876 		 * have rdtgroup structures, so return NULL here.
1877 		 */
1878 		if (kn == kn_info || kn->parent == kn_info)
1879 			return NULL;
1880 		else
1881 			return kn->priv;
1882 	} else {
1883 		return kn->parent->priv;
1884 	}
1885 }
1886 
1887 struct rdtgroup *rdtgroup_kn_lock_live(struct kernfs_node *kn)
1888 {
1889 	struct rdtgroup *rdtgrp = kernfs_to_rdtgroup(kn);
1890 
1891 	if (!rdtgrp)
1892 		return NULL;
1893 
1894 	atomic_inc(&rdtgrp->waitcount);
1895 	kernfs_break_active_protection(kn);
1896 
1897 	mutex_lock(&rdtgroup_mutex);
1898 
1899 	/* Was this group deleted while we waited? */
1900 	if (rdtgrp->flags & RDT_DELETED)
1901 		return NULL;
1902 
1903 	return rdtgrp;
1904 }
1905 
1906 void rdtgroup_kn_unlock(struct kernfs_node *kn)
1907 {
1908 	struct rdtgroup *rdtgrp = kernfs_to_rdtgroup(kn);
1909 
1910 	if (!rdtgrp)
1911 		return;
1912 
1913 	mutex_unlock(&rdtgroup_mutex);
1914 
1915 	if (atomic_dec_and_test(&rdtgrp->waitcount) &&
1916 	    (rdtgrp->flags & RDT_DELETED)) {
1917 		if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP ||
1918 		    rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED)
1919 			rdtgroup_pseudo_lock_remove(rdtgrp);
1920 		kernfs_unbreak_active_protection(kn);
1921 		kernfs_put(rdtgrp->kn);
1922 		kfree(rdtgrp);
1923 	} else {
1924 		kernfs_unbreak_active_protection(kn);
1925 	}
1926 }
1927 
1928 static int mkdir_mondata_all(struct kernfs_node *parent_kn,
1929 			     struct rdtgroup *prgrp,
1930 			     struct kernfs_node **mon_data_kn);
1931 
1932 static int rdt_enable_ctx(struct rdt_fs_context *ctx)
1933 {
1934 	int ret = 0;
1935 
1936 	if (ctx->enable_cdpl2)
1937 		ret = cdpl2_enable();
1938 
1939 	if (!ret && ctx->enable_cdpl3)
1940 		ret = cdpl3_enable();
1941 
1942 	if (!ret && ctx->enable_mba_mbps)
1943 		ret = set_mba_sc(true);
1944 
1945 	return ret;
1946 }
1947 
1948 static int rdt_get_tree(struct fs_context *fc)
1949 {
1950 	struct rdt_fs_context *ctx = rdt_fc2context(fc);
1951 	struct rdt_domain *dom;
1952 	struct rdt_resource *r;
1953 	int ret;
1954 
1955 	cpus_read_lock();
1956 	mutex_lock(&rdtgroup_mutex);
1957 	/*
1958 	 * resctrl file system can only be mounted once.
1959 	 */
1960 	if (static_branch_unlikely(&rdt_enable_key)) {
1961 		ret = -EBUSY;
1962 		goto out;
1963 	}
1964 
1965 	ret = rdt_enable_ctx(ctx);
1966 	if (ret < 0)
1967 		goto out_cdp;
1968 
1969 	closid_init();
1970 
1971 	ret = rdtgroup_create_info_dir(rdtgroup_default.kn);
1972 	if (ret < 0)
1973 		goto out_mba;
1974 
1975 	if (rdt_mon_capable) {
1976 		ret = mongroup_create_dir(rdtgroup_default.kn,
1977 					  NULL, "mon_groups",
1978 					  &kn_mongrp);
1979 		if (ret < 0)
1980 			goto out_info;
1981 		kernfs_get(kn_mongrp);
1982 
1983 		ret = mkdir_mondata_all(rdtgroup_default.kn,
1984 					&rdtgroup_default, &kn_mondata);
1985 		if (ret < 0)
1986 			goto out_mongrp;
1987 		kernfs_get(kn_mondata);
1988 		rdtgroup_default.mon.mon_data_kn = kn_mondata;
1989 	}
1990 
1991 	ret = rdt_pseudo_lock_init();
1992 	if (ret)
1993 		goto out_mondata;
1994 
1995 	ret = kernfs_get_tree(fc);
1996 	if (ret < 0)
1997 		goto out_psl;
1998 
1999 	if (rdt_alloc_capable)
2000 		static_branch_enable_cpuslocked(&rdt_alloc_enable_key);
2001 	if (rdt_mon_capable)
2002 		static_branch_enable_cpuslocked(&rdt_mon_enable_key);
2003 
2004 	if (rdt_alloc_capable || rdt_mon_capable)
2005 		static_branch_enable_cpuslocked(&rdt_enable_key);
2006 
2007 	if (is_mbm_enabled()) {
2008 		r = &rdt_resources_all[RDT_RESOURCE_L3];
2009 		list_for_each_entry(dom, &r->domains, list)
2010 			mbm_setup_overflow_handler(dom, MBM_OVERFLOW_INTERVAL);
2011 	}
2012 
2013 	goto out;
2014 
2015 out_psl:
2016 	rdt_pseudo_lock_release();
2017 out_mondata:
2018 	if (rdt_mon_capable)
2019 		kernfs_remove(kn_mondata);
2020 out_mongrp:
2021 	if (rdt_mon_capable)
2022 		kernfs_remove(kn_mongrp);
2023 out_info:
2024 	kernfs_remove(kn_info);
2025 out_mba:
2026 	if (ctx->enable_mba_mbps)
2027 		set_mba_sc(false);
2028 out_cdp:
2029 	cdp_disable_all();
2030 out:
2031 	rdt_last_cmd_clear();
2032 	mutex_unlock(&rdtgroup_mutex);
2033 	cpus_read_unlock();
2034 	return ret;
2035 }
2036 
2037 enum rdt_param {
2038 	Opt_cdp,
2039 	Opt_cdpl2,
2040 	Opt_mba_mbps,
2041 	nr__rdt_params
2042 };
2043 
2044 static const struct fs_parameter_spec rdt_param_specs[] = {
2045 	fsparam_flag("cdp",		Opt_cdp),
2046 	fsparam_flag("cdpl2",		Opt_cdpl2),
2047 	fsparam_flag("mba_MBps",	Opt_mba_mbps),
2048 	{}
2049 };
2050 
2051 static const struct fs_parameter_description rdt_fs_parameters = {
2052 	.name		= "rdt",
2053 	.specs		= rdt_param_specs,
2054 };
2055 
2056 static int rdt_parse_param(struct fs_context *fc, struct fs_parameter *param)
2057 {
2058 	struct rdt_fs_context *ctx = rdt_fc2context(fc);
2059 	struct fs_parse_result result;
2060 	int opt;
2061 
2062 	opt = fs_parse(fc, &rdt_fs_parameters, param, &result);
2063 	if (opt < 0)
2064 		return opt;
2065 
2066 	switch (opt) {
2067 	case Opt_cdp:
2068 		ctx->enable_cdpl3 = true;
2069 		return 0;
2070 	case Opt_cdpl2:
2071 		ctx->enable_cdpl2 = true;
2072 		return 0;
2073 	case Opt_mba_mbps:
2074 		if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
2075 			return -EINVAL;
2076 		ctx->enable_mba_mbps = true;
2077 		return 0;
2078 	}
2079 
2080 	return -EINVAL;
2081 }
2082 
2083 static void rdt_fs_context_free(struct fs_context *fc)
2084 {
2085 	struct rdt_fs_context *ctx = rdt_fc2context(fc);
2086 
2087 	kernfs_free_fs_context(fc);
2088 	kfree(ctx);
2089 }
2090 
2091 static const struct fs_context_operations rdt_fs_context_ops = {
2092 	.free		= rdt_fs_context_free,
2093 	.parse_param	= rdt_parse_param,
2094 	.get_tree	= rdt_get_tree,
2095 };
2096 
2097 static int rdt_init_fs_context(struct fs_context *fc)
2098 {
2099 	struct rdt_fs_context *ctx;
2100 
2101 	ctx = kzalloc(sizeof(struct rdt_fs_context), GFP_KERNEL);
2102 	if (!ctx)
2103 		return -ENOMEM;
2104 
2105 	ctx->kfc.root = rdt_root;
2106 	ctx->kfc.magic = RDTGROUP_SUPER_MAGIC;
2107 	fc->fs_private = &ctx->kfc;
2108 	fc->ops = &rdt_fs_context_ops;
2109 	put_user_ns(fc->user_ns);
2110 	fc->user_ns = get_user_ns(&init_user_ns);
2111 	fc->global = true;
2112 	return 0;
2113 }
2114 
2115 static int reset_all_ctrls(struct rdt_resource *r)
2116 {
2117 	struct msr_param msr_param;
2118 	cpumask_var_t cpu_mask;
2119 	struct rdt_domain *d;
2120 	int i, cpu;
2121 
2122 	if (!zalloc_cpumask_var(&cpu_mask, GFP_KERNEL))
2123 		return -ENOMEM;
2124 
2125 	msr_param.res = r;
2126 	msr_param.low = 0;
2127 	msr_param.high = r->num_closid;
2128 
2129 	/*
2130 	 * Disable resource control for this resource by setting all
2131 	 * CBMs in all domains to the maximum mask value. Pick one CPU
2132 	 * from each domain to update the MSRs below.
2133 	 */
2134 	list_for_each_entry(d, &r->domains, list) {
2135 		cpumask_set_cpu(cpumask_any(&d->cpu_mask), cpu_mask);
2136 
2137 		for (i = 0; i < r->num_closid; i++)
2138 			d->ctrl_val[i] = r->default_ctrl;
2139 	}
2140 	cpu = get_cpu();
2141 	/* Update CBM on this cpu if it's in cpu_mask. */
2142 	if (cpumask_test_cpu(cpu, cpu_mask))
2143 		rdt_ctrl_update(&msr_param);
2144 	/* Update CBM on all other cpus in cpu_mask. */
2145 	smp_call_function_many(cpu_mask, rdt_ctrl_update, &msr_param, 1);
2146 	put_cpu();
2147 
2148 	free_cpumask_var(cpu_mask);
2149 
2150 	return 0;
2151 }
2152 
2153 static bool is_closid_match(struct task_struct *t, struct rdtgroup *r)
2154 {
2155 	return (rdt_alloc_capable &&
2156 		(r->type == RDTCTRL_GROUP) && (t->closid == r->closid));
2157 }
2158 
2159 static bool is_rmid_match(struct task_struct *t, struct rdtgroup *r)
2160 {
2161 	return (rdt_mon_capable &&
2162 		(r->type == RDTMON_GROUP) && (t->rmid == r->mon.rmid));
2163 }
2164 
2165 /*
2166  * Move tasks from one to the other group. If @from is NULL, then all tasks
2167  * in the systems are moved unconditionally (used for teardown).
2168  *
2169  * If @mask is not NULL the cpus on which moved tasks are running are set
2170  * in that mask so the update smp function call is restricted to affected
2171  * cpus.
2172  */
2173 static void rdt_move_group_tasks(struct rdtgroup *from, struct rdtgroup *to,
2174 				 struct cpumask *mask)
2175 {
2176 	struct task_struct *p, *t;
2177 
2178 	read_lock(&tasklist_lock);
2179 	for_each_process_thread(p, t) {
2180 		if (!from || is_closid_match(t, from) ||
2181 		    is_rmid_match(t, from)) {
2182 			t->closid = to->closid;
2183 			t->rmid = to->mon.rmid;
2184 
2185 #ifdef CONFIG_SMP
2186 			/*
2187 			 * This is safe on x86 w/o barriers as the ordering
2188 			 * of writing to task_cpu() and t->on_cpu is
2189 			 * reverse to the reading here. The detection is
2190 			 * inaccurate as tasks might move or schedule
2191 			 * before the smp function call takes place. In
2192 			 * such a case the function call is pointless, but
2193 			 * there is no other side effect.
2194 			 */
2195 			if (mask && t->on_cpu)
2196 				cpumask_set_cpu(task_cpu(t), mask);
2197 #endif
2198 		}
2199 	}
2200 	read_unlock(&tasklist_lock);
2201 }
2202 
2203 static void free_all_child_rdtgrp(struct rdtgroup *rdtgrp)
2204 {
2205 	struct rdtgroup *sentry, *stmp;
2206 	struct list_head *head;
2207 
2208 	head = &rdtgrp->mon.crdtgrp_list;
2209 	list_for_each_entry_safe(sentry, stmp, head, mon.crdtgrp_list) {
2210 		free_rmid(sentry->mon.rmid);
2211 		list_del(&sentry->mon.crdtgrp_list);
2212 		kfree(sentry);
2213 	}
2214 }
2215 
2216 /*
2217  * Forcibly remove all of subdirectories under root.
2218  */
2219 static void rmdir_all_sub(void)
2220 {
2221 	struct rdtgroup *rdtgrp, *tmp;
2222 
2223 	/* Move all tasks to the default resource group */
2224 	rdt_move_group_tasks(NULL, &rdtgroup_default, NULL);
2225 
2226 	list_for_each_entry_safe(rdtgrp, tmp, &rdt_all_groups, rdtgroup_list) {
2227 		/* Free any child rmids */
2228 		free_all_child_rdtgrp(rdtgrp);
2229 
2230 		/* Remove each rdtgroup other than root */
2231 		if (rdtgrp == &rdtgroup_default)
2232 			continue;
2233 
2234 		if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP ||
2235 		    rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED)
2236 			rdtgroup_pseudo_lock_remove(rdtgrp);
2237 
2238 		/*
2239 		 * Give any CPUs back to the default group. We cannot copy
2240 		 * cpu_online_mask because a CPU might have executed the
2241 		 * offline callback already, but is still marked online.
2242 		 */
2243 		cpumask_or(&rdtgroup_default.cpu_mask,
2244 			   &rdtgroup_default.cpu_mask, &rdtgrp->cpu_mask);
2245 
2246 		free_rmid(rdtgrp->mon.rmid);
2247 
2248 		kernfs_remove(rdtgrp->kn);
2249 		list_del(&rdtgrp->rdtgroup_list);
2250 		kfree(rdtgrp);
2251 	}
2252 	/* Notify online CPUs to update per cpu storage and PQR_ASSOC MSR */
2253 	update_closid_rmid(cpu_online_mask, &rdtgroup_default);
2254 
2255 	kernfs_remove(kn_info);
2256 	kernfs_remove(kn_mongrp);
2257 	kernfs_remove(kn_mondata);
2258 }
2259 
2260 static void rdt_kill_sb(struct super_block *sb)
2261 {
2262 	struct rdt_resource *r;
2263 
2264 	cpus_read_lock();
2265 	mutex_lock(&rdtgroup_mutex);
2266 
2267 	set_mba_sc(false);
2268 
2269 	/*Put everything back to default values. */
2270 	for_each_alloc_enabled_rdt_resource(r)
2271 		reset_all_ctrls(r);
2272 	cdp_disable_all();
2273 	rmdir_all_sub();
2274 	rdt_pseudo_lock_release();
2275 	rdtgroup_default.mode = RDT_MODE_SHAREABLE;
2276 	static_branch_disable_cpuslocked(&rdt_alloc_enable_key);
2277 	static_branch_disable_cpuslocked(&rdt_mon_enable_key);
2278 	static_branch_disable_cpuslocked(&rdt_enable_key);
2279 	kernfs_kill_sb(sb);
2280 	mutex_unlock(&rdtgroup_mutex);
2281 	cpus_read_unlock();
2282 }
2283 
2284 static struct file_system_type rdt_fs_type = {
2285 	.name			= "resctrl",
2286 	.init_fs_context	= rdt_init_fs_context,
2287 	.parameters		= &rdt_fs_parameters,
2288 	.kill_sb		= rdt_kill_sb,
2289 };
2290 
2291 static int mon_addfile(struct kernfs_node *parent_kn, const char *name,
2292 		       void *priv)
2293 {
2294 	struct kernfs_node *kn;
2295 	int ret = 0;
2296 
2297 	kn = __kernfs_create_file(parent_kn, name, 0444,
2298 				  GLOBAL_ROOT_UID, GLOBAL_ROOT_GID, 0,
2299 				  &kf_mondata_ops, priv, NULL, NULL);
2300 	if (IS_ERR(kn))
2301 		return PTR_ERR(kn);
2302 
2303 	ret = rdtgroup_kn_set_ugid(kn);
2304 	if (ret) {
2305 		kernfs_remove(kn);
2306 		return ret;
2307 	}
2308 
2309 	return ret;
2310 }
2311 
2312 /*
2313  * Remove all subdirectories of mon_data of ctrl_mon groups
2314  * and monitor groups with given domain id.
2315  */
2316 void rmdir_mondata_subdir_allrdtgrp(struct rdt_resource *r, unsigned int dom_id)
2317 {
2318 	struct rdtgroup *prgrp, *crgrp;
2319 	char name[32];
2320 
2321 	if (!r->mon_enabled)
2322 		return;
2323 
2324 	list_for_each_entry(prgrp, &rdt_all_groups, rdtgroup_list) {
2325 		sprintf(name, "mon_%s_%02d", r->name, dom_id);
2326 		kernfs_remove_by_name(prgrp->mon.mon_data_kn, name);
2327 
2328 		list_for_each_entry(crgrp, &prgrp->mon.crdtgrp_list, mon.crdtgrp_list)
2329 			kernfs_remove_by_name(crgrp->mon.mon_data_kn, name);
2330 	}
2331 }
2332 
2333 static int mkdir_mondata_subdir(struct kernfs_node *parent_kn,
2334 				struct rdt_domain *d,
2335 				struct rdt_resource *r, struct rdtgroup *prgrp)
2336 {
2337 	union mon_data_bits priv;
2338 	struct kernfs_node *kn;
2339 	struct mon_evt *mevt;
2340 	struct rmid_read rr;
2341 	char name[32];
2342 	int ret;
2343 
2344 	sprintf(name, "mon_%s_%02d", r->name, d->id);
2345 	/* create the directory */
2346 	kn = kernfs_create_dir(parent_kn, name, parent_kn->mode, prgrp);
2347 	if (IS_ERR(kn))
2348 		return PTR_ERR(kn);
2349 
2350 	/*
2351 	 * This extra ref will be put in kernfs_remove() and guarantees
2352 	 * that kn is always accessible.
2353 	 */
2354 	kernfs_get(kn);
2355 	ret = rdtgroup_kn_set_ugid(kn);
2356 	if (ret)
2357 		goto out_destroy;
2358 
2359 	if (WARN_ON(list_empty(&r->evt_list))) {
2360 		ret = -EPERM;
2361 		goto out_destroy;
2362 	}
2363 
2364 	priv.u.rid = r->rid;
2365 	priv.u.domid = d->id;
2366 	list_for_each_entry(mevt, &r->evt_list, list) {
2367 		priv.u.evtid = mevt->evtid;
2368 		ret = mon_addfile(kn, mevt->name, priv.priv);
2369 		if (ret)
2370 			goto out_destroy;
2371 
2372 		if (is_mbm_event(mevt->evtid))
2373 			mon_event_read(&rr, d, prgrp, mevt->evtid, true);
2374 	}
2375 	kernfs_activate(kn);
2376 	return 0;
2377 
2378 out_destroy:
2379 	kernfs_remove(kn);
2380 	return ret;
2381 }
2382 
2383 /*
2384  * Add all subdirectories of mon_data for "ctrl_mon" groups
2385  * and "monitor" groups with given domain id.
2386  */
2387 void mkdir_mondata_subdir_allrdtgrp(struct rdt_resource *r,
2388 				    struct rdt_domain *d)
2389 {
2390 	struct kernfs_node *parent_kn;
2391 	struct rdtgroup *prgrp, *crgrp;
2392 	struct list_head *head;
2393 
2394 	if (!r->mon_enabled)
2395 		return;
2396 
2397 	list_for_each_entry(prgrp, &rdt_all_groups, rdtgroup_list) {
2398 		parent_kn = prgrp->mon.mon_data_kn;
2399 		mkdir_mondata_subdir(parent_kn, d, r, prgrp);
2400 
2401 		head = &prgrp->mon.crdtgrp_list;
2402 		list_for_each_entry(crgrp, head, mon.crdtgrp_list) {
2403 			parent_kn = crgrp->mon.mon_data_kn;
2404 			mkdir_mondata_subdir(parent_kn, d, r, crgrp);
2405 		}
2406 	}
2407 }
2408 
2409 static int mkdir_mondata_subdir_alldom(struct kernfs_node *parent_kn,
2410 				       struct rdt_resource *r,
2411 				       struct rdtgroup *prgrp)
2412 {
2413 	struct rdt_domain *dom;
2414 	int ret;
2415 
2416 	list_for_each_entry(dom, &r->domains, list) {
2417 		ret = mkdir_mondata_subdir(parent_kn, dom, r, prgrp);
2418 		if (ret)
2419 			return ret;
2420 	}
2421 
2422 	return 0;
2423 }
2424 
2425 /*
2426  * This creates a directory mon_data which contains the monitored data.
2427  *
2428  * mon_data has one directory for each domain whic are named
2429  * in the format mon_<domain_name>_<domain_id>. For ex: A mon_data
2430  * with L3 domain looks as below:
2431  * ./mon_data:
2432  * mon_L3_00
2433  * mon_L3_01
2434  * mon_L3_02
2435  * ...
2436  *
2437  * Each domain directory has one file per event:
2438  * ./mon_L3_00/:
2439  * llc_occupancy
2440  *
2441  */
2442 static int mkdir_mondata_all(struct kernfs_node *parent_kn,
2443 			     struct rdtgroup *prgrp,
2444 			     struct kernfs_node **dest_kn)
2445 {
2446 	struct rdt_resource *r;
2447 	struct kernfs_node *kn;
2448 	int ret;
2449 
2450 	/*
2451 	 * Create the mon_data directory first.
2452 	 */
2453 	ret = mongroup_create_dir(parent_kn, NULL, "mon_data", &kn);
2454 	if (ret)
2455 		return ret;
2456 
2457 	if (dest_kn)
2458 		*dest_kn = kn;
2459 
2460 	/*
2461 	 * Create the subdirectories for each domain. Note that all events
2462 	 * in a domain like L3 are grouped into a resource whose domain is L3
2463 	 */
2464 	for_each_mon_enabled_rdt_resource(r) {
2465 		ret = mkdir_mondata_subdir_alldom(kn, r, prgrp);
2466 		if (ret)
2467 			goto out_destroy;
2468 	}
2469 
2470 	return 0;
2471 
2472 out_destroy:
2473 	kernfs_remove(kn);
2474 	return ret;
2475 }
2476 
2477 /**
2478  * cbm_ensure_valid - Enforce validity on provided CBM
2479  * @_val:	Candidate CBM
2480  * @r:		RDT resource to which the CBM belongs
2481  *
2482  * The provided CBM represents all cache portions available for use. This
2483  * may be represented by a bitmap that does not consist of contiguous ones
2484  * and thus be an invalid CBM.
2485  * Here the provided CBM is forced to be a valid CBM by only considering
2486  * the first set of contiguous bits as valid and clearing all bits.
2487  * The intention here is to provide a valid default CBM with which a new
2488  * resource group is initialized. The user can follow this with a
2489  * modification to the CBM if the default does not satisfy the
2490  * requirements.
2491  */
2492 static u32 cbm_ensure_valid(u32 _val, struct rdt_resource *r)
2493 {
2494 	unsigned int cbm_len = r->cache.cbm_len;
2495 	unsigned long first_bit, zero_bit;
2496 	unsigned long val = _val;
2497 
2498 	if (!val)
2499 		return 0;
2500 
2501 	first_bit = find_first_bit(&val, cbm_len);
2502 	zero_bit = find_next_zero_bit(&val, cbm_len, first_bit);
2503 
2504 	/* Clear any remaining bits to ensure contiguous region */
2505 	bitmap_clear(&val, zero_bit, cbm_len - zero_bit);
2506 	return (u32)val;
2507 }
2508 
2509 /*
2510  * Initialize cache resources per RDT domain
2511  *
2512  * Set the RDT domain up to start off with all usable allocations. That is,
2513  * all shareable and unused bits. All-zero CBM is invalid.
2514  */
2515 static int __init_one_rdt_domain(struct rdt_domain *d, struct rdt_resource *r,
2516 				 u32 closid)
2517 {
2518 	struct rdt_resource *r_cdp = NULL;
2519 	struct rdt_domain *d_cdp = NULL;
2520 	u32 used_b = 0, unused_b = 0;
2521 	unsigned long tmp_cbm;
2522 	enum rdtgrp_mode mode;
2523 	u32 peer_ctl, *ctrl;
2524 	int i;
2525 
2526 	rdt_cdp_peer_get(r, d, &r_cdp, &d_cdp);
2527 	d->have_new_ctrl = false;
2528 	d->new_ctrl = r->cache.shareable_bits;
2529 	used_b = r->cache.shareable_bits;
2530 	ctrl = d->ctrl_val;
2531 	for (i = 0; i < closids_supported(); i++, ctrl++) {
2532 		if (closid_allocated(i) && i != closid) {
2533 			mode = rdtgroup_mode_by_closid(i);
2534 			if (mode == RDT_MODE_PSEUDO_LOCKSETUP)
2535 				/*
2536 				 * ctrl values for locksetup aren't relevant
2537 				 * until the schemata is written, and the mode
2538 				 * becomes RDT_MODE_PSEUDO_LOCKED.
2539 				 */
2540 				continue;
2541 			/*
2542 			 * If CDP is active include peer domain's
2543 			 * usage to ensure there is no overlap
2544 			 * with an exclusive group.
2545 			 */
2546 			if (d_cdp)
2547 				peer_ctl = d_cdp->ctrl_val[i];
2548 			else
2549 				peer_ctl = 0;
2550 			used_b |= *ctrl | peer_ctl;
2551 			if (mode == RDT_MODE_SHAREABLE)
2552 				d->new_ctrl |= *ctrl | peer_ctl;
2553 		}
2554 	}
2555 	if (d->plr && d->plr->cbm > 0)
2556 		used_b |= d->plr->cbm;
2557 	unused_b = used_b ^ (BIT_MASK(r->cache.cbm_len) - 1);
2558 	unused_b &= BIT_MASK(r->cache.cbm_len) - 1;
2559 	d->new_ctrl |= unused_b;
2560 	/*
2561 	 * Force the initial CBM to be valid, user can
2562 	 * modify the CBM based on system availability.
2563 	 */
2564 	d->new_ctrl = cbm_ensure_valid(d->new_ctrl, r);
2565 	/*
2566 	 * Assign the u32 CBM to an unsigned long to ensure that
2567 	 * bitmap_weight() does not access out-of-bound memory.
2568 	 */
2569 	tmp_cbm = d->new_ctrl;
2570 	if (bitmap_weight(&tmp_cbm, r->cache.cbm_len) < r->cache.min_cbm_bits) {
2571 		rdt_last_cmd_printf("No space on %s:%d\n", r->name, d->id);
2572 		return -ENOSPC;
2573 	}
2574 	d->have_new_ctrl = true;
2575 
2576 	return 0;
2577 }
2578 
2579 /*
2580  * Initialize cache resources with default values.
2581  *
2582  * A new RDT group is being created on an allocation capable (CAT)
2583  * supporting system. Set this group up to start off with all usable
2584  * allocations.
2585  *
2586  * If there are no more shareable bits available on any domain then
2587  * the entire allocation will fail.
2588  */
2589 static int rdtgroup_init_cat(struct rdt_resource *r, u32 closid)
2590 {
2591 	struct rdt_domain *d;
2592 	int ret;
2593 
2594 	list_for_each_entry(d, &r->domains, list) {
2595 		ret = __init_one_rdt_domain(d, r, closid);
2596 		if (ret < 0)
2597 			return ret;
2598 	}
2599 
2600 	return 0;
2601 }
2602 
2603 /* Initialize MBA resource with default values. */
2604 static void rdtgroup_init_mba(struct rdt_resource *r)
2605 {
2606 	struct rdt_domain *d;
2607 
2608 	list_for_each_entry(d, &r->domains, list) {
2609 		d->new_ctrl = is_mba_sc(r) ? MBA_MAX_MBPS : r->default_ctrl;
2610 		d->have_new_ctrl = true;
2611 	}
2612 }
2613 
2614 /* Initialize the RDT group's allocations. */
2615 static int rdtgroup_init_alloc(struct rdtgroup *rdtgrp)
2616 {
2617 	struct rdt_resource *r;
2618 	int ret;
2619 
2620 	for_each_alloc_enabled_rdt_resource(r) {
2621 		if (r->rid == RDT_RESOURCE_MBA) {
2622 			rdtgroup_init_mba(r);
2623 		} else {
2624 			ret = rdtgroup_init_cat(r, rdtgrp->closid);
2625 			if (ret < 0)
2626 				return ret;
2627 		}
2628 
2629 		ret = update_domains(r, rdtgrp->closid);
2630 		if (ret < 0) {
2631 			rdt_last_cmd_puts("Failed to initialize allocations\n");
2632 			return ret;
2633 		}
2634 
2635 	}
2636 
2637 	rdtgrp->mode = RDT_MODE_SHAREABLE;
2638 
2639 	return 0;
2640 }
2641 
2642 static int mkdir_rdt_prepare(struct kernfs_node *parent_kn,
2643 			     struct kernfs_node *prgrp_kn,
2644 			     const char *name, umode_t mode,
2645 			     enum rdt_group_type rtype, struct rdtgroup **r)
2646 {
2647 	struct rdtgroup *prdtgrp, *rdtgrp;
2648 	struct kernfs_node *kn;
2649 	uint files = 0;
2650 	int ret;
2651 
2652 	prdtgrp = rdtgroup_kn_lock_live(prgrp_kn);
2653 	if (!prdtgrp) {
2654 		ret = -ENODEV;
2655 		goto out_unlock;
2656 	}
2657 
2658 	if (rtype == RDTMON_GROUP &&
2659 	    (prdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP ||
2660 	     prdtgrp->mode == RDT_MODE_PSEUDO_LOCKED)) {
2661 		ret = -EINVAL;
2662 		rdt_last_cmd_puts("Pseudo-locking in progress\n");
2663 		goto out_unlock;
2664 	}
2665 
2666 	/* allocate the rdtgroup. */
2667 	rdtgrp = kzalloc(sizeof(*rdtgrp), GFP_KERNEL);
2668 	if (!rdtgrp) {
2669 		ret = -ENOSPC;
2670 		rdt_last_cmd_puts("Kernel out of memory\n");
2671 		goto out_unlock;
2672 	}
2673 	*r = rdtgrp;
2674 	rdtgrp->mon.parent = prdtgrp;
2675 	rdtgrp->type = rtype;
2676 	INIT_LIST_HEAD(&rdtgrp->mon.crdtgrp_list);
2677 
2678 	/* kernfs creates the directory for rdtgrp */
2679 	kn = kernfs_create_dir(parent_kn, name, mode, rdtgrp);
2680 	if (IS_ERR(kn)) {
2681 		ret = PTR_ERR(kn);
2682 		rdt_last_cmd_puts("kernfs create error\n");
2683 		goto out_free_rgrp;
2684 	}
2685 	rdtgrp->kn = kn;
2686 
2687 	/*
2688 	 * kernfs_remove() will drop the reference count on "kn" which
2689 	 * will free it. But we still need it to stick around for the
2690 	 * rdtgroup_kn_unlock(kn} call below. Take one extra reference
2691 	 * here, which will be dropped inside rdtgroup_kn_unlock().
2692 	 */
2693 	kernfs_get(kn);
2694 
2695 	ret = rdtgroup_kn_set_ugid(kn);
2696 	if (ret) {
2697 		rdt_last_cmd_puts("kernfs perm error\n");
2698 		goto out_destroy;
2699 	}
2700 
2701 	files = RFTYPE_BASE | BIT(RF_CTRLSHIFT + rtype);
2702 	ret = rdtgroup_add_files(kn, files);
2703 	if (ret) {
2704 		rdt_last_cmd_puts("kernfs fill error\n");
2705 		goto out_destroy;
2706 	}
2707 
2708 	if (rdt_mon_capable) {
2709 		ret = alloc_rmid();
2710 		if (ret < 0) {
2711 			rdt_last_cmd_puts("Out of RMIDs\n");
2712 			goto out_destroy;
2713 		}
2714 		rdtgrp->mon.rmid = ret;
2715 
2716 		ret = mkdir_mondata_all(kn, rdtgrp, &rdtgrp->mon.mon_data_kn);
2717 		if (ret) {
2718 			rdt_last_cmd_puts("kernfs subdir error\n");
2719 			goto out_idfree;
2720 		}
2721 	}
2722 	kernfs_activate(kn);
2723 
2724 	/*
2725 	 * The caller unlocks the prgrp_kn upon success.
2726 	 */
2727 	return 0;
2728 
2729 out_idfree:
2730 	free_rmid(rdtgrp->mon.rmid);
2731 out_destroy:
2732 	kernfs_remove(rdtgrp->kn);
2733 out_free_rgrp:
2734 	kfree(rdtgrp);
2735 out_unlock:
2736 	rdtgroup_kn_unlock(prgrp_kn);
2737 	return ret;
2738 }
2739 
2740 static void mkdir_rdt_prepare_clean(struct rdtgroup *rgrp)
2741 {
2742 	kernfs_remove(rgrp->kn);
2743 	free_rmid(rgrp->mon.rmid);
2744 	kfree(rgrp);
2745 }
2746 
2747 /*
2748  * Create a monitor group under "mon_groups" directory of a control
2749  * and monitor group(ctrl_mon). This is a resource group
2750  * to monitor a subset of tasks and cpus in its parent ctrl_mon group.
2751  */
2752 static int rdtgroup_mkdir_mon(struct kernfs_node *parent_kn,
2753 			      struct kernfs_node *prgrp_kn,
2754 			      const char *name,
2755 			      umode_t mode)
2756 {
2757 	struct rdtgroup *rdtgrp, *prgrp;
2758 	int ret;
2759 
2760 	ret = mkdir_rdt_prepare(parent_kn, prgrp_kn, name, mode, RDTMON_GROUP,
2761 				&rdtgrp);
2762 	if (ret)
2763 		return ret;
2764 
2765 	prgrp = rdtgrp->mon.parent;
2766 	rdtgrp->closid = prgrp->closid;
2767 
2768 	/*
2769 	 * Add the rdtgrp to the list of rdtgrps the parent
2770 	 * ctrl_mon group has to track.
2771 	 */
2772 	list_add_tail(&rdtgrp->mon.crdtgrp_list, &prgrp->mon.crdtgrp_list);
2773 
2774 	rdtgroup_kn_unlock(prgrp_kn);
2775 	return ret;
2776 }
2777 
2778 /*
2779  * These are rdtgroups created under the root directory. Can be used
2780  * to allocate and monitor resources.
2781  */
2782 static int rdtgroup_mkdir_ctrl_mon(struct kernfs_node *parent_kn,
2783 				   struct kernfs_node *prgrp_kn,
2784 				   const char *name, umode_t mode)
2785 {
2786 	struct rdtgroup *rdtgrp;
2787 	struct kernfs_node *kn;
2788 	u32 closid;
2789 	int ret;
2790 
2791 	ret = mkdir_rdt_prepare(parent_kn, prgrp_kn, name, mode, RDTCTRL_GROUP,
2792 				&rdtgrp);
2793 	if (ret)
2794 		return ret;
2795 
2796 	kn = rdtgrp->kn;
2797 	ret = closid_alloc();
2798 	if (ret < 0) {
2799 		rdt_last_cmd_puts("Out of CLOSIDs\n");
2800 		goto out_common_fail;
2801 	}
2802 	closid = ret;
2803 	ret = 0;
2804 
2805 	rdtgrp->closid = closid;
2806 	ret = rdtgroup_init_alloc(rdtgrp);
2807 	if (ret < 0)
2808 		goto out_id_free;
2809 
2810 	list_add(&rdtgrp->rdtgroup_list, &rdt_all_groups);
2811 
2812 	if (rdt_mon_capable) {
2813 		/*
2814 		 * Create an empty mon_groups directory to hold the subset
2815 		 * of tasks and cpus to monitor.
2816 		 */
2817 		ret = mongroup_create_dir(kn, NULL, "mon_groups", NULL);
2818 		if (ret) {
2819 			rdt_last_cmd_puts("kernfs subdir error\n");
2820 			goto out_del_list;
2821 		}
2822 	}
2823 
2824 	goto out_unlock;
2825 
2826 out_del_list:
2827 	list_del(&rdtgrp->rdtgroup_list);
2828 out_id_free:
2829 	closid_free(closid);
2830 out_common_fail:
2831 	mkdir_rdt_prepare_clean(rdtgrp);
2832 out_unlock:
2833 	rdtgroup_kn_unlock(prgrp_kn);
2834 	return ret;
2835 }
2836 
2837 /*
2838  * We allow creating mon groups only with in a directory called "mon_groups"
2839  * which is present in every ctrl_mon group. Check if this is a valid
2840  * "mon_groups" directory.
2841  *
2842  * 1. The directory should be named "mon_groups".
2843  * 2. The mon group itself should "not" be named "mon_groups".
2844  *   This makes sure "mon_groups" directory always has a ctrl_mon group
2845  *   as parent.
2846  */
2847 static bool is_mon_groups(struct kernfs_node *kn, const char *name)
2848 {
2849 	return (!strcmp(kn->name, "mon_groups") &&
2850 		strcmp(name, "mon_groups"));
2851 }
2852 
2853 static int rdtgroup_mkdir(struct kernfs_node *parent_kn, const char *name,
2854 			  umode_t mode)
2855 {
2856 	/* Do not accept '\n' to avoid unparsable situation. */
2857 	if (strchr(name, '\n'))
2858 		return -EINVAL;
2859 
2860 	/*
2861 	 * If the parent directory is the root directory and RDT
2862 	 * allocation is supported, add a control and monitoring
2863 	 * subdirectory
2864 	 */
2865 	if (rdt_alloc_capable && parent_kn == rdtgroup_default.kn)
2866 		return rdtgroup_mkdir_ctrl_mon(parent_kn, parent_kn, name, mode);
2867 
2868 	/*
2869 	 * If RDT monitoring is supported and the parent directory is a valid
2870 	 * "mon_groups" directory, add a monitoring subdirectory.
2871 	 */
2872 	if (rdt_mon_capable && is_mon_groups(parent_kn, name))
2873 		return rdtgroup_mkdir_mon(parent_kn, parent_kn->parent, name, mode);
2874 
2875 	return -EPERM;
2876 }
2877 
2878 static int rdtgroup_rmdir_mon(struct kernfs_node *kn, struct rdtgroup *rdtgrp,
2879 			      cpumask_var_t tmpmask)
2880 {
2881 	struct rdtgroup *prdtgrp = rdtgrp->mon.parent;
2882 	int cpu;
2883 
2884 	/* Give any tasks back to the parent group */
2885 	rdt_move_group_tasks(rdtgrp, prdtgrp, tmpmask);
2886 
2887 	/* Update per cpu rmid of the moved CPUs first */
2888 	for_each_cpu(cpu, &rdtgrp->cpu_mask)
2889 		per_cpu(pqr_state.default_rmid, cpu) = prdtgrp->mon.rmid;
2890 	/*
2891 	 * Update the MSR on moved CPUs and CPUs which have moved
2892 	 * task running on them.
2893 	 */
2894 	cpumask_or(tmpmask, tmpmask, &rdtgrp->cpu_mask);
2895 	update_closid_rmid(tmpmask, NULL);
2896 
2897 	rdtgrp->flags = RDT_DELETED;
2898 	free_rmid(rdtgrp->mon.rmid);
2899 
2900 	/*
2901 	 * Remove the rdtgrp from the parent ctrl_mon group's list
2902 	 */
2903 	WARN_ON(list_empty(&prdtgrp->mon.crdtgrp_list));
2904 	list_del(&rdtgrp->mon.crdtgrp_list);
2905 
2906 	/*
2907 	 * one extra hold on this, will drop when we kfree(rdtgrp)
2908 	 * in rdtgroup_kn_unlock()
2909 	 */
2910 	kernfs_get(kn);
2911 	kernfs_remove(rdtgrp->kn);
2912 
2913 	return 0;
2914 }
2915 
2916 static int rdtgroup_ctrl_remove(struct kernfs_node *kn,
2917 				struct rdtgroup *rdtgrp)
2918 {
2919 	rdtgrp->flags = RDT_DELETED;
2920 	list_del(&rdtgrp->rdtgroup_list);
2921 
2922 	/*
2923 	 * one extra hold on this, will drop when we kfree(rdtgrp)
2924 	 * in rdtgroup_kn_unlock()
2925 	 */
2926 	kernfs_get(kn);
2927 	kernfs_remove(rdtgrp->kn);
2928 	return 0;
2929 }
2930 
2931 static int rdtgroup_rmdir_ctrl(struct kernfs_node *kn, struct rdtgroup *rdtgrp,
2932 			       cpumask_var_t tmpmask)
2933 {
2934 	int cpu;
2935 
2936 	/* Give any tasks back to the default group */
2937 	rdt_move_group_tasks(rdtgrp, &rdtgroup_default, tmpmask);
2938 
2939 	/* Give any CPUs back to the default group */
2940 	cpumask_or(&rdtgroup_default.cpu_mask,
2941 		   &rdtgroup_default.cpu_mask, &rdtgrp->cpu_mask);
2942 
2943 	/* Update per cpu closid and rmid of the moved CPUs first */
2944 	for_each_cpu(cpu, &rdtgrp->cpu_mask) {
2945 		per_cpu(pqr_state.default_closid, cpu) = rdtgroup_default.closid;
2946 		per_cpu(pqr_state.default_rmid, cpu) = rdtgroup_default.mon.rmid;
2947 	}
2948 
2949 	/*
2950 	 * Update the MSR on moved CPUs and CPUs which have moved
2951 	 * task running on them.
2952 	 */
2953 	cpumask_or(tmpmask, tmpmask, &rdtgrp->cpu_mask);
2954 	update_closid_rmid(tmpmask, NULL);
2955 
2956 	closid_free(rdtgrp->closid);
2957 	free_rmid(rdtgrp->mon.rmid);
2958 
2959 	/*
2960 	 * Free all the child monitor group rmids.
2961 	 */
2962 	free_all_child_rdtgrp(rdtgrp);
2963 
2964 	rdtgroup_ctrl_remove(kn, rdtgrp);
2965 
2966 	return 0;
2967 }
2968 
2969 static int rdtgroup_rmdir(struct kernfs_node *kn)
2970 {
2971 	struct kernfs_node *parent_kn = kn->parent;
2972 	struct rdtgroup *rdtgrp;
2973 	cpumask_var_t tmpmask;
2974 	int ret = 0;
2975 
2976 	if (!zalloc_cpumask_var(&tmpmask, GFP_KERNEL))
2977 		return -ENOMEM;
2978 
2979 	rdtgrp = rdtgroup_kn_lock_live(kn);
2980 	if (!rdtgrp) {
2981 		ret = -EPERM;
2982 		goto out;
2983 	}
2984 
2985 	/*
2986 	 * If the rdtgroup is a ctrl_mon group and parent directory
2987 	 * is the root directory, remove the ctrl_mon group.
2988 	 *
2989 	 * If the rdtgroup is a mon group and parent directory
2990 	 * is a valid "mon_groups" directory, remove the mon group.
2991 	 */
2992 	if (rdtgrp->type == RDTCTRL_GROUP && parent_kn == rdtgroup_default.kn) {
2993 		if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP ||
2994 		    rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED) {
2995 			ret = rdtgroup_ctrl_remove(kn, rdtgrp);
2996 		} else {
2997 			ret = rdtgroup_rmdir_ctrl(kn, rdtgrp, tmpmask);
2998 		}
2999 	} else if (rdtgrp->type == RDTMON_GROUP &&
3000 		 is_mon_groups(parent_kn, kn->name)) {
3001 		ret = rdtgroup_rmdir_mon(kn, rdtgrp, tmpmask);
3002 	} else {
3003 		ret = -EPERM;
3004 	}
3005 
3006 out:
3007 	rdtgroup_kn_unlock(kn);
3008 	free_cpumask_var(tmpmask);
3009 	return ret;
3010 }
3011 
3012 static int rdtgroup_show_options(struct seq_file *seq, struct kernfs_root *kf)
3013 {
3014 	if (rdt_resources_all[RDT_RESOURCE_L3DATA].alloc_enabled)
3015 		seq_puts(seq, ",cdp");
3016 
3017 	if (rdt_resources_all[RDT_RESOURCE_L2DATA].alloc_enabled)
3018 		seq_puts(seq, ",cdpl2");
3019 
3020 	if (is_mba_sc(&rdt_resources_all[RDT_RESOURCE_MBA]))
3021 		seq_puts(seq, ",mba_MBps");
3022 
3023 	return 0;
3024 }
3025 
3026 static struct kernfs_syscall_ops rdtgroup_kf_syscall_ops = {
3027 	.mkdir		= rdtgroup_mkdir,
3028 	.rmdir		= rdtgroup_rmdir,
3029 	.show_options	= rdtgroup_show_options,
3030 };
3031 
3032 static int __init rdtgroup_setup_root(void)
3033 {
3034 	int ret;
3035 
3036 	rdt_root = kernfs_create_root(&rdtgroup_kf_syscall_ops,
3037 				      KERNFS_ROOT_CREATE_DEACTIVATED |
3038 				      KERNFS_ROOT_EXTRA_OPEN_PERM_CHECK,
3039 				      &rdtgroup_default);
3040 	if (IS_ERR(rdt_root))
3041 		return PTR_ERR(rdt_root);
3042 
3043 	mutex_lock(&rdtgroup_mutex);
3044 
3045 	rdtgroup_default.closid = 0;
3046 	rdtgroup_default.mon.rmid = 0;
3047 	rdtgroup_default.type = RDTCTRL_GROUP;
3048 	INIT_LIST_HEAD(&rdtgroup_default.mon.crdtgrp_list);
3049 
3050 	list_add(&rdtgroup_default.rdtgroup_list, &rdt_all_groups);
3051 
3052 	ret = rdtgroup_add_files(rdt_root->kn, RF_CTRL_BASE);
3053 	if (ret) {
3054 		kernfs_destroy_root(rdt_root);
3055 		goto out;
3056 	}
3057 
3058 	rdtgroup_default.kn = rdt_root->kn;
3059 	kernfs_activate(rdtgroup_default.kn);
3060 
3061 out:
3062 	mutex_unlock(&rdtgroup_mutex);
3063 
3064 	return ret;
3065 }
3066 
3067 /*
3068  * rdtgroup_init - rdtgroup initialization
3069  *
3070  * Setup resctrl file system including set up root, create mount point,
3071  * register rdtgroup filesystem, and initialize files under root directory.
3072  *
3073  * Return: 0 on success or -errno
3074  */
3075 int __init rdtgroup_init(void)
3076 {
3077 	int ret = 0;
3078 
3079 	seq_buf_init(&last_cmd_status, last_cmd_status_buf,
3080 		     sizeof(last_cmd_status_buf));
3081 
3082 	ret = rdtgroup_setup_root();
3083 	if (ret)
3084 		return ret;
3085 
3086 	ret = sysfs_create_mount_point(fs_kobj, "resctrl");
3087 	if (ret)
3088 		goto cleanup_root;
3089 
3090 	ret = register_filesystem(&rdt_fs_type);
3091 	if (ret)
3092 		goto cleanup_mountpoint;
3093 
3094 	/*
3095 	 * Adding the resctrl debugfs directory here may not be ideal since
3096 	 * it would let the resctrl debugfs directory appear on the debugfs
3097 	 * filesystem before the resctrl filesystem is mounted.
3098 	 * It may also be ok since that would enable debugging of RDT before
3099 	 * resctrl is mounted.
3100 	 * The reason why the debugfs directory is created here and not in
3101 	 * rdt_mount() is because rdt_mount() takes rdtgroup_mutex and
3102 	 * during the debugfs directory creation also &sb->s_type->i_mutex_key
3103 	 * (the lockdep class of inode->i_rwsem). Other filesystem
3104 	 * interactions (eg. SyS_getdents) have the lock ordering:
3105 	 * &sb->s_type->i_mutex_key --> &mm->mmap_sem
3106 	 * During mmap(), called with &mm->mmap_sem, the rdtgroup_mutex
3107 	 * is taken, thus creating dependency:
3108 	 * &mm->mmap_sem --> rdtgroup_mutex for the latter that can cause
3109 	 * issues considering the other two lock dependencies.
3110 	 * By creating the debugfs directory here we avoid a dependency
3111 	 * that may cause deadlock (even though file operations cannot
3112 	 * occur until the filesystem is mounted, but I do not know how to
3113 	 * tell lockdep that).
3114 	 */
3115 	debugfs_resctrl = debugfs_create_dir("resctrl", NULL);
3116 
3117 	return 0;
3118 
3119 cleanup_mountpoint:
3120 	sysfs_remove_mount_point(fs_kobj, "resctrl");
3121 cleanup_root:
3122 	kernfs_destroy_root(rdt_root);
3123 
3124 	return ret;
3125 }
3126 
3127 void __exit rdtgroup_exit(void)
3128 {
3129 	debugfs_remove_recursive(debugfs_resctrl);
3130 	unregister_filesystem(&rdt_fs_type);
3131 	sysfs_remove_mount_point(fs_kobj, "resctrl");
3132 	kernfs_destroy_root(rdt_root);
3133 }
3134