1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * User interface for Resource Alloction in Resource Director Technology(RDT) 4 * 5 * Copyright (C) 2016 Intel Corporation 6 * 7 * Author: Fenghua Yu <fenghua.yu@intel.com> 8 * 9 * More information about RDT be found in the Intel (R) x86 Architecture 10 * Software Developer Manual. 11 */ 12 13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 14 15 #include <linux/cacheinfo.h> 16 #include <linux/cpu.h> 17 #include <linux/debugfs.h> 18 #include <linux/fs.h> 19 #include <linux/fs_parser.h> 20 #include <linux/sysfs.h> 21 #include <linux/kernfs.h> 22 #include <linux/seq_buf.h> 23 #include <linux/seq_file.h> 24 #include <linux/sched/signal.h> 25 #include <linux/sched/task.h> 26 #include <linux/slab.h> 27 #include <linux/task_work.h> 28 #include <linux/user_namespace.h> 29 30 #include <uapi/linux/magic.h> 31 32 #include <asm/resctrl_sched.h> 33 #include "internal.h" 34 35 DEFINE_STATIC_KEY_FALSE(rdt_enable_key); 36 DEFINE_STATIC_KEY_FALSE(rdt_mon_enable_key); 37 DEFINE_STATIC_KEY_FALSE(rdt_alloc_enable_key); 38 static struct kernfs_root *rdt_root; 39 struct rdtgroup rdtgroup_default; 40 LIST_HEAD(rdt_all_groups); 41 42 /* Kernel fs node for "info" directory under root */ 43 static struct kernfs_node *kn_info; 44 45 /* Kernel fs node for "mon_groups" directory under root */ 46 static struct kernfs_node *kn_mongrp; 47 48 /* Kernel fs node for "mon_data" directory under root */ 49 static struct kernfs_node *kn_mondata; 50 51 static struct seq_buf last_cmd_status; 52 static char last_cmd_status_buf[512]; 53 54 struct dentry *debugfs_resctrl; 55 56 void rdt_last_cmd_clear(void) 57 { 58 lockdep_assert_held(&rdtgroup_mutex); 59 seq_buf_clear(&last_cmd_status); 60 } 61 62 void rdt_last_cmd_puts(const char *s) 63 { 64 lockdep_assert_held(&rdtgroup_mutex); 65 seq_buf_puts(&last_cmd_status, s); 66 } 67 68 void rdt_last_cmd_printf(const char *fmt, ...) 69 { 70 va_list ap; 71 72 va_start(ap, fmt); 73 lockdep_assert_held(&rdtgroup_mutex); 74 seq_buf_vprintf(&last_cmd_status, fmt, ap); 75 va_end(ap); 76 } 77 78 /* 79 * Trivial allocator for CLOSIDs. Since h/w only supports a small number, 80 * we can keep a bitmap of free CLOSIDs in a single integer. 81 * 82 * Using a global CLOSID across all resources has some advantages and 83 * some drawbacks: 84 * + We can simply set "current->closid" to assign a task to a resource 85 * group. 86 * + Context switch code can avoid extra memory references deciding which 87 * CLOSID to load into the PQR_ASSOC MSR 88 * - We give up some options in configuring resource groups across multi-socket 89 * systems. 90 * - Our choices on how to configure each resource become progressively more 91 * limited as the number of resources grows. 92 */ 93 static int closid_free_map; 94 static int closid_free_map_len; 95 96 int closids_supported(void) 97 { 98 return closid_free_map_len; 99 } 100 101 static void closid_init(void) 102 { 103 struct rdt_resource *r; 104 int rdt_min_closid = 32; 105 106 /* Compute rdt_min_closid across all resources */ 107 for_each_alloc_enabled_rdt_resource(r) 108 rdt_min_closid = min(rdt_min_closid, r->num_closid); 109 110 closid_free_map = BIT_MASK(rdt_min_closid) - 1; 111 112 /* CLOSID 0 is always reserved for the default group */ 113 closid_free_map &= ~1; 114 closid_free_map_len = rdt_min_closid; 115 } 116 117 static int closid_alloc(void) 118 { 119 u32 closid = ffs(closid_free_map); 120 121 if (closid == 0) 122 return -ENOSPC; 123 closid--; 124 closid_free_map &= ~(1 << closid); 125 126 return closid; 127 } 128 129 void closid_free(int closid) 130 { 131 closid_free_map |= 1 << closid; 132 } 133 134 /** 135 * closid_allocated - test if provided closid is in use 136 * @closid: closid to be tested 137 * 138 * Return: true if @closid is currently associated with a resource group, 139 * false if @closid is free 140 */ 141 static bool closid_allocated(unsigned int closid) 142 { 143 return (closid_free_map & (1 << closid)) == 0; 144 } 145 146 /** 147 * rdtgroup_mode_by_closid - Return mode of resource group with closid 148 * @closid: closid if the resource group 149 * 150 * Each resource group is associated with a @closid. Here the mode 151 * of a resource group can be queried by searching for it using its closid. 152 * 153 * Return: mode as &enum rdtgrp_mode of resource group with closid @closid 154 */ 155 enum rdtgrp_mode rdtgroup_mode_by_closid(int closid) 156 { 157 struct rdtgroup *rdtgrp; 158 159 list_for_each_entry(rdtgrp, &rdt_all_groups, rdtgroup_list) { 160 if (rdtgrp->closid == closid) 161 return rdtgrp->mode; 162 } 163 164 return RDT_NUM_MODES; 165 } 166 167 static const char * const rdt_mode_str[] = { 168 [RDT_MODE_SHAREABLE] = "shareable", 169 [RDT_MODE_EXCLUSIVE] = "exclusive", 170 [RDT_MODE_PSEUDO_LOCKSETUP] = "pseudo-locksetup", 171 [RDT_MODE_PSEUDO_LOCKED] = "pseudo-locked", 172 }; 173 174 /** 175 * rdtgroup_mode_str - Return the string representation of mode 176 * @mode: the resource group mode as &enum rdtgroup_mode 177 * 178 * Return: string representation of valid mode, "unknown" otherwise 179 */ 180 static const char *rdtgroup_mode_str(enum rdtgrp_mode mode) 181 { 182 if (mode < RDT_MODE_SHAREABLE || mode >= RDT_NUM_MODES) 183 return "unknown"; 184 185 return rdt_mode_str[mode]; 186 } 187 188 /* set uid and gid of rdtgroup dirs and files to that of the creator */ 189 static int rdtgroup_kn_set_ugid(struct kernfs_node *kn) 190 { 191 struct iattr iattr = { .ia_valid = ATTR_UID | ATTR_GID, 192 .ia_uid = current_fsuid(), 193 .ia_gid = current_fsgid(), }; 194 195 if (uid_eq(iattr.ia_uid, GLOBAL_ROOT_UID) && 196 gid_eq(iattr.ia_gid, GLOBAL_ROOT_GID)) 197 return 0; 198 199 return kernfs_setattr(kn, &iattr); 200 } 201 202 static int rdtgroup_add_file(struct kernfs_node *parent_kn, struct rftype *rft) 203 { 204 struct kernfs_node *kn; 205 int ret; 206 207 kn = __kernfs_create_file(parent_kn, rft->name, rft->mode, 208 GLOBAL_ROOT_UID, GLOBAL_ROOT_GID, 209 0, rft->kf_ops, rft, NULL, NULL); 210 if (IS_ERR(kn)) 211 return PTR_ERR(kn); 212 213 ret = rdtgroup_kn_set_ugid(kn); 214 if (ret) { 215 kernfs_remove(kn); 216 return ret; 217 } 218 219 return 0; 220 } 221 222 static int rdtgroup_seqfile_show(struct seq_file *m, void *arg) 223 { 224 struct kernfs_open_file *of = m->private; 225 struct rftype *rft = of->kn->priv; 226 227 if (rft->seq_show) 228 return rft->seq_show(of, m, arg); 229 return 0; 230 } 231 232 static ssize_t rdtgroup_file_write(struct kernfs_open_file *of, char *buf, 233 size_t nbytes, loff_t off) 234 { 235 struct rftype *rft = of->kn->priv; 236 237 if (rft->write) 238 return rft->write(of, buf, nbytes, off); 239 240 return -EINVAL; 241 } 242 243 static struct kernfs_ops rdtgroup_kf_single_ops = { 244 .atomic_write_len = PAGE_SIZE, 245 .write = rdtgroup_file_write, 246 .seq_show = rdtgroup_seqfile_show, 247 }; 248 249 static struct kernfs_ops kf_mondata_ops = { 250 .atomic_write_len = PAGE_SIZE, 251 .seq_show = rdtgroup_mondata_show, 252 }; 253 254 static bool is_cpu_list(struct kernfs_open_file *of) 255 { 256 struct rftype *rft = of->kn->priv; 257 258 return rft->flags & RFTYPE_FLAGS_CPUS_LIST; 259 } 260 261 static int rdtgroup_cpus_show(struct kernfs_open_file *of, 262 struct seq_file *s, void *v) 263 { 264 struct rdtgroup *rdtgrp; 265 struct cpumask *mask; 266 int ret = 0; 267 268 rdtgrp = rdtgroup_kn_lock_live(of->kn); 269 270 if (rdtgrp) { 271 if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED) { 272 if (!rdtgrp->plr->d) { 273 rdt_last_cmd_clear(); 274 rdt_last_cmd_puts("Cache domain offline\n"); 275 ret = -ENODEV; 276 } else { 277 mask = &rdtgrp->plr->d->cpu_mask; 278 seq_printf(s, is_cpu_list(of) ? 279 "%*pbl\n" : "%*pb\n", 280 cpumask_pr_args(mask)); 281 } 282 } else { 283 seq_printf(s, is_cpu_list(of) ? "%*pbl\n" : "%*pb\n", 284 cpumask_pr_args(&rdtgrp->cpu_mask)); 285 } 286 } else { 287 ret = -ENOENT; 288 } 289 rdtgroup_kn_unlock(of->kn); 290 291 return ret; 292 } 293 294 /* 295 * This is safe against resctrl_sched_in() called from __switch_to() 296 * because __switch_to() is executed with interrupts disabled. A local call 297 * from update_closid_rmid() is proteced against __switch_to() because 298 * preemption is disabled. 299 */ 300 static void update_cpu_closid_rmid(void *info) 301 { 302 struct rdtgroup *r = info; 303 304 if (r) { 305 this_cpu_write(pqr_state.default_closid, r->closid); 306 this_cpu_write(pqr_state.default_rmid, r->mon.rmid); 307 } 308 309 /* 310 * We cannot unconditionally write the MSR because the current 311 * executing task might have its own closid selected. Just reuse 312 * the context switch code. 313 */ 314 resctrl_sched_in(); 315 } 316 317 /* 318 * Update the PGR_ASSOC MSR on all cpus in @cpu_mask, 319 * 320 * Per task closids/rmids must have been set up before calling this function. 321 */ 322 static void 323 update_closid_rmid(const struct cpumask *cpu_mask, struct rdtgroup *r) 324 { 325 int cpu = get_cpu(); 326 327 if (cpumask_test_cpu(cpu, cpu_mask)) 328 update_cpu_closid_rmid(r); 329 smp_call_function_many(cpu_mask, update_cpu_closid_rmid, r, 1); 330 put_cpu(); 331 } 332 333 static int cpus_mon_write(struct rdtgroup *rdtgrp, cpumask_var_t newmask, 334 cpumask_var_t tmpmask) 335 { 336 struct rdtgroup *prgrp = rdtgrp->mon.parent, *crgrp; 337 struct list_head *head; 338 339 /* Check whether cpus belong to parent ctrl group */ 340 cpumask_andnot(tmpmask, newmask, &prgrp->cpu_mask); 341 if (cpumask_weight(tmpmask)) { 342 rdt_last_cmd_puts("Can only add CPUs to mongroup that belong to parent\n"); 343 return -EINVAL; 344 } 345 346 /* Check whether cpus are dropped from this group */ 347 cpumask_andnot(tmpmask, &rdtgrp->cpu_mask, newmask); 348 if (cpumask_weight(tmpmask)) { 349 /* Give any dropped cpus to parent rdtgroup */ 350 cpumask_or(&prgrp->cpu_mask, &prgrp->cpu_mask, tmpmask); 351 update_closid_rmid(tmpmask, prgrp); 352 } 353 354 /* 355 * If we added cpus, remove them from previous group that owned them 356 * and update per-cpu rmid 357 */ 358 cpumask_andnot(tmpmask, newmask, &rdtgrp->cpu_mask); 359 if (cpumask_weight(tmpmask)) { 360 head = &prgrp->mon.crdtgrp_list; 361 list_for_each_entry(crgrp, head, mon.crdtgrp_list) { 362 if (crgrp == rdtgrp) 363 continue; 364 cpumask_andnot(&crgrp->cpu_mask, &crgrp->cpu_mask, 365 tmpmask); 366 } 367 update_closid_rmid(tmpmask, rdtgrp); 368 } 369 370 /* Done pushing/pulling - update this group with new mask */ 371 cpumask_copy(&rdtgrp->cpu_mask, newmask); 372 373 return 0; 374 } 375 376 static void cpumask_rdtgrp_clear(struct rdtgroup *r, struct cpumask *m) 377 { 378 struct rdtgroup *crgrp; 379 380 cpumask_andnot(&r->cpu_mask, &r->cpu_mask, m); 381 /* update the child mon group masks as well*/ 382 list_for_each_entry(crgrp, &r->mon.crdtgrp_list, mon.crdtgrp_list) 383 cpumask_and(&crgrp->cpu_mask, &r->cpu_mask, &crgrp->cpu_mask); 384 } 385 386 static int cpus_ctrl_write(struct rdtgroup *rdtgrp, cpumask_var_t newmask, 387 cpumask_var_t tmpmask, cpumask_var_t tmpmask1) 388 { 389 struct rdtgroup *r, *crgrp; 390 struct list_head *head; 391 392 /* Check whether cpus are dropped from this group */ 393 cpumask_andnot(tmpmask, &rdtgrp->cpu_mask, newmask); 394 if (cpumask_weight(tmpmask)) { 395 /* Can't drop from default group */ 396 if (rdtgrp == &rdtgroup_default) { 397 rdt_last_cmd_puts("Can't drop CPUs from default group\n"); 398 return -EINVAL; 399 } 400 401 /* Give any dropped cpus to rdtgroup_default */ 402 cpumask_or(&rdtgroup_default.cpu_mask, 403 &rdtgroup_default.cpu_mask, tmpmask); 404 update_closid_rmid(tmpmask, &rdtgroup_default); 405 } 406 407 /* 408 * If we added cpus, remove them from previous group and 409 * the prev group's child groups that owned them 410 * and update per-cpu closid/rmid. 411 */ 412 cpumask_andnot(tmpmask, newmask, &rdtgrp->cpu_mask); 413 if (cpumask_weight(tmpmask)) { 414 list_for_each_entry(r, &rdt_all_groups, rdtgroup_list) { 415 if (r == rdtgrp) 416 continue; 417 cpumask_and(tmpmask1, &r->cpu_mask, tmpmask); 418 if (cpumask_weight(tmpmask1)) 419 cpumask_rdtgrp_clear(r, tmpmask1); 420 } 421 update_closid_rmid(tmpmask, rdtgrp); 422 } 423 424 /* Done pushing/pulling - update this group with new mask */ 425 cpumask_copy(&rdtgrp->cpu_mask, newmask); 426 427 /* 428 * Clear child mon group masks since there is a new parent mask 429 * now and update the rmid for the cpus the child lost. 430 */ 431 head = &rdtgrp->mon.crdtgrp_list; 432 list_for_each_entry(crgrp, head, mon.crdtgrp_list) { 433 cpumask_and(tmpmask, &rdtgrp->cpu_mask, &crgrp->cpu_mask); 434 update_closid_rmid(tmpmask, rdtgrp); 435 cpumask_clear(&crgrp->cpu_mask); 436 } 437 438 return 0; 439 } 440 441 static ssize_t rdtgroup_cpus_write(struct kernfs_open_file *of, 442 char *buf, size_t nbytes, loff_t off) 443 { 444 cpumask_var_t tmpmask, newmask, tmpmask1; 445 struct rdtgroup *rdtgrp; 446 int ret; 447 448 if (!buf) 449 return -EINVAL; 450 451 if (!zalloc_cpumask_var(&tmpmask, GFP_KERNEL)) 452 return -ENOMEM; 453 if (!zalloc_cpumask_var(&newmask, GFP_KERNEL)) { 454 free_cpumask_var(tmpmask); 455 return -ENOMEM; 456 } 457 if (!zalloc_cpumask_var(&tmpmask1, GFP_KERNEL)) { 458 free_cpumask_var(tmpmask); 459 free_cpumask_var(newmask); 460 return -ENOMEM; 461 } 462 463 rdtgrp = rdtgroup_kn_lock_live(of->kn); 464 rdt_last_cmd_clear(); 465 if (!rdtgrp) { 466 ret = -ENOENT; 467 rdt_last_cmd_puts("Directory was removed\n"); 468 goto unlock; 469 } 470 471 if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED || 472 rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP) { 473 ret = -EINVAL; 474 rdt_last_cmd_puts("Pseudo-locking in progress\n"); 475 goto unlock; 476 } 477 478 if (is_cpu_list(of)) 479 ret = cpulist_parse(buf, newmask); 480 else 481 ret = cpumask_parse(buf, newmask); 482 483 if (ret) { 484 rdt_last_cmd_puts("Bad CPU list/mask\n"); 485 goto unlock; 486 } 487 488 /* check that user didn't specify any offline cpus */ 489 cpumask_andnot(tmpmask, newmask, cpu_online_mask); 490 if (cpumask_weight(tmpmask)) { 491 ret = -EINVAL; 492 rdt_last_cmd_puts("Can only assign online CPUs\n"); 493 goto unlock; 494 } 495 496 if (rdtgrp->type == RDTCTRL_GROUP) 497 ret = cpus_ctrl_write(rdtgrp, newmask, tmpmask, tmpmask1); 498 else if (rdtgrp->type == RDTMON_GROUP) 499 ret = cpus_mon_write(rdtgrp, newmask, tmpmask); 500 else 501 ret = -EINVAL; 502 503 unlock: 504 rdtgroup_kn_unlock(of->kn); 505 free_cpumask_var(tmpmask); 506 free_cpumask_var(newmask); 507 free_cpumask_var(tmpmask1); 508 509 return ret ?: nbytes; 510 } 511 512 struct task_move_callback { 513 struct callback_head work; 514 struct rdtgroup *rdtgrp; 515 }; 516 517 static void move_myself(struct callback_head *head) 518 { 519 struct task_move_callback *callback; 520 struct rdtgroup *rdtgrp; 521 522 callback = container_of(head, struct task_move_callback, work); 523 rdtgrp = callback->rdtgrp; 524 525 /* 526 * If resource group was deleted before this task work callback 527 * was invoked, then assign the task to root group and free the 528 * resource group. 529 */ 530 if (atomic_dec_and_test(&rdtgrp->waitcount) && 531 (rdtgrp->flags & RDT_DELETED)) { 532 current->closid = 0; 533 current->rmid = 0; 534 kfree(rdtgrp); 535 } 536 537 preempt_disable(); 538 /* update PQR_ASSOC MSR to make resource group go into effect */ 539 resctrl_sched_in(); 540 preempt_enable(); 541 542 kfree(callback); 543 } 544 545 static int __rdtgroup_move_task(struct task_struct *tsk, 546 struct rdtgroup *rdtgrp) 547 { 548 struct task_move_callback *callback; 549 int ret; 550 551 callback = kzalloc(sizeof(*callback), GFP_KERNEL); 552 if (!callback) 553 return -ENOMEM; 554 callback->work.func = move_myself; 555 callback->rdtgrp = rdtgrp; 556 557 /* 558 * Take a refcount, so rdtgrp cannot be freed before the 559 * callback has been invoked. 560 */ 561 atomic_inc(&rdtgrp->waitcount); 562 ret = task_work_add(tsk, &callback->work, true); 563 if (ret) { 564 /* 565 * Task is exiting. Drop the refcount and free the callback. 566 * No need to check the refcount as the group cannot be 567 * deleted before the write function unlocks rdtgroup_mutex. 568 */ 569 atomic_dec(&rdtgrp->waitcount); 570 kfree(callback); 571 rdt_last_cmd_puts("Task exited\n"); 572 } else { 573 /* 574 * For ctrl_mon groups move both closid and rmid. 575 * For monitor groups, can move the tasks only from 576 * their parent CTRL group. 577 */ 578 if (rdtgrp->type == RDTCTRL_GROUP) { 579 tsk->closid = rdtgrp->closid; 580 tsk->rmid = rdtgrp->mon.rmid; 581 } else if (rdtgrp->type == RDTMON_GROUP) { 582 if (rdtgrp->mon.parent->closid == tsk->closid) { 583 tsk->rmid = rdtgrp->mon.rmid; 584 } else { 585 rdt_last_cmd_puts("Can't move task to different control group\n"); 586 ret = -EINVAL; 587 } 588 } 589 } 590 return ret; 591 } 592 593 /** 594 * rdtgroup_tasks_assigned - Test if tasks have been assigned to resource group 595 * @r: Resource group 596 * 597 * Return: 1 if tasks have been assigned to @r, 0 otherwise 598 */ 599 int rdtgroup_tasks_assigned(struct rdtgroup *r) 600 { 601 struct task_struct *p, *t; 602 int ret = 0; 603 604 lockdep_assert_held(&rdtgroup_mutex); 605 606 rcu_read_lock(); 607 for_each_process_thread(p, t) { 608 if ((r->type == RDTCTRL_GROUP && t->closid == r->closid) || 609 (r->type == RDTMON_GROUP && t->rmid == r->mon.rmid)) { 610 ret = 1; 611 break; 612 } 613 } 614 rcu_read_unlock(); 615 616 return ret; 617 } 618 619 static int rdtgroup_task_write_permission(struct task_struct *task, 620 struct kernfs_open_file *of) 621 { 622 const struct cred *tcred = get_task_cred(task); 623 const struct cred *cred = current_cred(); 624 int ret = 0; 625 626 /* 627 * Even if we're attaching all tasks in the thread group, we only 628 * need to check permissions on one of them. 629 */ 630 if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) && 631 !uid_eq(cred->euid, tcred->uid) && 632 !uid_eq(cred->euid, tcred->suid)) { 633 rdt_last_cmd_printf("No permission to move task %d\n", task->pid); 634 ret = -EPERM; 635 } 636 637 put_cred(tcred); 638 return ret; 639 } 640 641 static int rdtgroup_move_task(pid_t pid, struct rdtgroup *rdtgrp, 642 struct kernfs_open_file *of) 643 { 644 struct task_struct *tsk; 645 int ret; 646 647 rcu_read_lock(); 648 if (pid) { 649 tsk = find_task_by_vpid(pid); 650 if (!tsk) { 651 rcu_read_unlock(); 652 rdt_last_cmd_printf("No task %d\n", pid); 653 return -ESRCH; 654 } 655 } else { 656 tsk = current; 657 } 658 659 get_task_struct(tsk); 660 rcu_read_unlock(); 661 662 ret = rdtgroup_task_write_permission(tsk, of); 663 if (!ret) 664 ret = __rdtgroup_move_task(tsk, rdtgrp); 665 666 put_task_struct(tsk); 667 return ret; 668 } 669 670 static ssize_t rdtgroup_tasks_write(struct kernfs_open_file *of, 671 char *buf, size_t nbytes, loff_t off) 672 { 673 struct rdtgroup *rdtgrp; 674 int ret = 0; 675 pid_t pid; 676 677 if (kstrtoint(strstrip(buf), 0, &pid) || pid < 0) 678 return -EINVAL; 679 rdtgrp = rdtgroup_kn_lock_live(of->kn); 680 if (!rdtgrp) { 681 rdtgroup_kn_unlock(of->kn); 682 return -ENOENT; 683 } 684 rdt_last_cmd_clear(); 685 686 if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED || 687 rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP) { 688 ret = -EINVAL; 689 rdt_last_cmd_puts("Pseudo-locking in progress\n"); 690 goto unlock; 691 } 692 693 ret = rdtgroup_move_task(pid, rdtgrp, of); 694 695 unlock: 696 rdtgroup_kn_unlock(of->kn); 697 698 return ret ?: nbytes; 699 } 700 701 static void show_rdt_tasks(struct rdtgroup *r, struct seq_file *s) 702 { 703 struct task_struct *p, *t; 704 705 rcu_read_lock(); 706 for_each_process_thread(p, t) { 707 if ((r->type == RDTCTRL_GROUP && t->closid == r->closid) || 708 (r->type == RDTMON_GROUP && t->rmid == r->mon.rmid)) 709 seq_printf(s, "%d\n", t->pid); 710 } 711 rcu_read_unlock(); 712 } 713 714 static int rdtgroup_tasks_show(struct kernfs_open_file *of, 715 struct seq_file *s, void *v) 716 { 717 struct rdtgroup *rdtgrp; 718 int ret = 0; 719 720 rdtgrp = rdtgroup_kn_lock_live(of->kn); 721 if (rdtgrp) 722 show_rdt_tasks(rdtgrp, s); 723 else 724 ret = -ENOENT; 725 rdtgroup_kn_unlock(of->kn); 726 727 return ret; 728 } 729 730 static int rdt_last_cmd_status_show(struct kernfs_open_file *of, 731 struct seq_file *seq, void *v) 732 { 733 int len; 734 735 mutex_lock(&rdtgroup_mutex); 736 len = seq_buf_used(&last_cmd_status); 737 if (len) 738 seq_printf(seq, "%.*s", len, last_cmd_status_buf); 739 else 740 seq_puts(seq, "ok\n"); 741 mutex_unlock(&rdtgroup_mutex); 742 return 0; 743 } 744 745 static int rdt_num_closids_show(struct kernfs_open_file *of, 746 struct seq_file *seq, void *v) 747 { 748 struct rdt_resource *r = of->kn->parent->priv; 749 750 seq_printf(seq, "%d\n", r->num_closid); 751 return 0; 752 } 753 754 static int rdt_default_ctrl_show(struct kernfs_open_file *of, 755 struct seq_file *seq, void *v) 756 { 757 struct rdt_resource *r = of->kn->parent->priv; 758 759 seq_printf(seq, "%x\n", r->default_ctrl); 760 return 0; 761 } 762 763 static int rdt_min_cbm_bits_show(struct kernfs_open_file *of, 764 struct seq_file *seq, void *v) 765 { 766 struct rdt_resource *r = of->kn->parent->priv; 767 768 seq_printf(seq, "%u\n", r->cache.min_cbm_bits); 769 return 0; 770 } 771 772 static int rdt_shareable_bits_show(struct kernfs_open_file *of, 773 struct seq_file *seq, void *v) 774 { 775 struct rdt_resource *r = of->kn->parent->priv; 776 777 seq_printf(seq, "%x\n", r->cache.shareable_bits); 778 return 0; 779 } 780 781 /** 782 * rdt_bit_usage_show - Display current usage of resources 783 * 784 * A domain is a shared resource that can now be allocated differently. Here 785 * we display the current regions of the domain as an annotated bitmask. 786 * For each domain of this resource its allocation bitmask 787 * is annotated as below to indicate the current usage of the corresponding bit: 788 * 0 - currently unused 789 * X - currently available for sharing and used by software and hardware 790 * H - currently used by hardware only but available for software use 791 * S - currently used and shareable by software only 792 * E - currently used exclusively by one resource group 793 * P - currently pseudo-locked by one resource group 794 */ 795 static int rdt_bit_usage_show(struct kernfs_open_file *of, 796 struct seq_file *seq, void *v) 797 { 798 struct rdt_resource *r = of->kn->parent->priv; 799 /* 800 * Use unsigned long even though only 32 bits are used to ensure 801 * test_bit() is used safely. 802 */ 803 unsigned long sw_shareable = 0, hw_shareable = 0; 804 unsigned long exclusive = 0, pseudo_locked = 0; 805 struct rdt_domain *dom; 806 int i, hwb, swb, excl, psl; 807 enum rdtgrp_mode mode; 808 bool sep = false; 809 u32 *ctrl; 810 811 mutex_lock(&rdtgroup_mutex); 812 hw_shareable = r->cache.shareable_bits; 813 list_for_each_entry(dom, &r->domains, list) { 814 if (sep) 815 seq_putc(seq, ';'); 816 ctrl = dom->ctrl_val; 817 sw_shareable = 0; 818 exclusive = 0; 819 seq_printf(seq, "%d=", dom->id); 820 for (i = 0; i < closids_supported(); i++, ctrl++) { 821 if (!closid_allocated(i)) 822 continue; 823 mode = rdtgroup_mode_by_closid(i); 824 switch (mode) { 825 case RDT_MODE_SHAREABLE: 826 sw_shareable |= *ctrl; 827 break; 828 case RDT_MODE_EXCLUSIVE: 829 exclusive |= *ctrl; 830 break; 831 case RDT_MODE_PSEUDO_LOCKSETUP: 832 /* 833 * RDT_MODE_PSEUDO_LOCKSETUP is possible 834 * here but not included since the CBM 835 * associated with this CLOSID in this mode 836 * is not initialized and no task or cpu can be 837 * assigned this CLOSID. 838 */ 839 break; 840 case RDT_MODE_PSEUDO_LOCKED: 841 case RDT_NUM_MODES: 842 WARN(1, 843 "invalid mode for closid %d\n", i); 844 break; 845 } 846 } 847 for (i = r->cache.cbm_len - 1; i >= 0; i--) { 848 pseudo_locked = dom->plr ? dom->plr->cbm : 0; 849 hwb = test_bit(i, &hw_shareable); 850 swb = test_bit(i, &sw_shareable); 851 excl = test_bit(i, &exclusive); 852 psl = test_bit(i, &pseudo_locked); 853 if (hwb && swb) 854 seq_putc(seq, 'X'); 855 else if (hwb && !swb) 856 seq_putc(seq, 'H'); 857 else if (!hwb && swb) 858 seq_putc(seq, 'S'); 859 else if (excl) 860 seq_putc(seq, 'E'); 861 else if (psl) 862 seq_putc(seq, 'P'); 863 else /* Unused bits remain */ 864 seq_putc(seq, '0'); 865 } 866 sep = true; 867 } 868 seq_putc(seq, '\n'); 869 mutex_unlock(&rdtgroup_mutex); 870 return 0; 871 } 872 873 static int rdt_min_bw_show(struct kernfs_open_file *of, 874 struct seq_file *seq, void *v) 875 { 876 struct rdt_resource *r = of->kn->parent->priv; 877 878 seq_printf(seq, "%u\n", r->membw.min_bw); 879 return 0; 880 } 881 882 static int rdt_num_rmids_show(struct kernfs_open_file *of, 883 struct seq_file *seq, void *v) 884 { 885 struct rdt_resource *r = of->kn->parent->priv; 886 887 seq_printf(seq, "%d\n", r->num_rmid); 888 889 return 0; 890 } 891 892 static int rdt_mon_features_show(struct kernfs_open_file *of, 893 struct seq_file *seq, void *v) 894 { 895 struct rdt_resource *r = of->kn->parent->priv; 896 struct mon_evt *mevt; 897 898 list_for_each_entry(mevt, &r->evt_list, list) 899 seq_printf(seq, "%s\n", mevt->name); 900 901 return 0; 902 } 903 904 static int rdt_bw_gran_show(struct kernfs_open_file *of, 905 struct seq_file *seq, void *v) 906 { 907 struct rdt_resource *r = of->kn->parent->priv; 908 909 seq_printf(seq, "%u\n", r->membw.bw_gran); 910 return 0; 911 } 912 913 static int rdt_delay_linear_show(struct kernfs_open_file *of, 914 struct seq_file *seq, void *v) 915 { 916 struct rdt_resource *r = of->kn->parent->priv; 917 918 seq_printf(seq, "%u\n", r->membw.delay_linear); 919 return 0; 920 } 921 922 static int max_threshold_occ_show(struct kernfs_open_file *of, 923 struct seq_file *seq, void *v) 924 { 925 struct rdt_resource *r = of->kn->parent->priv; 926 927 seq_printf(seq, "%u\n", resctrl_cqm_threshold * r->mon_scale); 928 929 return 0; 930 } 931 932 static ssize_t max_threshold_occ_write(struct kernfs_open_file *of, 933 char *buf, size_t nbytes, loff_t off) 934 { 935 struct rdt_resource *r = of->kn->parent->priv; 936 unsigned int bytes; 937 int ret; 938 939 ret = kstrtouint(buf, 0, &bytes); 940 if (ret) 941 return ret; 942 943 if (bytes > (boot_cpu_data.x86_cache_size * 1024)) 944 return -EINVAL; 945 946 resctrl_cqm_threshold = bytes / r->mon_scale; 947 948 return nbytes; 949 } 950 951 /* 952 * rdtgroup_mode_show - Display mode of this resource group 953 */ 954 static int rdtgroup_mode_show(struct kernfs_open_file *of, 955 struct seq_file *s, void *v) 956 { 957 struct rdtgroup *rdtgrp; 958 959 rdtgrp = rdtgroup_kn_lock_live(of->kn); 960 if (!rdtgrp) { 961 rdtgroup_kn_unlock(of->kn); 962 return -ENOENT; 963 } 964 965 seq_printf(s, "%s\n", rdtgroup_mode_str(rdtgrp->mode)); 966 967 rdtgroup_kn_unlock(of->kn); 968 return 0; 969 } 970 971 /** 972 * rdt_cdp_peer_get - Retrieve CDP peer if it exists 973 * @r: RDT resource to which RDT domain @d belongs 974 * @d: Cache instance for which a CDP peer is requested 975 * @r_cdp: RDT resource that shares hardware with @r (RDT resource peer) 976 * Used to return the result. 977 * @d_cdp: RDT domain that shares hardware with @d (RDT domain peer) 978 * Used to return the result. 979 * 980 * RDT resources are managed independently and by extension the RDT domains 981 * (RDT resource instances) are managed independently also. The Code and 982 * Data Prioritization (CDP) RDT resources, while managed independently, 983 * could refer to the same underlying hardware. For example, 984 * RDT_RESOURCE_L2CODE and RDT_RESOURCE_L2DATA both refer to the L2 cache. 985 * 986 * When provided with an RDT resource @r and an instance of that RDT 987 * resource @d rdt_cdp_peer_get() will return if there is a peer RDT 988 * resource and the exact instance that shares the same hardware. 989 * 990 * Return: 0 if a CDP peer was found, <0 on error or if no CDP peer exists. 991 * If a CDP peer was found, @r_cdp will point to the peer RDT resource 992 * and @d_cdp will point to the peer RDT domain. 993 */ 994 static int rdt_cdp_peer_get(struct rdt_resource *r, struct rdt_domain *d, 995 struct rdt_resource **r_cdp, 996 struct rdt_domain **d_cdp) 997 { 998 struct rdt_resource *_r_cdp = NULL; 999 struct rdt_domain *_d_cdp = NULL; 1000 int ret = 0; 1001 1002 switch (r->rid) { 1003 case RDT_RESOURCE_L3DATA: 1004 _r_cdp = &rdt_resources_all[RDT_RESOURCE_L3CODE]; 1005 break; 1006 case RDT_RESOURCE_L3CODE: 1007 _r_cdp = &rdt_resources_all[RDT_RESOURCE_L3DATA]; 1008 break; 1009 case RDT_RESOURCE_L2DATA: 1010 _r_cdp = &rdt_resources_all[RDT_RESOURCE_L2CODE]; 1011 break; 1012 case RDT_RESOURCE_L2CODE: 1013 _r_cdp = &rdt_resources_all[RDT_RESOURCE_L2DATA]; 1014 break; 1015 default: 1016 ret = -ENOENT; 1017 goto out; 1018 } 1019 1020 /* 1021 * When a new CPU comes online and CDP is enabled then the new 1022 * RDT domains (if any) associated with both CDP RDT resources 1023 * are added in the same CPU online routine while the 1024 * rdtgroup_mutex is held. It should thus not happen for one 1025 * RDT domain to exist and be associated with its RDT CDP 1026 * resource but there is no RDT domain associated with the 1027 * peer RDT CDP resource. Hence the WARN. 1028 */ 1029 _d_cdp = rdt_find_domain(_r_cdp, d->id, NULL); 1030 if (WARN_ON(IS_ERR_OR_NULL(_d_cdp))) { 1031 _r_cdp = NULL; 1032 ret = -EINVAL; 1033 } 1034 1035 out: 1036 *r_cdp = _r_cdp; 1037 *d_cdp = _d_cdp; 1038 1039 return ret; 1040 } 1041 1042 /** 1043 * __rdtgroup_cbm_overlaps - Does CBM for intended closid overlap with other 1044 * @r: Resource to which domain instance @d belongs. 1045 * @d: The domain instance for which @closid is being tested. 1046 * @cbm: Capacity bitmask being tested. 1047 * @closid: Intended closid for @cbm. 1048 * @exclusive: Only check if overlaps with exclusive resource groups 1049 * 1050 * Checks if provided @cbm intended to be used for @closid on domain 1051 * @d overlaps with any other closids or other hardware usage associated 1052 * with this domain. If @exclusive is true then only overlaps with 1053 * resource groups in exclusive mode will be considered. If @exclusive 1054 * is false then overlaps with any resource group or hardware entities 1055 * will be considered. 1056 * 1057 * @cbm is unsigned long, even if only 32 bits are used, to make the 1058 * bitmap functions work correctly. 1059 * 1060 * Return: false if CBM does not overlap, true if it does. 1061 */ 1062 static bool __rdtgroup_cbm_overlaps(struct rdt_resource *r, struct rdt_domain *d, 1063 unsigned long cbm, int closid, bool exclusive) 1064 { 1065 enum rdtgrp_mode mode; 1066 unsigned long ctrl_b; 1067 u32 *ctrl; 1068 int i; 1069 1070 /* Check for any overlap with regions used by hardware directly */ 1071 if (!exclusive) { 1072 ctrl_b = r->cache.shareable_bits; 1073 if (bitmap_intersects(&cbm, &ctrl_b, r->cache.cbm_len)) 1074 return true; 1075 } 1076 1077 /* Check for overlap with other resource groups */ 1078 ctrl = d->ctrl_val; 1079 for (i = 0; i < closids_supported(); i++, ctrl++) { 1080 ctrl_b = *ctrl; 1081 mode = rdtgroup_mode_by_closid(i); 1082 if (closid_allocated(i) && i != closid && 1083 mode != RDT_MODE_PSEUDO_LOCKSETUP) { 1084 if (bitmap_intersects(&cbm, &ctrl_b, r->cache.cbm_len)) { 1085 if (exclusive) { 1086 if (mode == RDT_MODE_EXCLUSIVE) 1087 return true; 1088 continue; 1089 } 1090 return true; 1091 } 1092 } 1093 } 1094 1095 return false; 1096 } 1097 1098 /** 1099 * rdtgroup_cbm_overlaps - Does CBM overlap with other use of hardware 1100 * @r: Resource to which domain instance @d belongs. 1101 * @d: The domain instance for which @closid is being tested. 1102 * @cbm: Capacity bitmask being tested. 1103 * @closid: Intended closid for @cbm. 1104 * @exclusive: Only check if overlaps with exclusive resource groups 1105 * 1106 * Resources that can be allocated using a CBM can use the CBM to control 1107 * the overlap of these allocations. rdtgroup_cmb_overlaps() is the test 1108 * for overlap. Overlap test is not limited to the specific resource for 1109 * which the CBM is intended though - when dealing with CDP resources that 1110 * share the underlying hardware the overlap check should be performed on 1111 * the CDP resource sharing the hardware also. 1112 * 1113 * Refer to description of __rdtgroup_cbm_overlaps() for the details of the 1114 * overlap test. 1115 * 1116 * Return: true if CBM overlap detected, false if there is no overlap 1117 */ 1118 bool rdtgroup_cbm_overlaps(struct rdt_resource *r, struct rdt_domain *d, 1119 unsigned long cbm, int closid, bool exclusive) 1120 { 1121 struct rdt_resource *r_cdp; 1122 struct rdt_domain *d_cdp; 1123 1124 if (__rdtgroup_cbm_overlaps(r, d, cbm, closid, exclusive)) 1125 return true; 1126 1127 if (rdt_cdp_peer_get(r, d, &r_cdp, &d_cdp) < 0) 1128 return false; 1129 1130 return __rdtgroup_cbm_overlaps(r_cdp, d_cdp, cbm, closid, exclusive); 1131 } 1132 1133 /** 1134 * rdtgroup_mode_test_exclusive - Test if this resource group can be exclusive 1135 * 1136 * An exclusive resource group implies that there should be no sharing of 1137 * its allocated resources. At the time this group is considered to be 1138 * exclusive this test can determine if its current schemata supports this 1139 * setting by testing for overlap with all other resource groups. 1140 * 1141 * Return: true if resource group can be exclusive, false if there is overlap 1142 * with allocations of other resource groups and thus this resource group 1143 * cannot be exclusive. 1144 */ 1145 static bool rdtgroup_mode_test_exclusive(struct rdtgroup *rdtgrp) 1146 { 1147 int closid = rdtgrp->closid; 1148 struct rdt_resource *r; 1149 bool has_cache = false; 1150 struct rdt_domain *d; 1151 1152 for_each_alloc_enabled_rdt_resource(r) { 1153 if (r->rid == RDT_RESOURCE_MBA) 1154 continue; 1155 has_cache = true; 1156 list_for_each_entry(d, &r->domains, list) { 1157 if (rdtgroup_cbm_overlaps(r, d, d->ctrl_val[closid], 1158 rdtgrp->closid, false)) { 1159 rdt_last_cmd_puts("Schemata overlaps\n"); 1160 return false; 1161 } 1162 } 1163 } 1164 1165 if (!has_cache) { 1166 rdt_last_cmd_puts("Cannot be exclusive without CAT/CDP\n"); 1167 return false; 1168 } 1169 1170 return true; 1171 } 1172 1173 /** 1174 * rdtgroup_mode_write - Modify the resource group's mode 1175 * 1176 */ 1177 static ssize_t rdtgroup_mode_write(struct kernfs_open_file *of, 1178 char *buf, size_t nbytes, loff_t off) 1179 { 1180 struct rdtgroup *rdtgrp; 1181 enum rdtgrp_mode mode; 1182 int ret = 0; 1183 1184 /* Valid input requires a trailing newline */ 1185 if (nbytes == 0 || buf[nbytes - 1] != '\n') 1186 return -EINVAL; 1187 buf[nbytes - 1] = '\0'; 1188 1189 rdtgrp = rdtgroup_kn_lock_live(of->kn); 1190 if (!rdtgrp) { 1191 rdtgroup_kn_unlock(of->kn); 1192 return -ENOENT; 1193 } 1194 1195 rdt_last_cmd_clear(); 1196 1197 mode = rdtgrp->mode; 1198 1199 if ((!strcmp(buf, "shareable") && mode == RDT_MODE_SHAREABLE) || 1200 (!strcmp(buf, "exclusive") && mode == RDT_MODE_EXCLUSIVE) || 1201 (!strcmp(buf, "pseudo-locksetup") && 1202 mode == RDT_MODE_PSEUDO_LOCKSETUP) || 1203 (!strcmp(buf, "pseudo-locked") && mode == RDT_MODE_PSEUDO_LOCKED)) 1204 goto out; 1205 1206 if (mode == RDT_MODE_PSEUDO_LOCKED) { 1207 rdt_last_cmd_puts("Cannot change pseudo-locked group\n"); 1208 ret = -EINVAL; 1209 goto out; 1210 } 1211 1212 if (!strcmp(buf, "shareable")) { 1213 if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP) { 1214 ret = rdtgroup_locksetup_exit(rdtgrp); 1215 if (ret) 1216 goto out; 1217 } 1218 rdtgrp->mode = RDT_MODE_SHAREABLE; 1219 } else if (!strcmp(buf, "exclusive")) { 1220 if (!rdtgroup_mode_test_exclusive(rdtgrp)) { 1221 ret = -EINVAL; 1222 goto out; 1223 } 1224 if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP) { 1225 ret = rdtgroup_locksetup_exit(rdtgrp); 1226 if (ret) 1227 goto out; 1228 } 1229 rdtgrp->mode = RDT_MODE_EXCLUSIVE; 1230 } else if (!strcmp(buf, "pseudo-locksetup")) { 1231 ret = rdtgroup_locksetup_enter(rdtgrp); 1232 if (ret) 1233 goto out; 1234 rdtgrp->mode = RDT_MODE_PSEUDO_LOCKSETUP; 1235 } else { 1236 rdt_last_cmd_puts("Unknown or unsupported mode\n"); 1237 ret = -EINVAL; 1238 } 1239 1240 out: 1241 rdtgroup_kn_unlock(of->kn); 1242 return ret ?: nbytes; 1243 } 1244 1245 /** 1246 * rdtgroup_cbm_to_size - Translate CBM to size in bytes 1247 * @r: RDT resource to which @d belongs. 1248 * @d: RDT domain instance. 1249 * @cbm: bitmask for which the size should be computed. 1250 * 1251 * The bitmask provided associated with the RDT domain instance @d will be 1252 * translated into how many bytes it represents. The size in bytes is 1253 * computed by first dividing the total cache size by the CBM length to 1254 * determine how many bytes each bit in the bitmask represents. The result 1255 * is multiplied with the number of bits set in the bitmask. 1256 * 1257 * @cbm is unsigned long, even if only 32 bits are used to make the 1258 * bitmap functions work correctly. 1259 */ 1260 unsigned int rdtgroup_cbm_to_size(struct rdt_resource *r, 1261 struct rdt_domain *d, unsigned long cbm) 1262 { 1263 struct cpu_cacheinfo *ci; 1264 unsigned int size = 0; 1265 int num_b, i; 1266 1267 num_b = bitmap_weight(&cbm, r->cache.cbm_len); 1268 ci = get_cpu_cacheinfo(cpumask_any(&d->cpu_mask)); 1269 for (i = 0; i < ci->num_leaves; i++) { 1270 if (ci->info_list[i].level == r->cache_level) { 1271 size = ci->info_list[i].size / r->cache.cbm_len * num_b; 1272 break; 1273 } 1274 } 1275 1276 return size; 1277 } 1278 1279 /** 1280 * rdtgroup_size_show - Display size in bytes of allocated regions 1281 * 1282 * The "size" file mirrors the layout of the "schemata" file, printing the 1283 * size in bytes of each region instead of the capacity bitmask. 1284 * 1285 */ 1286 static int rdtgroup_size_show(struct kernfs_open_file *of, 1287 struct seq_file *s, void *v) 1288 { 1289 struct rdtgroup *rdtgrp; 1290 struct rdt_resource *r; 1291 struct rdt_domain *d; 1292 unsigned int size; 1293 int ret = 0; 1294 bool sep; 1295 u32 ctrl; 1296 1297 rdtgrp = rdtgroup_kn_lock_live(of->kn); 1298 if (!rdtgrp) { 1299 rdtgroup_kn_unlock(of->kn); 1300 return -ENOENT; 1301 } 1302 1303 if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED) { 1304 if (!rdtgrp->plr->d) { 1305 rdt_last_cmd_clear(); 1306 rdt_last_cmd_puts("Cache domain offline\n"); 1307 ret = -ENODEV; 1308 } else { 1309 seq_printf(s, "%*s:", max_name_width, 1310 rdtgrp->plr->r->name); 1311 size = rdtgroup_cbm_to_size(rdtgrp->plr->r, 1312 rdtgrp->plr->d, 1313 rdtgrp->plr->cbm); 1314 seq_printf(s, "%d=%u\n", rdtgrp->plr->d->id, size); 1315 } 1316 goto out; 1317 } 1318 1319 for_each_alloc_enabled_rdt_resource(r) { 1320 sep = false; 1321 seq_printf(s, "%*s:", max_name_width, r->name); 1322 list_for_each_entry(d, &r->domains, list) { 1323 if (sep) 1324 seq_putc(s, ';'); 1325 if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP) { 1326 size = 0; 1327 } else { 1328 ctrl = (!is_mba_sc(r) ? 1329 d->ctrl_val[rdtgrp->closid] : 1330 d->mbps_val[rdtgrp->closid]); 1331 if (r->rid == RDT_RESOURCE_MBA) 1332 size = ctrl; 1333 else 1334 size = rdtgroup_cbm_to_size(r, d, ctrl); 1335 } 1336 seq_printf(s, "%d=%u", d->id, size); 1337 sep = true; 1338 } 1339 seq_putc(s, '\n'); 1340 } 1341 1342 out: 1343 rdtgroup_kn_unlock(of->kn); 1344 1345 return ret; 1346 } 1347 1348 /* rdtgroup information files for one cache resource. */ 1349 static struct rftype res_common_files[] = { 1350 { 1351 .name = "last_cmd_status", 1352 .mode = 0444, 1353 .kf_ops = &rdtgroup_kf_single_ops, 1354 .seq_show = rdt_last_cmd_status_show, 1355 .fflags = RF_TOP_INFO, 1356 }, 1357 { 1358 .name = "num_closids", 1359 .mode = 0444, 1360 .kf_ops = &rdtgroup_kf_single_ops, 1361 .seq_show = rdt_num_closids_show, 1362 .fflags = RF_CTRL_INFO, 1363 }, 1364 { 1365 .name = "mon_features", 1366 .mode = 0444, 1367 .kf_ops = &rdtgroup_kf_single_ops, 1368 .seq_show = rdt_mon_features_show, 1369 .fflags = RF_MON_INFO, 1370 }, 1371 { 1372 .name = "num_rmids", 1373 .mode = 0444, 1374 .kf_ops = &rdtgroup_kf_single_ops, 1375 .seq_show = rdt_num_rmids_show, 1376 .fflags = RF_MON_INFO, 1377 }, 1378 { 1379 .name = "cbm_mask", 1380 .mode = 0444, 1381 .kf_ops = &rdtgroup_kf_single_ops, 1382 .seq_show = rdt_default_ctrl_show, 1383 .fflags = RF_CTRL_INFO | RFTYPE_RES_CACHE, 1384 }, 1385 { 1386 .name = "min_cbm_bits", 1387 .mode = 0444, 1388 .kf_ops = &rdtgroup_kf_single_ops, 1389 .seq_show = rdt_min_cbm_bits_show, 1390 .fflags = RF_CTRL_INFO | RFTYPE_RES_CACHE, 1391 }, 1392 { 1393 .name = "shareable_bits", 1394 .mode = 0444, 1395 .kf_ops = &rdtgroup_kf_single_ops, 1396 .seq_show = rdt_shareable_bits_show, 1397 .fflags = RF_CTRL_INFO | RFTYPE_RES_CACHE, 1398 }, 1399 { 1400 .name = "bit_usage", 1401 .mode = 0444, 1402 .kf_ops = &rdtgroup_kf_single_ops, 1403 .seq_show = rdt_bit_usage_show, 1404 .fflags = RF_CTRL_INFO | RFTYPE_RES_CACHE, 1405 }, 1406 { 1407 .name = "min_bandwidth", 1408 .mode = 0444, 1409 .kf_ops = &rdtgroup_kf_single_ops, 1410 .seq_show = rdt_min_bw_show, 1411 .fflags = RF_CTRL_INFO | RFTYPE_RES_MB, 1412 }, 1413 { 1414 .name = "bandwidth_gran", 1415 .mode = 0444, 1416 .kf_ops = &rdtgroup_kf_single_ops, 1417 .seq_show = rdt_bw_gran_show, 1418 .fflags = RF_CTRL_INFO | RFTYPE_RES_MB, 1419 }, 1420 { 1421 .name = "delay_linear", 1422 .mode = 0444, 1423 .kf_ops = &rdtgroup_kf_single_ops, 1424 .seq_show = rdt_delay_linear_show, 1425 .fflags = RF_CTRL_INFO | RFTYPE_RES_MB, 1426 }, 1427 { 1428 .name = "max_threshold_occupancy", 1429 .mode = 0644, 1430 .kf_ops = &rdtgroup_kf_single_ops, 1431 .write = max_threshold_occ_write, 1432 .seq_show = max_threshold_occ_show, 1433 .fflags = RF_MON_INFO | RFTYPE_RES_CACHE, 1434 }, 1435 { 1436 .name = "cpus", 1437 .mode = 0644, 1438 .kf_ops = &rdtgroup_kf_single_ops, 1439 .write = rdtgroup_cpus_write, 1440 .seq_show = rdtgroup_cpus_show, 1441 .fflags = RFTYPE_BASE, 1442 }, 1443 { 1444 .name = "cpus_list", 1445 .mode = 0644, 1446 .kf_ops = &rdtgroup_kf_single_ops, 1447 .write = rdtgroup_cpus_write, 1448 .seq_show = rdtgroup_cpus_show, 1449 .flags = RFTYPE_FLAGS_CPUS_LIST, 1450 .fflags = RFTYPE_BASE, 1451 }, 1452 { 1453 .name = "tasks", 1454 .mode = 0644, 1455 .kf_ops = &rdtgroup_kf_single_ops, 1456 .write = rdtgroup_tasks_write, 1457 .seq_show = rdtgroup_tasks_show, 1458 .fflags = RFTYPE_BASE, 1459 }, 1460 { 1461 .name = "schemata", 1462 .mode = 0644, 1463 .kf_ops = &rdtgroup_kf_single_ops, 1464 .write = rdtgroup_schemata_write, 1465 .seq_show = rdtgroup_schemata_show, 1466 .fflags = RF_CTRL_BASE, 1467 }, 1468 { 1469 .name = "mode", 1470 .mode = 0644, 1471 .kf_ops = &rdtgroup_kf_single_ops, 1472 .write = rdtgroup_mode_write, 1473 .seq_show = rdtgroup_mode_show, 1474 .fflags = RF_CTRL_BASE, 1475 }, 1476 { 1477 .name = "size", 1478 .mode = 0444, 1479 .kf_ops = &rdtgroup_kf_single_ops, 1480 .seq_show = rdtgroup_size_show, 1481 .fflags = RF_CTRL_BASE, 1482 }, 1483 1484 }; 1485 1486 static int rdtgroup_add_files(struct kernfs_node *kn, unsigned long fflags) 1487 { 1488 struct rftype *rfts, *rft; 1489 int ret, len; 1490 1491 rfts = res_common_files; 1492 len = ARRAY_SIZE(res_common_files); 1493 1494 lockdep_assert_held(&rdtgroup_mutex); 1495 1496 for (rft = rfts; rft < rfts + len; rft++) { 1497 if ((fflags & rft->fflags) == rft->fflags) { 1498 ret = rdtgroup_add_file(kn, rft); 1499 if (ret) 1500 goto error; 1501 } 1502 } 1503 1504 return 0; 1505 error: 1506 pr_warn("Failed to add %s, err=%d\n", rft->name, ret); 1507 while (--rft >= rfts) { 1508 if ((fflags & rft->fflags) == rft->fflags) 1509 kernfs_remove_by_name(kn, rft->name); 1510 } 1511 return ret; 1512 } 1513 1514 /** 1515 * rdtgroup_kn_mode_restrict - Restrict user access to named resctrl file 1516 * @r: The resource group with which the file is associated. 1517 * @name: Name of the file 1518 * 1519 * The permissions of named resctrl file, directory, or link are modified 1520 * to not allow read, write, or execute by any user. 1521 * 1522 * WARNING: This function is intended to communicate to the user that the 1523 * resctrl file has been locked down - that it is not relevant to the 1524 * particular state the system finds itself in. It should not be relied 1525 * on to protect from user access because after the file's permissions 1526 * are restricted the user can still change the permissions using chmod 1527 * from the command line. 1528 * 1529 * Return: 0 on success, <0 on failure. 1530 */ 1531 int rdtgroup_kn_mode_restrict(struct rdtgroup *r, const char *name) 1532 { 1533 struct iattr iattr = {.ia_valid = ATTR_MODE,}; 1534 struct kernfs_node *kn; 1535 int ret = 0; 1536 1537 kn = kernfs_find_and_get_ns(r->kn, name, NULL); 1538 if (!kn) 1539 return -ENOENT; 1540 1541 switch (kernfs_type(kn)) { 1542 case KERNFS_DIR: 1543 iattr.ia_mode = S_IFDIR; 1544 break; 1545 case KERNFS_FILE: 1546 iattr.ia_mode = S_IFREG; 1547 break; 1548 case KERNFS_LINK: 1549 iattr.ia_mode = S_IFLNK; 1550 break; 1551 } 1552 1553 ret = kernfs_setattr(kn, &iattr); 1554 kernfs_put(kn); 1555 return ret; 1556 } 1557 1558 /** 1559 * rdtgroup_kn_mode_restore - Restore user access to named resctrl file 1560 * @r: The resource group with which the file is associated. 1561 * @name: Name of the file 1562 * @mask: Mask of permissions that should be restored 1563 * 1564 * Restore the permissions of the named file. If @name is a directory the 1565 * permissions of its parent will be used. 1566 * 1567 * Return: 0 on success, <0 on failure. 1568 */ 1569 int rdtgroup_kn_mode_restore(struct rdtgroup *r, const char *name, 1570 umode_t mask) 1571 { 1572 struct iattr iattr = {.ia_valid = ATTR_MODE,}; 1573 struct kernfs_node *kn, *parent; 1574 struct rftype *rfts, *rft; 1575 int ret, len; 1576 1577 rfts = res_common_files; 1578 len = ARRAY_SIZE(res_common_files); 1579 1580 for (rft = rfts; rft < rfts + len; rft++) { 1581 if (!strcmp(rft->name, name)) 1582 iattr.ia_mode = rft->mode & mask; 1583 } 1584 1585 kn = kernfs_find_and_get_ns(r->kn, name, NULL); 1586 if (!kn) 1587 return -ENOENT; 1588 1589 switch (kernfs_type(kn)) { 1590 case KERNFS_DIR: 1591 parent = kernfs_get_parent(kn); 1592 if (parent) { 1593 iattr.ia_mode |= parent->mode; 1594 kernfs_put(parent); 1595 } 1596 iattr.ia_mode |= S_IFDIR; 1597 break; 1598 case KERNFS_FILE: 1599 iattr.ia_mode |= S_IFREG; 1600 break; 1601 case KERNFS_LINK: 1602 iattr.ia_mode |= S_IFLNK; 1603 break; 1604 } 1605 1606 ret = kernfs_setattr(kn, &iattr); 1607 kernfs_put(kn); 1608 return ret; 1609 } 1610 1611 static int rdtgroup_mkdir_info_resdir(struct rdt_resource *r, char *name, 1612 unsigned long fflags) 1613 { 1614 struct kernfs_node *kn_subdir; 1615 int ret; 1616 1617 kn_subdir = kernfs_create_dir(kn_info, name, 1618 kn_info->mode, r); 1619 if (IS_ERR(kn_subdir)) 1620 return PTR_ERR(kn_subdir); 1621 1622 kernfs_get(kn_subdir); 1623 ret = rdtgroup_kn_set_ugid(kn_subdir); 1624 if (ret) 1625 return ret; 1626 1627 ret = rdtgroup_add_files(kn_subdir, fflags); 1628 if (!ret) 1629 kernfs_activate(kn_subdir); 1630 1631 return ret; 1632 } 1633 1634 static int rdtgroup_create_info_dir(struct kernfs_node *parent_kn) 1635 { 1636 struct rdt_resource *r; 1637 unsigned long fflags; 1638 char name[32]; 1639 int ret; 1640 1641 /* create the directory */ 1642 kn_info = kernfs_create_dir(parent_kn, "info", parent_kn->mode, NULL); 1643 if (IS_ERR(kn_info)) 1644 return PTR_ERR(kn_info); 1645 kernfs_get(kn_info); 1646 1647 ret = rdtgroup_add_files(kn_info, RF_TOP_INFO); 1648 if (ret) 1649 goto out_destroy; 1650 1651 for_each_alloc_enabled_rdt_resource(r) { 1652 fflags = r->fflags | RF_CTRL_INFO; 1653 ret = rdtgroup_mkdir_info_resdir(r, r->name, fflags); 1654 if (ret) 1655 goto out_destroy; 1656 } 1657 1658 for_each_mon_enabled_rdt_resource(r) { 1659 fflags = r->fflags | RF_MON_INFO; 1660 sprintf(name, "%s_MON", r->name); 1661 ret = rdtgroup_mkdir_info_resdir(r, name, fflags); 1662 if (ret) 1663 goto out_destroy; 1664 } 1665 1666 /* 1667 * This extra ref will be put in kernfs_remove() and guarantees 1668 * that @rdtgrp->kn is always accessible. 1669 */ 1670 kernfs_get(kn_info); 1671 1672 ret = rdtgroup_kn_set_ugid(kn_info); 1673 if (ret) 1674 goto out_destroy; 1675 1676 kernfs_activate(kn_info); 1677 1678 return 0; 1679 1680 out_destroy: 1681 kernfs_remove(kn_info); 1682 return ret; 1683 } 1684 1685 static int 1686 mongroup_create_dir(struct kernfs_node *parent_kn, struct rdtgroup *prgrp, 1687 char *name, struct kernfs_node **dest_kn) 1688 { 1689 struct kernfs_node *kn; 1690 int ret; 1691 1692 /* create the directory */ 1693 kn = kernfs_create_dir(parent_kn, name, parent_kn->mode, prgrp); 1694 if (IS_ERR(kn)) 1695 return PTR_ERR(kn); 1696 1697 if (dest_kn) 1698 *dest_kn = kn; 1699 1700 /* 1701 * This extra ref will be put in kernfs_remove() and guarantees 1702 * that @rdtgrp->kn is always accessible. 1703 */ 1704 kernfs_get(kn); 1705 1706 ret = rdtgroup_kn_set_ugid(kn); 1707 if (ret) 1708 goto out_destroy; 1709 1710 kernfs_activate(kn); 1711 1712 return 0; 1713 1714 out_destroy: 1715 kernfs_remove(kn); 1716 return ret; 1717 } 1718 1719 static void l3_qos_cfg_update(void *arg) 1720 { 1721 bool *enable = arg; 1722 1723 wrmsrl(MSR_IA32_L3_QOS_CFG, *enable ? L3_QOS_CDP_ENABLE : 0ULL); 1724 } 1725 1726 static void l2_qos_cfg_update(void *arg) 1727 { 1728 bool *enable = arg; 1729 1730 wrmsrl(MSR_IA32_L2_QOS_CFG, *enable ? L2_QOS_CDP_ENABLE : 0ULL); 1731 } 1732 1733 static inline bool is_mba_linear(void) 1734 { 1735 return rdt_resources_all[RDT_RESOURCE_MBA].membw.delay_linear; 1736 } 1737 1738 static int set_cache_qos_cfg(int level, bool enable) 1739 { 1740 void (*update)(void *arg); 1741 struct rdt_resource *r_l; 1742 cpumask_var_t cpu_mask; 1743 struct rdt_domain *d; 1744 int cpu; 1745 1746 if (!zalloc_cpumask_var(&cpu_mask, GFP_KERNEL)) 1747 return -ENOMEM; 1748 1749 if (level == RDT_RESOURCE_L3) 1750 update = l3_qos_cfg_update; 1751 else if (level == RDT_RESOURCE_L2) 1752 update = l2_qos_cfg_update; 1753 else 1754 return -EINVAL; 1755 1756 r_l = &rdt_resources_all[level]; 1757 list_for_each_entry(d, &r_l->domains, list) { 1758 /* Pick one CPU from each domain instance to update MSR */ 1759 cpumask_set_cpu(cpumask_any(&d->cpu_mask), cpu_mask); 1760 } 1761 cpu = get_cpu(); 1762 /* Update QOS_CFG MSR on this cpu if it's in cpu_mask. */ 1763 if (cpumask_test_cpu(cpu, cpu_mask)) 1764 update(&enable); 1765 /* Update QOS_CFG MSR on all other cpus in cpu_mask. */ 1766 smp_call_function_many(cpu_mask, update, &enable, 1); 1767 put_cpu(); 1768 1769 free_cpumask_var(cpu_mask); 1770 1771 return 0; 1772 } 1773 1774 /* 1775 * Enable or disable the MBA software controller 1776 * which helps user specify bandwidth in MBps. 1777 * MBA software controller is supported only if 1778 * MBM is supported and MBA is in linear scale. 1779 */ 1780 static int set_mba_sc(bool mba_sc) 1781 { 1782 struct rdt_resource *r = &rdt_resources_all[RDT_RESOURCE_MBA]; 1783 struct rdt_domain *d; 1784 1785 if (!is_mbm_enabled() || !is_mba_linear() || 1786 mba_sc == is_mba_sc(r)) 1787 return -EINVAL; 1788 1789 r->membw.mba_sc = mba_sc; 1790 list_for_each_entry(d, &r->domains, list) 1791 setup_default_ctrlval(r, d->ctrl_val, d->mbps_val); 1792 1793 return 0; 1794 } 1795 1796 static int cdp_enable(int level, int data_type, int code_type) 1797 { 1798 struct rdt_resource *r_ldata = &rdt_resources_all[data_type]; 1799 struct rdt_resource *r_lcode = &rdt_resources_all[code_type]; 1800 struct rdt_resource *r_l = &rdt_resources_all[level]; 1801 int ret; 1802 1803 if (!r_l->alloc_capable || !r_ldata->alloc_capable || 1804 !r_lcode->alloc_capable) 1805 return -EINVAL; 1806 1807 ret = set_cache_qos_cfg(level, true); 1808 if (!ret) { 1809 r_l->alloc_enabled = false; 1810 r_ldata->alloc_enabled = true; 1811 r_lcode->alloc_enabled = true; 1812 } 1813 return ret; 1814 } 1815 1816 static int cdpl3_enable(void) 1817 { 1818 return cdp_enable(RDT_RESOURCE_L3, RDT_RESOURCE_L3DATA, 1819 RDT_RESOURCE_L3CODE); 1820 } 1821 1822 static int cdpl2_enable(void) 1823 { 1824 return cdp_enable(RDT_RESOURCE_L2, RDT_RESOURCE_L2DATA, 1825 RDT_RESOURCE_L2CODE); 1826 } 1827 1828 static void cdp_disable(int level, int data_type, int code_type) 1829 { 1830 struct rdt_resource *r = &rdt_resources_all[level]; 1831 1832 r->alloc_enabled = r->alloc_capable; 1833 1834 if (rdt_resources_all[data_type].alloc_enabled) { 1835 rdt_resources_all[data_type].alloc_enabled = false; 1836 rdt_resources_all[code_type].alloc_enabled = false; 1837 set_cache_qos_cfg(level, false); 1838 } 1839 } 1840 1841 static void cdpl3_disable(void) 1842 { 1843 cdp_disable(RDT_RESOURCE_L3, RDT_RESOURCE_L3DATA, RDT_RESOURCE_L3CODE); 1844 } 1845 1846 static void cdpl2_disable(void) 1847 { 1848 cdp_disable(RDT_RESOURCE_L2, RDT_RESOURCE_L2DATA, RDT_RESOURCE_L2CODE); 1849 } 1850 1851 static void cdp_disable_all(void) 1852 { 1853 if (rdt_resources_all[RDT_RESOURCE_L3DATA].alloc_enabled) 1854 cdpl3_disable(); 1855 if (rdt_resources_all[RDT_RESOURCE_L2DATA].alloc_enabled) 1856 cdpl2_disable(); 1857 } 1858 1859 /* 1860 * We don't allow rdtgroup directories to be created anywhere 1861 * except the root directory. Thus when looking for the rdtgroup 1862 * structure for a kernfs node we are either looking at a directory, 1863 * in which case the rdtgroup structure is pointed at by the "priv" 1864 * field, otherwise we have a file, and need only look to the parent 1865 * to find the rdtgroup. 1866 */ 1867 static struct rdtgroup *kernfs_to_rdtgroup(struct kernfs_node *kn) 1868 { 1869 if (kernfs_type(kn) == KERNFS_DIR) { 1870 /* 1871 * All the resource directories use "kn->priv" 1872 * to point to the "struct rdtgroup" for the 1873 * resource. "info" and its subdirectories don't 1874 * have rdtgroup structures, so return NULL here. 1875 */ 1876 if (kn == kn_info || kn->parent == kn_info) 1877 return NULL; 1878 else 1879 return kn->priv; 1880 } else { 1881 return kn->parent->priv; 1882 } 1883 } 1884 1885 struct rdtgroup *rdtgroup_kn_lock_live(struct kernfs_node *kn) 1886 { 1887 struct rdtgroup *rdtgrp = kernfs_to_rdtgroup(kn); 1888 1889 if (!rdtgrp) 1890 return NULL; 1891 1892 atomic_inc(&rdtgrp->waitcount); 1893 kernfs_break_active_protection(kn); 1894 1895 mutex_lock(&rdtgroup_mutex); 1896 1897 /* Was this group deleted while we waited? */ 1898 if (rdtgrp->flags & RDT_DELETED) 1899 return NULL; 1900 1901 return rdtgrp; 1902 } 1903 1904 void rdtgroup_kn_unlock(struct kernfs_node *kn) 1905 { 1906 struct rdtgroup *rdtgrp = kernfs_to_rdtgroup(kn); 1907 1908 if (!rdtgrp) 1909 return; 1910 1911 mutex_unlock(&rdtgroup_mutex); 1912 1913 if (atomic_dec_and_test(&rdtgrp->waitcount) && 1914 (rdtgrp->flags & RDT_DELETED)) { 1915 if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP || 1916 rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED) 1917 rdtgroup_pseudo_lock_remove(rdtgrp); 1918 kernfs_unbreak_active_protection(kn); 1919 kernfs_put(rdtgrp->kn); 1920 kfree(rdtgrp); 1921 } else { 1922 kernfs_unbreak_active_protection(kn); 1923 } 1924 } 1925 1926 static int mkdir_mondata_all(struct kernfs_node *parent_kn, 1927 struct rdtgroup *prgrp, 1928 struct kernfs_node **mon_data_kn); 1929 1930 static int rdt_enable_ctx(struct rdt_fs_context *ctx) 1931 { 1932 int ret = 0; 1933 1934 if (ctx->enable_cdpl2) 1935 ret = cdpl2_enable(); 1936 1937 if (!ret && ctx->enable_cdpl3) 1938 ret = cdpl3_enable(); 1939 1940 if (!ret && ctx->enable_mba_mbps) 1941 ret = set_mba_sc(true); 1942 1943 return ret; 1944 } 1945 1946 static int rdt_get_tree(struct fs_context *fc) 1947 { 1948 struct rdt_fs_context *ctx = rdt_fc2context(fc); 1949 struct rdt_domain *dom; 1950 struct rdt_resource *r; 1951 int ret; 1952 1953 cpus_read_lock(); 1954 mutex_lock(&rdtgroup_mutex); 1955 /* 1956 * resctrl file system can only be mounted once. 1957 */ 1958 if (static_branch_unlikely(&rdt_enable_key)) { 1959 ret = -EBUSY; 1960 goto out; 1961 } 1962 1963 ret = rdt_enable_ctx(ctx); 1964 if (ret < 0) 1965 goto out_cdp; 1966 1967 closid_init(); 1968 1969 ret = rdtgroup_create_info_dir(rdtgroup_default.kn); 1970 if (ret < 0) 1971 goto out_mba; 1972 1973 if (rdt_mon_capable) { 1974 ret = mongroup_create_dir(rdtgroup_default.kn, 1975 NULL, "mon_groups", 1976 &kn_mongrp); 1977 if (ret < 0) 1978 goto out_info; 1979 kernfs_get(kn_mongrp); 1980 1981 ret = mkdir_mondata_all(rdtgroup_default.kn, 1982 &rdtgroup_default, &kn_mondata); 1983 if (ret < 0) 1984 goto out_mongrp; 1985 kernfs_get(kn_mondata); 1986 rdtgroup_default.mon.mon_data_kn = kn_mondata; 1987 } 1988 1989 ret = rdt_pseudo_lock_init(); 1990 if (ret) 1991 goto out_mondata; 1992 1993 ret = kernfs_get_tree(fc); 1994 if (ret < 0) 1995 goto out_psl; 1996 1997 if (rdt_alloc_capable) 1998 static_branch_enable_cpuslocked(&rdt_alloc_enable_key); 1999 if (rdt_mon_capable) 2000 static_branch_enable_cpuslocked(&rdt_mon_enable_key); 2001 2002 if (rdt_alloc_capable || rdt_mon_capable) 2003 static_branch_enable_cpuslocked(&rdt_enable_key); 2004 2005 if (is_mbm_enabled()) { 2006 r = &rdt_resources_all[RDT_RESOURCE_L3]; 2007 list_for_each_entry(dom, &r->domains, list) 2008 mbm_setup_overflow_handler(dom, MBM_OVERFLOW_INTERVAL); 2009 } 2010 2011 goto out; 2012 2013 out_psl: 2014 rdt_pseudo_lock_release(); 2015 out_mondata: 2016 if (rdt_mon_capable) 2017 kernfs_remove(kn_mondata); 2018 out_mongrp: 2019 if (rdt_mon_capable) 2020 kernfs_remove(kn_mongrp); 2021 out_info: 2022 kernfs_remove(kn_info); 2023 out_mba: 2024 if (ctx->enable_mba_mbps) 2025 set_mba_sc(false); 2026 out_cdp: 2027 cdp_disable_all(); 2028 out: 2029 rdt_last_cmd_clear(); 2030 mutex_unlock(&rdtgroup_mutex); 2031 cpus_read_unlock(); 2032 return ret; 2033 } 2034 2035 enum rdt_param { 2036 Opt_cdp, 2037 Opt_cdpl2, 2038 Opt_mba_mbps, 2039 nr__rdt_params 2040 }; 2041 2042 static const struct fs_parameter_spec rdt_param_specs[] = { 2043 fsparam_flag("cdp", Opt_cdp), 2044 fsparam_flag("cdpl2", Opt_cdpl2), 2045 fsparam_flag("mba_MBps", Opt_mba_mbps), 2046 {} 2047 }; 2048 2049 static const struct fs_parameter_description rdt_fs_parameters = { 2050 .name = "rdt", 2051 .specs = rdt_param_specs, 2052 }; 2053 2054 static int rdt_parse_param(struct fs_context *fc, struct fs_parameter *param) 2055 { 2056 struct rdt_fs_context *ctx = rdt_fc2context(fc); 2057 struct fs_parse_result result; 2058 int opt; 2059 2060 opt = fs_parse(fc, &rdt_fs_parameters, param, &result); 2061 if (opt < 0) 2062 return opt; 2063 2064 switch (opt) { 2065 case Opt_cdp: 2066 ctx->enable_cdpl3 = true; 2067 return 0; 2068 case Opt_cdpl2: 2069 ctx->enable_cdpl2 = true; 2070 return 0; 2071 case Opt_mba_mbps: 2072 if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) 2073 return -EINVAL; 2074 ctx->enable_mba_mbps = true; 2075 return 0; 2076 } 2077 2078 return -EINVAL; 2079 } 2080 2081 static void rdt_fs_context_free(struct fs_context *fc) 2082 { 2083 struct rdt_fs_context *ctx = rdt_fc2context(fc); 2084 2085 kernfs_free_fs_context(fc); 2086 kfree(ctx); 2087 } 2088 2089 static const struct fs_context_operations rdt_fs_context_ops = { 2090 .free = rdt_fs_context_free, 2091 .parse_param = rdt_parse_param, 2092 .get_tree = rdt_get_tree, 2093 }; 2094 2095 static int rdt_init_fs_context(struct fs_context *fc) 2096 { 2097 struct rdt_fs_context *ctx; 2098 2099 ctx = kzalloc(sizeof(struct rdt_fs_context), GFP_KERNEL); 2100 if (!ctx) 2101 return -ENOMEM; 2102 2103 ctx->kfc.root = rdt_root; 2104 ctx->kfc.magic = RDTGROUP_SUPER_MAGIC; 2105 fc->fs_private = &ctx->kfc; 2106 fc->ops = &rdt_fs_context_ops; 2107 put_user_ns(fc->user_ns); 2108 fc->user_ns = get_user_ns(&init_user_ns); 2109 fc->global = true; 2110 return 0; 2111 } 2112 2113 static int reset_all_ctrls(struct rdt_resource *r) 2114 { 2115 struct msr_param msr_param; 2116 cpumask_var_t cpu_mask; 2117 struct rdt_domain *d; 2118 int i, cpu; 2119 2120 if (!zalloc_cpumask_var(&cpu_mask, GFP_KERNEL)) 2121 return -ENOMEM; 2122 2123 msr_param.res = r; 2124 msr_param.low = 0; 2125 msr_param.high = r->num_closid; 2126 2127 /* 2128 * Disable resource control for this resource by setting all 2129 * CBMs in all domains to the maximum mask value. Pick one CPU 2130 * from each domain to update the MSRs below. 2131 */ 2132 list_for_each_entry(d, &r->domains, list) { 2133 cpumask_set_cpu(cpumask_any(&d->cpu_mask), cpu_mask); 2134 2135 for (i = 0; i < r->num_closid; i++) 2136 d->ctrl_val[i] = r->default_ctrl; 2137 } 2138 cpu = get_cpu(); 2139 /* Update CBM on this cpu if it's in cpu_mask. */ 2140 if (cpumask_test_cpu(cpu, cpu_mask)) 2141 rdt_ctrl_update(&msr_param); 2142 /* Update CBM on all other cpus in cpu_mask. */ 2143 smp_call_function_many(cpu_mask, rdt_ctrl_update, &msr_param, 1); 2144 put_cpu(); 2145 2146 free_cpumask_var(cpu_mask); 2147 2148 return 0; 2149 } 2150 2151 static bool is_closid_match(struct task_struct *t, struct rdtgroup *r) 2152 { 2153 return (rdt_alloc_capable && 2154 (r->type == RDTCTRL_GROUP) && (t->closid == r->closid)); 2155 } 2156 2157 static bool is_rmid_match(struct task_struct *t, struct rdtgroup *r) 2158 { 2159 return (rdt_mon_capable && 2160 (r->type == RDTMON_GROUP) && (t->rmid == r->mon.rmid)); 2161 } 2162 2163 /* 2164 * Move tasks from one to the other group. If @from is NULL, then all tasks 2165 * in the systems are moved unconditionally (used for teardown). 2166 * 2167 * If @mask is not NULL the cpus on which moved tasks are running are set 2168 * in that mask so the update smp function call is restricted to affected 2169 * cpus. 2170 */ 2171 static void rdt_move_group_tasks(struct rdtgroup *from, struct rdtgroup *to, 2172 struct cpumask *mask) 2173 { 2174 struct task_struct *p, *t; 2175 2176 read_lock(&tasklist_lock); 2177 for_each_process_thread(p, t) { 2178 if (!from || is_closid_match(t, from) || 2179 is_rmid_match(t, from)) { 2180 t->closid = to->closid; 2181 t->rmid = to->mon.rmid; 2182 2183 #ifdef CONFIG_SMP 2184 /* 2185 * This is safe on x86 w/o barriers as the ordering 2186 * of writing to task_cpu() and t->on_cpu is 2187 * reverse to the reading here. The detection is 2188 * inaccurate as tasks might move or schedule 2189 * before the smp function call takes place. In 2190 * such a case the function call is pointless, but 2191 * there is no other side effect. 2192 */ 2193 if (mask && t->on_cpu) 2194 cpumask_set_cpu(task_cpu(t), mask); 2195 #endif 2196 } 2197 } 2198 read_unlock(&tasklist_lock); 2199 } 2200 2201 static void free_all_child_rdtgrp(struct rdtgroup *rdtgrp) 2202 { 2203 struct rdtgroup *sentry, *stmp; 2204 struct list_head *head; 2205 2206 head = &rdtgrp->mon.crdtgrp_list; 2207 list_for_each_entry_safe(sentry, stmp, head, mon.crdtgrp_list) { 2208 free_rmid(sentry->mon.rmid); 2209 list_del(&sentry->mon.crdtgrp_list); 2210 kfree(sentry); 2211 } 2212 } 2213 2214 /* 2215 * Forcibly remove all of subdirectories under root. 2216 */ 2217 static void rmdir_all_sub(void) 2218 { 2219 struct rdtgroup *rdtgrp, *tmp; 2220 2221 /* Move all tasks to the default resource group */ 2222 rdt_move_group_tasks(NULL, &rdtgroup_default, NULL); 2223 2224 list_for_each_entry_safe(rdtgrp, tmp, &rdt_all_groups, rdtgroup_list) { 2225 /* Free any child rmids */ 2226 free_all_child_rdtgrp(rdtgrp); 2227 2228 /* Remove each rdtgroup other than root */ 2229 if (rdtgrp == &rdtgroup_default) 2230 continue; 2231 2232 if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP || 2233 rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED) 2234 rdtgroup_pseudo_lock_remove(rdtgrp); 2235 2236 /* 2237 * Give any CPUs back to the default group. We cannot copy 2238 * cpu_online_mask because a CPU might have executed the 2239 * offline callback already, but is still marked online. 2240 */ 2241 cpumask_or(&rdtgroup_default.cpu_mask, 2242 &rdtgroup_default.cpu_mask, &rdtgrp->cpu_mask); 2243 2244 free_rmid(rdtgrp->mon.rmid); 2245 2246 kernfs_remove(rdtgrp->kn); 2247 list_del(&rdtgrp->rdtgroup_list); 2248 kfree(rdtgrp); 2249 } 2250 /* Notify online CPUs to update per cpu storage and PQR_ASSOC MSR */ 2251 update_closid_rmid(cpu_online_mask, &rdtgroup_default); 2252 2253 kernfs_remove(kn_info); 2254 kernfs_remove(kn_mongrp); 2255 kernfs_remove(kn_mondata); 2256 } 2257 2258 static void rdt_kill_sb(struct super_block *sb) 2259 { 2260 struct rdt_resource *r; 2261 2262 cpus_read_lock(); 2263 mutex_lock(&rdtgroup_mutex); 2264 2265 set_mba_sc(false); 2266 2267 /*Put everything back to default values. */ 2268 for_each_alloc_enabled_rdt_resource(r) 2269 reset_all_ctrls(r); 2270 cdp_disable_all(); 2271 rmdir_all_sub(); 2272 rdt_pseudo_lock_release(); 2273 rdtgroup_default.mode = RDT_MODE_SHAREABLE; 2274 static_branch_disable_cpuslocked(&rdt_alloc_enable_key); 2275 static_branch_disable_cpuslocked(&rdt_mon_enable_key); 2276 static_branch_disable_cpuslocked(&rdt_enable_key); 2277 kernfs_kill_sb(sb); 2278 mutex_unlock(&rdtgroup_mutex); 2279 cpus_read_unlock(); 2280 } 2281 2282 static struct file_system_type rdt_fs_type = { 2283 .name = "resctrl", 2284 .init_fs_context = rdt_init_fs_context, 2285 .parameters = &rdt_fs_parameters, 2286 .kill_sb = rdt_kill_sb, 2287 }; 2288 2289 static int mon_addfile(struct kernfs_node *parent_kn, const char *name, 2290 void *priv) 2291 { 2292 struct kernfs_node *kn; 2293 int ret = 0; 2294 2295 kn = __kernfs_create_file(parent_kn, name, 0444, 2296 GLOBAL_ROOT_UID, GLOBAL_ROOT_GID, 0, 2297 &kf_mondata_ops, priv, NULL, NULL); 2298 if (IS_ERR(kn)) 2299 return PTR_ERR(kn); 2300 2301 ret = rdtgroup_kn_set_ugid(kn); 2302 if (ret) { 2303 kernfs_remove(kn); 2304 return ret; 2305 } 2306 2307 return ret; 2308 } 2309 2310 /* 2311 * Remove all subdirectories of mon_data of ctrl_mon groups 2312 * and monitor groups with given domain id. 2313 */ 2314 void rmdir_mondata_subdir_allrdtgrp(struct rdt_resource *r, unsigned int dom_id) 2315 { 2316 struct rdtgroup *prgrp, *crgrp; 2317 char name[32]; 2318 2319 if (!r->mon_enabled) 2320 return; 2321 2322 list_for_each_entry(prgrp, &rdt_all_groups, rdtgroup_list) { 2323 sprintf(name, "mon_%s_%02d", r->name, dom_id); 2324 kernfs_remove_by_name(prgrp->mon.mon_data_kn, name); 2325 2326 list_for_each_entry(crgrp, &prgrp->mon.crdtgrp_list, mon.crdtgrp_list) 2327 kernfs_remove_by_name(crgrp->mon.mon_data_kn, name); 2328 } 2329 } 2330 2331 static int mkdir_mondata_subdir(struct kernfs_node *parent_kn, 2332 struct rdt_domain *d, 2333 struct rdt_resource *r, struct rdtgroup *prgrp) 2334 { 2335 union mon_data_bits priv; 2336 struct kernfs_node *kn; 2337 struct mon_evt *mevt; 2338 struct rmid_read rr; 2339 char name[32]; 2340 int ret; 2341 2342 sprintf(name, "mon_%s_%02d", r->name, d->id); 2343 /* create the directory */ 2344 kn = kernfs_create_dir(parent_kn, name, parent_kn->mode, prgrp); 2345 if (IS_ERR(kn)) 2346 return PTR_ERR(kn); 2347 2348 /* 2349 * This extra ref will be put in kernfs_remove() and guarantees 2350 * that kn is always accessible. 2351 */ 2352 kernfs_get(kn); 2353 ret = rdtgroup_kn_set_ugid(kn); 2354 if (ret) 2355 goto out_destroy; 2356 2357 if (WARN_ON(list_empty(&r->evt_list))) { 2358 ret = -EPERM; 2359 goto out_destroy; 2360 } 2361 2362 priv.u.rid = r->rid; 2363 priv.u.domid = d->id; 2364 list_for_each_entry(mevt, &r->evt_list, list) { 2365 priv.u.evtid = mevt->evtid; 2366 ret = mon_addfile(kn, mevt->name, priv.priv); 2367 if (ret) 2368 goto out_destroy; 2369 2370 if (is_mbm_event(mevt->evtid)) 2371 mon_event_read(&rr, d, prgrp, mevt->evtid, true); 2372 } 2373 kernfs_activate(kn); 2374 return 0; 2375 2376 out_destroy: 2377 kernfs_remove(kn); 2378 return ret; 2379 } 2380 2381 /* 2382 * Add all subdirectories of mon_data for "ctrl_mon" groups 2383 * and "monitor" groups with given domain id. 2384 */ 2385 void mkdir_mondata_subdir_allrdtgrp(struct rdt_resource *r, 2386 struct rdt_domain *d) 2387 { 2388 struct kernfs_node *parent_kn; 2389 struct rdtgroup *prgrp, *crgrp; 2390 struct list_head *head; 2391 2392 if (!r->mon_enabled) 2393 return; 2394 2395 list_for_each_entry(prgrp, &rdt_all_groups, rdtgroup_list) { 2396 parent_kn = prgrp->mon.mon_data_kn; 2397 mkdir_mondata_subdir(parent_kn, d, r, prgrp); 2398 2399 head = &prgrp->mon.crdtgrp_list; 2400 list_for_each_entry(crgrp, head, mon.crdtgrp_list) { 2401 parent_kn = crgrp->mon.mon_data_kn; 2402 mkdir_mondata_subdir(parent_kn, d, r, crgrp); 2403 } 2404 } 2405 } 2406 2407 static int mkdir_mondata_subdir_alldom(struct kernfs_node *parent_kn, 2408 struct rdt_resource *r, 2409 struct rdtgroup *prgrp) 2410 { 2411 struct rdt_domain *dom; 2412 int ret; 2413 2414 list_for_each_entry(dom, &r->domains, list) { 2415 ret = mkdir_mondata_subdir(parent_kn, dom, r, prgrp); 2416 if (ret) 2417 return ret; 2418 } 2419 2420 return 0; 2421 } 2422 2423 /* 2424 * This creates a directory mon_data which contains the monitored data. 2425 * 2426 * mon_data has one directory for each domain whic are named 2427 * in the format mon_<domain_name>_<domain_id>. For ex: A mon_data 2428 * with L3 domain looks as below: 2429 * ./mon_data: 2430 * mon_L3_00 2431 * mon_L3_01 2432 * mon_L3_02 2433 * ... 2434 * 2435 * Each domain directory has one file per event: 2436 * ./mon_L3_00/: 2437 * llc_occupancy 2438 * 2439 */ 2440 static int mkdir_mondata_all(struct kernfs_node *parent_kn, 2441 struct rdtgroup *prgrp, 2442 struct kernfs_node **dest_kn) 2443 { 2444 struct rdt_resource *r; 2445 struct kernfs_node *kn; 2446 int ret; 2447 2448 /* 2449 * Create the mon_data directory first. 2450 */ 2451 ret = mongroup_create_dir(parent_kn, NULL, "mon_data", &kn); 2452 if (ret) 2453 return ret; 2454 2455 if (dest_kn) 2456 *dest_kn = kn; 2457 2458 /* 2459 * Create the subdirectories for each domain. Note that all events 2460 * in a domain like L3 are grouped into a resource whose domain is L3 2461 */ 2462 for_each_mon_enabled_rdt_resource(r) { 2463 ret = mkdir_mondata_subdir_alldom(kn, r, prgrp); 2464 if (ret) 2465 goto out_destroy; 2466 } 2467 2468 return 0; 2469 2470 out_destroy: 2471 kernfs_remove(kn); 2472 return ret; 2473 } 2474 2475 /** 2476 * cbm_ensure_valid - Enforce validity on provided CBM 2477 * @_val: Candidate CBM 2478 * @r: RDT resource to which the CBM belongs 2479 * 2480 * The provided CBM represents all cache portions available for use. This 2481 * may be represented by a bitmap that does not consist of contiguous ones 2482 * and thus be an invalid CBM. 2483 * Here the provided CBM is forced to be a valid CBM by only considering 2484 * the first set of contiguous bits as valid and clearing all bits. 2485 * The intention here is to provide a valid default CBM with which a new 2486 * resource group is initialized. The user can follow this with a 2487 * modification to the CBM if the default does not satisfy the 2488 * requirements. 2489 */ 2490 static u32 cbm_ensure_valid(u32 _val, struct rdt_resource *r) 2491 { 2492 unsigned int cbm_len = r->cache.cbm_len; 2493 unsigned long first_bit, zero_bit; 2494 unsigned long val = _val; 2495 2496 if (!val) 2497 return 0; 2498 2499 first_bit = find_first_bit(&val, cbm_len); 2500 zero_bit = find_next_zero_bit(&val, cbm_len, first_bit); 2501 2502 /* Clear any remaining bits to ensure contiguous region */ 2503 bitmap_clear(&val, zero_bit, cbm_len - zero_bit); 2504 return (u32)val; 2505 } 2506 2507 /* 2508 * Initialize cache resources per RDT domain 2509 * 2510 * Set the RDT domain up to start off with all usable allocations. That is, 2511 * all shareable and unused bits. All-zero CBM is invalid. 2512 */ 2513 static int __init_one_rdt_domain(struct rdt_domain *d, struct rdt_resource *r, 2514 u32 closid) 2515 { 2516 struct rdt_resource *r_cdp = NULL; 2517 struct rdt_domain *d_cdp = NULL; 2518 u32 used_b = 0, unused_b = 0; 2519 unsigned long tmp_cbm; 2520 enum rdtgrp_mode mode; 2521 u32 peer_ctl, *ctrl; 2522 int i; 2523 2524 rdt_cdp_peer_get(r, d, &r_cdp, &d_cdp); 2525 d->have_new_ctrl = false; 2526 d->new_ctrl = r->cache.shareable_bits; 2527 used_b = r->cache.shareable_bits; 2528 ctrl = d->ctrl_val; 2529 for (i = 0; i < closids_supported(); i++, ctrl++) { 2530 if (closid_allocated(i) && i != closid) { 2531 mode = rdtgroup_mode_by_closid(i); 2532 if (mode == RDT_MODE_PSEUDO_LOCKSETUP) 2533 /* 2534 * ctrl values for locksetup aren't relevant 2535 * until the schemata is written, and the mode 2536 * becomes RDT_MODE_PSEUDO_LOCKED. 2537 */ 2538 continue; 2539 /* 2540 * If CDP is active include peer domain's 2541 * usage to ensure there is no overlap 2542 * with an exclusive group. 2543 */ 2544 if (d_cdp) 2545 peer_ctl = d_cdp->ctrl_val[i]; 2546 else 2547 peer_ctl = 0; 2548 used_b |= *ctrl | peer_ctl; 2549 if (mode == RDT_MODE_SHAREABLE) 2550 d->new_ctrl |= *ctrl | peer_ctl; 2551 } 2552 } 2553 if (d->plr && d->plr->cbm > 0) 2554 used_b |= d->plr->cbm; 2555 unused_b = used_b ^ (BIT_MASK(r->cache.cbm_len) - 1); 2556 unused_b &= BIT_MASK(r->cache.cbm_len) - 1; 2557 d->new_ctrl |= unused_b; 2558 /* 2559 * Force the initial CBM to be valid, user can 2560 * modify the CBM based on system availability. 2561 */ 2562 d->new_ctrl = cbm_ensure_valid(d->new_ctrl, r); 2563 /* 2564 * Assign the u32 CBM to an unsigned long to ensure that 2565 * bitmap_weight() does not access out-of-bound memory. 2566 */ 2567 tmp_cbm = d->new_ctrl; 2568 if (bitmap_weight(&tmp_cbm, r->cache.cbm_len) < r->cache.min_cbm_bits) { 2569 rdt_last_cmd_printf("No space on %s:%d\n", r->name, d->id); 2570 return -ENOSPC; 2571 } 2572 d->have_new_ctrl = true; 2573 2574 return 0; 2575 } 2576 2577 /* 2578 * Initialize cache resources with default values. 2579 * 2580 * A new RDT group is being created on an allocation capable (CAT) 2581 * supporting system. Set this group up to start off with all usable 2582 * allocations. 2583 * 2584 * If there are no more shareable bits available on any domain then 2585 * the entire allocation will fail. 2586 */ 2587 static int rdtgroup_init_cat(struct rdt_resource *r, u32 closid) 2588 { 2589 struct rdt_domain *d; 2590 int ret; 2591 2592 list_for_each_entry(d, &r->domains, list) { 2593 ret = __init_one_rdt_domain(d, r, closid); 2594 if (ret < 0) 2595 return ret; 2596 } 2597 2598 return 0; 2599 } 2600 2601 /* Initialize MBA resource with default values. */ 2602 static void rdtgroup_init_mba(struct rdt_resource *r) 2603 { 2604 struct rdt_domain *d; 2605 2606 list_for_each_entry(d, &r->domains, list) { 2607 d->new_ctrl = is_mba_sc(r) ? MBA_MAX_MBPS : r->default_ctrl; 2608 d->have_new_ctrl = true; 2609 } 2610 } 2611 2612 /* Initialize the RDT group's allocations. */ 2613 static int rdtgroup_init_alloc(struct rdtgroup *rdtgrp) 2614 { 2615 struct rdt_resource *r; 2616 int ret; 2617 2618 for_each_alloc_enabled_rdt_resource(r) { 2619 if (r->rid == RDT_RESOURCE_MBA) { 2620 rdtgroup_init_mba(r); 2621 } else { 2622 ret = rdtgroup_init_cat(r, rdtgrp->closid); 2623 if (ret < 0) 2624 return ret; 2625 } 2626 2627 ret = update_domains(r, rdtgrp->closid); 2628 if (ret < 0) { 2629 rdt_last_cmd_puts("Failed to initialize allocations\n"); 2630 return ret; 2631 } 2632 2633 } 2634 2635 rdtgrp->mode = RDT_MODE_SHAREABLE; 2636 2637 return 0; 2638 } 2639 2640 static int mkdir_rdt_prepare(struct kernfs_node *parent_kn, 2641 struct kernfs_node *prgrp_kn, 2642 const char *name, umode_t mode, 2643 enum rdt_group_type rtype, struct rdtgroup **r) 2644 { 2645 struct rdtgroup *prdtgrp, *rdtgrp; 2646 struct kernfs_node *kn; 2647 uint files = 0; 2648 int ret; 2649 2650 prdtgrp = rdtgroup_kn_lock_live(prgrp_kn); 2651 rdt_last_cmd_clear(); 2652 if (!prdtgrp) { 2653 ret = -ENODEV; 2654 rdt_last_cmd_puts("Directory was removed\n"); 2655 goto out_unlock; 2656 } 2657 2658 if (rtype == RDTMON_GROUP && 2659 (prdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP || 2660 prdtgrp->mode == RDT_MODE_PSEUDO_LOCKED)) { 2661 ret = -EINVAL; 2662 rdt_last_cmd_puts("Pseudo-locking in progress\n"); 2663 goto out_unlock; 2664 } 2665 2666 /* allocate the rdtgroup. */ 2667 rdtgrp = kzalloc(sizeof(*rdtgrp), GFP_KERNEL); 2668 if (!rdtgrp) { 2669 ret = -ENOSPC; 2670 rdt_last_cmd_puts("Kernel out of memory\n"); 2671 goto out_unlock; 2672 } 2673 *r = rdtgrp; 2674 rdtgrp->mon.parent = prdtgrp; 2675 rdtgrp->type = rtype; 2676 INIT_LIST_HEAD(&rdtgrp->mon.crdtgrp_list); 2677 2678 /* kernfs creates the directory for rdtgrp */ 2679 kn = kernfs_create_dir(parent_kn, name, mode, rdtgrp); 2680 if (IS_ERR(kn)) { 2681 ret = PTR_ERR(kn); 2682 rdt_last_cmd_puts("kernfs create error\n"); 2683 goto out_free_rgrp; 2684 } 2685 rdtgrp->kn = kn; 2686 2687 /* 2688 * kernfs_remove() will drop the reference count on "kn" which 2689 * will free it. But we still need it to stick around for the 2690 * rdtgroup_kn_unlock(kn} call below. Take one extra reference 2691 * here, which will be dropped inside rdtgroup_kn_unlock(). 2692 */ 2693 kernfs_get(kn); 2694 2695 ret = rdtgroup_kn_set_ugid(kn); 2696 if (ret) { 2697 rdt_last_cmd_puts("kernfs perm error\n"); 2698 goto out_destroy; 2699 } 2700 2701 files = RFTYPE_BASE | BIT(RF_CTRLSHIFT + rtype); 2702 ret = rdtgroup_add_files(kn, files); 2703 if (ret) { 2704 rdt_last_cmd_puts("kernfs fill error\n"); 2705 goto out_destroy; 2706 } 2707 2708 if (rdt_mon_capable) { 2709 ret = alloc_rmid(); 2710 if (ret < 0) { 2711 rdt_last_cmd_puts("Out of RMIDs\n"); 2712 goto out_destroy; 2713 } 2714 rdtgrp->mon.rmid = ret; 2715 2716 ret = mkdir_mondata_all(kn, rdtgrp, &rdtgrp->mon.mon_data_kn); 2717 if (ret) { 2718 rdt_last_cmd_puts("kernfs subdir error\n"); 2719 goto out_idfree; 2720 } 2721 } 2722 kernfs_activate(kn); 2723 2724 /* 2725 * The caller unlocks the prgrp_kn upon success. 2726 */ 2727 return 0; 2728 2729 out_idfree: 2730 free_rmid(rdtgrp->mon.rmid); 2731 out_destroy: 2732 kernfs_remove(rdtgrp->kn); 2733 out_free_rgrp: 2734 kfree(rdtgrp); 2735 out_unlock: 2736 rdtgroup_kn_unlock(prgrp_kn); 2737 return ret; 2738 } 2739 2740 static void mkdir_rdt_prepare_clean(struct rdtgroup *rgrp) 2741 { 2742 kernfs_remove(rgrp->kn); 2743 free_rmid(rgrp->mon.rmid); 2744 kfree(rgrp); 2745 } 2746 2747 /* 2748 * Create a monitor group under "mon_groups" directory of a control 2749 * and monitor group(ctrl_mon). This is a resource group 2750 * to monitor a subset of tasks and cpus in its parent ctrl_mon group. 2751 */ 2752 static int rdtgroup_mkdir_mon(struct kernfs_node *parent_kn, 2753 struct kernfs_node *prgrp_kn, 2754 const char *name, 2755 umode_t mode) 2756 { 2757 struct rdtgroup *rdtgrp, *prgrp; 2758 int ret; 2759 2760 ret = mkdir_rdt_prepare(parent_kn, prgrp_kn, name, mode, RDTMON_GROUP, 2761 &rdtgrp); 2762 if (ret) 2763 return ret; 2764 2765 prgrp = rdtgrp->mon.parent; 2766 rdtgrp->closid = prgrp->closid; 2767 2768 /* 2769 * Add the rdtgrp to the list of rdtgrps the parent 2770 * ctrl_mon group has to track. 2771 */ 2772 list_add_tail(&rdtgrp->mon.crdtgrp_list, &prgrp->mon.crdtgrp_list); 2773 2774 rdtgroup_kn_unlock(prgrp_kn); 2775 return ret; 2776 } 2777 2778 /* 2779 * These are rdtgroups created under the root directory. Can be used 2780 * to allocate and monitor resources. 2781 */ 2782 static int rdtgroup_mkdir_ctrl_mon(struct kernfs_node *parent_kn, 2783 struct kernfs_node *prgrp_kn, 2784 const char *name, umode_t mode) 2785 { 2786 struct rdtgroup *rdtgrp; 2787 struct kernfs_node *kn; 2788 u32 closid; 2789 int ret; 2790 2791 ret = mkdir_rdt_prepare(parent_kn, prgrp_kn, name, mode, RDTCTRL_GROUP, 2792 &rdtgrp); 2793 if (ret) 2794 return ret; 2795 2796 kn = rdtgrp->kn; 2797 ret = closid_alloc(); 2798 if (ret < 0) { 2799 rdt_last_cmd_puts("Out of CLOSIDs\n"); 2800 goto out_common_fail; 2801 } 2802 closid = ret; 2803 ret = 0; 2804 2805 rdtgrp->closid = closid; 2806 ret = rdtgroup_init_alloc(rdtgrp); 2807 if (ret < 0) 2808 goto out_id_free; 2809 2810 list_add(&rdtgrp->rdtgroup_list, &rdt_all_groups); 2811 2812 if (rdt_mon_capable) { 2813 /* 2814 * Create an empty mon_groups directory to hold the subset 2815 * of tasks and cpus to monitor. 2816 */ 2817 ret = mongroup_create_dir(kn, NULL, "mon_groups", NULL); 2818 if (ret) { 2819 rdt_last_cmd_puts("kernfs subdir error\n"); 2820 goto out_del_list; 2821 } 2822 } 2823 2824 goto out_unlock; 2825 2826 out_del_list: 2827 list_del(&rdtgrp->rdtgroup_list); 2828 out_id_free: 2829 closid_free(closid); 2830 out_common_fail: 2831 mkdir_rdt_prepare_clean(rdtgrp); 2832 out_unlock: 2833 rdtgroup_kn_unlock(prgrp_kn); 2834 return ret; 2835 } 2836 2837 /* 2838 * We allow creating mon groups only with in a directory called "mon_groups" 2839 * which is present in every ctrl_mon group. Check if this is a valid 2840 * "mon_groups" directory. 2841 * 2842 * 1. The directory should be named "mon_groups". 2843 * 2. The mon group itself should "not" be named "mon_groups". 2844 * This makes sure "mon_groups" directory always has a ctrl_mon group 2845 * as parent. 2846 */ 2847 static bool is_mon_groups(struct kernfs_node *kn, const char *name) 2848 { 2849 return (!strcmp(kn->name, "mon_groups") && 2850 strcmp(name, "mon_groups")); 2851 } 2852 2853 static int rdtgroup_mkdir(struct kernfs_node *parent_kn, const char *name, 2854 umode_t mode) 2855 { 2856 /* Do not accept '\n' to avoid unparsable situation. */ 2857 if (strchr(name, '\n')) 2858 return -EINVAL; 2859 2860 /* 2861 * If the parent directory is the root directory and RDT 2862 * allocation is supported, add a control and monitoring 2863 * subdirectory 2864 */ 2865 if (rdt_alloc_capable && parent_kn == rdtgroup_default.kn) 2866 return rdtgroup_mkdir_ctrl_mon(parent_kn, parent_kn, name, mode); 2867 2868 /* 2869 * If RDT monitoring is supported and the parent directory is a valid 2870 * "mon_groups" directory, add a monitoring subdirectory. 2871 */ 2872 if (rdt_mon_capable && is_mon_groups(parent_kn, name)) 2873 return rdtgroup_mkdir_mon(parent_kn, parent_kn->parent, name, mode); 2874 2875 return -EPERM; 2876 } 2877 2878 static int rdtgroup_rmdir_mon(struct kernfs_node *kn, struct rdtgroup *rdtgrp, 2879 cpumask_var_t tmpmask) 2880 { 2881 struct rdtgroup *prdtgrp = rdtgrp->mon.parent; 2882 int cpu; 2883 2884 /* Give any tasks back to the parent group */ 2885 rdt_move_group_tasks(rdtgrp, prdtgrp, tmpmask); 2886 2887 /* Update per cpu rmid of the moved CPUs first */ 2888 for_each_cpu(cpu, &rdtgrp->cpu_mask) 2889 per_cpu(pqr_state.default_rmid, cpu) = prdtgrp->mon.rmid; 2890 /* 2891 * Update the MSR on moved CPUs and CPUs which have moved 2892 * task running on them. 2893 */ 2894 cpumask_or(tmpmask, tmpmask, &rdtgrp->cpu_mask); 2895 update_closid_rmid(tmpmask, NULL); 2896 2897 rdtgrp->flags = RDT_DELETED; 2898 free_rmid(rdtgrp->mon.rmid); 2899 2900 /* 2901 * Remove the rdtgrp from the parent ctrl_mon group's list 2902 */ 2903 WARN_ON(list_empty(&prdtgrp->mon.crdtgrp_list)); 2904 list_del(&rdtgrp->mon.crdtgrp_list); 2905 2906 /* 2907 * one extra hold on this, will drop when we kfree(rdtgrp) 2908 * in rdtgroup_kn_unlock() 2909 */ 2910 kernfs_get(kn); 2911 kernfs_remove(rdtgrp->kn); 2912 2913 return 0; 2914 } 2915 2916 static int rdtgroup_ctrl_remove(struct kernfs_node *kn, 2917 struct rdtgroup *rdtgrp) 2918 { 2919 rdtgrp->flags = RDT_DELETED; 2920 list_del(&rdtgrp->rdtgroup_list); 2921 2922 /* 2923 * one extra hold on this, will drop when we kfree(rdtgrp) 2924 * in rdtgroup_kn_unlock() 2925 */ 2926 kernfs_get(kn); 2927 kernfs_remove(rdtgrp->kn); 2928 return 0; 2929 } 2930 2931 static int rdtgroup_rmdir_ctrl(struct kernfs_node *kn, struct rdtgroup *rdtgrp, 2932 cpumask_var_t tmpmask) 2933 { 2934 int cpu; 2935 2936 /* Give any tasks back to the default group */ 2937 rdt_move_group_tasks(rdtgrp, &rdtgroup_default, tmpmask); 2938 2939 /* Give any CPUs back to the default group */ 2940 cpumask_or(&rdtgroup_default.cpu_mask, 2941 &rdtgroup_default.cpu_mask, &rdtgrp->cpu_mask); 2942 2943 /* Update per cpu closid and rmid of the moved CPUs first */ 2944 for_each_cpu(cpu, &rdtgrp->cpu_mask) { 2945 per_cpu(pqr_state.default_closid, cpu) = rdtgroup_default.closid; 2946 per_cpu(pqr_state.default_rmid, cpu) = rdtgroup_default.mon.rmid; 2947 } 2948 2949 /* 2950 * Update the MSR on moved CPUs and CPUs which have moved 2951 * task running on them. 2952 */ 2953 cpumask_or(tmpmask, tmpmask, &rdtgrp->cpu_mask); 2954 update_closid_rmid(tmpmask, NULL); 2955 2956 closid_free(rdtgrp->closid); 2957 free_rmid(rdtgrp->mon.rmid); 2958 2959 /* 2960 * Free all the child monitor group rmids. 2961 */ 2962 free_all_child_rdtgrp(rdtgrp); 2963 2964 rdtgroup_ctrl_remove(kn, rdtgrp); 2965 2966 return 0; 2967 } 2968 2969 static int rdtgroup_rmdir(struct kernfs_node *kn) 2970 { 2971 struct kernfs_node *parent_kn = kn->parent; 2972 struct rdtgroup *rdtgrp; 2973 cpumask_var_t tmpmask; 2974 int ret = 0; 2975 2976 if (!zalloc_cpumask_var(&tmpmask, GFP_KERNEL)) 2977 return -ENOMEM; 2978 2979 rdtgrp = rdtgroup_kn_lock_live(kn); 2980 if (!rdtgrp) { 2981 ret = -EPERM; 2982 goto out; 2983 } 2984 2985 /* 2986 * If the rdtgroup is a ctrl_mon group and parent directory 2987 * is the root directory, remove the ctrl_mon group. 2988 * 2989 * If the rdtgroup is a mon group and parent directory 2990 * is a valid "mon_groups" directory, remove the mon group. 2991 */ 2992 if (rdtgrp->type == RDTCTRL_GROUP && parent_kn == rdtgroup_default.kn) { 2993 if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP || 2994 rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED) { 2995 ret = rdtgroup_ctrl_remove(kn, rdtgrp); 2996 } else { 2997 ret = rdtgroup_rmdir_ctrl(kn, rdtgrp, tmpmask); 2998 } 2999 } else if (rdtgrp->type == RDTMON_GROUP && 3000 is_mon_groups(parent_kn, kn->name)) { 3001 ret = rdtgroup_rmdir_mon(kn, rdtgrp, tmpmask); 3002 } else { 3003 ret = -EPERM; 3004 } 3005 3006 out: 3007 rdtgroup_kn_unlock(kn); 3008 free_cpumask_var(tmpmask); 3009 return ret; 3010 } 3011 3012 static int rdtgroup_show_options(struct seq_file *seq, struct kernfs_root *kf) 3013 { 3014 if (rdt_resources_all[RDT_RESOURCE_L3DATA].alloc_enabled) 3015 seq_puts(seq, ",cdp"); 3016 3017 if (rdt_resources_all[RDT_RESOURCE_L2DATA].alloc_enabled) 3018 seq_puts(seq, ",cdpl2"); 3019 3020 if (is_mba_sc(&rdt_resources_all[RDT_RESOURCE_MBA])) 3021 seq_puts(seq, ",mba_MBps"); 3022 3023 return 0; 3024 } 3025 3026 static struct kernfs_syscall_ops rdtgroup_kf_syscall_ops = { 3027 .mkdir = rdtgroup_mkdir, 3028 .rmdir = rdtgroup_rmdir, 3029 .show_options = rdtgroup_show_options, 3030 }; 3031 3032 static int __init rdtgroup_setup_root(void) 3033 { 3034 int ret; 3035 3036 rdt_root = kernfs_create_root(&rdtgroup_kf_syscall_ops, 3037 KERNFS_ROOT_CREATE_DEACTIVATED | 3038 KERNFS_ROOT_EXTRA_OPEN_PERM_CHECK, 3039 &rdtgroup_default); 3040 if (IS_ERR(rdt_root)) 3041 return PTR_ERR(rdt_root); 3042 3043 mutex_lock(&rdtgroup_mutex); 3044 3045 rdtgroup_default.closid = 0; 3046 rdtgroup_default.mon.rmid = 0; 3047 rdtgroup_default.type = RDTCTRL_GROUP; 3048 INIT_LIST_HEAD(&rdtgroup_default.mon.crdtgrp_list); 3049 3050 list_add(&rdtgroup_default.rdtgroup_list, &rdt_all_groups); 3051 3052 ret = rdtgroup_add_files(rdt_root->kn, RF_CTRL_BASE); 3053 if (ret) { 3054 kernfs_destroy_root(rdt_root); 3055 goto out; 3056 } 3057 3058 rdtgroup_default.kn = rdt_root->kn; 3059 kernfs_activate(rdtgroup_default.kn); 3060 3061 out: 3062 mutex_unlock(&rdtgroup_mutex); 3063 3064 return ret; 3065 } 3066 3067 /* 3068 * rdtgroup_init - rdtgroup initialization 3069 * 3070 * Setup resctrl file system including set up root, create mount point, 3071 * register rdtgroup filesystem, and initialize files under root directory. 3072 * 3073 * Return: 0 on success or -errno 3074 */ 3075 int __init rdtgroup_init(void) 3076 { 3077 int ret = 0; 3078 3079 seq_buf_init(&last_cmd_status, last_cmd_status_buf, 3080 sizeof(last_cmd_status_buf)); 3081 3082 ret = rdtgroup_setup_root(); 3083 if (ret) 3084 return ret; 3085 3086 ret = sysfs_create_mount_point(fs_kobj, "resctrl"); 3087 if (ret) 3088 goto cleanup_root; 3089 3090 ret = register_filesystem(&rdt_fs_type); 3091 if (ret) 3092 goto cleanup_mountpoint; 3093 3094 /* 3095 * Adding the resctrl debugfs directory here may not be ideal since 3096 * it would let the resctrl debugfs directory appear on the debugfs 3097 * filesystem before the resctrl filesystem is mounted. 3098 * It may also be ok since that would enable debugging of RDT before 3099 * resctrl is mounted. 3100 * The reason why the debugfs directory is created here and not in 3101 * rdt_mount() is because rdt_mount() takes rdtgroup_mutex and 3102 * during the debugfs directory creation also &sb->s_type->i_mutex_key 3103 * (the lockdep class of inode->i_rwsem). Other filesystem 3104 * interactions (eg. SyS_getdents) have the lock ordering: 3105 * &sb->s_type->i_mutex_key --> &mm->mmap_sem 3106 * During mmap(), called with &mm->mmap_sem, the rdtgroup_mutex 3107 * is taken, thus creating dependency: 3108 * &mm->mmap_sem --> rdtgroup_mutex for the latter that can cause 3109 * issues considering the other two lock dependencies. 3110 * By creating the debugfs directory here we avoid a dependency 3111 * that may cause deadlock (even though file operations cannot 3112 * occur until the filesystem is mounted, but I do not know how to 3113 * tell lockdep that). 3114 */ 3115 debugfs_resctrl = debugfs_create_dir("resctrl", NULL); 3116 3117 return 0; 3118 3119 cleanup_mountpoint: 3120 sysfs_remove_mount_point(fs_kobj, "resctrl"); 3121 cleanup_root: 3122 kernfs_destroy_root(rdt_root); 3123 3124 return ret; 3125 } 3126 3127 void __exit rdtgroup_exit(void) 3128 { 3129 debugfs_remove_recursive(debugfs_resctrl); 3130 unregister_filesystem(&rdt_fs_type); 3131 sysfs_remove_mount_point(fs_kobj, "resctrl"); 3132 kernfs_destroy_root(rdt_root); 3133 } 3134