1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * User interface for Resource Allocation in Resource Director Technology(RDT)
4  *
5  * Copyright (C) 2016 Intel Corporation
6  *
7  * Author: Fenghua Yu <fenghua.yu@intel.com>
8  *
9  * More information about RDT be found in the Intel (R) x86 Architecture
10  * Software Developer Manual.
11  */
12 
13 #define pr_fmt(fmt)	KBUILD_MODNAME ": " fmt
14 
15 #include <linux/cacheinfo.h>
16 #include <linux/cpu.h>
17 #include <linux/debugfs.h>
18 #include <linux/fs.h>
19 #include <linux/fs_parser.h>
20 #include <linux/sysfs.h>
21 #include <linux/kernfs.h>
22 #include <linux/seq_buf.h>
23 #include <linux/seq_file.h>
24 #include <linux/sched/signal.h>
25 #include <linux/sched/task.h>
26 #include <linux/slab.h>
27 #include <linux/task_work.h>
28 #include <linux/user_namespace.h>
29 
30 #include <uapi/linux/magic.h>
31 
32 #include <asm/resctrl.h>
33 #include "internal.h"
34 
35 DEFINE_STATIC_KEY_FALSE(rdt_enable_key);
36 DEFINE_STATIC_KEY_FALSE(rdt_mon_enable_key);
37 DEFINE_STATIC_KEY_FALSE(rdt_alloc_enable_key);
38 static struct kernfs_root *rdt_root;
39 struct rdtgroup rdtgroup_default;
40 LIST_HEAD(rdt_all_groups);
41 
42 /* list of entries for the schemata file */
43 LIST_HEAD(resctrl_schema_all);
44 
45 /* Kernel fs node for "info" directory under root */
46 static struct kernfs_node *kn_info;
47 
48 /* Kernel fs node for "mon_groups" directory under root */
49 static struct kernfs_node *kn_mongrp;
50 
51 /* Kernel fs node for "mon_data" directory under root */
52 static struct kernfs_node *kn_mondata;
53 
54 static struct seq_buf last_cmd_status;
55 static char last_cmd_status_buf[512];
56 
57 struct dentry *debugfs_resctrl;
58 
59 void rdt_last_cmd_clear(void)
60 {
61 	lockdep_assert_held(&rdtgroup_mutex);
62 	seq_buf_clear(&last_cmd_status);
63 }
64 
65 void rdt_last_cmd_puts(const char *s)
66 {
67 	lockdep_assert_held(&rdtgroup_mutex);
68 	seq_buf_puts(&last_cmd_status, s);
69 }
70 
71 void rdt_last_cmd_printf(const char *fmt, ...)
72 {
73 	va_list ap;
74 
75 	va_start(ap, fmt);
76 	lockdep_assert_held(&rdtgroup_mutex);
77 	seq_buf_vprintf(&last_cmd_status, fmt, ap);
78 	va_end(ap);
79 }
80 
81 /*
82  * Trivial allocator for CLOSIDs. Since h/w only supports a small number,
83  * we can keep a bitmap of free CLOSIDs in a single integer.
84  *
85  * Using a global CLOSID across all resources has some advantages and
86  * some drawbacks:
87  * + We can simply set "current->closid" to assign a task to a resource
88  *   group.
89  * + Context switch code can avoid extra memory references deciding which
90  *   CLOSID to load into the PQR_ASSOC MSR
91  * - We give up some options in configuring resource groups across multi-socket
92  *   systems.
93  * - Our choices on how to configure each resource become progressively more
94  *   limited as the number of resources grows.
95  */
96 static int closid_free_map;
97 static int closid_free_map_len;
98 
99 int closids_supported(void)
100 {
101 	return closid_free_map_len;
102 }
103 
104 static void closid_init(void)
105 {
106 	struct resctrl_schema *s;
107 	u32 rdt_min_closid = 32;
108 
109 	/* Compute rdt_min_closid across all resources */
110 	list_for_each_entry(s, &resctrl_schema_all, list)
111 		rdt_min_closid = min(rdt_min_closid, s->num_closid);
112 
113 	closid_free_map = BIT_MASK(rdt_min_closid) - 1;
114 
115 	/* CLOSID 0 is always reserved for the default group */
116 	closid_free_map &= ~1;
117 	closid_free_map_len = rdt_min_closid;
118 }
119 
120 static int closid_alloc(void)
121 {
122 	u32 closid = ffs(closid_free_map);
123 
124 	if (closid == 0)
125 		return -ENOSPC;
126 	closid--;
127 	closid_free_map &= ~(1 << closid);
128 
129 	return closid;
130 }
131 
132 void closid_free(int closid)
133 {
134 	closid_free_map |= 1 << closid;
135 }
136 
137 /**
138  * closid_allocated - test if provided closid is in use
139  * @closid: closid to be tested
140  *
141  * Return: true if @closid is currently associated with a resource group,
142  * false if @closid is free
143  */
144 static bool closid_allocated(unsigned int closid)
145 {
146 	return (closid_free_map & (1 << closid)) == 0;
147 }
148 
149 /**
150  * rdtgroup_mode_by_closid - Return mode of resource group with closid
151  * @closid: closid if the resource group
152  *
153  * Each resource group is associated with a @closid. Here the mode
154  * of a resource group can be queried by searching for it using its closid.
155  *
156  * Return: mode as &enum rdtgrp_mode of resource group with closid @closid
157  */
158 enum rdtgrp_mode rdtgroup_mode_by_closid(int closid)
159 {
160 	struct rdtgroup *rdtgrp;
161 
162 	list_for_each_entry(rdtgrp, &rdt_all_groups, rdtgroup_list) {
163 		if (rdtgrp->closid == closid)
164 			return rdtgrp->mode;
165 	}
166 
167 	return RDT_NUM_MODES;
168 }
169 
170 static const char * const rdt_mode_str[] = {
171 	[RDT_MODE_SHAREABLE]		= "shareable",
172 	[RDT_MODE_EXCLUSIVE]		= "exclusive",
173 	[RDT_MODE_PSEUDO_LOCKSETUP]	= "pseudo-locksetup",
174 	[RDT_MODE_PSEUDO_LOCKED]	= "pseudo-locked",
175 };
176 
177 /**
178  * rdtgroup_mode_str - Return the string representation of mode
179  * @mode: the resource group mode as &enum rdtgroup_mode
180  *
181  * Return: string representation of valid mode, "unknown" otherwise
182  */
183 static const char *rdtgroup_mode_str(enum rdtgrp_mode mode)
184 {
185 	if (mode < RDT_MODE_SHAREABLE || mode >= RDT_NUM_MODES)
186 		return "unknown";
187 
188 	return rdt_mode_str[mode];
189 }
190 
191 /* set uid and gid of rdtgroup dirs and files to that of the creator */
192 static int rdtgroup_kn_set_ugid(struct kernfs_node *kn)
193 {
194 	struct iattr iattr = { .ia_valid = ATTR_UID | ATTR_GID,
195 				.ia_uid = current_fsuid(),
196 				.ia_gid = current_fsgid(), };
197 
198 	if (uid_eq(iattr.ia_uid, GLOBAL_ROOT_UID) &&
199 	    gid_eq(iattr.ia_gid, GLOBAL_ROOT_GID))
200 		return 0;
201 
202 	return kernfs_setattr(kn, &iattr);
203 }
204 
205 static int rdtgroup_add_file(struct kernfs_node *parent_kn, struct rftype *rft)
206 {
207 	struct kernfs_node *kn;
208 	int ret;
209 
210 	kn = __kernfs_create_file(parent_kn, rft->name, rft->mode,
211 				  GLOBAL_ROOT_UID, GLOBAL_ROOT_GID,
212 				  0, rft->kf_ops, rft, NULL, NULL);
213 	if (IS_ERR(kn))
214 		return PTR_ERR(kn);
215 
216 	ret = rdtgroup_kn_set_ugid(kn);
217 	if (ret) {
218 		kernfs_remove(kn);
219 		return ret;
220 	}
221 
222 	return 0;
223 }
224 
225 static int rdtgroup_seqfile_show(struct seq_file *m, void *arg)
226 {
227 	struct kernfs_open_file *of = m->private;
228 	struct rftype *rft = of->kn->priv;
229 
230 	if (rft->seq_show)
231 		return rft->seq_show(of, m, arg);
232 	return 0;
233 }
234 
235 static ssize_t rdtgroup_file_write(struct kernfs_open_file *of, char *buf,
236 				   size_t nbytes, loff_t off)
237 {
238 	struct rftype *rft = of->kn->priv;
239 
240 	if (rft->write)
241 		return rft->write(of, buf, nbytes, off);
242 
243 	return -EINVAL;
244 }
245 
246 static const struct kernfs_ops rdtgroup_kf_single_ops = {
247 	.atomic_write_len	= PAGE_SIZE,
248 	.write			= rdtgroup_file_write,
249 	.seq_show		= rdtgroup_seqfile_show,
250 };
251 
252 static const struct kernfs_ops kf_mondata_ops = {
253 	.atomic_write_len	= PAGE_SIZE,
254 	.seq_show		= rdtgroup_mondata_show,
255 };
256 
257 static bool is_cpu_list(struct kernfs_open_file *of)
258 {
259 	struct rftype *rft = of->kn->priv;
260 
261 	return rft->flags & RFTYPE_FLAGS_CPUS_LIST;
262 }
263 
264 static int rdtgroup_cpus_show(struct kernfs_open_file *of,
265 			      struct seq_file *s, void *v)
266 {
267 	struct rdtgroup *rdtgrp;
268 	struct cpumask *mask;
269 	int ret = 0;
270 
271 	rdtgrp = rdtgroup_kn_lock_live(of->kn);
272 
273 	if (rdtgrp) {
274 		if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED) {
275 			if (!rdtgrp->plr->d) {
276 				rdt_last_cmd_clear();
277 				rdt_last_cmd_puts("Cache domain offline\n");
278 				ret = -ENODEV;
279 			} else {
280 				mask = &rdtgrp->plr->d->cpu_mask;
281 				seq_printf(s, is_cpu_list(of) ?
282 					   "%*pbl\n" : "%*pb\n",
283 					   cpumask_pr_args(mask));
284 			}
285 		} else {
286 			seq_printf(s, is_cpu_list(of) ? "%*pbl\n" : "%*pb\n",
287 				   cpumask_pr_args(&rdtgrp->cpu_mask));
288 		}
289 	} else {
290 		ret = -ENOENT;
291 	}
292 	rdtgroup_kn_unlock(of->kn);
293 
294 	return ret;
295 }
296 
297 /*
298  * This is safe against resctrl_sched_in() called from __switch_to()
299  * because __switch_to() is executed with interrupts disabled. A local call
300  * from update_closid_rmid() is protected against __switch_to() because
301  * preemption is disabled.
302  */
303 static void update_cpu_closid_rmid(void *info)
304 {
305 	struct rdtgroup *r = info;
306 
307 	if (r) {
308 		this_cpu_write(pqr_state.default_closid, r->closid);
309 		this_cpu_write(pqr_state.default_rmid, r->mon.rmid);
310 	}
311 
312 	/*
313 	 * We cannot unconditionally write the MSR because the current
314 	 * executing task might have its own closid selected. Just reuse
315 	 * the context switch code.
316 	 */
317 	resctrl_sched_in();
318 }
319 
320 /*
321  * Update the PGR_ASSOC MSR on all cpus in @cpu_mask,
322  *
323  * Per task closids/rmids must have been set up before calling this function.
324  */
325 static void
326 update_closid_rmid(const struct cpumask *cpu_mask, struct rdtgroup *r)
327 {
328 	on_each_cpu_mask(cpu_mask, update_cpu_closid_rmid, r, 1);
329 }
330 
331 static int cpus_mon_write(struct rdtgroup *rdtgrp, cpumask_var_t newmask,
332 			  cpumask_var_t tmpmask)
333 {
334 	struct rdtgroup *prgrp = rdtgrp->mon.parent, *crgrp;
335 	struct list_head *head;
336 
337 	/* Check whether cpus belong to parent ctrl group */
338 	cpumask_andnot(tmpmask, newmask, &prgrp->cpu_mask);
339 	if (!cpumask_empty(tmpmask)) {
340 		rdt_last_cmd_puts("Can only add CPUs to mongroup that belong to parent\n");
341 		return -EINVAL;
342 	}
343 
344 	/* Check whether cpus are dropped from this group */
345 	cpumask_andnot(tmpmask, &rdtgrp->cpu_mask, newmask);
346 	if (!cpumask_empty(tmpmask)) {
347 		/* Give any dropped cpus to parent rdtgroup */
348 		cpumask_or(&prgrp->cpu_mask, &prgrp->cpu_mask, tmpmask);
349 		update_closid_rmid(tmpmask, prgrp);
350 	}
351 
352 	/*
353 	 * If we added cpus, remove them from previous group that owned them
354 	 * and update per-cpu rmid
355 	 */
356 	cpumask_andnot(tmpmask, newmask, &rdtgrp->cpu_mask);
357 	if (!cpumask_empty(tmpmask)) {
358 		head = &prgrp->mon.crdtgrp_list;
359 		list_for_each_entry(crgrp, head, mon.crdtgrp_list) {
360 			if (crgrp == rdtgrp)
361 				continue;
362 			cpumask_andnot(&crgrp->cpu_mask, &crgrp->cpu_mask,
363 				       tmpmask);
364 		}
365 		update_closid_rmid(tmpmask, rdtgrp);
366 	}
367 
368 	/* Done pushing/pulling - update this group with new mask */
369 	cpumask_copy(&rdtgrp->cpu_mask, newmask);
370 
371 	return 0;
372 }
373 
374 static void cpumask_rdtgrp_clear(struct rdtgroup *r, struct cpumask *m)
375 {
376 	struct rdtgroup *crgrp;
377 
378 	cpumask_andnot(&r->cpu_mask, &r->cpu_mask, m);
379 	/* update the child mon group masks as well*/
380 	list_for_each_entry(crgrp, &r->mon.crdtgrp_list, mon.crdtgrp_list)
381 		cpumask_and(&crgrp->cpu_mask, &r->cpu_mask, &crgrp->cpu_mask);
382 }
383 
384 static int cpus_ctrl_write(struct rdtgroup *rdtgrp, cpumask_var_t newmask,
385 			   cpumask_var_t tmpmask, cpumask_var_t tmpmask1)
386 {
387 	struct rdtgroup *r, *crgrp;
388 	struct list_head *head;
389 
390 	/* Check whether cpus are dropped from this group */
391 	cpumask_andnot(tmpmask, &rdtgrp->cpu_mask, newmask);
392 	if (!cpumask_empty(tmpmask)) {
393 		/* Can't drop from default group */
394 		if (rdtgrp == &rdtgroup_default) {
395 			rdt_last_cmd_puts("Can't drop CPUs from default group\n");
396 			return -EINVAL;
397 		}
398 
399 		/* Give any dropped cpus to rdtgroup_default */
400 		cpumask_or(&rdtgroup_default.cpu_mask,
401 			   &rdtgroup_default.cpu_mask, tmpmask);
402 		update_closid_rmid(tmpmask, &rdtgroup_default);
403 	}
404 
405 	/*
406 	 * If we added cpus, remove them from previous group and
407 	 * the prev group's child groups that owned them
408 	 * and update per-cpu closid/rmid.
409 	 */
410 	cpumask_andnot(tmpmask, newmask, &rdtgrp->cpu_mask);
411 	if (!cpumask_empty(tmpmask)) {
412 		list_for_each_entry(r, &rdt_all_groups, rdtgroup_list) {
413 			if (r == rdtgrp)
414 				continue;
415 			cpumask_and(tmpmask1, &r->cpu_mask, tmpmask);
416 			if (!cpumask_empty(tmpmask1))
417 				cpumask_rdtgrp_clear(r, tmpmask1);
418 		}
419 		update_closid_rmid(tmpmask, rdtgrp);
420 	}
421 
422 	/* Done pushing/pulling - update this group with new mask */
423 	cpumask_copy(&rdtgrp->cpu_mask, newmask);
424 
425 	/*
426 	 * Clear child mon group masks since there is a new parent mask
427 	 * now and update the rmid for the cpus the child lost.
428 	 */
429 	head = &rdtgrp->mon.crdtgrp_list;
430 	list_for_each_entry(crgrp, head, mon.crdtgrp_list) {
431 		cpumask_and(tmpmask, &rdtgrp->cpu_mask, &crgrp->cpu_mask);
432 		update_closid_rmid(tmpmask, rdtgrp);
433 		cpumask_clear(&crgrp->cpu_mask);
434 	}
435 
436 	return 0;
437 }
438 
439 static ssize_t rdtgroup_cpus_write(struct kernfs_open_file *of,
440 				   char *buf, size_t nbytes, loff_t off)
441 {
442 	cpumask_var_t tmpmask, newmask, tmpmask1;
443 	struct rdtgroup *rdtgrp;
444 	int ret;
445 
446 	if (!buf)
447 		return -EINVAL;
448 
449 	if (!zalloc_cpumask_var(&tmpmask, GFP_KERNEL))
450 		return -ENOMEM;
451 	if (!zalloc_cpumask_var(&newmask, GFP_KERNEL)) {
452 		free_cpumask_var(tmpmask);
453 		return -ENOMEM;
454 	}
455 	if (!zalloc_cpumask_var(&tmpmask1, GFP_KERNEL)) {
456 		free_cpumask_var(tmpmask);
457 		free_cpumask_var(newmask);
458 		return -ENOMEM;
459 	}
460 
461 	rdtgrp = rdtgroup_kn_lock_live(of->kn);
462 	if (!rdtgrp) {
463 		ret = -ENOENT;
464 		goto unlock;
465 	}
466 
467 	if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED ||
468 	    rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP) {
469 		ret = -EINVAL;
470 		rdt_last_cmd_puts("Pseudo-locking in progress\n");
471 		goto unlock;
472 	}
473 
474 	if (is_cpu_list(of))
475 		ret = cpulist_parse(buf, newmask);
476 	else
477 		ret = cpumask_parse(buf, newmask);
478 
479 	if (ret) {
480 		rdt_last_cmd_puts("Bad CPU list/mask\n");
481 		goto unlock;
482 	}
483 
484 	/* check that user didn't specify any offline cpus */
485 	cpumask_andnot(tmpmask, newmask, cpu_online_mask);
486 	if (!cpumask_empty(tmpmask)) {
487 		ret = -EINVAL;
488 		rdt_last_cmd_puts("Can only assign online CPUs\n");
489 		goto unlock;
490 	}
491 
492 	if (rdtgrp->type == RDTCTRL_GROUP)
493 		ret = cpus_ctrl_write(rdtgrp, newmask, tmpmask, tmpmask1);
494 	else if (rdtgrp->type == RDTMON_GROUP)
495 		ret = cpus_mon_write(rdtgrp, newmask, tmpmask);
496 	else
497 		ret = -EINVAL;
498 
499 unlock:
500 	rdtgroup_kn_unlock(of->kn);
501 	free_cpumask_var(tmpmask);
502 	free_cpumask_var(newmask);
503 	free_cpumask_var(tmpmask1);
504 
505 	return ret ?: nbytes;
506 }
507 
508 /**
509  * rdtgroup_remove - the helper to remove resource group safely
510  * @rdtgrp: resource group to remove
511  *
512  * On resource group creation via a mkdir, an extra kernfs_node reference is
513  * taken to ensure that the rdtgroup structure remains accessible for the
514  * rdtgroup_kn_unlock() calls where it is removed.
515  *
516  * Drop the extra reference here, then free the rdtgroup structure.
517  *
518  * Return: void
519  */
520 static void rdtgroup_remove(struct rdtgroup *rdtgrp)
521 {
522 	kernfs_put(rdtgrp->kn);
523 	kfree(rdtgrp);
524 }
525 
526 static void _update_task_closid_rmid(void *task)
527 {
528 	/*
529 	 * If the task is still current on this CPU, update PQR_ASSOC MSR.
530 	 * Otherwise, the MSR is updated when the task is scheduled in.
531 	 */
532 	if (task == current)
533 		resctrl_sched_in();
534 }
535 
536 static void update_task_closid_rmid(struct task_struct *t)
537 {
538 	if (IS_ENABLED(CONFIG_SMP) && task_curr(t))
539 		smp_call_function_single(task_cpu(t), _update_task_closid_rmid, t, 1);
540 	else
541 		_update_task_closid_rmid(t);
542 }
543 
544 static int __rdtgroup_move_task(struct task_struct *tsk,
545 				struct rdtgroup *rdtgrp)
546 {
547 	/* If the task is already in rdtgrp, no need to move the task. */
548 	if ((rdtgrp->type == RDTCTRL_GROUP && tsk->closid == rdtgrp->closid &&
549 	     tsk->rmid == rdtgrp->mon.rmid) ||
550 	    (rdtgrp->type == RDTMON_GROUP && tsk->rmid == rdtgrp->mon.rmid &&
551 	     tsk->closid == rdtgrp->mon.parent->closid))
552 		return 0;
553 
554 	/*
555 	 * Set the task's closid/rmid before the PQR_ASSOC MSR can be
556 	 * updated by them.
557 	 *
558 	 * For ctrl_mon groups, move both closid and rmid.
559 	 * For monitor groups, can move the tasks only from
560 	 * their parent CTRL group.
561 	 */
562 
563 	if (rdtgrp->type == RDTCTRL_GROUP) {
564 		WRITE_ONCE(tsk->closid, rdtgrp->closid);
565 		WRITE_ONCE(tsk->rmid, rdtgrp->mon.rmid);
566 	} else if (rdtgrp->type == RDTMON_GROUP) {
567 		if (rdtgrp->mon.parent->closid == tsk->closid) {
568 			WRITE_ONCE(tsk->rmid, rdtgrp->mon.rmid);
569 		} else {
570 			rdt_last_cmd_puts("Can't move task to different control group\n");
571 			return -EINVAL;
572 		}
573 	}
574 
575 	/*
576 	 * Ensure the task's closid and rmid are written before determining if
577 	 * the task is current that will decide if it will be interrupted.
578 	 * This pairs with the full barrier between the rq->curr update and
579 	 * resctrl_sched_in() during context switch.
580 	 */
581 	smp_mb();
582 
583 	/*
584 	 * By now, the task's closid and rmid are set. If the task is current
585 	 * on a CPU, the PQR_ASSOC MSR needs to be updated to make the resource
586 	 * group go into effect. If the task is not current, the MSR will be
587 	 * updated when the task is scheduled in.
588 	 */
589 	update_task_closid_rmid(tsk);
590 
591 	return 0;
592 }
593 
594 static bool is_closid_match(struct task_struct *t, struct rdtgroup *r)
595 {
596 	return (rdt_alloc_capable &&
597 	       (r->type == RDTCTRL_GROUP) && (t->closid == r->closid));
598 }
599 
600 static bool is_rmid_match(struct task_struct *t, struct rdtgroup *r)
601 {
602 	return (rdt_mon_capable &&
603 	       (r->type == RDTMON_GROUP) && (t->rmid == r->mon.rmid));
604 }
605 
606 /**
607  * rdtgroup_tasks_assigned - Test if tasks have been assigned to resource group
608  * @r: Resource group
609  *
610  * Return: 1 if tasks have been assigned to @r, 0 otherwise
611  */
612 int rdtgroup_tasks_assigned(struct rdtgroup *r)
613 {
614 	struct task_struct *p, *t;
615 	int ret = 0;
616 
617 	lockdep_assert_held(&rdtgroup_mutex);
618 
619 	rcu_read_lock();
620 	for_each_process_thread(p, t) {
621 		if (is_closid_match(t, r) || is_rmid_match(t, r)) {
622 			ret = 1;
623 			break;
624 		}
625 	}
626 	rcu_read_unlock();
627 
628 	return ret;
629 }
630 
631 static int rdtgroup_task_write_permission(struct task_struct *task,
632 					  struct kernfs_open_file *of)
633 {
634 	const struct cred *tcred = get_task_cred(task);
635 	const struct cred *cred = current_cred();
636 	int ret = 0;
637 
638 	/*
639 	 * Even if we're attaching all tasks in the thread group, we only
640 	 * need to check permissions on one of them.
641 	 */
642 	if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) &&
643 	    !uid_eq(cred->euid, tcred->uid) &&
644 	    !uid_eq(cred->euid, tcred->suid)) {
645 		rdt_last_cmd_printf("No permission to move task %d\n", task->pid);
646 		ret = -EPERM;
647 	}
648 
649 	put_cred(tcred);
650 	return ret;
651 }
652 
653 static int rdtgroup_move_task(pid_t pid, struct rdtgroup *rdtgrp,
654 			      struct kernfs_open_file *of)
655 {
656 	struct task_struct *tsk;
657 	int ret;
658 
659 	rcu_read_lock();
660 	if (pid) {
661 		tsk = find_task_by_vpid(pid);
662 		if (!tsk) {
663 			rcu_read_unlock();
664 			rdt_last_cmd_printf("No task %d\n", pid);
665 			return -ESRCH;
666 		}
667 	} else {
668 		tsk = current;
669 	}
670 
671 	get_task_struct(tsk);
672 	rcu_read_unlock();
673 
674 	ret = rdtgroup_task_write_permission(tsk, of);
675 	if (!ret)
676 		ret = __rdtgroup_move_task(tsk, rdtgrp);
677 
678 	put_task_struct(tsk);
679 	return ret;
680 }
681 
682 static ssize_t rdtgroup_tasks_write(struct kernfs_open_file *of,
683 				    char *buf, size_t nbytes, loff_t off)
684 {
685 	struct rdtgroup *rdtgrp;
686 	int ret = 0;
687 	pid_t pid;
688 
689 	if (kstrtoint(strstrip(buf), 0, &pid) || pid < 0)
690 		return -EINVAL;
691 	rdtgrp = rdtgroup_kn_lock_live(of->kn);
692 	if (!rdtgrp) {
693 		rdtgroup_kn_unlock(of->kn);
694 		return -ENOENT;
695 	}
696 	rdt_last_cmd_clear();
697 
698 	if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED ||
699 	    rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP) {
700 		ret = -EINVAL;
701 		rdt_last_cmd_puts("Pseudo-locking in progress\n");
702 		goto unlock;
703 	}
704 
705 	ret = rdtgroup_move_task(pid, rdtgrp, of);
706 
707 unlock:
708 	rdtgroup_kn_unlock(of->kn);
709 
710 	return ret ?: nbytes;
711 }
712 
713 static void show_rdt_tasks(struct rdtgroup *r, struct seq_file *s)
714 {
715 	struct task_struct *p, *t;
716 
717 	rcu_read_lock();
718 	for_each_process_thread(p, t) {
719 		if (is_closid_match(t, r) || is_rmid_match(t, r))
720 			seq_printf(s, "%d\n", t->pid);
721 	}
722 	rcu_read_unlock();
723 }
724 
725 static int rdtgroup_tasks_show(struct kernfs_open_file *of,
726 			       struct seq_file *s, void *v)
727 {
728 	struct rdtgroup *rdtgrp;
729 	int ret = 0;
730 
731 	rdtgrp = rdtgroup_kn_lock_live(of->kn);
732 	if (rdtgrp)
733 		show_rdt_tasks(rdtgrp, s);
734 	else
735 		ret = -ENOENT;
736 	rdtgroup_kn_unlock(of->kn);
737 
738 	return ret;
739 }
740 
741 #ifdef CONFIG_PROC_CPU_RESCTRL
742 
743 /*
744  * A task can only be part of one resctrl control group and of one monitor
745  * group which is associated to that control group.
746  *
747  * 1)   res:
748  *      mon:
749  *
750  *    resctrl is not available.
751  *
752  * 2)   res:/
753  *      mon:
754  *
755  *    Task is part of the root resctrl control group, and it is not associated
756  *    to any monitor group.
757  *
758  * 3)  res:/
759  *     mon:mon0
760  *
761  *    Task is part of the root resctrl control group and monitor group mon0.
762  *
763  * 4)  res:group0
764  *     mon:
765  *
766  *    Task is part of resctrl control group group0, and it is not associated
767  *    to any monitor group.
768  *
769  * 5) res:group0
770  *    mon:mon1
771  *
772  *    Task is part of resctrl control group group0 and monitor group mon1.
773  */
774 int proc_resctrl_show(struct seq_file *s, struct pid_namespace *ns,
775 		      struct pid *pid, struct task_struct *tsk)
776 {
777 	struct rdtgroup *rdtg;
778 	int ret = 0;
779 
780 	mutex_lock(&rdtgroup_mutex);
781 
782 	/* Return empty if resctrl has not been mounted. */
783 	if (!static_branch_unlikely(&rdt_enable_key)) {
784 		seq_puts(s, "res:\nmon:\n");
785 		goto unlock;
786 	}
787 
788 	list_for_each_entry(rdtg, &rdt_all_groups, rdtgroup_list) {
789 		struct rdtgroup *crg;
790 
791 		/*
792 		 * Task information is only relevant for shareable
793 		 * and exclusive groups.
794 		 */
795 		if (rdtg->mode != RDT_MODE_SHAREABLE &&
796 		    rdtg->mode != RDT_MODE_EXCLUSIVE)
797 			continue;
798 
799 		if (rdtg->closid != tsk->closid)
800 			continue;
801 
802 		seq_printf(s, "res:%s%s\n", (rdtg == &rdtgroup_default) ? "/" : "",
803 			   rdtg->kn->name);
804 		seq_puts(s, "mon:");
805 		list_for_each_entry(crg, &rdtg->mon.crdtgrp_list,
806 				    mon.crdtgrp_list) {
807 			if (tsk->rmid != crg->mon.rmid)
808 				continue;
809 			seq_printf(s, "%s", crg->kn->name);
810 			break;
811 		}
812 		seq_putc(s, '\n');
813 		goto unlock;
814 	}
815 	/*
816 	 * The above search should succeed. Otherwise return
817 	 * with an error.
818 	 */
819 	ret = -ENOENT;
820 unlock:
821 	mutex_unlock(&rdtgroup_mutex);
822 
823 	return ret;
824 }
825 #endif
826 
827 static int rdt_last_cmd_status_show(struct kernfs_open_file *of,
828 				    struct seq_file *seq, void *v)
829 {
830 	int len;
831 
832 	mutex_lock(&rdtgroup_mutex);
833 	len = seq_buf_used(&last_cmd_status);
834 	if (len)
835 		seq_printf(seq, "%.*s", len, last_cmd_status_buf);
836 	else
837 		seq_puts(seq, "ok\n");
838 	mutex_unlock(&rdtgroup_mutex);
839 	return 0;
840 }
841 
842 static int rdt_num_closids_show(struct kernfs_open_file *of,
843 				struct seq_file *seq, void *v)
844 {
845 	struct resctrl_schema *s = of->kn->parent->priv;
846 
847 	seq_printf(seq, "%u\n", s->num_closid);
848 	return 0;
849 }
850 
851 static int rdt_default_ctrl_show(struct kernfs_open_file *of,
852 			     struct seq_file *seq, void *v)
853 {
854 	struct resctrl_schema *s = of->kn->parent->priv;
855 	struct rdt_resource *r = s->res;
856 
857 	seq_printf(seq, "%x\n", r->default_ctrl);
858 	return 0;
859 }
860 
861 static int rdt_min_cbm_bits_show(struct kernfs_open_file *of,
862 			     struct seq_file *seq, void *v)
863 {
864 	struct resctrl_schema *s = of->kn->parent->priv;
865 	struct rdt_resource *r = s->res;
866 
867 	seq_printf(seq, "%u\n", r->cache.min_cbm_bits);
868 	return 0;
869 }
870 
871 static int rdt_shareable_bits_show(struct kernfs_open_file *of,
872 				   struct seq_file *seq, void *v)
873 {
874 	struct resctrl_schema *s = of->kn->parent->priv;
875 	struct rdt_resource *r = s->res;
876 
877 	seq_printf(seq, "%x\n", r->cache.shareable_bits);
878 	return 0;
879 }
880 
881 /**
882  * rdt_bit_usage_show - Display current usage of resources
883  *
884  * A domain is a shared resource that can now be allocated differently. Here
885  * we display the current regions of the domain as an annotated bitmask.
886  * For each domain of this resource its allocation bitmask
887  * is annotated as below to indicate the current usage of the corresponding bit:
888  *   0 - currently unused
889  *   X - currently available for sharing and used by software and hardware
890  *   H - currently used by hardware only but available for software use
891  *   S - currently used and shareable by software only
892  *   E - currently used exclusively by one resource group
893  *   P - currently pseudo-locked by one resource group
894  */
895 static int rdt_bit_usage_show(struct kernfs_open_file *of,
896 			      struct seq_file *seq, void *v)
897 {
898 	struct resctrl_schema *s = of->kn->parent->priv;
899 	/*
900 	 * Use unsigned long even though only 32 bits are used to ensure
901 	 * test_bit() is used safely.
902 	 */
903 	unsigned long sw_shareable = 0, hw_shareable = 0;
904 	unsigned long exclusive = 0, pseudo_locked = 0;
905 	struct rdt_resource *r = s->res;
906 	struct rdt_domain *dom;
907 	int i, hwb, swb, excl, psl;
908 	enum rdtgrp_mode mode;
909 	bool sep = false;
910 	u32 ctrl_val;
911 
912 	mutex_lock(&rdtgroup_mutex);
913 	hw_shareable = r->cache.shareable_bits;
914 	list_for_each_entry(dom, &r->domains, list) {
915 		if (sep)
916 			seq_putc(seq, ';');
917 		sw_shareable = 0;
918 		exclusive = 0;
919 		seq_printf(seq, "%d=", dom->id);
920 		for (i = 0; i < closids_supported(); i++) {
921 			if (!closid_allocated(i))
922 				continue;
923 			ctrl_val = resctrl_arch_get_config(r, dom, i,
924 							   s->conf_type);
925 			mode = rdtgroup_mode_by_closid(i);
926 			switch (mode) {
927 			case RDT_MODE_SHAREABLE:
928 				sw_shareable |= ctrl_val;
929 				break;
930 			case RDT_MODE_EXCLUSIVE:
931 				exclusive |= ctrl_val;
932 				break;
933 			case RDT_MODE_PSEUDO_LOCKSETUP:
934 			/*
935 			 * RDT_MODE_PSEUDO_LOCKSETUP is possible
936 			 * here but not included since the CBM
937 			 * associated with this CLOSID in this mode
938 			 * is not initialized and no task or cpu can be
939 			 * assigned this CLOSID.
940 			 */
941 				break;
942 			case RDT_MODE_PSEUDO_LOCKED:
943 			case RDT_NUM_MODES:
944 				WARN(1,
945 				     "invalid mode for closid %d\n", i);
946 				break;
947 			}
948 		}
949 		for (i = r->cache.cbm_len - 1; i >= 0; i--) {
950 			pseudo_locked = dom->plr ? dom->plr->cbm : 0;
951 			hwb = test_bit(i, &hw_shareable);
952 			swb = test_bit(i, &sw_shareable);
953 			excl = test_bit(i, &exclusive);
954 			psl = test_bit(i, &pseudo_locked);
955 			if (hwb && swb)
956 				seq_putc(seq, 'X');
957 			else if (hwb && !swb)
958 				seq_putc(seq, 'H');
959 			else if (!hwb && swb)
960 				seq_putc(seq, 'S');
961 			else if (excl)
962 				seq_putc(seq, 'E');
963 			else if (psl)
964 				seq_putc(seq, 'P');
965 			else /* Unused bits remain */
966 				seq_putc(seq, '0');
967 		}
968 		sep = true;
969 	}
970 	seq_putc(seq, '\n');
971 	mutex_unlock(&rdtgroup_mutex);
972 	return 0;
973 }
974 
975 static int rdt_min_bw_show(struct kernfs_open_file *of,
976 			     struct seq_file *seq, void *v)
977 {
978 	struct resctrl_schema *s = of->kn->parent->priv;
979 	struct rdt_resource *r = s->res;
980 
981 	seq_printf(seq, "%u\n", r->membw.min_bw);
982 	return 0;
983 }
984 
985 static int rdt_num_rmids_show(struct kernfs_open_file *of,
986 			      struct seq_file *seq, void *v)
987 {
988 	struct rdt_resource *r = of->kn->parent->priv;
989 
990 	seq_printf(seq, "%d\n", r->num_rmid);
991 
992 	return 0;
993 }
994 
995 static int rdt_mon_features_show(struct kernfs_open_file *of,
996 				 struct seq_file *seq, void *v)
997 {
998 	struct rdt_resource *r = of->kn->parent->priv;
999 	struct mon_evt *mevt;
1000 
1001 	list_for_each_entry(mevt, &r->evt_list, list) {
1002 		seq_printf(seq, "%s\n", mevt->name);
1003 		if (mevt->configurable)
1004 			seq_printf(seq, "%s_config\n", mevt->name);
1005 	}
1006 
1007 	return 0;
1008 }
1009 
1010 static int rdt_bw_gran_show(struct kernfs_open_file *of,
1011 			     struct seq_file *seq, void *v)
1012 {
1013 	struct resctrl_schema *s = of->kn->parent->priv;
1014 	struct rdt_resource *r = s->res;
1015 
1016 	seq_printf(seq, "%u\n", r->membw.bw_gran);
1017 	return 0;
1018 }
1019 
1020 static int rdt_delay_linear_show(struct kernfs_open_file *of,
1021 			     struct seq_file *seq, void *v)
1022 {
1023 	struct resctrl_schema *s = of->kn->parent->priv;
1024 	struct rdt_resource *r = s->res;
1025 
1026 	seq_printf(seq, "%u\n", r->membw.delay_linear);
1027 	return 0;
1028 }
1029 
1030 static int max_threshold_occ_show(struct kernfs_open_file *of,
1031 				  struct seq_file *seq, void *v)
1032 {
1033 	seq_printf(seq, "%u\n", resctrl_rmid_realloc_threshold);
1034 
1035 	return 0;
1036 }
1037 
1038 static int rdt_thread_throttle_mode_show(struct kernfs_open_file *of,
1039 					 struct seq_file *seq, void *v)
1040 {
1041 	struct resctrl_schema *s = of->kn->parent->priv;
1042 	struct rdt_resource *r = s->res;
1043 
1044 	if (r->membw.throttle_mode == THREAD_THROTTLE_PER_THREAD)
1045 		seq_puts(seq, "per-thread\n");
1046 	else
1047 		seq_puts(seq, "max\n");
1048 
1049 	return 0;
1050 }
1051 
1052 static ssize_t max_threshold_occ_write(struct kernfs_open_file *of,
1053 				       char *buf, size_t nbytes, loff_t off)
1054 {
1055 	unsigned int bytes;
1056 	int ret;
1057 
1058 	ret = kstrtouint(buf, 0, &bytes);
1059 	if (ret)
1060 		return ret;
1061 
1062 	if (bytes > resctrl_rmid_realloc_limit)
1063 		return -EINVAL;
1064 
1065 	resctrl_rmid_realloc_threshold = resctrl_arch_round_mon_val(bytes);
1066 
1067 	return nbytes;
1068 }
1069 
1070 /*
1071  * rdtgroup_mode_show - Display mode of this resource group
1072  */
1073 static int rdtgroup_mode_show(struct kernfs_open_file *of,
1074 			      struct seq_file *s, void *v)
1075 {
1076 	struct rdtgroup *rdtgrp;
1077 
1078 	rdtgrp = rdtgroup_kn_lock_live(of->kn);
1079 	if (!rdtgrp) {
1080 		rdtgroup_kn_unlock(of->kn);
1081 		return -ENOENT;
1082 	}
1083 
1084 	seq_printf(s, "%s\n", rdtgroup_mode_str(rdtgrp->mode));
1085 
1086 	rdtgroup_kn_unlock(of->kn);
1087 	return 0;
1088 }
1089 
1090 static enum resctrl_conf_type resctrl_peer_type(enum resctrl_conf_type my_type)
1091 {
1092 	switch (my_type) {
1093 	case CDP_CODE:
1094 		return CDP_DATA;
1095 	case CDP_DATA:
1096 		return CDP_CODE;
1097 	default:
1098 	case CDP_NONE:
1099 		return CDP_NONE;
1100 	}
1101 }
1102 
1103 /**
1104  * __rdtgroup_cbm_overlaps - Does CBM for intended closid overlap with other
1105  * @r: Resource to which domain instance @d belongs.
1106  * @d: The domain instance for which @closid is being tested.
1107  * @cbm: Capacity bitmask being tested.
1108  * @closid: Intended closid for @cbm.
1109  * @exclusive: Only check if overlaps with exclusive resource groups
1110  *
1111  * Checks if provided @cbm intended to be used for @closid on domain
1112  * @d overlaps with any other closids or other hardware usage associated
1113  * with this domain. If @exclusive is true then only overlaps with
1114  * resource groups in exclusive mode will be considered. If @exclusive
1115  * is false then overlaps with any resource group or hardware entities
1116  * will be considered.
1117  *
1118  * @cbm is unsigned long, even if only 32 bits are used, to make the
1119  * bitmap functions work correctly.
1120  *
1121  * Return: false if CBM does not overlap, true if it does.
1122  */
1123 static bool __rdtgroup_cbm_overlaps(struct rdt_resource *r, struct rdt_domain *d,
1124 				    unsigned long cbm, int closid,
1125 				    enum resctrl_conf_type type, bool exclusive)
1126 {
1127 	enum rdtgrp_mode mode;
1128 	unsigned long ctrl_b;
1129 	int i;
1130 
1131 	/* Check for any overlap with regions used by hardware directly */
1132 	if (!exclusive) {
1133 		ctrl_b = r->cache.shareable_bits;
1134 		if (bitmap_intersects(&cbm, &ctrl_b, r->cache.cbm_len))
1135 			return true;
1136 	}
1137 
1138 	/* Check for overlap with other resource groups */
1139 	for (i = 0; i < closids_supported(); i++) {
1140 		ctrl_b = resctrl_arch_get_config(r, d, i, type);
1141 		mode = rdtgroup_mode_by_closid(i);
1142 		if (closid_allocated(i) && i != closid &&
1143 		    mode != RDT_MODE_PSEUDO_LOCKSETUP) {
1144 			if (bitmap_intersects(&cbm, &ctrl_b, r->cache.cbm_len)) {
1145 				if (exclusive) {
1146 					if (mode == RDT_MODE_EXCLUSIVE)
1147 						return true;
1148 					continue;
1149 				}
1150 				return true;
1151 			}
1152 		}
1153 	}
1154 
1155 	return false;
1156 }
1157 
1158 /**
1159  * rdtgroup_cbm_overlaps - Does CBM overlap with other use of hardware
1160  * @s: Schema for the resource to which domain instance @d belongs.
1161  * @d: The domain instance for which @closid is being tested.
1162  * @cbm: Capacity bitmask being tested.
1163  * @closid: Intended closid for @cbm.
1164  * @exclusive: Only check if overlaps with exclusive resource groups
1165  *
1166  * Resources that can be allocated using a CBM can use the CBM to control
1167  * the overlap of these allocations. rdtgroup_cmb_overlaps() is the test
1168  * for overlap. Overlap test is not limited to the specific resource for
1169  * which the CBM is intended though - when dealing with CDP resources that
1170  * share the underlying hardware the overlap check should be performed on
1171  * the CDP resource sharing the hardware also.
1172  *
1173  * Refer to description of __rdtgroup_cbm_overlaps() for the details of the
1174  * overlap test.
1175  *
1176  * Return: true if CBM overlap detected, false if there is no overlap
1177  */
1178 bool rdtgroup_cbm_overlaps(struct resctrl_schema *s, struct rdt_domain *d,
1179 			   unsigned long cbm, int closid, bool exclusive)
1180 {
1181 	enum resctrl_conf_type peer_type = resctrl_peer_type(s->conf_type);
1182 	struct rdt_resource *r = s->res;
1183 
1184 	if (__rdtgroup_cbm_overlaps(r, d, cbm, closid, s->conf_type,
1185 				    exclusive))
1186 		return true;
1187 
1188 	if (!resctrl_arch_get_cdp_enabled(r->rid))
1189 		return false;
1190 	return  __rdtgroup_cbm_overlaps(r, d, cbm, closid, peer_type, exclusive);
1191 }
1192 
1193 /**
1194  * rdtgroup_mode_test_exclusive - Test if this resource group can be exclusive
1195  *
1196  * An exclusive resource group implies that there should be no sharing of
1197  * its allocated resources. At the time this group is considered to be
1198  * exclusive this test can determine if its current schemata supports this
1199  * setting by testing for overlap with all other resource groups.
1200  *
1201  * Return: true if resource group can be exclusive, false if there is overlap
1202  * with allocations of other resource groups and thus this resource group
1203  * cannot be exclusive.
1204  */
1205 static bool rdtgroup_mode_test_exclusive(struct rdtgroup *rdtgrp)
1206 {
1207 	int closid = rdtgrp->closid;
1208 	struct resctrl_schema *s;
1209 	struct rdt_resource *r;
1210 	bool has_cache = false;
1211 	struct rdt_domain *d;
1212 	u32 ctrl;
1213 
1214 	list_for_each_entry(s, &resctrl_schema_all, list) {
1215 		r = s->res;
1216 		if (r->rid == RDT_RESOURCE_MBA || r->rid == RDT_RESOURCE_SMBA)
1217 			continue;
1218 		has_cache = true;
1219 		list_for_each_entry(d, &r->domains, list) {
1220 			ctrl = resctrl_arch_get_config(r, d, closid,
1221 						       s->conf_type);
1222 			if (rdtgroup_cbm_overlaps(s, d, ctrl, closid, false)) {
1223 				rdt_last_cmd_puts("Schemata overlaps\n");
1224 				return false;
1225 			}
1226 		}
1227 	}
1228 
1229 	if (!has_cache) {
1230 		rdt_last_cmd_puts("Cannot be exclusive without CAT/CDP\n");
1231 		return false;
1232 	}
1233 
1234 	return true;
1235 }
1236 
1237 /**
1238  * rdtgroup_mode_write - Modify the resource group's mode
1239  *
1240  */
1241 static ssize_t rdtgroup_mode_write(struct kernfs_open_file *of,
1242 				   char *buf, size_t nbytes, loff_t off)
1243 {
1244 	struct rdtgroup *rdtgrp;
1245 	enum rdtgrp_mode mode;
1246 	int ret = 0;
1247 
1248 	/* Valid input requires a trailing newline */
1249 	if (nbytes == 0 || buf[nbytes - 1] != '\n')
1250 		return -EINVAL;
1251 	buf[nbytes - 1] = '\0';
1252 
1253 	rdtgrp = rdtgroup_kn_lock_live(of->kn);
1254 	if (!rdtgrp) {
1255 		rdtgroup_kn_unlock(of->kn);
1256 		return -ENOENT;
1257 	}
1258 
1259 	rdt_last_cmd_clear();
1260 
1261 	mode = rdtgrp->mode;
1262 
1263 	if ((!strcmp(buf, "shareable") && mode == RDT_MODE_SHAREABLE) ||
1264 	    (!strcmp(buf, "exclusive") && mode == RDT_MODE_EXCLUSIVE) ||
1265 	    (!strcmp(buf, "pseudo-locksetup") &&
1266 	     mode == RDT_MODE_PSEUDO_LOCKSETUP) ||
1267 	    (!strcmp(buf, "pseudo-locked") && mode == RDT_MODE_PSEUDO_LOCKED))
1268 		goto out;
1269 
1270 	if (mode == RDT_MODE_PSEUDO_LOCKED) {
1271 		rdt_last_cmd_puts("Cannot change pseudo-locked group\n");
1272 		ret = -EINVAL;
1273 		goto out;
1274 	}
1275 
1276 	if (!strcmp(buf, "shareable")) {
1277 		if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP) {
1278 			ret = rdtgroup_locksetup_exit(rdtgrp);
1279 			if (ret)
1280 				goto out;
1281 		}
1282 		rdtgrp->mode = RDT_MODE_SHAREABLE;
1283 	} else if (!strcmp(buf, "exclusive")) {
1284 		if (!rdtgroup_mode_test_exclusive(rdtgrp)) {
1285 			ret = -EINVAL;
1286 			goto out;
1287 		}
1288 		if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP) {
1289 			ret = rdtgroup_locksetup_exit(rdtgrp);
1290 			if (ret)
1291 				goto out;
1292 		}
1293 		rdtgrp->mode = RDT_MODE_EXCLUSIVE;
1294 	} else if (!strcmp(buf, "pseudo-locksetup")) {
1295 		ret = rdtgroup_locksetup_enter(rdtgrp);
1296 		if (ret)
1297 			goto out;
1298 		rdtgrp->mode = RDT_MODE_PSEUDO_LOCKSETUP;
1299 	} else {
1300 		rdt_last_cmd_puts("Unknown or unsupported mode\n");
1301 		ret = -EINVAL;
1302 	}
1303 
1304 out:
1305 	rdtgroup_kn_unlock(of->kn);
1306 	return ret ?: nbytes;
1307 }
1308 
1309 /**
1310  * rdtgroup_cbm_to_size - Translate CBM to size in bytes
1311  * @r: RDT resource to which @d belongs.
1312  * @d: RDT domain instance.
1313  * @cbm: bitmask for which the size should be computed.
1314  *
1315  * The bitmask provided associated with the RDT domain instance @d will be
1316  * translated into how many bytes it represents. The size in bytes is
1317  * computed by first dividing the total cache size by the CBM length to
1318  * determine how many bytes each bit in the bitmask represents. The result
1319  * is multiplied with the number of bits set in the bitmask.
1320  *
1321  * @cbm is unsigned long, even if only 32 bits are used to make the
1322  * bitmap functions work correctly.
1323  */
1324 unsigned int rdtgroup_cbm_to_size(struct rdt_resource *r,
1325 				  struct rdt_domain *d, unsigned long cbm)
1326 {
1327 	struct cpu_cacheinfo *ci;
1328 	unsigned int size = 0;
1329 	int num_b, i;
1330 
1331 	num_b = bitmap_weight(&cbm, r->cache.cbm_len);
1332 	ci = get_cpu_cacheinfo(cpumask_any(&d->cpu_mask));
1333 	for (i = 0; i < ci->num_leaves; i++) {
1334 		if (ci->info_list[i].level == r->cache_level) {
1335 			size = ci->info_list[i].size / r->cache.cbm_len * num_b;
1336 			break;
1337 		}
1338 	}
1339 
1340 	return size;
1341 }
1342 
1343 /**
1344  * rdtgroup_size_show - Display size in bytes of allocated regions
1345  *
1346  * The "size" file mirrors the layout of the "schemata" file, printing the
1347  * size in bytes of each region instead of the capacity bitmask.
1348  *
1349  */
1350 static int rdtgroup_size_show(struct kernfs_open_file *of,
1351 			      struct seq_file *s, void *v)
1352 {
1353 	struct resctrl_schema *schema;
1354 	enum resctrl_conf_type type;
1355 	struct rdtgroup *rdtgrp;
1356 	struct rdt_resource *r;
1357 	struct rdt_domain *d;
1358 	unsigned int size;
1359 	int ret = 0;
1360 	u32 closid;
1361 	bool sep;
1362 	u32 ctrl;
1363 
1364 	rdtgrp = rdtgroup_kn_lock_live(of->kn);
1365 	if (!rdtgrp) {
1366 		rdtgroup_kn_unlock(of->kn);
1367 		return -ENOENT;
1368 	}
1369 
1370 	if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED) {
1371 		if (!rdtgrp->plr->d) {
1372 			rdt_last_cmd_clear();
1373 			rdt_last_cmd_puts("Cache domain offline\n");
1374 			ret = -ENODEV;
1375 		} else {
1376 			seq_printf(s, "%*s:", max_name_width,
1377 				   rdtgrp->plr->s->name);
1378 			size = rdtgroup_cbm_to_size(rdtgrp->plr->s->res,
1379 						    rdtgrp->plr->d,
1380 						    rdtgrp->plr->cbm);
1381 			seq_printf(s, "%d=%u\n", rdtgrp->plr->d->id, size);
1382 		}
1383 		goto out;
1384 	}
1385 
1386 	closid = rdtgrp->closid;
1387 
1388 	list_for_each_entry(schema, &resctrl_schema_all, list) {
1389 		r = schema->res;
1390 		type = schema->conf_type;
1391 		sep = false;
1392 		seq_printf(s, "%*s:", max_name_width, schema->name);
1393 		list_for_each_entry(d, &r->domains, list) {
1394 			if (sep)
1395 				seq_putc(s, ';');
1396 			if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP) {
1397 				size = 0;
1398 			} else {
1399 				if (is_mba_sc(r))
1400 					ctrl = d->mbps_val[closid];
1401 				else
1402 					ctrl = resctrl_arch_get_config(r, d,
1403 								       closid,
1404 								       type);
1405 				if (r->rid == RDT_RESOURCE_MBA ||
1406 				    r->rid == RDT_RESOURCE_SMBA)
1407 					size = ctrl;
1408 				else
1409 					size = rdtgroup_cbm_to_size(r, d, ctrl);
1410 			}
1411 			seq_printf(s, "%d=%u", d->id, size);
1412 			sep = true;
1413 		}
1414 		seq_putc(s, '\n');
1415 	}
1416 
1417 out:
1418 	rdtgroup_kn_unlock(of->kn);
1419 
1420 	return ret;
1421 }
1422 
1423 /* rdtgroup information files for one cache resource. */
1424 static struct rftype res_common_files[] = {
1425 	{
1426 		.name		= "last_cmd_status",
1427 		.mode		= 0444,
1428 		.kf_ops		= &rdtgroup_kf_single_ops,
1429 		.seq_show	= rdt_last_cmd_status_show,
1430 		.fflags		= RF_TOP_INFO,
1431 	},
1432 	{
1433 		.name		= "num_closids",
1434 		.mode		= 0444,
1435 		.kf_ops		= &rdtgroup_kf_single_ops,
1436 		.seq_show	= rdt_num_closids_show,
1437 		.fflags		= RF_CTRL_INFO,
1438 	},
1439 	{
1440 		.name		= "mon_features",
1441 		.mode		= 0444,
1442 		.kf_ops		= &rdtgroup_kf_single_ops,
1443 		.seq_show	= rdt_mon_features_show,
1444 		.fflags		= RF_MON_INFO,
1445 	},
1446 	{
1447 		.name		= "num_rmids",
1448 		.mode		= 0444,
1449 		.kf_ops		= &rdtgroup_kf_single_ops,
1450 		.seq_show	= rdt_num_rmids_show,
1451 		.fflags		= RF_MON_INFO,
1452 	},
1453 	{
1454 		.name		= "cbm_mask",
1455 		.mode		= 0444,
1456 		.kf_ops		= &rdtgroup_kf_single_ops,
1457 		.seq_show	= rdt_default_ctrl_show,
1458 		.fflags		= RF_CTRL_INFO | RFTYPE_RES_CACHE,
1459 	},
1460 	{
1461 		.name		= "min_cbm_bits",
1462 		.mode		= 0444,
1463 		.kf_ops		= &rdtgroup_kf_single_ops,
1464 		.seq_show	= rdt_min_cbm_bits_show,
1465 		.fflags		= RF_CTRL_INFO | RFTYPE_RES_CACHE,
1466 	},
1467 	{
1468 		.name		= "shareable_bits",
1469 		.mode		= 0444,
1470 		.kf_ops		= &rdtgroup_kf_single_ops,
1471 		.seq_show	= rdt_shareable_bits_show,
1472 		.fflags		= RF_CTRL_INFO | RFTYPE_RES_CACHE,
1473 	},
1474 	{
1475 		.name		= "bit_usage",
1476 		.mode		= 0444,
1477 		.kf_ops		= &rdtgroup_kf_single_ops,
1478 		.seq_show	= rdt_bit_usage_show,
1479 		.fflags		= RF_CTRL_INFO | RFTYPE_RES_CACHE,
1480 	},
1481 	{
1482 		.name		= "min_bandwidth",
1483 		.mode		= 0444,
1484 		.kf_ops		= &rdtgroup_kf_single_ops,
1485 		.seq_show	= rdt_min_bw_show,
1486 		.fflags		= RF_CTRL_INFO | RFTYPE_RES_MB,
1487 	},
1488 	{
1489 		.name		= "bandwidth_gran",
1490 		.mode		= 0444,
1491 		.kf_ops		= &rdtgroup_kf_single_ops,
1492 		.seq_show	= rdt_bw_gran_show,
1493 		.fflags		= RF_CTRL_INFO | RFTYPE_RES_MB,
1494 	},
1495 	{
1496 		.name		= "delay_linear",
1497 		.mode		= 0444,
1498 		.kf_ops		= &rdtgroup_kf_single_ops,
1499 		.seq_show	= rdt_delay_linear_show,
1500 		.fflags		= RF_CTRL_INFO | RFTYPE_RES_MB,
1501 	},
1502 	/*
1503 	 * Platform specific which (if any) capabilities are provided by
1504 	 * thread_throttle_mode. Defer "fflags" initialization to platform
1505 	 * discovery.
1506 	 */
1507 	{
1508 		.name		= "thread_throttle_mode",
1509 		.mode		= 0444,
1510 		.kf_ops		= &rdtgroup_kf_single_ops,
1511 		.seq_show	= rdt_thread_throttle_mode_show,
1512 	},
1513 	{
1514 		.name		= "max_threshold_occupancy",
1515 		.mode		= 0644,
1516 		.kf_ops		= &rdtgroup_kf_single_ops,
1517 		.write		= max_threshold_occ_write,
1518 		.seq_show	= max_threshold_occ_show,
1519 		.fflags		= RF_MON_INFO | RFTYPE_RES_CACHE,
1520 	},
1521 	{
1522 		.name		= "cpus",
1523 		.mode		= 0644,
1524 		.kf_ops		= &rdtgroup_kf_single_ops,
1525 		.write		= rdtgroup_cpus_write,
1526 		.seq_show	= rdtgroup_cpus_show,
1527 		.fflags		= RFTYPE_BASE,
1528 	},
1529 	{
1530 		.name		= "cpus_list",
1531 		.mode		= 0644,
1532 		.kf_ops		= &rdtgroup_kf_single_ops,
1533 		.write		= rdtgroup_cpus_write,
1534 		.seq_show	= rdtgroup_cpus_show,
1535 		.flags		= RFTYPE_FLAGS_CPUS_LIST,
1536 		.fflags		= RFTYPE_BASE,
1537 	},
1538 	{
1539 		.name		= "tasks",
1540 		.mode		= 0644,
1541 		.kf_ops		= &rdtgroup_kf_single_ops,
1542 		.write		= rdtgroup_tasks_write,
1543 		.seq_show	= rdtgroup_tasks_show,
1544 		.fflags		= RFTYPE_BASE,
1545 	},
1546 	{
1547 		.name		= "schemata",
1548 		.mode		= 0644,
1549 		.kf_ops		= &rdtgroup_kf_single_ops,
1550 		.write		= rdtgroup_schemata_write,
1551 		.seq_show	= rdtgroup_schemata_show,
1552 		.fflags		= RF_CTRL_BASE,
1553 	},
1554 	{
1555 		.name		= "mode",
1556 		.mode		= 0644,
1557 		.kf_ops		= &rdtgroup_kf_single_ops,
1558 		.write		= rdtgroup_mode_write,
1559 		.seq_show	= rdtgroup_mode_show,
1560 		.fflags		= RF_CTRL_BASE,
1561 	},
1562 	{
1563 		.name		= "size",
1564 		.mode		= 0444,
1565 		.kf_ops		= &rdtgroup_kf_single_ops,
1566 		.seq_show	= rdtgroup_size_show,
1567 		.fflags		= RF_CTRL_BASE,
1568 	},
1569 
1570 };
1571 
1572 static int rdtgroup_add_files(struct kernfs_node *kn, unsigned long fflags)
1573 {
1574 	struct rftype *rfts, *rft;
1575 	int ret, len;
1576 
1577 	rfts = res_common_files;
1578 	len = ARRAY_SIZE(res_common_files);
1579 
1580 	lockdep_assert_held(&rdtgroup_mutex);
1581 
1582 	for (rft = rfts; rft < rfts + len; rft++) {
1583 		if (rft->fflags && ((fflags & rft->fflags) == rft->fflags)) {
1584 			ret = rdtgroup_add_file(kn, rft);
1585 			if (ret)
1586 				goto error;
1587 		}
1588 	}
1589 
1590 	return 0;
1591 error:
1592 	pr_warn("Failed to add %s, err=%d\n", rft->name, ret);
1593 	while (--rft >= rfts) {
1594 		if ((fflags & rft->fflags) == rft->fflags)
1595 			kernfs_remove_by_name(kn, rft->name);
1596 	}
1597 	return ret;
1598 }
1599 
1600 static struct rftype *rdtgroup_get_rftype_by_name(const char *name)
1601 {
1602 	struct rftype *rfts, *rft;
1603 	int len;
1604 
1605 	rfts = res_common_files;
1606 	len = ARRAY_SIZE(res_common_files);
1607 
1608 	for (rft = rfts; rft < rfts + len; rft++) {
1609 		if (!strcmp(rft->name, name))
1610 			return rft;
1611 	}
1612 
1613 	return NULL;
1614 }
1615 
1616 void __init thread_throttle_mode_init(void)
1617 {
1618 	struct rftype *rft;
1619 
1620 	rft = rdtgroup_get_rftype_by_name("thread_throttle_mode");
1621 	if (!rft)
1622 		return;
1623 
1624 	rft->fflags = RF_CTRL_INFO | RFTYPE_RES_MB;
1625 }
1626 
1627 /**
1628  * rdtgroup_kn_mode_restrict - Restrict user access to named resctrl file
1629  * @r: The resource group with which the file is associated.
1630  * @name: Name of the file
1631  *
1632  * The permissions of named resctrl file, directory, or link are modified
1633  * to not allow read, write, or execute by any user.
1634  *
1635  * WARNING: This function is intended to communicate to the user that the
1636  * resctrl file has been locked down - that it is not relevant to the
1637  * particular state the system finds itself in. It should not be relied
1638  * on to protect from user access because after the file's permissions
1639  * are restricted the user can still change the permissions using chmod
1640  * from the command line.
1641  *
1642  * Return: 0 on success, <0 on failure.
1643  */
1644 int rdtgroup_kn_mode_restrict(struct rdtgroup *r, const char *name)
1645 {
1646 	struct iattr iattr = {.ia_valid = ATTR_MODE,};
1647 	struct kernfs_node *kn;
1648 	int ret = 0;
1649 
1650 	kn = kernfs_find_and_get_ns(r->kn, name, NULL);
1651 	if (!kn)
1652 		return -ENOENT;
1653 
1654 	switch (kernfs_type(kn)) {
1655 	case KERNFS_DIR:
1656 		iattr.ia_mode = S_IFDIR;
1657 		break;
1658 	case KERNFS_FILE:
1659 		iattr.ia_mode = S_IFREG;
1660 		break;
1661 	case KERNFS_LINK:
1662 		iattr.ia_mode = S_IFLNK;
1663 		break;
1664 	}
1665 
1666 	ret = kernfs_setattr(kn, &iattr);
1667 	kernfs_put(kn);
1668 	return ret;
1669 }
1670 
1671 /**
1672  * rdtgroup_kn_mode_restore - Restore user access to named resctrl file
1673  * @r: The resource group with which the file is associated.
1674  * @name: Name of the file
1675  * @mask: Mask of permissions that should be restored
1676  *
1677  * Restore the permissions of the named file. If @name is a directory the
1678  * permissions of its parent will be used.
1679  *
1680  * Return: 0 on success, <0 on failure.
1681  */
1682 int rdtgroup_kn_mode_restore(struct rdtgroup *r, const char *name,
1683 			     umode_t mask)
1684 {
1685 	struct iattr iattr = {.ia_valid = ATTR_MODE,};
1686 	struct kernfs_node *kn, *parent;
1687 	struct rftype *rfts, *rft;
1688 	int ret, len;
1689 
1690 	rfts = res_common_files;
1691 	len = ARRAY_SIZE(res_common_files);
1692 
1693 	for (rft = rfts; rft < rfts + len; rft++) {
1694 		if (!strcmp(rft->name, name))
1695 			iattr.ia_mode = rft->mode & mask;
1696 	}
1697 
1698 	kn = kernfs_find_and_get_ns(r->kn, name, NULL);
1699 	if (!kn)
1700 		return -ENOENT;
1701 
1702 	switch (kernfs_type(kn)) {
1703 	case KERNFS_DIR:
1704 		parent = kernfs_get_parent(kn);
1705 		if (parent) {
1706 			iattr.ia_mode |= parent->mode;
1707 			kernfs_put(parent);
1708 		}
1709 		iattr.ia_mode |= S_IFDIR;
1710 		break;
1711 	case KERNFS_FILE:
1712 		iattr.ia_mode |= S_IFREG;
1713 		break;
1714 	case KERNFS_LINK:
1715 		iattr.ia_mode |= S_IFLNK;
1716 		break;
1717 	}
1718 
1719 	ret = kernfs_setattr(kn, &iattr);
1720 	kernfs_put(kn);
1721 	return ret;
1722 }
1723 
1724 static int rdtgroup_mkdir_info_resdir(void *priv, char *name,
1725 				      unsigned long fflags)
1726 {
1727 	struct kernfs_node *kn_subdir;
1728 	int ret;
1729 
1730 	kn_subdir = kernfs_create_dir(kn_info, name,
1731 				      kn_info->mode, priv);
1732 	if (IS_ERR(kn_subdir))
1733 		return PTR_ERR(kn_subdir);
1734 
1735 	ret = rdtgroup_kn_set_ugid(kn_subdir);
1736 	if (ret)
1737 		return ret;
1738 
1739 	ret = rdtgroup_add_files(kn_subdir, fflags);
1740 	if (!ret)
1741 		kernfs_activate(kn_subdir);
1742 
1743 	return ret;
1744 }
1745 
1746 static int rdtgroup_create_info_dir(struct kernfs_node *parent_kn)
1747 {
1748 	struct resctrl_schema *s;
1749 	struct rdt_resource *r;
1750 	unsigned long fflags;
1751 	char name[32];
1752 	int ret;
1753 
1754 	/* create the directory */
1755 	kn_info = kernfs_create_dir(parent_kn, "info", parent_kn->mode, NULL);
1756 	if (IS_ERR(kn_info))
1757 		return PTR_ERR(kn_info);
1758 
1759 	ret = rdtgroup_add_files(kn_info, RF_TOP_INFO);
1760 	if (ret)
1761 		goto out_destroy;
1762 
1763 	/* loop over enabled controls, these are all alloc_capable */
1764 	list_for_each_entry(s, &resctrl_schema_all, list) {
1765 		r = s->res;
1766 		fflags =  r->fflags | RF_CTRL_INFO;
1767 		ret = rdtgroup_mkdir_info_resdir(s, s->name, fflags);
1768 		if (ret)
1769 			goto out_destroy;
1770 	}
1771 
1772 	for_each_mon_capable_rdt_resource(r) {
1773 		fflags =  r->fflags | RF_MON_INFO;
1774 		sprintf(name, "%s_MON", r->name);
1775 		ret = rdtgroup_mkdir_info_resdir(r, name, fflags);
1776 		if (ret)
1777 			goto out_destroy;
1778 	}
1779 
1780 	ret = rdtgroup_kn_set_ugid(kn_info);
1781 	if (ret)
1782 		goto out_destroy;
1783 
1784 	kernfs_activate(kn_info);
1785 
1786 	return 0;
1787 
1788 out_destroy:
1789 	kernfs_remove(kn_info);
1790 	return ret;
1791 }
1792 
1793 static int
1794 mongroup_create_dir(struct kernfs_node *parent_kn, struct rdtgroup *prgrp,
1795 		    char *name, struct kernfs_node **dest_kn)
1796 {
1797 	struct kernfs_node *kn;
1798 	int ret;
1799 
1800 	/* create the directory */
1801 	kn = kernfs_create_dir(parent_kn, name, parent_kn->mode, prgrp);
1802 	if (IS_ERR(kn))
1803 		return PTR_ERR(kn);
1804 
1805 	if (dest_kn)
1806 		*dest_kn = kn;
1807 
1808 	ret = rdtgroup_kn_set_ugid(kn);
1809 	if (ret)
1810 		goto out_destroy;
1811 
1812 	kernfs_activate(kn);
1813 
1814 	return 0;
1815 
1816 out_destroy:
1817 	kernfs_remove(kn);
1818 	return ret;
1819 }
1820 
1821 static void l3_qos_cfg_update(void *arg)
1822 {
1823 	bool *enable = arg;
1824 
1825 	wrmsrl(MSR_IA32_L3_QOS_CFG, *enable ? L3_QOS_CDP_ENABLE : 0ULL);
1826 }
1827 
1828 static void l2_qos_cfg_update(void *arg)
1829 {
1830 	bool *enable = arg;
1831 
1832 	wrmsrl(MSR_IA32_L2_QOS_CFG, *enable ? L2_QOS_CDP_ENABLE : 0ULL);
1833 }
1834 
1835 static inline bool is_mba_linear(void)
1836 {
1837 	return rdt_resources_all[RDT_RESOURCE_MBA].r_resctrl.membw.delay_linear;
1838 }
1839 
1840 static int set_cache_qos_cfg(int level, bool enable)
1841 {
1842 	void (*update)(void *arg);
1843 	struct rdt_resource *r_l;
1844 	cpumask_var_t cpu_mask;
1845 	struct rdt_domain *d;
1846 	int cpu;
1847 
1848 	if (level == RDT_RESOURCE_L3)
1849 		update = l3_qos_cfg_update;
1850 	else if (level == RDT_RESOURCE_L2)
1851 		update = l2_qos_cfg_update;
1852 	else
1853 		return -EINVAL;
1854 
1855 	if (!zalloc_cpumask_var(&cpu_mask, GFP_KERNEL))
1856 		return -ENOMEM;
1857 
1858 	r_l = &rdt_resources_all[level].r_resctrl;
1859 	list_for_each_entry(d, &r_l->domains, list) {
1860 		if (r_l->cache.arch_has_per_cpu_cfg)
1861 			/* Pick all the CPUs in the domain instance */
1862 			for_each_cpu(cpu, &d->cpu_mask)
1863 				cpumask_set_cpu(cpu, cpu_mask);
1864 		else
1865 			/* Pick one CPU from each domain instance to update MSR */
1866 			cpumask_set_cpu(cpumask_any(&d->cpu_mask), cpu_mask);
1867 	}
1868 
1869 	/* Update QOS_CFG MSR on all the CPUs in cpu_mask */
1870 	on_each_cpu_mask(cpu_mask, update, &enable, 1);
1871 
1872 	free_cpumask_var(cpu_mask);
1873 
1874 	return 0;
1875 }
1876 
1877 /* Restore the qos cfg state when a domain comes online */
1878 void rdt_domain_reconfigure_cdp(struct rdt_resource *r)
1879 {
1880 	struct rdt_hw_resource *hw_res = resctrl_to_arch_res(r);
1881 
1882 	if (!r->cdp_capable)
1883 		return;
1884 
1885 	if (r->rid == RDT_RESOURCE_L2)
1886 		l2_qos_cfg_update(&hw_res->cdp_enabled);
1887 
1888 	if (r->rid == RDT_RESOURCE_L3)
1889 		l3_qos_cfg_update(&hw_res->cdp_enabled);
1890 }
1891 
1892 static int mba_sc_domain_allocate(struct rdt_resource *r, struct rdt_domain *d)
1893 {
1894 	u32 num_closid = resctrl_arch_get_num_closid(r);
1895 	int cpu = cpumask_any(&d->cpu_mask);
1896 	int i;
1897 
1898 	d->mbps_val = kcalloc_node(num_closid, sizeof(*d->mbps_val),
1899 				   GFP_KERNEL, cpu_to_node(cpu));
1900 	if (!d->mbps_val)
1901 		return -ENOMEM;
1902 
1903 	for (i = 0; i < num_closid; i++)
1904 		d->mbps_val[i] = MBA_MAX_MBPS;
1905 
1906 	return 0;
1907 }
1908 
1909 static void mba_sc_domain_destroy(struct rdt_resource *r,
1910 				  struct rdt_domain *d)
1911 {
1912 	kfree(d->mbps_val);
1913 	d->mbps_val = NULL;
1914 }
1915 
1916 /*
1917  * MBA software controller is supported only if
1918  * MBM is supported and MBA is in linear scale.
1919  */
1920 static bool supports_mba_mbps(void)
1921 {
1922 	struct rdt_resource *r = &rdt_resources_all[RDT_RESOURCE_MBA].r_resctrl;
1923 
1924 	return (is_mbm_local_enabled() &&
1925 		r->alloc_capable && is_mba_linear());
1926 }
1927 
1928 /*
1929  * Enable or disable the MBA software controller
1930  * which helps user specify bandwidth in MBps.
1931  */
1932 static int set_mba_sc(bool mba_sc)
1933 {
1934 	struct rdt_resource *r = &rdt_resources_all[RDT_RESOURCE_MBA].r_resctrl;
1935 	u32 num_closid = resctrl_arch_get_num_closid(r);
1936 	struct rdt_domain *d;
1937 	int i;
1938 
1939 	if (!supports_mba_mbps() || mba_sc == is_mba_sc(r))
1940 		return -EINVAL;
1941 
1942 	r->membw.mba_sc = mba_sc;
1943 
1944 	list_for_each_entry(d, &r->domains, list) {
1945 		for (i = 0; i < num_closid; i++)
1946 			d->mbps_val[i] = MBA_MAX_MBPS;
1947 	}
1948 
1949 	return 0;
1950 }
1951 
1952 static int cdp_enable(int level)
1953 {
1954 	struct rdt_resource *r_l = &rdt_resources_all[level].r_resctrl;
1955 	int ret;
1956 
1957 	if (!r_l->alloc_capable)
1958 		return -EINVAL;
1959 
1960 	ret = set_cache_qos_cfg(level, true);
1961 	if (!ret)
1962 		rdt_resources_all[level].cdp_enabled = true;
1963 
1964 	return ret;
1965 }
1966 
1967 static void cdp_disable(int level)
1968 {
1969 	struct rdt_hw_resource *r_hw = &rdt_resources_all[level];
1970 
1971 	if (r_hw->cdp_enabled) {
1972 		set_cache_qos_cfg(level, false);
1973 		r_hw->cdp_enabled = false;
1974 	}
1975 }
1976 
1977 int resctrl_arch_set_cdp_enabled(enum resctrl_res_level l, bool enable)
1978 {
1979 	struct rdt_hw_resource *hw_res = &rdt_resources_all[l];
1980 
1981 	if (!hw_res->r_resctrl.cdp_capable)
1982 		return -EINVAL;
1983 
1984 	if (enable)
1985 		return cdp_enable(l);
1986 
1987 	cdp_disable(l);
1988 
1989 	return 0;
1990 }
1991 
1992 static void cdp_disable_all(void)
1993 {
1994 	if (resctrl_arch_get_cdp_enabled(RDT_RESOURCE_L3))
1995 		resctrl_arch_set_cdp_enabled(RDT_RESOURCE_L3, false);
1996 	if (resctrl_arch_get_cdp_enabled(RDT_RESOURCE_L2))
1997 		resctrl_arch_set_cdp_enabled(RDT_RESOURCE_L2, false);
1998 }
1999 
2000 /*
2001  * We don't allow rdtgroup directories to be created anywhere
2002  * except the root directory. Thus when looking for the rdtgroup
2003  * structure for a kernfs node we are either looking at a directory,
2004  * in which case the rdtgroup structure is pointed at by the "priv"
2005  * field, otherwise we have a file, and need only look to the parent
2006  * to find the rdtgroup.
2007  */
2008 static struct rdtgroup *kernfs_to_rdtgroup(struct kernfs_node *kn)
2009 {
2010 	if (kernfs_type(kn) == KERNFS_DIR) {
2011 		/*
2012 		 * All the resource directories use "kn->priv"
2013 		 * to point to the "struct rdtgroup" for the
2014 		 * resource. "info" and its subdirectories don't
2015 		 * have rdtgroup structures, so return NULL here.
2016 		 */
2017 		if (kn == kn_info || kn->parent == kn_info)
2018 			return NULL;
2019 		else
2020 			return kn->priv;
2021 	} else {
2022 		return kn->parent->priv;
2023 	}
2024 }
2025 
2026 struct rdtgroup *rdtgroup_kn_lock_live(struct kernfs_node *kn)
2027 {
2028 	struct rdtgroup *rdtgrp = kernfs_to_rdtgroup(kn);
2029 
2030 	if (!rdtgrp)
2031 		return NULL;
2032 
2033 	atomic_inc(&rdtgrp->waitcount);
2034 	kernfs_break_active_protection(kn);
2035 
2036 	mutex_lock(&rdtgroup_mutex);
2037 
2038 	/* Was this group deleted while we waited? */
2039 	if (rdtgrp->flags & RDT_DELETED)
2040 		return NULL;
2041 
2042 	return rdtgrp;
2043 }
2044 
2045 void rdtgroup_kn_unlock(struct kernfs_node *kn)
2046 {
2047 	struct rdtgroup *rdtgrp = kernfs_to_rdtgroup(kn);
2048 
2049 	if (!rdtgrp)
2050 		return;
2051 
2052 	mutex_unlock(&rdtgroup_mutex);
2053 
2054 	if (atomic_dec_and_test(&rdtgrp->waitcount) &&
2055 	    (rdtgrp->flags & RDT_DELETED)) {
2056 		if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP ||
2057 		    rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED)
2058 			rdtgroup_pseudo_lock_remove(rdtgrp);
2059 		kernfs_unbreak_active_protection(kn);
2060 		rdtgroup_remove(rdtgrp);
2061 	} else {
2062 		kernfs_unbreak_active_protection(kn);
2063 	}
2064 }
2065 
2066 static int mkdir_mondata_all(struct kernfs_node *parent_kn,
2067 			     struct rdtgroup *prgrp,
2068 			     struct kernfs_node **mon_data_kn);
2069 
2070 static int rdt_enable_ctx(struct rdt_fs_context *ctx)
2071 {
2072 	int ret = 0;
2073 
2074 	if (ctx->enable_cdpl2)
2075 		ret = resctrl_arch_set_cdp_enabled(RDT_RESOURCE_L2, true);
2076 
2077 	if (!ret && ctx->enable_cdpl3)
2078 		ret = resctrl_arch_set_cdp_enabled(RDT_RESOURCE_L3, true);
2079 
2080 	if (!ret && ctx->enable_mba_mbps)
2081 		ret = set_mba_sc(true);
2082 
2083 	return ret;
2084 }
2085 
2086 static int schemata_list_add(struct rdt_resource *r, enum resctrl_conf_type type)
2087 {
2088 	struct resctrl_schema *s;
2089 	const char *suffix = "";
2090 	int ret, cl;
2091 
2092 	s = kzalloc(sizeof(*s), GFP_KERNEL);
2093 	if (!s)
2094 		return -ENOMEM;
2095 
2096 	s->res = r;
2097 	s->num_closid = resctrl_arch_get_num_closid(r);
2098 	if (resctrl_arch_get_cdp_enabled(r->rid))
2099 		s->num_closid /= 2;
2100 
2101 	s->conf_type = type;
2102 	switch (type) {
2103 	case CDP_CODE:
2104 		suffix = "CODE";
2105 		break;
2106 	case CDP_DATA:
2107 		suffix = "DATA";
2108 		break;
2109 	case CDP_NONE:
2110 		suffix = "";
2111 		break;
2112 	}
2113 
2114 	ret = snprintf(s->name, sizeof(s->name), "%s%s", r->name, suffix);
2115 	if (ret >= sizeof(s->name)) {
2116 		kfree(s);
2117 		return -EINVAL;
2118 	}
2119 
2120 	cl = strlen(s->name);
2121 
2122 	/*
2123 	 * If CDP is supported by this resource, but not enabled,
2124 	 * include the suffix. This ensures the tabular format of the
2125 	 * schemata file does not change between mounts of the filesystem.
2126 	 */
2127 	if (r->cdp_capable && !resctrl_arch_get_cdp_enabled(r->rid))
2128 		cl += 4;
2129 
2130 	if (cl > max_name_width)
2131 		max_name_width = cl;
2132 
2133 	INIT_LIST_HEAD(&s->list);
2134 	list_add(&s->list, &resctrl_schema_all);
2135 
2136 	return 0;
2137 }
2138 
2139 static int schemata_list_create(void)
2140 {
2141 	struct rdt_resource *r;
2142 	int ret = 0;
2143 
2144 	for_each_alloc_capable_rdt_resource(r) {
2145 		if (resctrl_arch_get_cdp_enabled(r->rid)) {
2146 			ret = schemata_list_add(r, CDP_CODE);
2147 			if (ret)
2148 				break;
2149 
2150 			ret = schemata_list_add(r, CDP_DATA);
2151 		} else {
2152 			ret = schemata_list_add(r, CDP_NONE);
2153 		}
2154 
2155 		if (ret)
2156 			break;
2157 	}
2158 
2159 	return ret;
2160 }
2161 
2162 static void schemata_list_destroy(void)
2163 {
2164 	struct resctrl_schema *s, *tmp;
2165 
2166 	list_for_each_entry_safe(s, tmp, &resctrl_schema_all, list) {
2167 		list_del(&s->list);
2168 		kfree(s);
2169 	}
2170 }
2171 
2172 static int rdt_get_tree(struct fs_context *fc)
2173 {
2174 	struct rdt_fs_context *ctx = rdt_fc2context(fc);
2175 	struct rdt_domain *dom;
2176 	struct rdt_resource *r;
2177 	int ret;
2178 
2179 	cpus_read_lock();
2180 	mutex_lock(&rdtgroup_mutex);
2181 	/*
2182 	 * resctrl file system can only be mounted once.
2183 	 */
2184 	if (static_branch_unlikely(&rdt_enable_key)) {
2185 		ret = -EBUSY;
2186 		goto out;
2187 	}
2188 
2189 	ret = rdt_enable_ctx(ctx);
2190 	if (ret < 0)
2191 		goto out_cdp;
2192 
2193 	ret = schemata_list_create();
2194 	if (ret) {
2195 		schemata_list_destroy();
2196 		goto out_mba;
2197 	}
2198 
2199 	closid_init();
2200 
2201 	ret = rdtgroup_create_info_dir(rdtgroup_default.kn);
2202 	if (ret < 0)
2203 		goto out_schemata_free;
2204 
2205 	if (rdt_mon_capable) {
2206 		ret = mongroup_create_dir(rdtgroup_default.kn,
2207 					  &rdtgroup_default, "mon_groups",
2208 					  &kn_mongrp);
2209 		if (ret < 0)
2210 			goto out_info;
2211 
2212 		ret = mkdir_mondata_all(rdtgroup_default.kn,
2213 					&rdtgroup_default, &kn_mondata);
2214 		if (ret < 0)
2215 			goto out_mongrp;
2216 		rdtgroup_default.mon.mon_data_kn = kn_mondata;
2217 	}
2218 
2219 	ret = rdt_pseudo_lock_init();
2220 	if (ret)
2221 		goto out_mondata;
2222 
2223 	ret = kernfs_get_tree(fc);
2224 	if (ret < 0)
2225 		goto out_psl;
2226 
2227 	if (rdt_alloc_capable)
2228 		static_branch_enable_cpuslocked(&rdt_alloc_enable_key);
2229 	if (rdt_mon_capable)
2230 		static_branch_enable_cpuslocked(&rdt_mon_enable_key);
2231 
2232 	if (rdt_alloc_capable || rdt_mon_capable)
2233 		static_branch_enable_cpuslocked(&rdt_enable_key);
2234 
2235 	if (is_mbm_enabled()) {
2236 		r = &rdt_resources_all[RDT_RESOURCE_L3].r_resctrl;
2237 		list_for_each_entry(dom, &r->domains, list)
2238 			mbm_setup_overflow_handler(dom, MBM_OVERFLOW_INTERVAL);
2239 	}
2240 
2241 	goto out;
2242 
2243 out_psl:
2244 	rdt_pseudo_lock_release();
2245 out_mondata:
2246 	if (rdt_mon_capable)
2247 		kernfs_remove(kn_mondata);
2248 out_mongrp:
2249 	if (rdt_mon_capable)
2250 		kernfs_remove(kn_mongrp);
2251 out_info:
2252 	kernfs_remove(kn_info);
2253 out_schemata_free:
2254 	schemata_list_destroy();
2255 out_mba:
2256 	if (ctx->enable_mba_mbps)
2257 		set_mba_sc(false);
2258 out_cdp:
2259 	cdp_disable_all();
2260 out:
2261 	rdt_last_cmd_clear();
2262 	mutex_unlock(&rdtgroup_mutex);
2263 	cpus_read_unlock();
2264 	return ret;
2265 }
2266 
2267 enum rdt_param {
2268 	Opt_cdp,
2269 	Opt_cdpl2,
2270 	Opt_mba_mbps,
2271 	nr__rdt_params
2272 };
2273 
2274 static const struct fs_parameter_spec rdt_fs_parameters[] = {
2275 	fsparam_flag("cdp",		Opt_cdp),
2276 	fsparam_flag("cdpl2",		Opt_cdpl2),
2277 	fsparam_flag("mba_MBps",	Opt_mba_mbps),
2278 	{}
2279 };
2280 
2281 static int rdt_parse_param(struct fs_context *fc, struct fs_parameter *param)
2282 {
2283 	struct rdt_fs_context *ctx = rdt_fc2context(fc);
2284 	struct fs_parse_result result;
2285 	int opt;
2286 
2287 	opt = fs_parse(fc, rdt_fs_parameters, param, &result);
2288 	if (opt < 0)
2289 		return opt;
2290 
2291 	switch (opt) {
2292 	case Opt_cdp:
2293 		ctx->enable_cdpl3 = true;
2294 		return 0;
2295 	case Opt_cdpl2:
2296 		ctx->enable_cdpl2 = true;
2297 		return 0;
2298 	case Opt_mba_mbps:
2299 		if (!supports_mba_mbps())
2300 			return -EINVAL;
2301 		ctx->enable_mba_mbps = true;
2302 		return 0;
2303 	}
2304 
2305 	return -EINVAL;
2306 }
2307 
2308 static void rdt_fs_context_free(struct fs_context *fc)
2309 {
2310 	struct rdt_fs_context *ctx = rdt_fc2context(fc);
2311 
2312 	kernfs_free_fs_context(fc);
2313 	kfree(ctx);
2314 }
2315 
2316 static const struct fs_context_operations rdt_fs_context_ops = {
2317 	.free		= rdt_fs_context_free,
2318 	.parse_param	= rdt_parse_param,
2319 	.get_tree	= rdt_get_tree,
2320 };
2321 
2322 static int rdt_init_fs_context(struct fs_context *fc)
2323 {
2324 	struct rdt_fs_context *ctx;
2325 
2326 	ctx = kzalloc(sizeof(struct rdt_fs_context), GFP_KERNEL);
2327 	if (!ctx)
2328 		return -ENOMEM;
2329 
2330 	ctx->kfc.root = rdt_root;
2331 	ctx->kfc.magic = RDTGROUP_SUPER_MAGIC;
2332 	fc->fs_private = &ctx->kfc;
2333 	fc->ops = &rdt_fs_context_ops;
2334 	put_user_ns(fc->user_ns);
2335 	fc->user_ns = get_user_ns(&init_user_ns);
2336 	fc->global = true;
2337 	return 0;
2338 }
2339 
2340 static int reset_all_ctrls(struct rdt_resource *r)
2341 {
2342 	struct rdt_hw_resource *hw_res = resctrl_to_arch_res(r);
2343 	struct rdt_hw_domain *hw_dom;
2344 	struct msr_param msr_param;
2345 	cpumask_var_t cpu_mask;
2346 	struct rdt_domain *d;
2347 	int i;
2348 
2349 	if (!zalloc_cpumask_var(&cpu_mask, GFP_KERNEL))
2350 		return -ENOMEM;
2351 
2352 	msr_param.res = r;
2353 	msr_param.low = 0;
2354 	msr_param.high = hw_res->num_closid;
2355 
2356 	/*
2357 	 * Disable resource control for this resource by setting all
2358 	 * CBMs in all domains to the maximum mask value. Pick one CPU
2359 	 * from each domain to update the MSRs below.
2360 	 */
2361 	list_for_each_entry(d, &r->domains, list) {
2362 		hw_dom = resctrl_to_arch_dom(d);
2363 		cpumask_set_cpu(cpumask_any(&d->cpu_mask), cpu_mask);
2364 
2365 		for (i = 0; i < hw_res->num_closid; i++)
2366 			hw_dom->ctrl_val[i] = r->default_ctrl;
2367 	}
2368 
2369 	/* Update CBM on all the CPUs in cpu_mask */
2370 	on_each_cpu_mask(cpu_mask, rdt_ctrl_update, &msr_param, 1);
2371 
2372 	free_cpumask_var(cpu_mask);
2373 
2374 	return 0;
2375 }
2376 
2377 /*
2378  * Move tasks from one to the other group. If @from is NULL, then all tasks
2379  * in the systems are moved unconditionally (used for teardown).
2380  *
2381  * If @mask is not NULL the cpus on which moved tasks are running are set
2382  * in that mask so the update smp function call is restricted to affected
2383  * cpus.
2384  */
2385 static void rdt_move_group_tasks(struct rdtgroup *from, struct rdtgroup *to,
2386 				 struct cpumask *mask)
2387 {
2388 	struct task_struct *p, *t;
2389 
2390 	read_lock(&tasklist_lock);
2391 	for_each_process_thread(p, t) {
2392 		if (!from || is_closid_match(t, from) ||
2393 		    is_rmid_match(t, from)) {
2394 			WRITE_ONCE(t->closid, to->closid);
2395 			WRITE_ONCE(t->rmid, to->mon.rmid);
2396 
2397 			/*
2398 			 * Order the closid/rmid stores above before the loads
2399 			 * in task_curr(). This pairs with the full barrier
2400 			 * between the rq->curr update and resctrl_sched_in()
2401 			 * during context switch.
2402 			 */
2403 			smp_mb();
2404 
2405 			/*
2406 			 * If the task is on a CPU, set the CPU in the mask.
2407 			 * The detection is inaccurate as tasks might move or
2408 			 * schedule before the smp function call takes place.
2409 			 * In such a case the function call is pointless, but
2410 			 * there is no other side effect.
2411 			 */
2412 			if (IS_ENABLED(CONFIG_SMP) && mask && task_curr(t))
2413 				cpumask_set_cpu(task_cpu(t), mask);
2414 		}
2415 	}
2416 	read_unlock(&tasklist_lock);
2417 }
2418 
2419 static void free_all_child_rdtgrp(struct rdtgroup *rdtgrp)
2420 {
2421 	struct rdtgroup *sentry, *stmp;
2422 	struct list_head *head;
2423 
2424 	head = &rdtgrp->mon.crdtgrp_list;
2425 	list_for_each_entry_safe(sentry, stmp, head, mon.crdtgrp_list) {
2426 		free_rmid(sentry->mon.rmid);
2427 		list_del(&sentry->mon.crdtgrp_list);
2428 
2429 		if (atomic_read(&sentry->waitcount) != 0)
2430 			sentry->flags = RDT_DELETED;
2431 		else
2432 			rdtgroup_remove(sentry);
2433 	}
2434 }
2435 
2436 /*
2437  * Forcibly remove all of subdirectories under root.
2438  */
2439 static void rmdir_all_sub(void)
2440 {
2441 	struct rdtgroup *rdtgrp, *tmp;
2442 
2443 	/* Move all tasks to the default resource group */
2444 	rdt_move_group_tasks(NULL, &rdtgroup_default, NULL);
2445 
2446 	list_for_each_entry_safe(rdtgrp, tmp, &rdt_all_groups, rdtgroup_list) {
2447 		/* Free any child rmids */
2448 		free_all_child_rdtgrp(rdtgrp);
2449 
2450 		/* Remove each rdtgroup other than root */
2451 		if (rdtgrp == &rdtgroup_default)
2452 			continue;
2453 
2454 		if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP ||
2455 		    rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED)
2456 			rdtgroup_pseudo_lock_remove(rdtgrp);
2457 
2458 		/*
2459 		 * Give any CPUs back to the default group. We cannot copy
2460 		 * cpu_online_mask because a CPU might have executed the
2461 		 * offline callback already, but is still marked online.
2462 		 */
2463 		cpumask_or(&rdtgroup_default.cpu_mask,
2464 			   &rdtgroup_default.cpu_mask, &rdtgrp->cpu_mask);
2465 
2466 		free_rmid(rdtgrp->mon.rmid);
2467 
2468 		kernfs_remove(rdtgrp->kn);
2469 		list_del(&rdtgrp->rdtgroup_list);
2470 
2471 		if (atomic_read(&rdtgrp->waitcount) != 0)
2472 			rdtgrp->flags = RDT_DELETED;
2473 		else
2474 			rdtgroup_remove(rdtgrp);
2475 	}
2476 	/* Notify online CPUs to update per cpu storage and PQR_ASSOC MSR */
2477 	update_closid_rmid(cpu_online_mask, &rdtgroup_default);
2478 
2479 	kernfs_remove(kn_info);
2480 	kernfs_remove(kn_mongrp);
2481 	kernfs_remove(kn_mondata);
2482 }
2483 
2484 static void rdt_kill_sb(struct super_block *sb)
2485 {
2486 	struct rdt_resource *r;
2487 
2488 	cpus_read_lock();
2489 	mutex_lock(&rdtgroup_mutex);
2490 
2491 	set_mba_sc(false);
2492 
2493 	/*Put everything back to default values. */
2494 	for_each_alloc_capable_rdt_resource(r)
2495 		reset_all_ctrls(r);
2496 	cdp_disable_all();
2497 	rmdir_all_sub();
2498 	rdt_pseudo_lock_release();
2499 	rdtgroup_default.mode = RDT_MODE_SHAREABLE;
2500 	schemata_list_destroy();
2501 	static_branch_disable_cpuslocked(&rdt_alloc_enable_key);
2502 	static_branch_disable_cpuslocked(&rdt_mon_enable_key);
2503 	static_branch_disable_cpuslocked(&rdt_enable_key);
2504 	kernfs_kill_sb(sb);
2505 	mutex_unlock(&rdtgroup_mutex);
2506 	cpus_read_unlock();
2507 }
2508 
2509 static struct file_system_type rdt_fs_type = {
2510 	.name			= "resctrl",
2511 	.init_fs_context	= rdt_init_fs_context,
2512 	.parameters		= rdt_fs_parameters,
2513 	.kill_sb		= rdt_kill_sb,
2514 };
2515 
2516 static int mon_addfile(struct kernfs_node *parent_kn, const char *name,
2517 		       void *priv)
2518 {
2519 	struct kernfs_node *kn;
2520 	int ret = 0;
2521 
2522 	kn = __kernfs_create_file(parent_kn, name, 0444,
2523 				  GLOBAL_ROOT_UID, GLOBAL_ROOT_GID, 0,
2524 				  &kf_mondata_ops, priv, NULL, NULL);
2525 	if (IS_ERR(kn))
2526 		return PTR_ERR(kn);
2527 
2528 	ret = rdtgroup_kn_set_ugid(kn);
2529 	if (ret) {
2530 		kernfs_remove(kn);
2531 		return ret;
2532 	}
2533 
2534 	return ret;
2535 }
2536 
2537 /*
2538  * Remove all subdirectories of mon_data of ctrl_mon groups
2539  * and monitor groups with given domain id.
2540  */
2541 static void rmdir_mondata_subdir_allrdtgrp(struct rdt_resource *r,
2542 					   unsigned int dom_id)
2543 {
2544 	struct rdtgroup *prgrp, *crgrp;
2545 	char name[32];
2546 
2547 	list_for_each_entry(prgrp, &rdt_all_groups, rdtgroup_list) {
2548 		sprintf(name, "mon_%s_%02d", r->name, dom_id);
2549 		kernfs_remove_by_name(prgrp->mon.mon_data_kn, name);
2550 
2551 		list_for_each_entry(crgrp, &prgrp->mon.crdtgrp_list, mon.crdtgrp_list)
2552 			kernfs_remove_by_name(crgrp->mon.mon_data_kn, name);
2553 	}
2554 }
2555 
2556 static int mkdir_mondata_subdir(struct kernfs_node *parent_kn,
2557 				struct rdt_domain *d,
2558 				struct rdt_resource *r, struct rdtgroup *prgrp)
2559 {
2560 	union mon_data_bits priv;
2561 	struct kernfs_node *kn;
2562 	struct mon_evt *mevt;
2563 	struct rmid_read rr;
2564 	char name[32];
2565 	int ret;
2566 
2567 	sprintf(name, "mon_%s_%02d", r->name, d->id);
2568 	/* create the directory */
2569 	kn = kernfs_create_dir(parent_kn, name, parent_kn->mode, prgrp);
2570 	if (IS_ERR(kn))
2571 		return PTR_ERR(kn);
2572 
2573 	ret = rdtgroup_kn_set_ugid(kn);
2574 	if (ret)
2575 		goto out_destroy;
2576 
2577 	if (WARN_ON(list_empty(&r->evt_list))) {
2578 		ret = -EPERM;
2579 		goto out_destroy;
2580 	}
2581 
2582 	priv.u.rid = r->rid;
2583 	priv.u.domid = d->id;
2584 	list_for_each_entry(mevt, &r->evt_list, list) {
2585 		priv.u.evtid = mevt->evtid;
2586 		ret = mon_addfile(kn, mevt->name, priv.priv);
2587 		if (ret)
2588 			goto out_destroy;
2589 
2590 		if (is_mbm_event(mevt->evtid))
2591 			mon_event_read(&rr, r, d, prgrp, mevt->evtid, true);
2592 	}
2593 	kernfs_activate(kn);
2594 	return 0;
2595 
2596 out_destroy:
2597 	kernfs_remove(kn);
2598 	return ret;
2599 }
2600 
2601 /*
2602  * Add all subdirectories of mon_data for "ctrl_mon" groups
2603  * and "monitor" groups with given domain id.
2604  */
2605 static void mkdir_mondata_subdir_allrdtgrp(struct rdt_resource *r,
2606 					   struct rdt_domain *d)
2607 {
2608 	struct kernfs_node *parent_kn;
2609 	struct rdtgroup *prgrp, *crgrp;
2610 	struct list_head *head;
2611 
2612 	list_for_each_entry(prgrp, &rdt_all_groups, rdtgroup_list) {
2613 		parent_kn = prgrp->mon.mon_data_kn;
2614 		mkdir_mondata_subdir(parent_kn, d, r, prgrp);
2615 
2616 		head = &prgrp->mon.crdtgrp_list;
2617 		list_for_each_entry(crgrp, head, mon.crdtgrp_list) {
2618 			parent_kn = crgrp->mon.mon_data_kn;
2619 			mkdir_mondata_subdir(parent_kn, d, r, crgrp);
2620 		}
2621 	}
2622 }
2623 
2624 static int mkdir_mondata_subdir_alldom(struct kernfs_node *parent_kn,
2625 				       struct rdt_resource *r,
2626 				       struct rdtgroup *prgrp)
2627 {
2628 	struct rdt_domain *dom;
2629 	int ret;
2630 
2631 	list_for_each_entry(dom, &r->domains, list) {
2632 		ret = mkdir_mondata_subdir(parent_kn, dom, r, prgrp);
2633 		if (ret)
2634 			return ret;
2635 	}
2636 
2637 	return 0;
2638 }
2639 
2640 /*
2641  * This creates a directory mon_data which contains the monitored data.
2642  *
2643  * mon_data has one directory for each domain which are named
2644  * in the format mon_<domain_name>_<domain_id>. For ex: A mon_data
2645  * with L3 domain looks as below:
2646  * ./mon_data:
2647  * mon_L3_00
2648  * mon_L3_01
2649  * mon_L3_02
2650  * ...
2651  *
2652  * Each domain directory has one file per event:
2653  * ./mon_L3_00/:
2654  * llc_occupancy
2655  *
2656  */
2657 static int mkdir_mondata_all(struct kernfs_node *parent_kn,
2658 			     struct rdtgroup *prgrp,
2659 			     struct kernfs_node **dest_kn)
2660 {
2661 	struct rdt_resource *r;
2662 	struct kernfs_node *kn;
2663 	int ret;
2664 
2665 	/*
2666 	 * Create the mon_data directory first.
2667 	 */
2668 	ret = mongroup_create_dir(parent_kn, prgrp, "mon_data", &kn);
2669 	if (ret)
2670 		return ret;
2671 
2672 	if (dest_kn)
2673 		*dest_kn = kn;
2674 
2675 	/*
2676 	 * Create the subdirectories for each domain. Note that all events
2677 	 * in a domain like L3 are grouped into a resource whose domain is L3
2678 	 */
2679 	for_each_mon_capable_rdt_resource(r) {
2680 		ret = mkdir_mondata_subdir_alldom(kn, r, prgrp);
2681 		if (ret)
2682 			goto out_destroy;
2683 	}
2684 
2685 	return 0;
2686 
2687 out_destroy:
2688 	kernfs_remove(kn);
2689 	return ret;
2690 }
2691 
2692 /**
2693  * cbm_ensure_valid - Enforce validity on provided CBM
2694  * @_val:	Candidate CBM
2695  * @r:		RDT resource to which the CBM belongs
2696  *
2697  * The provided CBM represents all cache portions available for use. This
2698  * may be represented by a bitmap that does not consist of contiguous ones
2699  * and thus be an invalid CBM.
2700  * Here the provided CBM is forced to be a valid CBM by only considering
2701  * the first set of contiguous bits as valid and clearing all bits.
2702  * The intention here is to provide a valid default CBM with which a new
2703  * resource group is initialized. The user can follow this with a
2704  * modification to the CBM if the default does not satisfy the
2705  * requirements.
2706  */
2707 static u32 cbm_ensure_valid(u32 _val, struct rdt_resource *r)
2708 {
2709 	unsigned int cbm_len = r->cache.cbm_len;
2710 	unsigned long first_bit, zero_bit;
2711 	unsigned long val = _val;
2712 
2713 	if (!val)
2714 		return 0;
2715 
2716 	first_bit = find_first_bit(&val, cbm_len);
2717 	zero_bit = find_next_zero_bit(&val, cbm_len, first_bit);
2718 
2719 	/* Clear any remaining bits to ensure contiguous region */
2720 	bitmap_clear(&val, zero_bit, cbm_len - zero_bit);
2721 	return (u32)val;
2722 }
2723 
2724 /*
2725  * Initialize cache resources per RDT domain
2726  *
2727  * Set the RDT domain up to start off with all usable allocations. That is,
2728  * all shareable and unused bits. All-zero CBM is invalid.
2729  */
2730 static int __init_one_rdt_domain(struct rdt_domain *d, struct resctrl_schema *s,
2731 				 u32 closid)
2732 {
2733 	enum resctrl_conf_type peer_type = resctrl_peer_type(s->conf_type);
2734 	enum resctrl_conf_type t = s->conf_type;
2735 	struct resctrl_staged_config *cfg;
2736 	struct rdt_resource *r = s->res;
2737 	u32 used_b = 0, unused_b = 0;
2738 	unsigned long tmp_cbm;
2739 	enum rdtgrp_mode mode;
2740 	u32 peer_ctl, ctrl_val;
2741 	int i;
2742 
2743 	cfg = &d->staged_config[t];
2744 	cfg->have_new_ctrl = false;
2745 	cfg->new_ctrl = r->cache.shareable_bits;
2746 	used_b = r->cache.shareable_bits;
2747 	for (i = 0; i < closids_supported(); i++) {
2748 		if (closid_allocated(i) && i != closid) {
2749 			mode = rdtgroup_mode_by_closid(i);
2750 			if (mode == RDT_MODE_PSEUDO_LOCKSETUP)
2751 				/*
2752 				 * ctrl values for locksetup aren't relevant
2753 				 * until the schemata is written, and the mode
2754 				 * becomes RDT_MODE_PSEUDO_LOCKED.
2755 				 */
2756 				continue;
2757 			/*
2758 			 * If CDP is active include peer domain's
2759 			 * usage to ensure there is no overlap
2760 			 * with an exclusive group.
2761 			 */
2762 			if (resctrl_arch_get_cdp_enabled(r->rid))
2763 				peer_ctl = resctrl_arch_get_config(r, d, i,
2764 								   peer_type);
2765 			else
2766 				peer_ctl = 0;
2767 			ctrl_val = resctrl_arch_get_config(r, d, i,
2768 							   s->conf_type);
2769 			used_b |= ctrl_val | peer_ctl;
2770 			if (mode == RDT_MODE_SHAREABLE)
2771 				cfg->new_ctrl |= ctrl_val | peer_ctl;
2772 		}
2773 	}
2774 	if (d->plr && d->plr->cbm > 0)
2775 		used_b |= d->plr->cbm;
2776 	unused_b = used_b ^ (BIT_MASK(r->cache.cbm_len) - 1);
2777 	unused_b &= BIT_MASK(r->cache.cbm_len) - 1;
2778 	cfg->new_ctrl |= unused_b;
2779 	/*
2780 	 * Force the initial CBM to be valid, user can
2781 	 * modify the CBM based on system availability.
2782 	 */
2783 	cfg->new_ctrl = cbm_ensure_valid(cfg->new_ctrl, r);
2784 	/*
2785 	 * Assign the u32 CBM to an unsigned long to ensure that
2786 	 * bitmap_weight() does not access out-of-bound memory.
2787 	 */
2788 	tmp_cbm = cfg->new_ctrl;
2789 	if (bitmap_weight(&tmp_cbm, r->cache.cbm_len) < r->cache.min_cbm_bits) {
2790 		rdt_last_cmd_printf("No space on %s:%d\n", s->name, d->id);
2791 		return -ENOSPC;
2792 	}
2793 	cfg->have_new_ctrl = true;
2794 
2795 	return 0;
2796 }
2797 
2798 /*
2799  * Initialize cache resources with default values.
2800  *
2801  * A new RDT group is being created on an allocation capable (CAT)
2802  * supporting system. Set this group up to start off with all usable
2803  * allocations.
2804  *
2805  * If there are no more shareable bits available on any domain then
2806  * the entire allocation will fail.
2807  */
2808 static int rdtgroup_init_cat(struct resctrl_schema *s, u32 closid)
2809 {
2810 	struct rdt_domain *d;
2811 	int ret;
2812 
2813 	list_for_each_entry(d, &s->res->domains, list) {
2814 		ret = __init_one_rdt_domain(d, s, closid);
2815 		if (ret < 0)
2816 			return ret;
2817 	}
2818 
2819 	return 0;
2820 }
2821 
2822 /* Initialize MBA resource with default values. */
2823 static void rdtgroup_init_mba(struct rdt_resource *r, u32 closid)
2824 {
2825 	struct resctrl_staged_config *cfg;
2826 	struct rdt_domain *d;
2827 
2828 	list_for_each_entry(d, &r->domains, list) {
2829 		if (is_mba_sc(r)) {
2830 			d->mbps_val[closid] = MBA_MAX_MBPS;
2831 			continue;
2832 		}
2833 
2834 		cfg = &d->staged_config[CDP_NONE];
2835 		cfg->new_ctrl = r->default_ctrl;
2836 		cfg->have_new_ctrl = true;
2837 	}
2838 }
2839 
2840 /* Initialize the RDT group's allocations. */
2841 static int rdtgroup_init_alloc(struct rdtgroup *rdtgrp)
2842 {
2843 	struct resctrl_schema *s;
2844 	struct rdt_resource *r;
2845 	int ret;
2846 
2847 	list_for_each_entry(s, &resctrl_schema_all, list) {
2848 		r = s->res;
2849 		if (r->rid == RDT_RESOURCE_MBA ||
2850 		    r->rid == RDT_RESOURCE_SMBA) {
2851 			rdtgroup_init_mba(r, rdtgrp->closid);
2852 			if (is_mba_sc(r))
2853 				continue;
2854 		} else {
2855 			ret = rdtgroup_init_cat(s, rdtgrp->closid);
2856 			if (ret < 0)
2857 				return ret;
2858 		}
2859 
2860 		ret = resctrl_arch_update_domains(r, rdtgrp->closid);
2861 		if (ret < 0) {
2862 			rdt_last_cmd_puts("Failed to initialize allocations\n");
2863 			return ret;
2864 		}
2865 
2866 	}
2867 
2868 	rdtgrp->mode = RDT_MODE_SHAREABLE;
2869 
2870 	return 0;
2871 }
2872 
2873 static int mkdir_rdt_prepare(struct kernfs_node *parent_kn,
2874 			     const char *name, umode_t mode,
2875 			     enum rdt_group_type rtype, struct rdtgroup **r)
2876 {
2877 	struct rdtgroup *prdtgrp, *rdtgrp;
2878 	struct kernfs_node *kn;
2879 	uint files = 0;
2880 	int ret;
2881 
2882 	prdtgrp = rdtgroup_kn_lock_live(parent_kn);
2883 	if (!prdtgrp) {
2884 		ret = -ENODEV;
2885 		goto out_unlock;
2886 	}
2887 
2888 	if (rtype == RDTMON_GROUP &&
2889 	    (prdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP ||
2890 	     prdtgrp->mode == RDT_MODE_PSEUDO_LOCKED)) {
2891 		ret = -EINVAL;
2892 		rdt_last_cmd_puts("Pseudo-locking in progress\n");
2893 		goto out_unlock;
2894 	}
2895 
2896 	/* allocate the rdtgroup. */
2897 	rdtgrp = kzalloc(sizeof(*rdtgrp), GFP_KERNEL);
2898 	if (!rdtgrp) {
2899 		ret = -ENOSPC;
2900 		rdt_last_cmd_puts("Kernel out of memory\n");
2901 		goto out_unlock;
2902 	}
2903 	*r = rdtgrp;
2904 	rdtgrp->mon.parent = prdtgrp;
2905 	rdtgrp->type = rtype;
2906 	INIT_LIST_HEAD(&rdtgrp->mon.crdtgrp_list);
2907 
2908 	/* kernfs creates the directory for rdtgrp */
2909 	kn = kernfs_create_dir(parent_kn, name, mode, rdtgrp);
2910 	if (IS_ERR(kn)) {
2911 		ret = PTR_ERR(kn);
2912 		rdt_last_cmd_puts("kernfs create error\n");
2913 		goto out_free_rgrp;
2914 	}
2915 	rdtgrp->kn = kn;
2916 
2917 	/*
2918 	 * kernfs_remove() will drop the reference count on "kn" which
2919 	 * will free it. But we still need it to stick around for the
2920 	 * rdtgroup_kn_unlock(kn) call. Take one extra reference here,
2921 	 * which will be dropped by kernfs_put() in rdtgroup_remove().
2922 	 */
2923 	kernfs_get(kn);
2924 
2925 	ret = rdtgroup_kn_set_ugid(kn);
2926 	if (ret) {
2927 		rdt_last_cmd_puts("kernfs perm error\n");
2928 		goto out_destroy;
2929 	}
2930 
2931 	files = RFTYPE_BASE | BIT(RF_CTRLSHIFT + rtype);
2932 	ret = rdtgroup_add_files(kn, files);
2933 	if (ret) {
2934 		rdt_last_cmd_puts("kernfs fill error\n");
2935 		goto out_destroy;
2936 	}
2937 
2938 	if (rdt_mon_capable) {
2939 		ret = alloc_rmid();
2940 		if (ret < 0) {
2941 			rdt_last_cmd_puts("Out of RMIDs\n");
2942 			goto out_destroy;
2943 		}
2944 		rdtgrp->mon.rmid = ret;
2945 
2946 		ret = mkdir_mondata_all(kn, rdtgrp, &rdtgrp->mon.mon_data_kn);
2947 		if (ret) {
2948 			rdt_last_cmd_puts("kernfs subdir error\n");
2949 			goto out_idfree;
2950 		}
2951 	}
2952 	kernfs_activate(kn);
2953 
2954 	/*
2955 	 * The caller unlocks the parent_kn upon success.
2956 	 */
2957 	return 0;
2958 
2959 out_idfree:
2960 	free_rmid(rdtgrp->mon.rmid);
2961 out_destroy:
2962 	kernfs_put(rdtgrp->kn);
2963 	kernfs_remove(rdtgrp->kn);
2964 out_free_rgrp:
2965 	kfree(rdtgrp);
2966 out_unlock:
2967 	rdtgroup_kn_unlock(parent_kn);
2968 	return ret;
2969 }
2970 
2971 static void mkdir_rdt_prepare_clean(struct rdtgroup *rgrp)
2972 {
2973 	kernfs_remove(rgrp->kn);
2974 	free_rmid(rgrp->mon.rmid);
2975 	rdtgroup_remove(rgrp);
2976 }
2977 
2978 /*
2979  * Create a monitor group under "mon_groups" directory of a control
2980  * and monitor group(ctrl_mon). This is a resource group
2981  * to monitor a subset of tasks and cpus in its parent ctrl_mon group.
2982  */
2983 static int rdtgroup_mkdir_mon(struct kernfs_node *parent_kn,
2984 			      const char *name, umode_t mode)
2985 {
2986 	struct rdtgroup *rdtgrp, *prgrp;
2987 	int ret;
2988 
2989 	ret = mkdir_rdt_prepare(parent_kn, name, mode, RDTMON_GROUP, &rdtgrp);
2990 	if (ret)
2991 		return ret;
2992 
2993 	prgrp = rdtgrp->mon.parent;
2994 	rdtgrp->closid = prgrp->closid;
2995 
2996 	/*
2997 	 * Add the rdtgrp to the list of rdtgrps the parent
2998 	 * ctrl_mon group has to track.
2999 	 */
3000 	list_add_tail(&rdtgrp->mon.crdtgrp_list, &prgrp->mon.crdtgrp_list);
3001 
3002 	rdtgroup_kn_unlock(parent_kn);
3003 	return ret;
3004 }
3005 
3006 /*
3007  * These are rdtgroups created under the root directory. Can be used
3008  * to allocate and monitor resources.
3009  */
3010 static int rdtgroup_mkdir_ctrl_mon(struct kernfs_node *parent_kn,
3011 				   const char *name, umode_t mode)
3012 {
3013 	struct rdtgroup *rdtgrp;
3014 	struct kernfs_node *kn;
3015 	u32 closid;
3016 	int ret;
3017 
3018 	ret = mkdir_rdt_prepare(parent_kn, name, mode, RDTCTRL_GROUP, &rdtgrp);
3019 	if (ret)
3020 		return ret;
3021 
3022 	kn = rdtgrp->kn;
3023 	ret = closid_alloc();
3024 	if (ret < 0) {
3025 		rdt_last_cmd_puts("Out of CLOSIDs\n");
3026 		goto out_common_fail;
3027 	}
3028 	closid = ret;
3029 	ret = 0;
3030 
3031 	rdtgrp->closid = closid;
3032 	ret = rdtgroup_init_alloc(rdtgrp);
3033 	if (ret < 0)
3034 		goto out_id_free;
3035 
3036 	list_add(&rdtgrp->rdtgroup_list, &rdt_all_groups);
3037 
3038 	if (rdt_mon_capable) {
3039 		/*
3040 		 * Create an empty mon_groups directory to hold the subset
3041 		 * of tasks and cpus to monitor.
3042 		 */
3043 		ret = mongroup_create_dir(kn, rdtgrp, "mon_groups", NULL);
3044 		if (ret) {
3045 			rdt_last_cmd_puts("kernfs subdir error\n");
3046 			goto out_del_list;
3047 		}
3048 	}
3049 
3050 	goto out_unlock;
3051 
3052 out_del_list:
3053 	list_del(&rdtgrp->rdtgroup_list);
3054 out_id_free:
3055 	closid_free(closid);
3056 out_common_fail:
3057 	mkdir_rdt_prepare_clean(rdtgrp);
3058 out_unlock:
3059 	rdtgroup_kn_unlock(parent_kn);
3060 	return ret;
3061 }
3062 
3063 /*
3064  * We allow creating mon groups only with in a directory called "mon_groups"
3065  * which is present in every ctrl_mon group. Check if this is a valid
3066  * "mon_groups" directory.
3067  *
3068  * 1. The directory should be named "mon_groups".
3069  * 2. The mon group itself should "not" be named "mon_groups".
3070  *   This makes sure "mon_groups" directory always has a ctrl_mon group
3071  *   as parent.
3072  */
3073 static bool is_mon_groups(struct kernfs_node *kn, const char *name)
3074 {
3075 	return (!strcmp(kn->name, "mon_groups") &&
3076 		strcmp(name, "mon_groups"));
3077 }
3078 
3079 static int rdtgroup_mkdir(struct kernfs_node *parent_kn, const char *name,
3080 			  umode_t mode)
3081 {
3082 	/* Do not accept '\n' to avoid unparsable situation. */
3083 	if (strchr(name, '\n'))
3084 		return -EINVAL;
3085 
3086 	/*
3087 	 * If the parent directory is the root directory and RDT
3088 	 * allocation is supported, add a control and monitoring
3089 	 * subdirectory
3090 	 */
3091 	if (rdt_alloc_capable && parent_kn == rdtgroup_default.kn)
3092 		return rdtgroup_mkdir_ctrl_mon(parent_kn, name, mode);
3093 
3094 	/*
3095 	 * If RDT monitoring is supported and the parent directory is a valid
3096 	 * "mon_groups" directory, add a monitoring subdirectory.
3097 	 */
3098 	if (rdt_mon_capable && is_mon_groups(parent_kn, name))
3099 		return rdtgroup_mkdir_mon(parent_kn, name, mode);
3100 
3101 	return -EPERM;
3102 }
3103 
3104 static int rdtgroup_rmdir_mon(struct rdtgroup *rdtgrp, cpumask_var_t tmpmask)
3105 {
3106 	struct rdtgroup *prdtgrp = rdtgrp->mon.parent;
3107 	int cpu;
3108 
3109 	/* Give any tasks back to the parent group */
3110 	rdt_move_group_tasks(rdtgrp, prdtgrp, tmpmask);
3111 
3112 	/* Update per cpu rmid of the moved CPUs first */
3113 	for_each_cpu(cpu, &rdtgrp->cpu_mask)
3114 		per_cpu(pqr_state.default_rmid, cpu) = prdtgrp->mon.rmid;
3115 	/*
3116 	 * Update the MSR on moved CPUs and CPUs which have moved
3117 	 * task running on them.
3118 	 */
3119 	cpumask_or(tmpmask, tmpmask, &rdtgrp->cpu_mask);
3120 	update_closid_rmid(tmpmask, NULL);
3121 
3122 	rdtgrp->flags = RDT_DELETED;
3123 	free_rmid(rdtgrp->mon.rmid);
3124 
3125 	/*
3126 	 * Remove the rdtgrp from the parent ctrl_mon group's list
3127 	 */
3128 	WARN_ON(list_empty(&prdtgrp->mon.crdtgrp_list));
3129 	list_del(&rdtgrp->mon.crdtgrp_list);
3130 
3131 	kernfs_remove(rdtgrp->kn);
3132 
3133 	return 0;
3134 }
3135 
3136 static int rdtgroup_ctrl_remove(struct rdtgroup *rdtgrp)
3137 {
3138 	rdtgrp->flags = RDT_DELETED;
3139 	list_del(&rdtgrp->rdtgroup_list);
3140 
3141 	kernfs_remove(rdtgrp->kn);
3142 	return 0;
3143 }
3144 
3145 static int rdtgroup_rmdir_ctrl(struct rdtgroup *rdtgrp, cpumask_var_t tmpmask)
3146 {
3147 	int cpu;
3148 
3149 	/* Give any tasks back to the default group */
3150 	rdt_move_group_tasks(rdtgrp, &rdtgroup_default, tmpmask);
3151 
3152 	/* Give any CPUs back to the default group */
3153 	cpumask_or(&rdtgroup_default.cpu_mask,
3154 		   &rdtgroup_default.cpu_mask, &rdtgrp->cpu_mask);
3155 
3156 	/* Update per cpu closid and rmid of the moved CPUs first */
3157 	for_each_cpu(cpu, &rdtgrp->cpu_mask) {
3158 		per_cpu(pqr_state.default_closid, cpu) = rdtgroup_default.closid;
3159 		per_cpu(pqr_state.default_rmid, cpu) = rdtgroup_default.mon.rmid;
3160 	}
3161 
3162 	/*
3163 	 * Update the MSR on moved CPUs and CPUs which have moved
3164 	 * task running on them.
3165 	 */
3166 	cpumask_or(tmpmask, tmpmask, &rdtgrp->cpu_mask);
3167 	update_closid_rmid(tmpmask, NULL);
3168 
3169 	closid_free(rdtgrp->closid);
3170 	free_rmid(rdtgrp->mon.rmid);
3171 
3172 	rdtgroup_ctrl_remove(rdtgrp);
3173 
3174 	/*
3175 	 * Free all the child monitor group rmids.
3176 	 */
3177 	free_all_child_rdtgrp(rdtgrp);
3178 
3179 	return 0;
3180 }
3181 
3182 static int rdtgroup_rmdir(struct kernfs_node *kn)
3183 {
3184 	struct kernfs_node *parent_kn = kn->parent;
3185 	struct rdtgroup *rdtgrp;
3186 	cpumask_var_t tmpmask;
3187 	int ret = 0;
3188 
3189 	if (!zalloc_cpumask_var(&tmpmask, GFP_KERNEL))
3190 		return -ENOMEM;
3191 
3192 	rdtgrp = rdtgroup_kn_lock_live(kn);
3193 	if (!rdtgrp) {
3194 		ret = -EPERM;
3195 		goto out;
3196 	}
3197 
3198 	/*
3199 	 * If the rdtgroup is a ctrl_mon group and parent directory
3200 	 * is the root directory, remove the ctrl_mon group.
3201 	 *
3202 	 * If the rdtgroup is a mon group and parent directory
3203 	 * is a valid "mon_groups" directory, remove the mon group.
3204 	 */
3205 	if (rdtgrp->type == RDTCTRL_GROUP && parent_kn == rdtgroup_default.kn &&
3206 	    rdtgrp != &rdtgroup_default) {
3207 		if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP ||
3208 		    rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED) {
3209 			ret = rdtgroup_ctrl_remove(rdtgrp);
3210 		} else {
3211 			ret = rdtgroup_rmdir_ctrl(rdtgrp, tmpmask);
3212 		}
3213 	} else if (rdtgrp->type == RDTMON_GROUP &&
3214 		 is_mon_groups(parent_kn, kn->name)) {
3215 		ret = rdtgroup_rmdir_mon(rdtgrp, tmpmask);
3216 	} else {
3217 		ret = -EPERM;
3218 	}
3219 
3220 out:
3221 	rdtgroup_kn_unlock(kn);
3222 	free_cpumask_var(tmpmask);
3223 	return ret;
3224 }
3225 
3226 static int rdtgroup_show_options(struct seq_file *seq, struct kernfs_root *kf)
3227 {
3228 	if (resctrl_arch_get_cdp_enabled(RDT_RESOURCE_L3))
3229 		seq_puts(seq, ",cdp");
3230 
3231 	if (resctrl_arch_get_cdp_enabled(RDT_RESOURCE_L2))
3232 		seq_puts(seq, ",cdpl2");
3233 
3234 	if (is_mba_sc(&rdt_resources_all[RDT_RESOURCE_MBA].r_resctrl))
3235 		seq_puts(seq, ",mba_MBps");
3236 
3237 	return 0;
3238 }
3239 
3240 static struct kernfs_syscall_ops rdtgroup_kf_syscall_ops = {
3241 	.mkdir		= rdtgroup_mkdir,
3242 	.rmdir		= rdtgroup_rmdir,
3243 	.show_options	= rdtgroup_show_options,
3244 };
3245 
3246 static int __init rdtgroup_setup_root(void)
3247 {
3248 	int ret;
3249 
3250 	rdt_root = kernfs_create_root(&rdtgroup_kf_syscall_ops,
3251 				      KERNFS_ROOT_CREATE_DEACTIVATED |
3252 				      KERNFS_ROOT_EXTRA_OPEN_PERM_CHECK,
3253 				      &rdtgroup_default);
3254 	if (IS_ERR(rdt_root))
3255 		return PTR_ERR(rdt_root);
3256 
3257 	mutex_lock(&rdtgroup_mutex);
3258 
3259 	rdtgroup_default.closid = 0;
3260 	rdtgroup_default.mon.rmid = 0;
3261 	rdtgroup_default.type = RDTCTRL_GROUP;
3262 	INIT_LIST_HEAD(&rdtgroup_default.mon.crdtgrp_list);
3263 
3264 	list_add(&rdtgroup_default.rdtgroup_list, &rdt_all_groups);
3265 
3266 	ret = rdtgroup_add_files(kernfs_root_to_node(rdt_root), RF_CTRL_BASE);
3267 	if (ret) {
3268 		kernfs_destroy_root(rdt_root);
3269 		goto out;
3270 	}
3271 
3272 	rdtgroup_default.kn = kernfs_root_to_node(rdt_root);
3273 	kernfs_activate(rdtgroup_default.kn);
3274 
3275 out:
3276 	mutex_unlock(&rdtgroup_mutex);
3277 
3278 	return ret;
3279 }
3280 
3281 static void domain_destroy_mon_state(struct rdt_domain *d)
3282 {
3283 	bitmap_free(d->rmid_busy_llc);
3284 	kfree(d->mbm_total);
3285 	kfree(d->mbm_local);
3286 }
3287 
3288 void resctrl_offline_domain(struct rdt_resource *r, struct rdt_domain *d)
3289 {
3290 	lockdep_assert_held(&rdtgroup_mutex);
3291 
3292 	if (supports_mba_mbps() && r->rid == RDT_RESOURCE_MBA)
3293 		mba_sc_domain_destroy(r, d);
3294 
3295 	if (!r->mon_capable)
3296 		return;
3297 
3298 	/*
3299 	 * If resctrl is mounted, remove all the
3300 	 * per domain monitor data directories.
3301 	 */
3302 	if (static_branch_unlikely(&rdt_mon_enable_key))
3303 		rmdir_mondata_subdir_allrdtgrp(r, d->id);
3304 
3305 	if (is_mbm_enabled())
3306 		cancel_delayed_work(&d->mbm_over);
3307 	if (is_llc_occupancy_enabled() && has_busy_rmid(r, d)) {
3308 		/*
3309 		 * When a package is going down, forcefully
3310 		 * decrement rmid->ebusy. There is no way to know
3311 		 * that the L3 was flushed and hence may lead to
3312 		 * incorrect counts in rare scenarios, but leaving
3313 		 * the RMID as busy creates RMID leaks if the
3314 		 * package never comes back.
3315 		 */
3316 		__check_limbo(d, true);
3317 		cancel_delayed_work(&d->cqm_limbo);
3318 	}
3319 
3320 	domain_destroy_mon_state(d);
3321 }
3322 
3323 static int domain_setup_mon_state(struct rdt_resource *r, struct rdt_domain *d)
3324 {
3325 	size_t tsize;
3326 
3327 	if (is_llc_occupancy_enabled()) {
3328 		d->rmid_busy_llc = bitmap_zalloc(r->num_rmid, GFP_KERNEL);
3329 		if (!d->rmid_busy_llc)
3330 			return -ENOMEM;
3331 	}
3332 	if (is_mbm_total_enabled()) {
3333 		tsize = sizeof(*d->mbm_total);
3334 		d->mbm_total = kcalloc(r->num_rmid, tsize, GFP_KERNEL);
3335 		if (!d->mbm_total) {
3336 			bitmap_free(d->rmid_busy_llc);
3337 			return -ENOMEM;
3338 		}
3339 	}
3340 	if (is_mbm_local_enabled()) {
3341 		tsize = sizeof(*d->mbm_local);
3342 		d->mbm_local = kcalloc(r->num_rmid, tsize, GFP_KERNEL);
3343 		if (!d->mbm_local) {
3344 			bitmap_free(d->rmid_busy_llc);
3345 			kfree(d->mbm_total);
3346 			return -ENOMEM;
3347 		}
3348 	}
3349 
3350 	return 0;
3351 }
3352 
3353 int resctrl_online_domain(struct rdt_resource *r, struct rdt_domain *d)
3354 {
3355 	int err;
3356 
3357 	lockdep_assert_held(&rdtgroup_mutex);
3358 
3359 	if (supports_mba_mbps() && r->rid == RDT_RESOURCE_MBA)
3360 		/* RDT_RESOURCE_MBA is never mon_capable */
3361 		return mba_sc_domain_allocate(r, d);
3362 
3363 	if (!r->mon_capable)
3364 		return 0;
3365 
3366 	err = domain_setup_mon_state(r, d);
3367 	if (err)
3368 		return err;
3369 
3370 	if (is_mbm_enabled()) {
3371 		INIT_DELAYED_WORK(&d->mbm_over, mbm_handle_overflow);
3372 		mbm_setup_overflow_handler(d, MBM_OVERFLOW_INTERVAL);
3373 	}
3374 
3375 	if (is_llc_occupancy_enabled())
3376 		INIT_DELAYED_WORK(&d->cqm_limbo, cqm_handle_limbo);
3377 
3378 	/* If resctrl is mounted, add per domain monitor data directories. */
3379 	if (static_branch_unlikely(&rdt_mon_enable_key))
3380 		mkdir_mondata_subdir_allrdtgrp(r, d);
3381 
3382 	return 0;
3383 }
3384 
3385 /*
3386  * rdtgroup_init - rdtgroup initialization
3387  *
3388  * Setup resctrl file system including set up root, create mount point,
3389  * register rdtgroup filesystem, and initialize files under root directory.
3390  *
3391  * Return: 0 on success or -errno
3392  */
3393 int __init rdtgroup_init(void)
3394 {
3395 	int ret = 0;
3396 
3397 	seq_buf_init(&last_cmd_status, last_cmd_status_buf,
3398 		     sizeof(last_cmd_status_buf));
3399 
3400 	ret = rdtgroup_setup_root();
3401 	if (ret)
3402 		return ret;
3403 
3404 	ret = sysfs_create_mount_point(fs_kobj, "resctrl");
3405 	if (ret)
3406 		goto cleanup_root;
3407 
3408 	ret = register_filesystem(&rdt_fs_type);
3409 	if (ret)
3410 		goto cleanup_mountpoint;
3411 
3412 	/*
3413 	 * Adding the resctrl debugfs directory here may not be ideal since
3414 	 * it would let the resctrl debugfs directory appear on the debugfs
3415 	 * filesystem before the resctrl filesystem is mounted.
3416 	 * It may also be ok since that would enable debugging of RDT before
3417 	 * resctrl is mounted.
3418 	 * The reason why the debugfs directory is created here and not in
3419 	 * rdt_get_tree() is because rdt_get_tree() takes rdtgroup_mutex and
3420 	 * during the debugfs directory creation also &sb->s_type->i_mutex_key
3421 	 * (the lockdep class of inode->i_rwsem). Other filesystem
3422 	 * interactions (eg. SyS_getdents) have the lock ordering:
3423 	 * &sb->s_type->i_mutex_key --> &mm->mmap_lock
3424 	 * During mmap(), called with &mm->mmap_lock, the rdtgroup_mutex
3425 	 * is taken, thus creating dependency:
3426 	 * &mm->mmap_lock --> rdtgroup_mutex for the latter that can cause
3427 	 * issues considering the other two lock dependencies.
3428 	 * By creating the debugfs directory here we avoid a dependency
3429 	 * that may cause deadlock (even though file operations cannot
3430 	 * occur until the filesystem is mounted, but I do not know how to
3431 	 * tell lockdep that).
3432 	 */
3433 	debugfs_resctrl = debugfs_create_dir("resctrl", NULL);
3434 
3435 	return 0;
3436 
3437 cleanup_mountpoint:
3438 	sysfs_remove_mount_point(fs_kobj, "resctrl");
3439 cleanup_root:
3440 	kernfs_destroy_root(rdt_root);
3441 
3442 	return ret;
3443 }
3444 
3445 void __exit rdtgroup_exit(void)
3446 {
3447 	debugfs_remove_recursive(debugfs_resctrl);
3448 	unregister_filesystem(&rdt_fs_type);
3449 	sysfs_remove_mount_point(fs_kobj, "resctrl");
3450 	kernfs_destroy_root(rdt_root);
3451 }
3452