1 /*
2  * User interface for Resource Alloction in Resource Director Technology(RDT)
3  *
4  * Copyright (C) 2016 Intel Corporation
5  *
6  * Author: Fenghua Yu <fenghua.yu@intel.com>
7  *
8  * This program is free software; you can redistribute it and/or modify it
9  * under the terms and conditions of the GNU General Public License,
10  * version 2, as published by the Free Software Foundation.
11  *
12  * This program is distributed in the hope it will be useful, but WITHOUT
13  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
15  * more details.
16  *
17  * More information about RDT be found in the Intel (R) x86 Architecture
18  * Software Developer Manual.
19  */
20 
21 #define pr_fmt(fmt)	KBUILD_MODNAME ": " fmt
22 
23 #include <linux/cacheinfo.h>
24 #include <linux/cpu.h>
25 #include <linux/debugfs.h>
26 #include <linux/fs.h>
27 #include <linux/sysfs.h>
28 #include <linux/kernfs.h>
29 #include <linux/seq_buf.h>
30 #include <linux/seq_file.h>
31 #include <linux/sched/signal.h>
32 #include <linux/sched/task.h>
33 #include <linux/slab.h>
34 #include <linux/task_work.h>
35 
36 #include <uapi/linux/magic.h>
37 
38 #include <asm/resctrl_sched.h>
39 #include "internal.h"
40 
41 DEFINE_STATIC_KEY_FALSE(rdt_enable_key);
42 DEFINE_STATIC_KEY_FALSE(rdt_mon_enable_key);
43 DEFINE_STATIC_KEY_FALSE(rdt_alloc_enable_key);
44 static struct kernfs_root *rdt_root;
45 struct rdtgroup rdtgroup_default;
46 LIST_HEAD(rdt_all_groups);
47 
48 /* Kernel fs node for "info" directory under root */
49 static struct kernfs_node *kn_info;
50 
51 /* Kernel fs node for "mon_groups" directory under root */
52 static struct kernfs_node *kn_mongrp;
53 
54 /* Kernel fs node for "mon_data" directory under root */
55 static struct kernfs_node *kn_mondata;
56 
57 static struct seq_buf last_cmd_status;
58 static char last_cmd_status_buf[512];
59 
60 struct dentry *debugfs_resctrl;
61 
62 void rdt_last_cmd_clear(void)
63 {
64 	lockdep_assert_held(&rdtgroup_mutex);
65 	seq_buf_clear(&last_cmd_status);
66 }
67 
68 void rdt_last_cmd_puts(const char *s)
69 {
70 	lockdep_assert_held(&rdtgroup_mutex);
71 	seq_buf_puts(&last_cmd_status, s);
72 }
73 
74 void rdt_last_cmd_printf(const char *fmt, ...)
75 {
76 	va_list ap;
77 
78 	va_start(ap, fmt);
79 	lockdep_assert_held(&rdtgroup_mutex);
80 	seq_buf_vprintf(&last_cmd_status, fmt, ap);
81 	va_end(ap);
82 }
83 
84 /*
85  * Trivial allocator for CLOSIDs. Since h/w only supports a small number,
86  * we can keep a bitmap of free CLOSIDs in a single integer.
87  *
88  * Using a global CLOSID across all resources has some advantages and
89  * some drawbacks:
90  * + We can simply set "current->closid" to assign a task to a resource
91  *   group.
92  * + Context switch code can avoid extra memory references deciding which
93  *   CLOSID to load into the PQR_ASSOC MSR
94  * - We give up some options in configuring resource groups across multi-socket
95  *   systems.
96  * - Our choices on how to configure each resource become progressively more
97  *   limited as the number of resources grows.
98  */
99 static int closid_free_map;
100 static int closid_free_map_len;
101 
102 int closids_supported(void)
103 {
104 	return closid_free_map_len;
105 }
106 
107 static void closid_init(void)
108 {
109 	struct rdt_resource *r;
110 	int rdt_min_closid = 32;
111 
112 	/* Compute rdt_min_closid across all resources */
113 	for_each_alloc_enabled_rdt_resource(r)
114 		rdt_min_closid = min(rdt_min_closid, r->num_closid);
115 
116 	closid_free_map = BIT_MASK(rdt_min_closid) - 1;
117 
118 	/* CLOSID 0 is always reserved for the default group */
119 	closid_free_map &= ~1;
120 	closid_free_map_len = rdt_min_closid;
121 }
122 
123 static int closid_alloc(void)
124 {
125 	u32 closid = ffs(closid_free_map);
126 
127 	if (closid == 0)
128 		return -ENOSPC;
129 	closid--;
130 	closid_free_map &= ~(1 << closid);
131 
132 	return closid;
133 }
134 
135 void closid_free(int closid)
136 {
137 	closid_free_map |= 1 << closid;
138 }
139 
140 /**
141  * closid_allocated - test if provided closid is in use
142  * @closid: closid to be tested
143  *
144  * Return: true if @closid is currently associated with a resource group,
145  * false if @closid is free
146  */
147 static bool closid_allocated(unsigned int closid)
148 {
149 	return (closid_free_map & (1 << closid)) == 0;
150 }
151 
152 /**
153  * rdtgroup_mode_by_closid - Return mode of resource group with closid
154  * @closid: closid if the resource group
155  *
156  * Each resource group is associated with a @closid. Here the mode
157  * of a resource group can be queried by searching for it using its closid.
158  *
159  * Return: mode as &enum rdtgrp_mode of resource group with closid @closid
160  */
161 enum rdtgrp_mode rdtgroup_mode_by_closid(int closid)
162 {
163 	struct rdtgroup *rdtgrp;
164 
165 	list_for_each_entry(rdtgrp, &rdt_all_groups, rdtgroup_list) {
166 		if (rdtgrp->closid == closid)
167 			return rdtgrp->mode;
168 	}
169 
170 	return RDT_NUM_MODES;
171 }
172 
173 static const char * const rdt_mode_str[] = {
174 	[RDT_MODE_SHAREABLE]		= "shareable",
175 	[RDT_MODE_EXCLUSIVE]		= "exclusive",
176 	[RDT_MODE_PSEUDO_LOCKSETUP]	= "pseudo-locksetup",
177 	[RDT_MODE_PSEUDO_LOCKED]	= "pseudo-locked",
178 };
179 
180 /**
181  * rdtgroup_mode_str - Return the string representation of mode
182  * @mode: the resource group mode as &enum rdtgroup_mode
183  *
184  * Return: string representation of valid mode, "unknown" otherwise
185  */
186 static const char *rdtgroup_mode_str(enum rdtgrp_mode mode)
187 {
188 	if (mode < RDT_MODE_SHAREABLE || mode >= RDT_NUM_MODES)
189 		return "unknown";
190 
191 	return rdt_mode_str[mode];
192 }
193 
194 /* set uid and gid of rdtgroup dirs and files to that of the creator */
195 static int rdtgroup_kn_set_ugid(struct kernfs_node *kn)
196 {
197 	struct iattr iattr = { .ia_valid = ATTR_UID | ATTR_GID,
198 				.ia_uid = current_fsuid(),
199 				.ia_gid = current_fsgid(), };
200 
201 	if (uid_eq(iattr.ia_uid, GLOBAL_ROOT_UID) &&
202 	    gid_eq(iattr.ia_gid, GLOBAL_ROOT_GID))
203 		return 0;
204 
205 	return kernfs_setattr(kn, &iattr);
206 }
207 
208 static int rdtgroup_add_file(struct kernfs_node *parent_kn, struct rftype *rft)
209 {
210 	struct kernfs_node *kn;
211 	int ret;
212 
213 	kn = __kernfs_create_file(parent_kn, rft->name, rft->mode,
214 				  GLOBAL_ROOT_UID, GLOBAL_ROOT_GID,
215 				  0, rft->kf_ops, rft, NULL, NULL);
216 	if (IS_ERR(kn))
217 		return PTR_ERR(kn);
218 
219 	ret = rdtgroup_kn_set_ugid(kn);
220 	if (ret) {
221 		kernfs_remove(kn);
222 		return ret;
223 	}
224 
225 	return 0;
226 }
227 
228 static int rdtgroup_seqfile_show(struct seq_file *m, void *arg)
229 {
230 	struct kernfs_open_file *of = m->private;
231 	struct rftype *rft = of->kn->priv;
232 
233 	if (rft->seq_show)
234 		return rft->seq_show(of, m, arg);
235 	return 0;
236 }
237 
238 static ssize_t rdtgroup_file_write(struct kernfs_open_file *of, char *buf,
239 				   size_t nbytes, loff_t off)
240 {
241 	struct rftype *rft = of->kn->priv;
242 
243 	if (rft->write)
244 		return rft->write(of, buf, nbytes, off);
245 
246 	return -EINVAL;
247 }
248 
249 static struct kernfs_ops rdtgroup_kf_single_ops = {
250 	.atomic_write_len	= PAGE_SIZE,
251 	.write			= rdtgroup_file_write,
252 	.seq_show		= rdtgroup_seqfile_show,
253 };
254 
255 static struct kernfs_ops kf_mondata_ops = {
256 	.atomic_write_len	= PAGE_SIZE,
257 	.seq_show		= rdtgroup_mondata_show,
258 };
259 
260 static bool is_cpu_list(struct kernfs_open_file *of)
261 {
262 	struct rftype *rft = of->kn->priv;
263 
264 	return rft->flags & RFTYPE_FLAGS_CPUS_LIST;
265 }
266 
267 static int rdtgroup_cpus_show(struct kernfs_open_file *of,
268 			      struct seq_file *s, void *v)
269 {
270 	struct rdtgroup *rdtgrp;
271 	struct cpumask *mask;
272 	int ret = 0;
273 
274 	rdtgrp = rdtgroup_kn_lock_live(of->kn);
275 
276 	if (rdtgrp) {
277 		if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED) {
278 			if (!rdtgrp->plr->d) {
279 				rdt_last_cmd_clear();
280 				rdt_last_cmd_puts("Cache domain offline\n");
281 				ret = -ENODEV;
282 			} else {
283 				mask = &rdtgrp->plr->d->cpu_mask;
284 				seq_printf(s, is_cpu_list(of) ?
285 					   "%*pbl\n" : "%*pb\n",
286 					   cpumask_pr_args(mask));
287 			}
288 		} else {
289 			seq_printf(s, is_cpu_list(of) ? "%*pbl\n" : "%*pb\n",
290 				   cpumask_pr_args(&rdtgrp->cpu_mask));
291 		}
292 	} else {
293 		ret = -ENOENT;
294 	}
295 	rdtgroup_kn_unlock(of->kn);
296 
297 	return ret;
298 }
299 
300 /*
301  * This is safe against resctrl_sched_in() called from __switch_to()
302  * because __switch_to() is executed with interrupts disabled. A local call
303  * from update_closid_rmid() is proteced against __switch_to() because
304  * preemption is disabled.
305  */
306 static void update_cpu_closid_rmid(void *info)
307 {
308 	struct rdtgroup *r = info;
309 
310 	if (r) {
311 		this_cpu_write(pqr_state.default_closid, r->closid);
312 		this_cpu_write(pqr_state.default_rmid, r->mon.rmid);
313 	}
314 
315 	/*
316 	 * We cannot unconditionally write the MSR because the current
317 	 * executing task might have its own closid selected. Just reuse
318 	 * the context switch code.
319 	 */
320 	resctrl_sched_in();
321 }
322 
323 /*
324  * Update the PGR_ASSOC MSR on all cpus in @cpu_mask,
325  *
326  * Per task closids/rmids must have been set up before calling this function.
327  */
328 static void
329 update_closid_rmid(const struct cpumask *cpu_mask, struct rdtgroup *r)
330 {
331 	int cpu = get_cpu();
332 
333 	if (cpumask_test_cpu(cpu, cpu_mask))
334 		update_cpu_closid_rmid(r);
335 	smp_call_function_many(cpu_mask, update_cpu_closid_rmid, r, 1);
336 	put_cpu();
337 }
338 
339 static int cpus_mon_write(struct rdtgroup *rdtgrp, cpumask_var_t newmask,
340 			  cpumask_var_t tmpmask)
341 {
342 	struct rdtgroup *prgrp = rdtgrp->mon.parent, *crgrp;
343 	struct list_head *head;
344 
345 	/* Check whether cpus belong to parent ctrl group */
346 	cpumask_andnot(tmpmask, newmask, &prgrp->cpu_mask);
347 	if (cpumask_weight(tmpmask)) {
348 		rdt_last_cmd_puts("can only add CPUs to mongroup that belong to parent\n");
349 		return -EINVAL;
350 	}
351 
352 	/* Check whether cpus are dropped from this group */
353 	cpumask_andnot(tmpmask, &rdtgrp->cpu_mask, newmask);
354 	if (cpumask_weight(tmpmask)) {
355 		/* Give any dropped cpus to parent rdtgroup */
356 		cpumask_or(&prgrp->cpu_mask, &prgrp->cpu_mask, tmpmask);
357 		update_closid_rmid(tmpmask, prgrp);
358 	}
359 
360 	/*
361 	 * If we added cpus, remove them from previous group that owned them
362 	 * and update per-cpu rmid
363 	 */
364 	cpumask_andnot(tmpmask, newmask, &rdtgrp->cpu_mask);
365 	if (cpumask_weight(tmpmask)) {
366 		head = &prgrp->mon.crdtgrp_list;
367 		list_for_each_entry(crgrp, head, mon.crdtgrp_list) {
368 			if (crgrp == rdtgrp)
369 				continue;
370 			cpumask_andnot(&crgrp->cpu_mask, &crgrp->cpu_mask,
371 				       tmpmask);
372 		}
373 		update_closid_rmid(tmpmask, rdtgrp);
374 	}
375 
376 	/* Done pushing/pulling - update this group with new mask */
377 	cpumask_copy(&rdtgrp->cpu_mask, newmask);
378 
379 	return 0;
380 }
381 
382 static void cpumask_rdtgrp_clear(struct rdtgroup *r, struct cpumask *m)
383 {
384 	struct rdtgroup *crgrp;
385 
386 	cpumask_andnot(&r->cpu_mask, &r->cpu_mask, m);
387 	/* update the child mon group masks as well*/
388 	list_for_each_entry(crgrp, &r->mon.crdtgrp_list, mon.crdtgrp_list)
389 		cpumask_and(&crgrp->cpu_mask, &r->cpu_mask, &crgrp->cpu_mask);
390 }
391 
392 static int cpus_ctrl_write(struct rdtgroup *rdtgrp, cpumask_var_t newmask,
393 			   cpumask_var_t tmpmask, cpumask_var_t tmpmask1)
394 {
395 	struct rdtgroup *r, *crgrp;
396 	struct list_head *head;
397 
398 	/* Check whether cpus are dropped from this group */
399 	cpumask_andnot(tmpmask, &rdtgrp->cpu_mask, newmask);
400 	if (cpumask_weight(tmpmask)) {
401 		/* Can't drop from default group */
402 		if (rdtgrp == &rdtgroup_default) {
403 			rdt_last_cmd_puts("Can't drop CPUs from default group\n");
404 			return -EINVAL;
405 		}
406 
407 		/* Give any dropped cpus to rdtgroup_default */
408 		cpumask_or(&rdtgroup_default.cpu_mask,
409 			   &rdtgroup_default.cpu_mask, tmpmask);
410 		update_closid_rmid(tmpmask, &rdtgroup_default);
411 	}
412 
413 	/*
414 	 * If we added cpus, remove them from previous group and
415 	 * the prev group's child groups that owned them
416 	 * and update per-cpu closid/rmid.
417 	 */
418 	cpumask_andnot(tmpmask, newmask, &rdtgrp->cpu_mask);
419 	if (cpumask_weight(tmpmask)) {
420 		list_for_each_entry(r, &rdt_all_groups, rdtgroup_list) {
421 			if (r == rdtgrp)
422 				continue;
423 			cpumask_and(tmpmask1, &r->cpu_mask, tmpmask);
424 			if (cpumask_weight(tmpmask1))
425 				cpumask_rdtgrp_clear(r, tmpmask1);
426 		}
427 		update_closid_rmid(tmpmask, rdtgrp);
428 	}
429 
430 	/* Done pushing/pulling - update this group with new mask */
431 	cpumask_copy(&rdtgrp->cpu_mask, newmask);
432 
433 	/*
434 	 * Clear child mon group masks since there is a new parent mask
435 	 * now and update the rmid for the cpus the child lost.
436 	 */
437 	head = &rdtgrp->mon.crdtgrp_list;
438 	list_for_each_entry(crgrp, head, mon.crdtgrp_list) {
439 		cpumask_and(tmpmask, &rdtgrp->cpu_mask, &crgrp->cpu_mask);
440 		update_closid_rmid(tmpmask, rdtgrp);
441 		cpumask_clear(&crgrp->cpu_mask);
442 	}
443 
444 	return 0;
445 }
446 
447 static ssize_t rdtgroup_cpus_write(struct kernfs_open_file *of,
448 				   char *buf, size_t nbytes, loff_t off)
449 {
450 	cpumask_var_t tmpmask, newmask, tmpmask1;
451 	struct rdtgroup *rdtgrp;
452 	int ret;
453 
454 	if (!buf)
455 		return -EINVAL;
456 
457 	if (!zalloc_cpumask_var(&tmpmask, GFP_KERNEL))
458 		return -ENOMEM;
459 	if (!zalloc_cpumask_var(&newmask, GFP_KERNEL)) {
460 		free_cpumask_var(tmpmask);
461 		return -ENOMEM;
462 	}
463 	if (!zalloc_cpumask_var(&tmpmask1, GFP_KERNEL)) {
464 		free_cpumask_var(tmpmask);
465 		free_cpumask_var(newmask);
466 		return -ENOMEM;
467 	}
468 
469 	rdtgrp = rdtgroup_kn_lock_live(of->kn);
470 	rdt_last_cmd_clear();
471 	if (!rdtgrp) {
472 		ret = -ENOENT;
473 		rdt_last_cmd_puts("directory was removed\n");
474 		goto unlock;
475 	}
476 
477 	if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED ||
478 	    rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP) {
479 		ret = -EINVAL;
480 		rdt_last_cmd_puts("pseudo-locking in progress\n");
481 		goto unlock;
482 	}
483 
484 	if (is_cpu_list(of))
485 		ret = cpulist_parse(buf, newmask);
486 	else
487 		ret = cpumask_parse(buf, newmask);
488 
489 	if (ret) {
490 		rdt_last_cmd_puts("bad cpu list/mask\n");
491 		goto unlock;
492 	}
493 
494 	/* check that user didn't specify any offline cpus */
495 	cpumask_andnot(tmpmask, newmask, cpu_online_mask);
496 	if (cpumask_weight(tmpmask)) {
497 		ret = -EINVAL;
498 		rdt_last_cmd_puts("can only assign online cpus\n");
499 		goto unlock;
500 	}
501 
502 	if (rdtgrp->type == RDTCTRL_GROUP)
503 		ret = cpus_ctrl_write(rdtgrp, newmask, tmpmask, tmpmask1);
504 	else if (rdtgrp->type == RDTMON_GROUP)
505 		ret = cpus_mon_write(rdtgrp, newmask, tmpmask);
506 	else
507 		ret = -EINVAL;
508 
509 unlock:
510 	rdtgroup_kn_unlock(of->kn);
511 	free_cpumask_var(tmpmask);
512 	free_cpumask_var(newmask);
513 	free_cpumask_var(tmpmask1);
514 
515 	return ret ?: nbytes;
516 }
517 
518 struct task_move_callback {
519 	struct callback_head	work;
520 	struct rdtgroup		*rdtgrp;
521 };
522 
523 static void move_myself(struct callback_head *head)
524 {
525 	struct task_move_callback *callback;
526 	struct rdtgroup *rdtgrp;
527 
528 	callback = container_of(head, struct task_move_callback, work);
529 	rdtgrp = callback->rdtgrp;
530 
531 	/*
532 	 * If resource group was deleted before this task work callback
533 	 * was invoked, then assign the task to root group and free the
534 	 * resource group.
535 	 */
536 	if (atomic_dec_and_test(&rdtgrp->waitcount) &&
537 	    (rdtgrp->flags & RDT_DELETED)) {
538 		current->closid = 0;
539 		current->rmid = 0;
540 		kfree(rdtgrp);
541 	}
542 
543 	preempt_disable();
544 	/* update PQR_ASSOC MSR to make resource group go into effect */
545 	resctrl_sched_in();
546 	preempt_enable();
547 
548 	kfree(callback);
549 }
550 
551 static int __rdtgroup_move_task(struct task_struct *tsk,
552 				struct rdtgroup *rdtgrp)
553 {
554 	struct task_move_callback *callback;
555 	int ret;
556 
557 	callback = kzalloc(sizeof(*callback), GFP_KERNEL);
558 	if (!callback)
559 		return -ENOMEM;
560 	callback->work.func = move_myself;
561 	callback->rdtgrp = rdtgrp;
562 
563 	/*
564 	 * Take a refcount, so rdtgrp cannot be freed before the
565 	 * callback has been invoked.
566 	 */
567 	atomic_inc(&rdtgrp->waitcount);
568 	ret = task_work_add(tsk, &callback->work, true);
569 	if (ret) {
570 		/*
571 		 * Task is exiting. Drop the refcount and free the callback.
572 		 * No need to check the refcount as the group cannot be
573 		 * deleted before the write function unlocks rdtgroup_mutex.
574 		 */
575 		atomic_dec(&rdtgrp->waitcount);
576 		kfree(callback);
577 		rdt_last_cmd_puts("task exited\n");
578 	} else {
579 		/*
580 		 * For ctrl_mon groups move both closid and rmid.
581 		 * For monitor groups, can move the tasks only from
582 		 * their parent CTRL group.
583 		 */
584 		if (rdtgrp->type == RDTCTRL_GROUP) {
585 			tsk->closid = rdtgrp->closid;
586 			tsk->rmid = rdtgrp->mon.rmid;
587 		} else if (rdtgrp->type == RDTMON_GROUP) {
588 			if (rdtgrp->mon.parent->closid == tsk->closid) {
589 				tsk->rmid = rdtgrp->mon.rmid;
590 			} else {
591 				rdt_last_cmd_puts("Can't move task to different control group\n");
592 				ret = -EINVAL;
593 			}
594 		}
595 	}
596 	return ret;
597 }
598 
599 /**
600  * rdtgroup_tasks_assigned - Test if tasks have been assigned to resource group
601  * @r: Resource group
602  *
603  * Return: 1 if tasks have been assigned to @r, 0 otherwise
604  */
605 int rdtgroup_tasks_assigned(struct rdtgroup *r)
606 {
607 	struct task_struct *p, *t;
608 	int ret = 0;
609 
610 	lockdep_assert_held(&rdtgroup_mutex);
611 
612 	rcu_read_lock();
613 	for_each_process_thread(p, t) {
614 		if ((r->type == RDTCTRL_GROUP && t->closid == r->closid) ||
615 		    (r->type == RDTMON_GROUP && t->rmid == r->mon.rmid)) {
616 			ret = 1;
617 			break;
618 		}
619 	}
620 	rcu_read_unlock();
621 
622 	return ret;
623 }
624 
625 static int rdtgroup_task_write_permission(struct task_struct *task,
626 					  struct kernfs_open_file *of)
627 {
628 	const struct cred *tcred = get_task_cred(task);
629 	const struct cred *cred = current_cred();
630 	int ret = 0;
631 
632 	/*
633 	 * Even if we're attaching all tasks in the thread group, we only
634 	 * need to check permissions on one of them.
635 	 */
636 	if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) &&
637 	    !uid_eq(cred->euid, tcred->uid) &&
638 	    !uid_eq(cred->euid, tcred->suid)) {
639 		rdt_last_cmd_printf("No permission to move task %d\n", task->pid);
640 		ret = -EPERM;
641 	}
642 
643 	put_cred(tcred);
644 	return ret;
645 }
646 
647 static int rdtgroup_move_task(pid_t pid, struct rdtgroup *rdtgrp,
648 			      struct kernfs_open_file *of)
649 {
650 	struct task_struct *tsk;
651 	int ret;
652 
653 	rcu_read_lock();
654 	if (pid) {
655 		tsk = find_task_by_vpid(pid);
656 		if (!tsk) {
657 			rcu_read_unlock();
658 			rdt_last_cmd_printf("No task %d\n", pid);
659 			return -ESRCH;
660 		}
661 	} else {
662 		tsk = current;
663 	}
664 
665 	get_task_struct(tsk);
666 	rcu_read_unlock();
667 
668 	ret = rdtgroup_task_write_permission(tsk, of);
669 	if (!ret)
670 		ret = __rdtgroup_move_task(tsk, rdtgrp);
671 
672 	put_task_struct(tsk);
673 	return ret;
674 }
675 
676 static ssize_t rdtgroup_tasks_write(struct kernfs_open_file *of,
677 				    char *buf, size_t nbytes, loff_t off)
678 {
679 	struct rdtgroup *rdtgrp;
680 	int ret = 0;
681 	pid_t pid;
682 
683 	if (kstrtoint(strstrip(buf), 0, &pid) || pid < 0)
684 		return -EINVAL;
685 	rdtgrp = rdtgroup_kn_lock_live(of->kn);
686 	if (!rdtgrp) {
687 		rdtgroup_kn_unlock(of->kn);
688 		return -ENOENT;
689 	}
690 	rdt_last_cmd_clear();
691 
692 	if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED ||
693 	    rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP) {
694 		ret = -EINVAL;
695 		rdt_last_cmd_puts("pseudo-locking in progress\n");
696 		goto unlock;
697 	}
698 
699 	ret = rdtgroup_move_task(pid, rdtgrp, of);
700 
701 unlock:
702 	rdtgroup_kn_unlock(of->kn);
703 
704 	return ret ?: nbytes;
705 }
706 
707 static void show_rdt_tasks(struct rdtgroup *r, struct seq_file *s)
708 {
709 	struct task_struct *p, *t;
710 
711 	rcu_read_lock();
712 	for_each_process_thread(p, t) {
713 		if ((r->type == RDTCTRL_GROUP && t->closid == r->closid) ||
714 		    (r->type == RDTMON_GROUP && t->rmid == r->mon.rmid))
715 			seq_printf(s, "%d\n", t->pid);
716 	}
717 	rcu_read_unlock();
718 }
719 
720 static int rdtgroup_tasks_show(struct kernfs_open_file *of,
721 			       struct seq_file *s, void *v)
722 {
723 	struct rdtgroup *rdtgrp;
724 	int ret = 0;
725 
726 	rdtgrp = rdtgroup_kn_lock_live(of->kn);
727 	if (rdtgrp)
728 		show_rdt_tasks(rdtgrp, s);
729 	else
730 		ret = -ENOENT;
731 	rdtgroup_kn_unlock(of->kn);
732 
733 	return ret;
734 }
735 
736 static int rdt_last_cmd_status_show(struct kernfs_open_file *of,
737 				    struct seq_file *seq, void *v)
738 {
739 	int len;
740 
741 	mutex_lock(&rdtgroup_mutex);
742 	len = seq_buf_used(&last_cmd_status);
743 	if (len)
744 		seq_printf(seq, "%.*s", len, last_cmd_status_buf);
745 	else
746 		seq_puts(seq, "ok\n");
747 	mutex_unlock(&rdtgroup_mutex);
748 	return 0;
749 }
750 
751 static int rdt_num_closids_show(struct kernfs_open_file *of,
752 				struct seq_file *seq, void *v)
753 {
754 	struct rdt_resource *r = of->kn->parent->priv;
755 
756 	seq_printf(seq, "%d\n", r->num_closid);
757 	return 0;
758 }
759 
760 static int rdt_default_ctrl_show(struct kernfs_open_file *of,
761 			     struct seq_file *seq, void *v)
762 {
763 	struct rdt_resource *r = of->kn->parent->priv;
764 
765 	seq_printf(seq, "%x\n", r->default_ctrl);
766 	return 0;
767 }
768 
769 static int rdt_min_cbm_bits_show(struct kernfs_open_file *of,
770 			     struct seq_file *seq, void *v)
771 {
772 	struct rdt_resource *r = of->kn->parent->priv;
773 
774 	seq_printf(seq, "%u\n", r->cache.min_cbm_bits);
775 	return 0;
776 }
777 
778 static int rdt_shareable_bits_show(struct kernfs_open_file *of,
779 				   struct seq_file *seq, void *v)
780 {
781 	struct rdt_resource *r = of->kn->parent->priv;
782 
783 	seq_printf(seq, "%x\n", r->cache.shareable_bits);
784 	return 0;
785 }
786 
787 /**
788  * rdt_bit_usage_show - Display current usage of resources
789  *
790  * A domain is a shared resource that can now be allocated differently. Here
791  * we display the current regions of the domain as an annotated bitmask.
792  * For each domain of this resource its allocation bitmask
793  * is annotated as below to indicate the current usage of the corresponding bit:
794  *   0 - currently unused
795  *   X - currently available for sharing and used by software and hardware
796  *   H - currently used by hardware only but available for software use
797  *   S - currently used and shareable by software only
798  *   E - currently used exclusively by one resource group
799  *   P - currently pseudo-locked by one resource group
800  */
801 static int rdt_bit_usage_show(struct kernfs_open_file *of,
802 			      struct seq_file *seq, void *v)
803 {
804 	struct rdt_resource *r = of->kn->parent->priv;
805 	u32 sw_shareable = 0, hw_shareable = 0;
806 	u32 exclusive = 0, pseudo_locked = 0;
807 	struct rdt_domain *dom;
808 	int i, hwb, swb, excl, psl;
809 	enum rdtgrp_mode mode;
810 	bool sep = false;
811 	u32 *ctrl;
812 
813 	mutex_lock(&rdtgroup_mutex);
814 	hw_shareable = r->cache.shareable_bits;
815 	list_for_each_entry(dom, &r->domains, list) {
816 		if (sep)
817 			seq_putc(seq, ';');
818 		ctrl = dom->ctrl_val;
819 		sw_shareable = 0;
820 		exclusive = 0;
821 		seq_printf(seq, "%d=", dom->id);
822 		for (i = 0; i < closids_supported(); i++, ctrl++) {
823 			if (!closid_allocated(i))
824 				continue;
825 			mode = rdtgroup_mode_by_closid(i);
826 			switch (mode) {
827 			case RDT_MODE_SHAREABLE:
828 				sw_shareable |= *ctrl;
829 				break;
830 			case RDT_MODE_EXCLUSIVE:
831 				exclusive |= *ctrl;
832 				break;
833 			case RDT_MODE_PSEUDO_LOCKSETUP:
834 			/*
835 			 * RDT_MODE_PSEUDO_LOCKSETUP is possible
836 			 * here but not included since the CBM
837 			 * associated with this CLOSID in this mode
838 			 * is not initialized and no task or cpu can be
839 			 * assigned this CLOSID.
840 			 */
841 				break;
842 			case RDT_MODE_PSEUDO_LOCKED:
843 			case RDT_NUM_MODES:
844 				WARN(1,
845 				     "invalid mode for closid %d\n", i);
846 				break;
847 			}
848 		}
849 		for (i = r->cache.cbm_len - 1; i >= 0; i--) {
850 			pseudo_locked = dom->plr ? dom->plr->cbm : 0;
851 			hwb = test_bit(i, (unsigned long *)&hw_shareable);
852 			swb = test_bit(i, (unsigned long *)&sw_shareable);
853 			excl = test_bit(i, (unsigned long *)&exclusive);
854 			psl = test_bit(i, (unsigned long *)&pseudo_locked);
855 			if (hwb && swb)
856 				seq_putc(seq, 'X');
857 			else if (hwb && !swb)
858 				seq_putc(seq, 'H');
859 			else if (!hwb && swb)
860 				seq_putc(seq, 'S');
861 			else if (excl)
862 				seq_putc(seq, 'E');
863 			else if (psl)
864 				seq_putc(seq, 'P');
865 			else /* Unused bits remain */
866 				seq_putc(seq, '0');
867 		}
868 		sep = true;
869 	}
870 	seq_putc(seq, '\n');
871 	mutex_unlock(&rdtgroup_mutex);
872 	return 0;
873 }
874 
875 static int rdt_min_bw_show(struct kernfs_open_file *of,
876 			     struct seq_file *seq, void *v)
877 {
878 	struct rdt_resource *r = of->kn->parent->priv;
879 
880 	seq_printf(seq, "%u\n", r->membw.min_bw);
881 	return 0;
882 }
883 
884 static int rdt_num_rmids_show(struct kernfs_open_file *of,
885 			      struct seq_file *seq, void *v)
886 {
887 	struct rdt_resource *r = of->kn->parent->priv;
888 
889 	seq_printf(seq, "%d\n", r->num_rmid);
890 
891 	return 0;
892 }
893 
894 static int rdt_mon_features_show(struct kernfs_open_file *of,
895 				 struct seq_file *seq, void *v)
896 {
897 	struct rdt_resource *r = of->kn->parent->priv;
898 	struct mon_evt *mevt;
899 
900 	list_for_each_entry(mevt, &r->evt_list, list)
901 		seq_printf(seq, "%s\n", mevt->name);
902 
903 	return 0;
904 }
905 
906 static int rdt_bw_gran_show(struct kernfs_open_file *of,
907 			     struct seq_file *seq, void *v)
908 {
909 	struct rdt_resource *r = of->kn->parent->priv;
910 
911 	seq_printf(seq, "%u\n", r->membw.bw_gran);
912 	return 0;
913 }
914 
915 static int rdt_delay_linear_show(struct kernfs_open_file *of,
916 			     struct seq_file *seq, void *v)
917 {
918 	struct rdt_resource *r = of->kn->parent->priv;
919 
920 	seq_printf(seq, "%u\n", r->membw.delay_linear);
921 	return 0;
922 }
923 
924 static int max_threshold_occ_show(struct kernfs_open_file *of,
925 				  struct seq_file *seq, void *v)
926 {
927 	struct rdt_resource *r = of->kn->parent->priv;
928 
929 	seq_printf(seq, "%u\n", resctrl_cqm_threshold * r->mon_scale);
930 
931 	return 0;
932 }
933 
934 static ssize_t max_threshold_occ_write(struct kernfs_open_file *of,
935 				       char *buf, size_t nbytes, loff_t off)
936 {
937 	struct rdt_resource *r = of->kn->parent->priv;
938 	unsigned int bytes;
939 	int ret;
940 
941 	ret = kstrtouint(buf, 0, &bytes);
942 	if (ret)
943 		return ret;
944 
945 	if (bytes > (boot_cpu_data.x86_cache_size * 1024))
946 		return -EINVAL;
947 
948 	resctrl_cqm_threshold = bytes / r->mon_scale;
949 
950 	return nbytes;
951 }
952 
953 /*
954  * rdtgroup_mode_show - Display mode of this resource group
955  */
956 static int rdtgroup_mode_show(struct kernfs_open_file *of,
957 			      struct seq_file *s, void *v)
958 {
959 	struct rdtgroup *rdtgrp;
960 
961 	rdtgrp = rdtgroup_kn_lock_live(of->kn);
962 	if (!rdtgrp) {
963 		rdtgroup_kn_unlock(of->kn);
964 		return -ENOENT;
965 	}
966 
967 	seq_printf(s, "%s\n", rdtgroup_mode_str(rdtgrp->mode));
968 
969 	rdtgroup_kn_unlock(of->kn);
970 	return 0;
971 }
972 
973 /**
974  * rdt_cdp_peer_get - Retrieve CDP peer if it exists
975  * @r: RDT resource to which RDT domain @d belongs
976  * @d: Cache instance for which a CDP peer is requested
977  * @r_cdp: RDT resource that shares hardware with @r (RDT resource peer)
978  *         Used to return the result.
979  * @d_cdp: RDT domain that shares hardware with @d (RDT domain peer)
980  *         Used to return the result.
981  *
982  * RDT resources are managed independently and by extension the RDT domains
983  * (RDT resource instances) are managed independently also. The Code and
984  * Data Prioritization (CDP) RDT resources, while managed independently,
985  * could refer to the same underlying hardware. For example,
986  * RDT_RESOURCE_L2CODE and RDT_RESOURCE_L2DATA both refer to the L2 cache.
987  *
988  * When provided with an RDT resource @r and an instance of that RDT
989  * resource @d rdt_cdp_peer_get() will return if there is a peer RDT
990  * resource and the exact instance that shares the same hardware.
991  *
992  * Return: 0 if a CDP peer was found, <0 on error or if no CDP peer exists.
993  *         If a CDP peer was found, @r_cdp will point to the peer RDT resource
994  *         and @d_cdp will point to the peer RDT domain.
995  */
996 static int rdt_cdp_peer_get(struct rdt_resource *r, struct rdt_domain *d,
997 			    struct rdt_resource **r_cdp,
998 			    struct rdt_domain **d_cdp)
999 {
1000 	struct rdt_resource *_r_cdp = NULL;
1001 	struct rdt_domain *_d_cdp = NULL;
1002 	int ret = 0;
1003 
1004 	switch (r->rid) {
1005 	case RDT_RESOURCE_L3DATA:
1006 		_r_cdp = &rdt_resources_all[RDT_RESOURCE_L3CODE];
1007 		break;
1008 	case RDT_RESOURCE_L3CODE:
1009 		_r_cdp =  &rdt_resources_all[RDT_RESOURCE_L3DATA];
1010 		break;
1011 	case RDT_RESOURCE_L2DATA:
1012 		_r_cdp =  &rdt_resources_all[RDT_RESOURCE_L2CODE];
1013 		break;
1014 	case RDT_RESOURCE_L2CODE:
1015 		_r_cdp =  &rdt_resources_all[RDT_RESOURCE_L2DATA];
1016 		break;
1017 	default:
1018 		ret = -ENOENT;
1019 		goto out;
1020 	}
1021 
1022 	/*
1023 	 * When a new CPU comes online and CDP is enabled then the new
1024 	 * RDT domains (if any) associated with both CDP RDT resources
1025 	 * are added in the same CPU online routine while the
1026 	 * rdtgroup_mutex is held. It should thus not happen for one
1027 	 * RDT domain to exist and be associated with its RDT CDP
1028 	 * resource but there is no RDT domain associated with the
1029 	 * peer RDT CDP resource. Hence the WARN.
1030 	 */
1031 	_d_cdp = rdt_find_domain(_r_cdp, d->id, NULL);
1032 	if (WARN_ON(!_d_cdp)) {
1033 		_r_cdp = NULL;
1034 		ret = -EINVAL;
1035 	}
1036 
1037 out:
1038 	*r_cdp = _r_cdp;
1039 	*d_cdp = _d_cdp;
1040 
1041 	return ret;
1042 }
1043 
1044 /**
1045  * __rdtgroup_cbm_overlaps - Does CBM for intended closid overlap with other
1046  * @r: Resource to which domain instance @d belongs.
1047  * @d: The domain instance for which @closid is being tested.
1048  * @cbm: Capacity bitmask being tested.
1049  * @closid: Intended closid for @cbm.
1050  * @exclusive: Only check if overlaps with exclusive resource groups
1051  *
1052  * Checks if provided @cbm intended to be used for @closid on domain
1053  * @d overlaps with any other closids or other hardware usage associated
1054  * with this domain. If @exclusive is true then only overlaps with
1055  * resource groups in exclusive mode will be considered. If @exclusive
1056  * is false then overlaps with any resource group or hardware entities
1057  * will be considered.
1058  *
1059  * @cbm is unsigned long, even if only 32 bits are used, to make the
1060  * bitmap functions work correctly.
1061  *
1062  * Return: false if CBM does not overlap, true if it does.
1063  */
1064 static bool __rdtgroup_cbm_overlaps(struct rdt_resource *r, struct rdt_domain *d,
1065 				    unsigned long cbm, int closid, bool exclusive)
1066 {
1067 	enum rdtgrp_mode mode;
1068 	unsigned long ctrl_b;
1069 	u32 *ctrl;
1070 	int i;
1071 
1072 	/* Check for any overlap with regions used by hardware directly */
1073 	if (!exclusive) {
1074 		ctrl_b = r->cache.shareable_bits;
1075 		if (bitmap_intersects(&cbm, &ctrl_b, r->cache.cbm_len))
1076 			return true;
1077 	}
1078 
1079 	/* Check for overlap with other resource groups */
1080 	ctrl = d->ctrl_val;
1081 	for (i = 0; i < closids_supported(); i++, ctrl++) {
1082 		ctrl_b = *ctrl;
1083 		mode = rdtgroup_mode_by_closid(i);
1084 		if (closid_allocated(i) && i != closid &&
1085 		    mode != RDT_MODE_PSEUDO_LOCKSETUP) {
1086 			if (bitmap_intersects(&cbm, &ctrl_b, r->cache.cbm_len)) {
1087 				if (exclusive) {
1088 					if (mode == RDT_MODE_EXCLUSIVE)
1089 						return true;
1090 					continue;
1091 				}
1092 				return true;
1093 			}
1094 		}
1095 	}
1096 
1097 	return false;
1098 }
1099 
1100 /**
1101  * rdtgroup_cbm_overlaps - Does CBM overlap with other use of hardware
1102  * @r: Resource to which domain instance @d belongs.
1103  * @d: The domain instance for which @closid is being tested.
1104  * @cbm: Capacity bitmask being tested.
1105  * @closid: Intended closid for @cbm.
1106  * @exclusive: Only check if overlaps with exclusive resource groups
1107  *
1108  * Resources that can be allocated using a CBM can use the CBM to control
1109  * the overlap of these allocations. rdtgroup_cmb_overlaps() is the test
1110  * for overlap. Overlap test is not limited to the specific resource for
1111  * which the CBM is intended though - when dealing with CDP resources that
1112  * share the underlying hardware the overlap check should be performed on
1113  * the CDP resource sharing the hardware also.
1114  *
1115  * Refer to description of __rdtgroup_cbm_overlaps() for the details of the
1116  * overlap test.
1117  *
1118  * Return: true if CBM overlap detected, false if there is no overlap
1119  */
1120 bool rdtgroup_cbm_overlaps(struct rdt_resource *r, struct rdt_domain *d,
1121 			   unsigned long cbm, int closid, bool exclusive)
1122 {
1123 	struct rdt_resource *r_cdp;
1124 	struct rdt_domain *d_cdp;
1125 
1126 	if (__rdtgroup_cbm_overlaps(r, d, cbm, closid, exclusive))
1127 		return true;
1128 
1129 	if (rdt_cdp_peer_get(r, d, &r_cdp, &d_cdp) < 0)
1130 		return false;
1131 
1132 	return  __rdtgroup_cbm_overlaps(r_cdp, d_cdp, cbm, closid, exclusive);
1133 }
1134 
1135 /**
1136  * rdtgroup_mode_test_exclusive - Test if this resource group can be exclusive
1137  *
1138  * An exclusive resource group implies that there should be no sharing of
1139  * its allocated resources. At the time this group is considered to be
1140  * exclusive this test can determine if its current schemata supports this
1141  * setting by testing for overlap with all other resource groups.
1142  *
1143  * Return: true if resource group can be exclusive, false if there is overlap
1144  * with allocations of other resource groups and thus this resource group
1145  * cannot be exclusive.
1146  */
1147 static bool rdtgroup_mode_test_exclusive(struct rdtgroup *rdtgrp)
1148 {
1149 	int closid = rdtgrp->closid;
1150 	struct rdt_resource *r;
1151 	bool has_cache = false;
1152 	struct rdt_domain *d;
1153 
1154 	for_each_alloc_enabled_rdt_resource(r) {
1155 		if (r->rid == RDT_RESOURCE_MBA)
1156 			continue;
1157 		has_cache = true;
1158 		list_for_each_entry(d, &r->domains, list) {
1159 			if (rdtgroup_cbm_overlaps(r, d, d->ctrl_val[closid],
1160 						  rdtgrp->closid, false)) {
1161 				rdt_last_cmd_puts("schemata overlaps\n");
1162 				return false;
1163 			}
1164 		}
1165 	}
1166 
1167 	if (!has_cache) {
1168 		rdt_last_cmd_puts("cannot be exclusive without CAT/CDP\n");
1169 		return false;
1170 	}
1171 
1172 	return true;
1173 }
1174 
1175 /**
1176  * rdtgroup_mode_write - Modify the resource group's mode
1177  *
1178  */
1179 static ssize_t rdtgroup_mode_write(struct kernfs_open_file *of,
1180 				   char *buf, size_t nbytes, loff_t off)
1181 {
1182 	struct rdtgroup *rdtgrp;
1183 	enum rdtgrp_mode mode;
1184 	int ret = 0;
1185 
1186 	/* Valid input requires a trailing newline */
1187 	if (nbytes == 0 || buf[nbytes - 1] != '\n')
1188 		return -EINVAL;
1189 	buf[nbytes - 1] = '\0';
1190 
1191 	rdtgrp = rdtgroup_kn_lock_live(of->kn);
1192 	if (!rdtgrp) {
1193 		rdtgroup_kn_unlock(of->kn);
1194 		return -ENOENT;
1195 	}
1196 
1197 	rdt_last_cmd_clear();
1198 
1199 	mode = rdtgrp->mode;
1200 
1201 	if ((!strcmp(buf, "shareable") && mode == RDT_MODE_SHAREABLE) ||
1202 	    (!strcmp(buf, "exclusive") && mode == RDT_MODE_EXCLUSIVE) ||
1203 	    (!strcmp(buf, "pseudo-locksetup") &&
1204 	     mode == RDT_MODE_PSEUDO_LOCKSETUP) ||
1205 	    (!strcmp(buf, "pseudo-locked") && mode == RDT_MODE_PSEUDO_LOCKED))
1206 		goto out;
1207 
1208 	if (mode == RDT_MODE_PSEUDO_LOCKED) {
1209 		rdt_last_cmd_printf("cannot change pseudo-locked group\n");
1210 		ret = -EINVAL;
1211 		goto out;
1212 	}
1213 
1214 	if (!strcmp(buf, "shareable")) {
1215 		if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP) {
1216 			ret = rdtgroup_locksetup_exit(rdtgrp);
1217 			if (ret)
1218 				goto out;
1219 		}
1220 		rdtgrp->mode = RDT_MODE_SHAREABLE;
1221 	} else if (!strcmp(buf, "exclusive")) {
1222 		if (!rdtgroup_mode_test_exclusive(rdtgrp)) {
1223 			ret = -EINVAL;
1224 			goto out;
1225 		}
1226 		if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP) {
1227 			ret = rdtgroup_locksetup_exit(rdtgrp);
1228 			if (ret)
1229 				goto out;
1230 		}
1231 		rdtgrp->mode = RDT_MODE_EXCLUSIVE;
1232 	} else if (!strcmp(buf, "pseudo-locksetup")) {
1233 		ret = rdtgroup_locksetup_enter(rdtgrp);
1234 		if (ret)
1235 			goto out;
1236 		rdtgrp->mode = RDT_MODE_PSEUDO_LOCKSETUP;
1237 	} else {
1238 		rdt_last_cmd_printf("unknown/unsupported mode\n");
1239 		ret = -EINVAL;
1240 	}
1241 
1242 out:
1243 	rdtgroup_kn_unlock(of->kn);
1244 	return ret ?: nbytes;
1245 }
1246 
1247 /**
1248  * rdtgroup_cbm_to_size - Translate CBM to size in bytes
1249  * @r: RDT resource to which @d belongs.
1250  * @d: RDT domain instance.
1251  * @cbm: bitmask for which the size should be computed.
1252  *
1253  * The bitmask provided associated with the RDT domain instance @d will be
1254  * translated into how many bytes it represents. The size in bytes is
1255  * computed by first dividing the total cache size by the CBM length to
1256  * determine how many bytes each bit in the bitmask represents. The result
1257  * is multiplied with the number of bits set in the bitmask.
1258  *
1259  * @cbm is unsigned long, even if only 32 bits are used to make the
1260  * bitmap functions work correctly.
1261  */
1262 unsigned int rdtgroup_cbm_to_size(struct rdt_resource *r,
1263 				  struct rdt_domain *d, unsigned long cbm)
1264 {
1265 	struct cpu_cacheinfo *ci;
1266 	unsigned int size = 0;
1267 	int num_b, i;
1268 
1269 	num_b = bitmap_weight(&cbm, r->cache.cbm_len);
1270 	ci = get_cpu_cacheinfo(cpumask_any(&d->cpu_mask));
1271 	for (i = 0; i < ci->num_leaves; i++) {
1272 		if (ci->info_list[i].level == r->cache_level) {
1273 			size = ci->info_list[i].size / r->cache.cbm_len * num_b;
1274 			break;
1275 		}
1276 	}
1277 
1278 	return size;
1279 }
1280 
1281 /**
1282  * rdtgroup_size_show - Display size in bytes of allocated regions
1283  *
1284  * The "size" file mirrors the layout of the "schemata" file, printing the
1285  * size in bytes of each region instead of the capacity bitmask.
1286  *
1287  */
1288 static int rdtgroup_size_show(struct kernfs_open_file *of,
1289 			      struct seq_file *s, void *v)
1290 {
1291 	struct rdtgroup *rdtgrp;
1292 	struct rdt_resource *r;
1293 	struct rdt_domain *d;
1294 	unsigned int size;
1295 	int ret = 0;
1296 	bool sep;
1297 	u32 ctrl;
1298 
1299 	rdtgrp = rdtgroup_kn_lock_live(of->kn);
1300 	if (!rdtgrp) {
1301 		rdtgroup_kn_unlock(of->kn);
1302 		return -ENOENT;
1303 	}
1304 
1305 	if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED) {
1306 		if (!rdtgrp->plr->d) {
1307 			rdt_last_cmd_clear();
1308 			rdt_last_cmd_puts("Cache domain offline\n");
1309 			ret = -ENODEV;
1310 		} else {
1311 			seq_printf(s, "%*s:", max_name_width,
1312 				   rdtgrp->plr->r->name);
1313 			size = rdtgroup_cbm_to_size(rdtgrp->plr->r,
1314 						    rdtgrp->plr->d,
1315 						    rdtgrp->plr->cbm);
1316 			seq_printf(s, "%d=%u\n", rdtgrp->plr->d->id, size);
1317 		}
1318 		goto out;
1319 	}
1320 
1321 	for_each_alloc_enabled_rdt_resource(r) {
1322 		sep = false;
1323 		seq_printf(s, "%*s:", max_name_width, r->name);
1324 		list_for_each_entry(d, &r->domains, list) {
1325 			if (sep)
1326 				seq_putc(s, ';');
1327 			if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP) {
1328 				size = 0;
1329 			} else {
1330 				ctrl = (!is_mba_sc(r) ?
1331 						d->ctrl_val[rdtgrp->closid] :
1332 						d->mbps_val[rdtgrp->closid]);
1333 				if (r->rid == RDT_RESOURCE_MBA)
1334 					size = ctrl;
1335 				else
1336 					size = rdtgroup_cbm_to_size(r, d, ctrl);
1337 			}
1338 			seq_printf(s, "%d=%u", d->id, size);
1339 			sep = true;
1340 		}
1341 		seq_putc(s, '\n');
1342 	}
1343 
1344 out:
1345 	rdtgroup_kn_unlock(of->kn);
1346 
1347 	return ret;
1348 }
1349 
1350 /* rdtgroup information files for one cache resource. */
1351 static struct rftype res_common_files[] = {
1352 	{
1353 		.name		= "last_cmd_status",
1354 		.mode		= 0444,
1355 		.kf_ops		= &rdtgroup_kf_single_ops,
1356 		.seq_show	= rdt_last_cmd_status_show,
1357 		.fflags		= RF_TOP_INFO,
1358 	},
1359 	{
1360 		.name		= "num_closids",
1361 		.mode		= 0444,
1362 		.kf_ops		= &rdtgroup_kf_single_ops,
1363 		.seq_show	= rdt_num_closids_show,
1364 		.fflags		= RF_CTRL_INFO,
1365 	},
1366 	{
1367 		.name		= "mon_features",
1368 		.mode		= 0444,
1369 		.kf_ops		= &rdtgroup_kf_single_ops,
1370 		.seq_show	= rdt_mon_features_show,
1371 		.fflags		= RF_MON_INFO,
1372 	},
1373 	{
1374 		.name		= "num_rmids",
1375 		.mode		= 0444,
1376 		.kf_ops		= &rdtgroup_kf_single_ops,
1377 		.seq_show	= rdt_num_rmids_show,
1378 		.fflags		= RF_MON_INFO,
1379 	},
1380 	{
1381 		.name		= "cbm_mask",
1382 		.mode		= 0444,
1383 		.kf_ops		= &rdtgroup_kf_single_ops,
1384 		.seq_show	= rdt_default_ctrl_show,
1385 		.fflags		= RF_CTRL_INFO | RFTYPE_RES_CACHE,
1386 	},
1387 	{
1388 		.name		= "min_cbm_bits",
1389 		.mode		= 0444,
1390 		.kf_ops		= &rdtgroup_kf_single_ops,
1391 		.seq_show	= rdt_min_cbm_bits_show,
1392 		.fflags		= RF_CTRL_INFO | RFTYPE_RES_CACHE,
1393 	},
1394 	{
1395 		.name		= "shareable_bits",
1396 		.mode		= 0444,
1397 		.kf_ops		= &rdtgroup_kf_single_ops,
1398 		.seq_show	= rdt_shareable_bits_show,
1399 		.fflags		= RF_CTRL_INFO | RFTYPE_RES_CACHE,
1400 	},
1401 	{
1402 		.name		= "bit_usage",
1403 		.mode		= 0444,
1404 		.kf_ops		= &rdtgroup_kf_single_ops,
1405 		.seq_show	= rdt_bit_usage_show,
1406 		.fflags		= RF_CTRL_INFO | RFTYPE_RES_CACHE,
1407 	},
1408 	{
1409 		.name		= "min_bandwidth",
1410 		.mode		= 0444,
1411 		.kf_ops		= &rdtgroup_kf_single_ops,
1412 		.seq_show	= rdt_min_bw_show,
1413 		.fflags		= RF_CTRL_INFO | RFTYPE_RES_MB,
1414 	},
1415 	{
1416 		.name		= "bandwidth_gran",
1417 		.mode		= 0444,
1418 		.kf_ops		= &rdtgroup_kf_single_ops,
1419 		.seq_show	= rdt_bw_gran_show,
1420 		.fflags		= RF_CTRL_INFO | RFTYPE_RES_MB,
1421 	},
1422 	{
1423 		.name		= "delay_linear",
1424 		.mode		= 0444,
1425 		.kf_ops		= &rdtgroup_kf_single_ops,
1426 		.seq_show	= rdt_delay_linear_show,
1427 		.fflags		= RF_CTRL_INFO | RFTYPE_RES_MB,
1428 	},
1429 	{
1430 		.name		= "max_threshold_occupancy",
1431 		.mode		= 0644,
1432 		.kf_ops		= &rdtgroup_kf_single_ops,
1433 		.write		= max_threshold_occ_write,
1434 		.seq_show	= max_threshold_occ_show,
1435 		.fflags		= RF_MON_INFO | RFTYPE_RES_CACHE,
1436 	},
1437 	{
1438 		.name		= "cpus",
1439 		.mode		= 0644,
1440 		.kf_ops		= &rdtgroup_kf_single_ops,
1441 		.write		= rdtgroup_cpus_write,
1442 		.seq_show	= rdtgroup_cpus_show,
1443 		.fflags		= RFTYPE_BASE,
1444 	},
1445 	{
1446 		.name		= "cpus_list",
1447 		.mode		= 0644,
1448 		.kf_ops		= &rdtgroup_kf_single_ops,
1449 		.write		= rdtgroup_cpus_write,
1450 		.seq_show	= rdtgroup_cpus_show,
1451 		.flags		= RFTYPE_FLAGS_CPUS_LIST,
1452 		.fflags		= RFTYPE_BASE,
1453 	},
1454 	{
1455 		.name		= "tasks",
1456 		.mode		= 0644,
1457 		.kf_ops		= &rdtgroup_kf_single_ops,
1458 		.write		= rdtgroup_tasks_write,
1459 		.seq_show	= rdtgroup_tasks_show,
1460 		.fflags		= RFTYPE_BASE,
1461 	},
1462 	{
1463 		.name		= "schemata",
1464 		.mode		= 0644,
1465 		.kf_ops		= &rdtgroup_kf_single_ops,
1466 		.write		= rdtgroup_schemata_write,
1467 		.seq_show	= rdtgroup_schemata_show,
1468 		.fflags		= RF_CTRL_BASE,
1469 	},
1470 	{
1471 		.name		= "mode",
1472 		.mode		= 0644,
1473 		.kf_ops		= &rdtgroup_kf_single_ops,
1474 		.write		= rdtgroup_mode_write,
1475 		.seq_show	= rdtgroup_mode_show,
1476 		.fflags		= RF_CTRL_BASE,
1477 	},
1478 	{
1479 		.name		= "size",
1480 		.mode		= 0444,
1481 		.kf_ops		= &rdtgroup_kf_single_ops,
1482 		.seq_show	= rdtgroup_size_show,
1483 		.fflags		= RF_CTRL_BASE,
1484 	},
1485 
1486 };
1487 
1488 static int rdtgroup_add_files(struct kernfs_node *kn, unsigned long fflags)
1489 {
1490 	struct rftype *rfts, *rft;
1491 	int ret, len;
1492 
1493 	rfts = res_common_files;
1494 	len = ARRAY_SIZE(res_common_files);
1495 
1496 	lockdep_assert_held(&rdtgroup_mutex);
1497 
1498 	for (rft = rfts; rft < rfts + len; rft++) {
1499 		if ((fflags & rft->fflags) == rft->fflags) {
1500 			ret = rdtgroup_add_file(kn, rft);
1501 			if (ret)
1502 				goto error;
1503 		}
1504 	}
1505 
1506 	return 0;
1507 error:
1508 	pr_warn("Failed to add %s, err=%d\n", rft->name, ret);
1509 	while (--rft >= rfts) {
1510 		if ((fflags & rft->fflags) == rft->fflags)
1511 			kernfs_remove_by_name(kn, rft->name);
1512 	}
1513 	return ret;
1514 }
1515 
1516 /**
1517  * rdtgroup_kn_mode_restrict - Restrict user access to named resctrl file
1518  * @r: The resource group with which the file is associated.
1519  * @name: Name of the file
1520  *
1521  * The permissions of named resctrl file, directory, or link are modified
1522  * to not allow read, write, or execute by any user.
1523  *
1524  * WARNING: This function is intended to communicate to the user that the
1525  * resctrl file has been locked down - that it is not relevant to the
1526  * particular state the system finds itself in. It should not be relied
1527  * on to protect from user access because after the file's permissions
1528  * are restricted the user can still change the permissions using chmod
1529  * from the command line.
1530  *
1531  * Return: 0 on success, <0 on failure.
1532  */
1533 int rdtgroup_kn_mode_restrict(struct rdtgroup *r, const char *name)
1534 {
1535 	struct iattr iattr = {.ia_valid = ATTR_MODE,};
1536 	struct kernfs_node *kn;
1537 	int ret = 0;
1538 
1539 	kn = kernfs_find_and_get_ns(r->kn, name, NULL);
1540 	if (!kn)
1541 		return -ENOENT;
1542 
1543 	switch (kernfs_type(kn)) {
1544 	case KERNFS_DIR:
1545 		iattr.ia_mode = S_IFDIR;
1546 		break;
1547 	case KERNFS_FILE:
1548 		iattr.ia_mode = S_IFREG;
1549 		break;
1550 	case KERNFS_LINK:
1551 		iattr.ia_mode = S_IFLNK;
1552 		break;
1553 	}
1554 
1555 	ret = kernfs_setattr(kn, &iattr);
1556 	kernfs_put(kn);
1557 	return ret;
1558 }
1559 
1560 /**
1561  * rdtgroup_kn_mode_restore - Restore user access to named resctrl file
1562  * @r: The resource group with which the file is associated.
1563  * @name: Name of the file
1564  * @mask: Mask of permissions that should be restored
1565  *
1566  * Restore the permissions of the named file. If @name is a directory the
1567  * permissions of its parent will be used.
1568  *
1569  * Return: 0 on success, <0 on failure.
1570  */
1571 int rdtgroup_kn_mode_restore(struct rdtgroup *r, const char *name,
1572 			     umode_t mask)
1573 {
1574 	struct iattr iattr = {.ia_valid = ATTR_MODE,};
1575 	struct kernfs_node *kn, *parent;
1576 	struct rftype *rfts, *rft;
1577 	int ret, len;
1578 
1579 	rfts = res_common_files;
1580 	len = ARRAY_SIZE(res_common_files);
1581 
1582 	for (rft = rfts; rft < rfts + len; rft++) {
1583 		if (!strcmp(rft->name, name))
1584 			iattr.ia_mode = rft->mode & mask;
1585 	}
1586 
1587 	kn = kernfs_find_and_get_ns(r->kn, name, NULL);
1588 	if (!kn)
1589 		return -ENOENT;
1590 
1591 	switch (kernfs_type(kn)) {
1592 	case KERNFS_DIR:
1593 		parent = kernfs_get_parent(kn);
1594 		if (parent) {
1595 			iattr.ia_mode |= parent->mode;
1596 			kernfs_put(parent);
1597 		}
1598 		iattr.ia_mode |= S_IFDIR;
1599 		break;
1600 	case KERNFS_FILE:
1601 		iattr.ia_mode |= S_IFREG;
1602 		break;
1603 	case KERNFS_LINK:
1604 		iattr.ia_mode |= S_IFLNK;
1605 		break;
1606 	}
1607 
1608 	ret = kernfs_setattr(kn, &iattr);
1609 	kernfs_put(kn);
1610 	return ret;
1611 }
1612 
1613 static int rdtgroup_mkdir_info_resdir(struct rdt_resource *r, char *name,
1614 				      unsigned long fflags)
1615 {
1616 	struct kernfs_node *kn_subdir;
1617 	int ret;
1618 
1619 	kn_subdir = kernfs_create_dir(kn_info, name,
1620 				      kn_info->mode, r);
1621 	if (IS_ERR(kn_subdir))
1622 		return PTR_ERR(kn_subdir);
1623 
1624 	kernfs_get(kn_subdir);
1625 	ret = rdtgroup_kn_set_ugid(kn_subdir);
1626 	if (ret)
1627 		return ret;
1628 
1629 	ret = rdtgroup_add_files(kn_subdir, fflags);
1630 	if (!ret)
1631 		kernfs_activate(kn_subdir);
1632 
1633 	return ret;
1634 }
1635 
1636 static int rdtgroup_create_info_dir(struct kernfs_node *parent_kn)
1637 {
1638 	struct rdt_resource *r;
1639 	unsigned long fflags;
1640 	char name[32];
1641 	int ret;
1642 
1643 	/* create the directory */
1644 	kn_info = kernfs_create_dir(parent_kn, "info", parent_kn->mode, NULL);
1645 	if (IS_ERR(kn_info))
1646 		return PTR_ERR(kn_info);
1647 	kernfs_get(kn_info);
1648 
1649 	ret = rdtgroup_add_files(kn_info, RF_TOP_INFO);
1650 	if (ret)
1651 		goto out_destroy;
1652 
1653 	for_each_alloc_enabled_rdt_resource(r) {
1654 		fflags =  r->fflags | RF_CTRL_INFO;
1655 		ret = rdtgroup_mkdir_info_resdir(r, r->name, fflags);
1656 		if (ret)
1657 			goto out_destroy;
1658 	}
1659 
1660 	for_each_mon_enabled_rdt_resource(r) {
1661 		fflags =  r->fflags | RF_MON_INFO;
1662 		sprintf(name, "%s_MON", r->name);
1663 		ret = rdtgroup_mkdir_info_resdir(r, name, fflags);
1664 		if (ret)
1665 			goto out_destroy;
1666 	}
1667 
1668 	/*
1669 	 * This extra ref will be put in kernfs_remove() and guarantees
1670 	 * that @rdtgrp->kn is always accessible.
1671 	 */
1672 	kernfs_get(kn_info);
1673 
1674 	ret = rdtgroup_kn_set_ugid(kn_info);
1675 	if (ret)
1676 		goto out_destroy;
1677 
1678 	kernfs_activate(kn_info);
1679 
1680 	return 0;
1681 
1682 out_destroy:
1683 	kernfs_remove(kn_info);
1684 	return ret;
1685 }
1686 
1687 static int
1688 mongroup_create_dir(struct kernfs_node *parent_kn, struct rdtgroup *prgrp,
1689 		    char *name, struct kernfs_node **dest_kn)
1690 {
1691 	struct kernfs_node *kn;
1692 	int ret;
1693 
1694 	/* create the directory */
1695 	kn = kernfs_create_dir(parent_kn, name, parent_kn->mode, prgrp);
1696 	if (IS_ERR(kn))
1697 		return PTR_ERR(kn);
1698 
1699 	if (dest_kn)
1700 		*dest_kn = kn;
1701 
1702 	/*
1703 	 * This extra ref will be put in kernfs_remove() and guarantees
1704 	 * that @rdtgrp->kn is always accessible.
1705 	 */
1706 	kernfs_get(kn);
1707 
1708 	ret = rdtgroup_kn_set_ugid(kn);
1709 	if (ret)
1710 		goto out_destroy;
1711 
1712 	kernfs_activate(kn);
1713 
1714 	return 0;
1715 
1716 out_destroy:
1717 	kernfs_remove(kn);
1718 	return ret;
1719 }
1720 
1721 static void l3_qos_cfg_update(void *arg)
1722 {
1723 	bool *enable = arg;
1724 
1725 	wrmsrl(MSR_IA32_L3_QOS_CFG, *enable ? L3_QOS_CDP_ENABLE : 0ULL);
1726 }
1727 
1728 static void l2_qos_cfg_update(void *arg)
1729 {
1730 	bool *enable = arg;
1731 
1732 	wrmsrl(MSR_IA32_L2_QOS_CFG, *enable ? L2_QOS_CDP_ENABLE : 0ULL);
1733 }
1734 
1735 static inline bool is_mba_linear(void)
1736 {
1737 	return rdt_resources_all[RDT_RESOURCE_MBA].membw.delay_linear;
1738 }
1739 
1740 static int set_cache_qos_cfg(int level, bool enable)
1741 {
1742 	void (*update)(void *arg);
1743 	struct rdt_resource *r_l;
1744 	cpumask_var_t cpu_mask;
1745 	struct rdt_domain *d;
1746 	int cpu;
1747 
1748 	if (!zalloc_cpumask_var(&cpu_mask, GFP_KERNEL))
1749 		return -ENOMEM;
1750 
1751 	if (level == RDT_RESOURCE_L3)
1752 		update = l3_qos_cfg_update;
1753 	else if (level == RDT_RESOURCE_L2)
1754 		update = l2_qos_cfg_update;
1755 	else
1756 		return -EINVAL;
1757 
1758 	r_l = &rdt_resources_all[level];
1759 	list_for_each_entry(d, &r_l->domains, list) {
1760 		/* Pick one CPU from each domain instance to update MSR */
1761 		cpumask_set_cpu(cpumask_any(&d->cpu_mask), cpu_mask);
1762 	}
1763 	cpu = get_cpu();
1764 	/* Update QOS_CFG MSR on this cpu if it's in cpu_mask. */
1765 	if (cpumask_test_cpu(cpu, cpu_mask))
1766 		update(&enable);
1767 	/* Update QOS_CFG MSR on all other cpus in cpu_mask. */
1768 	smp_call_function_many(cpu_mask, update, &enable, 1);
1769 	put_cpu();
1770 
1771 	free_cpumask_var(cpu_mask);
1772 
1773 	return 0;
1774 }
1775 
1776 /*
1777  * Enable or disable the MBA software controller
1778  * which helps user specify bandwidth in MBps.
1779  * MBA software controller is supported only if
1780  * MBM is supported and MBA is in linear scale.
1781  */
1782 static int set_mba_sc(bool mba_sc)
1783 {
1784 	struct rdt_resource *r = &rdt_resources_all[RDT_RESOURCE_MBA];
1785 	struct rdt_domain *d;
1786 
1787 	if (!is_mbm_enabled() || !is_mba_linear() ||
1788 	    mba_sc == is_mba_sc(r))
1789 		return -EINVAL;
1790 
1791 	r->membw.mba_sc = mba_sc;
1792 	list_for_each_entry(d, &r->domains, list)
1793 		setup_default_ctrlval(r, d->ctrl_val, d->mbps_val);
1794 
1795 	return 0;
1796 }
1797 
1798 static int cdp_enable(int level, int data_type, int code_type)
1799 {
1800 	struct rdt_resource *r_ldata = &rdt_resources_all[data_type];
1801 	struct rdt_resource *r_lcode = &rdt_resources_all[code_type];
1802 	struct rdt_resource *r_l = &rdt_resources_all[level];
1803 	int ret;
1804 
1805 	if (!r_l->alloc_capable || !r_ldata->alloc_capable ||
1806 	    !r_lcode->alloc_capable)
1807 		return -EINVAL;
1808 
1809 	ret = set_cache_qos_cfg(level, true);
1810 	if (!ret) {
1811 		r_l->alloc_enabled = false;
1812 		r_ldata->alloc_enabled = true;
1813 		r_lcode->alloc_enabled = true;
1814 	}
1815 	return ret;
1816 }
1817 
1818 static int cdpl3_enable(void)
1819 {
1820 	return cdp_enable(RDT_RESOURCE_L3, RDT_RESOURCE_L3DATA,
1821 			  RDT_RESOURCE_L3CODE);
1822 }
1823 
1824 static int cdpl2_enable(void)
1825 {
1826 	return cdp_enable(RDT_RESOURCE_L2, RDT_RESOURCE_L2DATA,
1827 			  RDT_RESOURCE_L2CODE);
1828 }
1829 
1830 static void cdp_disable(int level, int data_type, int code_type)
1831 {
1832 	struct rdt_resource *r = &rdt_resources_all[level];
1833 
1834 	r->alloc_enabled = r->alloc_capable;
1835 
1836 	if (rdt_resources_all[data_type].alloc_enabled) {
1837 		rdt_resources_all[data_type].alloc_enabled = false;
1838 		rdt_resources_all[code_type].alloc_enabled = false;
1839 		set_cache_qos_cfg(level, false);
1840 	}
1841 }
1842 
1843 static void cdpl3_disable(void)
1844 {
1845 	cdp_disable(RDT_RESOURCE_L3, RDT_RESOURCE_L3DATA, RDT_RESOURCE_L3CODE);
1846 }
1847 
1848 static void cdpl2_disable(void)
1849 {
1850 	cdp_disable(RDT_RESOURCE_L2, RDT_RESOURCE_L2DATA, RDT_RESOURCE_L2CODE);
1851 }
1852 
1853 static void cdp_disable_all(void)
1854 {
1855 	if (rdt_resources_all[RDT_RESOURCE_L3DATA].alloc_enabled)
1856 		cdpl3_disable();
1857 	if (rdt_resources_all[RDT_RESOURCE_L2DATA].alloc_enabled)
1858 		cdpl2_disable();
1859 }
1860 
1861 static int parse_rdtgroupfs_options(char *data)
1862 {
1863 	char *token, *o = data;
1864 	int ret = 0;
1865 
1866 	while ((token = strsep(&o, ",")) != NULL) {
1867 		if (!*token) {
1868 			ret = -EINVAL;
1869 			goto out;
1870 		}
1871 
1872 		if (!strcmp(token, "cdp")) {
1873 			ret = cdpl3_enable();
1874 			if (ret)
1875 				goto out;
1876 		} else if (!strcmp(token, "cdpl2")) {
1877 			ret = cdpl2_enable();
1878 			if (ret)
1879 				goto out;
1880 		} else if (!strcmp(token, "mba_MBps")) {
1881 			ret = set_mba_sc(true);
1882 			if (ret)
1883 				goto out;
1884 		} else {
1885 			ret = -EINVAL;
1886 			goto out;
1887 		}
1888 	}
1889 
1890 	return 0;
1891 
1892 out:
1893 	pr_err("Invalid mount option \"%s\"\n", token);
1894 
1895 	return ret;
1896 }
1897 
1898 /*
1899  * We don't allow rdtgroup directories to be created anywhere
1900  * except the root directory. Thus when looking for the rdtgroup
1901  * structure for a kernfs node we are either looking at a directory,
1902  * in which case the rdtgroup structure is pointed at by the "priv"
1903  * field, otherwise we have a file, and need only look to the parent
1904  * to find the rdtgroup.
1905  */
1906 static struct rdtgroup *kernfs_to_rdtgroup(struct kernfs_node *kn)
1907 {
1908 	if (kernfs_type(kn) == KERNFS_DIR) {
1909 		/*
1910 		 * All the resource directories use "kn->priv"
1911 		 * to point to the "struct rdtgroup" for the
1912 		 * resource. "info" and its subdirectories don't
1913 		 * have rdtgroup structures, so return NULL here.
1914 		 */
1915 		if (kn == kn_info || kn->parent == kn_info)
1916 			return NULL;
1917 		else
1918 			return kn->priv;
1919 	} else {
1920 		return kn->parent->priv;
1921 	}
1922 }
1923 
1924 struct rdtgroup *rdtgroup_kn_lock_live(struct kernfs_node *kn)
1925 {
1926 	struct rdtgroup *rdtgrp = kernfs_to_rdtgroup(kn);
1927 
1928 	if (!rdtgrp)
1929 		return NULL;
1930 
1931 	atomic_inc(&rdtgrp->waitcount);
1932 	kernfs_break_active_protection(kn);
1933 
1934 	mutex_lock(&rdtgroup_mutex);
1935 
1936 	/* Was this group deleted while we waited? */
1937 	if (rdtgrp->flags & RDT_DELETED)
1938 		return NULL;
1939 
1940 	return rdtgrp;
1941 }
1942 
1943 void rdtgroup_kn_unlock(struct kernfs_node *kn)
1944 {
1945 	struct rdtgroup *rdtgrp = kernfs_to_rdtgroup(kn);
1946 
1947 	if (!rdtgrp)
1948 		return;
1949 
1950 	mutex_unlock(&rdtgroup_mutex);
1951 
1952 	if (atomic_dec_and_test(&rdtgrp->waitcount) &&
1953 	    (rdtgrp->flags & RDT_DELETED)) {
1954 		if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP ||
1955 		    rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED)
1956 			rdtgroup_pseudo_lock_remove(rdtgrp);
1957 		kernfs_unbreak_active_protection(kn);
1958 		kernfs_put(rdtgrp->kn);
1959 		kfree(rdtgrp);
1960 	} else {
1961 		kernfs_unbreak_active_protection(kn);
1962 	}
1963 }
1964 
1965 static int mkdir_mondata_all(struct kernfs_node *parent_kn,
1966 			     struct rdtgroup *prgrp,
1967 			     struct kernfs_node **mon_data_kn);
1968 
1969 static struct dentry *rdt_mount(struct file_system_type *fs_type,
1970 				int flags, const char *unused_dev_name,
1971 				void *data)
1972 {
1973 	struct rdt_domain *dom;
1974 	struct rdt_resource *r;
1975 	struct dentry *dentry;
1976 	int ret;
1977 
1978 	cpus_read_lock();
1979 	mutex_lock(&rdtgroup_mutex);
1980 	/*
1981 	 * resctrl file system can only be mounted once.
1982 	 */
1983 	if (static_branch_unlikely(&rdt_enable_key)) {
1984 		dentry = ERR_PTR(-EBUSY);
1985 		goto out;
1986 	}
1987 
1988 	ret = parse_rdtgroupfs_options(data);
1989 	if (ret) {
1990 		dentry = ERR_PTR(ret);
1991 		goto out_cdp;
1992 	}
1993 
1994 	closid_init();
1995 
1996 	ret = rdtgroup_create_info_dir(rdtgroup_default.kn);
1997 	if (ret) {
1998 		dentry = ERR_PTR(ret);
1999 		goto out_cdp;
2000 	}
2001 
2002 	if (rdt_mon_capable) {
2003 		ret = mongroup_create_dir(rdtgroup_default.kn,
2004 					  NULL, "mon_groups",
2005 					  &kn_mongrp);
2006 		if (ret) {
2007 			dentry = ERR_PTR(ret);
2008 			goto out_info;
2009 		}
2010 		kernfs_get(kn_mongrp);
2011 
2012 		ret = mkdir_mondata_all(rdtgroup_default.kn,
2013 					&rdtgroup_default, &kn_mondata);
2014 		if (ret) {
2015 			dentry = ERR_PTR(ret);
2016 			goto out_mongrp;
2017 		}
2018 		kernfs_get(kn_mondata);
2019 		rdtgroup_default.mon.mon_data_kn = kn_mondata;
2020 	}
2021 
2022 	ret = rdt_pseudo_lock_init();
2023 	if (ret) {
2024 		dentry = ERR_PTR(ret);
2025 		goto out_mondata;
2026 	}
2027 
2028 	dentry = kernfs_mount(fs_type, flags, rdt_root,
2029 			      RDTGROUP_SUPER_MAGIC, NULL);
2030 	if (IS_ERR(dentry))
2031 		goto out_psl;
2032 
2033 	if (rdt_alloc_capable)
2034 		static_branch_enable_cpuslocked(&rdt_alloc_enable_key);
2035 	if (rdt_mon_capable)
2036 		static_branch_enable_cpuslocked(&rdt_mon_enable_key);
2037 
2038 	if (rdt_alloc_capable || rdt_mon_capable)
2039 		static_branch_enable_cpuslocked(&rdt_enable_key);
2040 
2041 	if (is_mbm_enabled()) {
2042 		r = &rdt_resources_all[RDT_RESOURCE_L3];
2043 		list_for_each_entry(dom, &r->domains, list)
2044 			mbm_setup_overflow_handler(dom, MBM_OVERFLOW_INTERVAL);
2045 	}
2046 
2047 	goto out;
2048 
2049 out_psl:
2050 	rdt_pseudo_lock_release();
2051 out_mondata:
2052 	if (rdt_mon_capable)
2053 		kernfs_remove(kn_mondata);
2054 out_mongrp:
2055 	if (rdt_mon_capable)
2056 		kernfs_remove(kn_mongrp);
2057 out_info:
2058 	kernfs_remove(kn_info);
2059 out_cdp:
2060 	cdp_disable_all();
2061 out:
2062 	rdt_last_cmd_clear();
2063 	mutex_unlock(&rdtgroup_mutex);
2064 	cpus_read_unlock();
2065 
2066 	return dentry;
2067 }
2068 
2069 static int reset_all_ctrls(struct rdt_resource *r)
2070 {
2071 	struct msr_param msr_param;
2072 	cpumask_var_t cpu_mask;
2073 	struct rdt_domain *d;
2074 	int i, cpu;
2075 
2076 	if (!zalloc_cpumask_var(&cpu_mask, GFP_KERNEL))
2077 		return -ENOMEM;
2078 
2079 	msr_param.res = r;
2080 	msr_param.low = 0;
2081 	msr_param.high = r->num_closid;
2082 
2083 	/*
2084 	 * Disable resource control for this resource by setting all
2085 	 * CBMs in all domains to the maximum mask value. Pick one CPU
2086 	 * from each domain to update the MSRs below.
2087 	 */
2088 	list_for_each_entry(d, &r->domains, list) {
2089 		cpumask_set_cpu(cpumask_any(&d->cpu_mask), cpu_mask);
2090 
2091 		for (i = 0; i < r->num_closid; i++)
2092 			d->ctrl_val[i] = r->default_ctrl;
2093 	}
2094 	cpu = get_cpu();
2095 	/* Update CBM on this cpu if it's in cpu_mask. */
2096 	if (cpumask_test_cpu(cpu, cpu_mask))
2097 		rdt_ctrl_update(&msr_param);
2098 	/* Update CBM on all other cpus in cpu_mask. */
2099 	smp_call_function_many(cpu_mask, rdt_ctrl_update, &msr_param, 1);
2100 	put_cpu();
2101 
2102 	free_cpumask_var(cpu_mask);
2103 
2104 	return 0;
2105 }
2106 
2107 static bool is_closid_match(struct task_struct *t, struct rdtgroup *r)
2108 {
2109 	return (rdt_alloc_capable &&
2110 		(r->type == RDTCTRL_GROUP) && (t->closid == r->closid));
2111 }
2112 
2113 static bool is_rmid_match(struct task_struct *t, struct rdtgroup *r)
2114 {
2115 	return (rdt_mon_capable &&
2116 		(r->type == RDTMON_GROUP) && (t->rmid == r->mon.rmid));
2117 }
2118 
2119 /*
2120  * Move tasks from one to the other group. If @from is NULL, then all tasks
2121  * in the systems are moved unconditionally (used for teardown).
2122  *
2123  * If @mask is not NULL the cpus on which moved tasks are running are set
2124  * in that mask so the update smp function call is restricted to affected
2125  * cpus.
2126  */
2127 static void rdt_move_group_tasks(struct rdtgroup *from, struct rdtgroup *to,
2128 				 struct cpumask *mask)
2129 {
2130 	struct task_struct *p, *t;
2131 
2132 	read_lock(&tasklist_lock);
2133 	for_each_process_thread(p, t) {
2134 		if (!from || is_closid_match(t, from) ||
2135 		    is_rmid_match(t, from)) {
2136 			t->closid = to->closid;
2137 			t->rmid = to->mon.rmid;
2138 
2139 #ifdef CONFIG_SMP
2140 			/*
2141 			 * This is safe on x86 w/o barriers as the ordering
2142 			 * of writing to task_cpu() and t->on_cpu is
2143 			 * reverse to the reading here. The detection is
2144 			 * inaccurate as tasks might move or schedule
2145 			 * before the smp function call takes place. In
2146 			 * such a case the function call is pointless, but
2147 			 * there is no other side effect.
2148 			 */
2149 			if (mask && t->on_cpu)
2150 				cpumask_set_cpu(task_cpu(t), mask);
2151 #endif
2152 		}
2153 	}
2154 	read_unlock(&tasklist_lock);
2155 }
2156 
2157 static void free_all_child_rdtgrp(struct rdtgroup *rdtgrp)
2158 {
2159 	struct rdtgroup *sentry, *stmp;
2160 	struct list_head *head;
2161 
2162 	head = &rdtgrp->mon.crdtgrp_list;
2163 	list_for_each_entry_safe(sentry, stmp, head, mon.crdtgrp_list) {
2164 		free_rmid(sentry->mon.rmid);
2165 		list_del(&sentry->mon.crdtgrp_list);
2166 		kfree(sentry);
2167 	}
2168 }
2169 
2170 /*
2171  * Forcibly remove all of subdirectories under root.
2172  */
2173 static void rmdir_all_sub(void)
2174 {
2175 	struct rdtgroup *rdtgrp, *tmp;
2176 
2177 	/* Move all tasks to the default resource group */
2178 	rdt_move_group_tasks(NULL, &rdtgroup_default, NULL);
2179 
2180 	list_for_each_entry_safe(rdtgrp, tmp, &rdt_all_groups, rdtgroup_list) {
2181 		/* Free any child rmids */
2182 		free_all_child_rdtgrp(rdtgrp);
2183 
2184 		/* Remove each rdtgroup other than root */
2185 		if (rdtgrp == &rdtgroup_default)
2186 			continue;
2187 
2188 		if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP ||
2189 		    rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED)
2190 			rdtgroup_pseudo_lock_remove(rdtgrp);
2191 
2192 		/*
2193 		 * Give any CPUs back to the default group. We cannot copy
2194 		 * cpu_online_mask because a CPU might have executed the
2195 		 * offline callback already, but is still marked online.
2196 		 */
2197 		cpumask_or(&rdtgroup_default.cpu_mask,
2198 			   &rdtgroup_default.cpu_mask, &rdtgrp->cpu_mask);
2199 
2200 		free_rmid(rdtgrp->mon.rmid);
2201 
2202 		kernfs_remove(rdtgrp->kn);
2203 		list_del(&rdtgrp->rdtgroup_list);
2204 		kfree(rdtgrp);
2205 	}
2206 	/* Notify online CPUs to update per cpu storage and PQR_ASSOC MSR */
2207 	update_closid_rmid(cpu_online_mask, &rdtgroup_default);
2208 
2209 	kernfs_remove(kn_info);
2210 	kernfs_remove(kn_mongrp);
2211 	kernfs_remove(kn_mondata);
2212 }
2213 
2214 static void rdt_kill_sb(struct super_block *sb)
2215 {
2216 	struct rdt_resource *r;
2217 
2218 	cpus_read_lock();
2219 	mutex_lock(&rdtgroup_mutex);
2220 
2221 	set_mba_sc(false);
2222 
2223 	/*Put everything back to default values. */
2224 	for_each_alloc_enabled_rdt_resource(r)
2225 		reset_all_ctrls(r);
2226 	cdp_disable_all();
2227 	rmdir_all_sub();
2228 	rdt_pseudo_lock_release();
2229 	rdtgroup_default.mode = RDT_MODE_SHAREABLE;
2230 	static_branch_disable_cpuslocked(&rdt_alloc_enable_key);
2231 	static_branch_disable_cpuslocked(&rdt_mon_enable_key);
2232 	static_branch_disable_cpuslocked(&rdt_enable_key);
2233 	kernfs_kill_sb(sb);
2234 	mutex_unlock(&rdtgroup_mutex);
2235 	cpus_read_unlock();
2236 }
2237 
2238 static struct file_system_type rdt_fs_type = {
2239 	.name    = "resctrl",
2240 	.mount   = rdt_mount,
2241 	.kill_sb = rdt_kill_sb,
2242 };
2243 
2244 static int mon_addfile(struct kernfs_node *parent_kn, const char *name,
2245 		       void *priv)
2246 {
2247 	struct kernfs_node *kn;
2248 	int ret = 0;
2249 
2250 	kn = __kernfs_create_file(parent_kn, name, 0444,
2251 				  GLOBAL_ROOT_UID, GLOBAL_ROOT_GID, 0,
2252 				  &kf_mondata_ops, priv, NULL, NULL);
2253 	if (IS_ERR(kn))
2254 		return PTR_ERR(kn);
2255 
2256 	ret = rdtgroup_kn_set_ugid(kn);
2257 	if (ret) {
2258 		kernfs_remove(kn);
2259 		return ret;
2260 	}
2261 
2262 	return ret;
2263 }
2264 
2265 /*
2266  * Remove all subdirectories of mon_data of ctrl_mon groups
2267  * and monitor groups with given domain id.
2268  */
2269 void rmdir_mondata_subdir_allrdtgrp(struct rdt_resource *r, unsigned int dom_id)
2270 {
2271 	struct rdtgroup *prgrp, *crgrp;
2272 	char name[32];
2273 
2274 	if (!r->mon_enabled)
2275 		return;
2276 
2277 	list_for_each_entry(prgrp, &rdt_all_groups, rdtgroup_list) {
2278 		sprintf(name, "mon_%s_%02d", r->name, dom_id);
2279 		kernfs_remove_by_name(prgrp->mon.mon_data_kn, name);
2280 
2281 		list_for_each_entry(crgrp, &prgrp->mon.crdtgrp_list, mon.crdtgrp_list)
2282 			kernfs_remove_by_name(crgrp->mon.mon_data_kn, name);
2283 	}
2284 }
2285 
2286 static int mkdir_mondata_subdir(struct kernfs_node *parent_kn,
2287 				struct rdt_domain *d,
2288 				struct rdt_resource *r, struct rdtgroup *prgrp)
2289 {
2290 	union mon_data_bits priv;
2291 	struct kernfs_node *kn;
2292 	struct mon_evt *mevt;
2293 	struct rmid_read rr;
2294 	char name[32];
2295 	int ret;
2296 
2297 	sprintf(name, "mon_%s_%02d", r->name, d->id);
2298 	/* create the directory */
2299 	kn = kernfs_create_dir(parent_kn, name, parent_kn->mode, prgrp);
2300 	if (IS_ERR(kn))
2301 		return PTR_ERR(kn);
2302 
2303 	/*
2304 	 * This extra ref will be put in kernfs_remove() and guarantees
2305 	 * that kn is always accessible.
2306 	 */
2307 	kernfs_get(kn);
2308 	ret = rdtgroup_kn_set_ugid(kn);
2309 	if (ret)
2310 		goto out_destroy;
2311 
2312 	if (WARN_ON(list_empty(&r->evt_list))) {
2313 		ret = -EPERM;
2314 		goto out_destroy;
2315 	}
2316 
2317 	priv.u.rid = r->rid;
2318 	priv.u.domid = d->id;
2319 	list_for_each_entry(mevt, &r->evt_list, list) {
2320 		priv.u.evtid = mevt->evtid;
2321 		ret = mon_addfile(kn, mevt->name, priv.priv);
2322 		if (ret)
2323 			goto out_destroy;
2324 
2325 		if (is_mbm_event(mevt->evtid))
2326 			mon_event_read(&rr, d, prgrp, mevt->evtid, true);
2327 	}
2328 	kernfs_activate(kn);
2329 	return 0;
2330 
2331 out_destroy:
2332 	kernfs_remove(kn);
2333 	return ret;
2334 }
2335 
2336 /*
2337  * Add all subdirectories of mon_data for "ctrl_mon" groups
2338  * and "monitor" groups with given domain id.
2339  */
2340 void mkdir_mondata_subdir_allrdtgrp(struct rdt_resource *r,
2341 				    struct rdt_domain *d)
2342 {
2343 	struct kernfs_node *parent_kn;
2344 	struct rdtgroup *prgrp, *crgrp;
2345 	struct list_head *head;
2346 
2347 	if (!r->mon_enabled)
2348 		return;
2349 
2350 	list_for_each_entry(prgrp, &rdt_all_groups, rdtgroup_list) {
2351 		parent_kn = prgrp->mon.mon_data_kn;
2352 		mkdir_mondata_subdir(parent_kn, d, r, prgrp);
2353 
2354 		head = &prgrp->mon.crdtgrp_list;
2355 		list_for_each_entry(crgrp, head, mon.crdtgrp_list) {
2356 			parent_kn = crgrp->mon.mon_data_kn;
2357 			mkdir_mondata_subdir(parent_kn, d, r, crgrp);
2358 		}
2359 	}
2360 }
2361 
2362 static int mkdir_mondata_subdir_alldom(struct kernfs_node *parent_kn,
2363 				       struct rdt_resource *r,
2364 				       struct rdtgroup *prgrp)
2365 {
2366 	struct rdt_domain *dom;
2367 	int ret;
2368 
2369 	list_for_each_entry(dom, &r->domains, list) {
2370 		ret = mkdir_mondata_subdir(parent_kn, dom, r, prgrp);
2371 		if (ret)
2372 			return ret;
2373 	}
2374 
2375 	return 0;
2376 }
2377 
2378 /*
2379  * This creates a directory mon_data which contains the monitored data.
2380  *
2381  * mon_data has one directory for each domain whic are named
2382  * in the format mon_<domain_name>_<domain_id>. For ex: A mon_data
2383  * with L3 domain looks as below:
2384  * ./mon_data:
2385  * mon_L3_00
2386  * mon_L3_01
2387  * mon_L3_02
2388  * ...
2389  *
2390  * Each domain directory has one file per event:
2391  * ./mon_L3_00/:
2392  * llc_occupancy
2393  *
2394  */
2395 static int mkdir_mondata_all(struct kernfs_node *parent_kn,
2396 			     struct rdtgroup *prgrp,
2397 			     struct kernfs_node **dest_kn)
2398 {
2399 	struct rdt_resource *r;
2400 	struct kernfs_node *kn;
2401 	int ret;
2402 
2403 	/*
2404 	 * Create the mon_data directory first.
2405 	 */
2406 	ret = mongroup_create_dir(parent_kn, NULL, "mon_data", &kn);
2407 	if (ret)
2408 		return ret;
2409 
2410 	if (dest_kn)
2411 		*dest_kn = kn;
2412 
2413 	/*
2414 	 * Create the subdirectories for each domain. Note that all events
2415 	 * in a domain like L3 are grouped into a resource whose domain is L3
2416 	 */
2417 	for_each_mon_enabled_rdt_resource(r) {
2418 		ret = mkdir_mondata_subdir_alldom(kn, r, prgrp);
2419 		if (ret)
2420 			goto out_destroy;
2421 	}
2422 
2423 	return 0;
2424 
2425 out_destroy:
2426 	kernfs_remove(kn);
2427 	return ret;
2428 }
2429 
2430 /**
2431  * cbm_ensure_valid - Enforce validity on provided CBM
2432  * @_val:	Candidate CBM
2433  * @r:		RDT resource to which the CBM belongs
2434  *
2435  * The provided CBM represents all cache portions available for use. This
2436  * may be represented by a bitmap that does not consist of contiguous ones
2437  * and thus be an invalid CBM.
2438  * Here the provided CBM is forced to be a valid CBM by only considering
2439  * the first set of contiguous bits as valid and clearing all bits.
2440  * The intention here is to provide a valid default CBM with which a new
2441  * resource group is initialized. The user can follow this with a
2442  * modification to the CBM if the default does not satisfy the
2443  * requirements.
2444  */
2445 static void cbm_ensure_valid(u32 *_val, struct rdt_resource *r)
2446 {
2447 	/*
2448 	 * Convert the u32 _val to an unsigned long required by all the bit
2449 	 * operations within this function. No more than 32 bits of this
2450 	 * converted value can be accessed because all bit operations are
2451 	 * additionally provided with cbm_len that is initialized during
2452 	 * hardware enumeration using five bits from the EAX register and
2453 	 * thus never can exceed 32 bits.
2454 	 */
2455 	unsigned long *val = (unsigned long *)_val;
2456 	unsigned int cbm_len = r->cache.cbm_len;
2457 	unsigned long first_bit, zero_bit;
2458 
2459 	if (*val == 0)
2460 		return;
2461 
2462 	first_bit = find_first_bit(val, cbm_len);
2463 	zero_bit = find_next_zero_bit(val, cbm_len, first_bit);
2464 
2465 	/* Clear any remaining bits to ensure contiguous region */
2466 	bitmap_clear(val, zero_bit, cbm_len - zero_bit);
2467 }
2468 
2469 /**
2470  * rdtgroup_init_alloc - Initialize the new RDT group's allocations
2471  *
2472  * A new RDT group is being created on an allocation capable (CAT)
2473  * supporting system. Set this group up to start off with all usable
2474  * allocations. That is, all shareable and unused bits.
2475  *
2476  * All-zero CBM is invalid. If there are no more shareable bits available
2477  * on any domain then the entire allocation will fail.
2478  */
2479 static int rdtgroup_init_alloc(struct rdtgroup *rdtgrp)
2480 {
2481 	struct rdt_resource *r_cdp = NULL;
2482 	struct rdt_domain *d_cdp = NULL;
2483 	u32 used_b = 0, unused_b = 0;
2484 	u32 closid = rdtgrp->closid;
2485 	struct rdt_resource *r;
2486 	unsigned long tmp_cbm;
2487 	enum rdtgrp_mode mode;
2488 	struct rdt_domain *d;
2489 	u32 peer_ctl, *ctrl;
2490 	int i, ret;
2491 
2492 	for_each_alloc_enabled_rdt_resource(r) {
2493 		/*
2494 		 * Only initialize default allocations for CBM cache
2495 		 * resources
2496 		 */
2497 		if (r->rid == RDT_RESOURCE_MBA)
2498 			continue;
2499 		list_for_each_entry(d, &r->domains, list) {
2500 			rdt_cdp_peer_get(r, d, &r_cdp, &d_cdp);
2501 			d->have_new_ctrl = false;
2502 			d->new_ctrl = r->cache.shareable_bits;
2503 			used_b = r->cache.shareable_bits;
2504 			ctrl = d->ctrl_val;
2505 			for (i = 0; i < closids_supported(); i++, ctrl++) {
2506 				if (closid_allocated(i) && i != closid) {
2507 					mode = rdtgroup_mode_by_closid(i);
2508 					if (mode == RDT_MODE_PSEUDO_LOCKSETUP)
2509 						break;
2510 					/*
2511 					 * If CDP is active include peer
2512 					 * domain's usage to ensure there
2513 					 * is no overlap with an exclusive
2514 					 * group.
2515 					 */
2516 					if (d_cdp)
2517 						peer_ctl = d_cdp->ctrl_val[i];
2518 					else
2519 						peer_ctl = 0;
2520 					used_b |= *ctrl | peer_ctl;
2521 					if (mode == RDT_MODE_SHAREABLE)
2522 						d->new_ctrl |= *ctrl | peer_ctl;
2523 				}
2524 			}
2525 			if (d->plr && d->plr->cbm > 0)
2526 				used_b |= d->plr->cbm;
2527 			unused_b = used_b ^ (BIT_MASK(r->cache.cbm_len) - 1);
2528 			unused_b &= BIT_MASK(r->cache.cbm_len) - 1;
2529 			d->new_ctrl |= unused_b;
2530 			/*
2531 			 * Force the initial CBM to be valid, user can
2532 			 * modify the CBM based on system availability.
2533 			 */
2534 			cbm_ensure_valid(&d->new_ctrl, r);
2535 			/*
2536 			 * Assign the u32 CBM to an unsigned long to ensure
2537 			 * that bitmap_weight() does not access out-of-bound
2538 			 * memory.
2539 			 */
2540 			tmp_cbm = d->new_ctrl;
2541 			if (bitmap_weight(&tmp_cbm, r->cache.cbm_len) <
2542 			    r->cache.min_cbm_bits) {
2543 				rdt_last_cmd_printf("no space on %s:%d\n",
2544 						    r->name, d->id);
2545 				return -ENOSPC;
2546 			}
2547 			d->have_new_ctrl = true;
2548 		}
2549 	}
2550 
2551 	for_each_alloc_enabled_rdt_resource(r) {
2552 		/*
2553 		 * Only initialize default allocations for CBM cache
2554 		 * resources
2555 		 */
2556 		if (r->rid == RDT_RESOURCE_MBA)
2557 			continue;
2558 		ret = update_domains(r, rdtgrp->closid);
2559 		if (ret < 0) {
2560 			rdt_last_cmd_puts("failed to initialize allocations\n");
2561 			return ret;
2562 		}
2563 		rdtgrp->mode = RDT_MODE_SHAREABLE;
2564 	}
2565 
2566 	return 0;
2567 }
2568 
2569 static int mkdir_rdt_prepare(struct kernfs_node *parent_kn,
2570 			     struct kernfs_node *prgrp_kn,
2571 			     const char *name, umode_t mode,
2572 			     enum rdt_group_type rtype, struct rdtgroup **r)
2573 {
2574 	struct rdtgroup *prdtgrp, *rdtgrp;
2575 	struct kernfs_node *kn;
2576 	uint files = 0;
2577 	int ret;
2578 
2579 	prdtgrp = rdtgroup_kn_lock_live(prgrp_kn);
2580 	rdt_last_cmd_clear();
2581 	if (!prdtgrp) {
2582 		ret = -ENODEV;
2583 		rdt_last_cmd_puts("directory was removed\n");
2584 		goto out_unlock;
2585 	}
2586 
2587 	if (rtype == RDTMON_GROUP &&
2588 	    (prdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP ||
2589 	     prdtgrp->mode == RDT_MODE_PSEUDO_LOCKED)) {
2590 		ret = -EINVAL;
2591 		rdt_last_cmd_puts("pseudo-locking in progress\n");
2592 		goto out_unlock;
2593 	}
2594 
2595 	/* allocate the rdtgroup. */
2596 	rdtgrp = kzalloc(sizeof(*rdtgrp), GFP_KERNEL);
2597 	if (!rdtgrp) {
2598 		ret = -ENOSPC;
2599 		rdt_last_cmd_puts("kernel out of memory\n");
2600 		goto out_unlock;
2601 	}
2602 	*r = rdtgrp;
2603 	rdtgrp->mon.parent = prdtgrp;
2604 	rdtgrp->type = rtype;
2605 	INIT_LIST_HEAD(&rdtgrp->mon.crdtgrp_list);
2606 
2607 	/* kernfs creates the directory for rdtgrp */
2608 	kn = kernfs_create_dir(parent_kn, name, mode, rdtgrp);
2609 	if (IS_ERR(kn)) {
2610 		ret = PTR_ERR(kn);
2611 		rdt_last_cmd_puts("kernfs create error\n");
2612 		goto out_free_rgrp;
2613 	}
2614 	rdtgrp->kn = kn;
2615 
2616 	/*
2617 	 * kernfs_remove() will drop the reference count on "kn" which
2618 	 * will free it. But we still need it to stick around for the
2619 	 * rdtgroup_kn_unlock(kn} call below. Take one extra reference
2620 	 * here, which will be dropped inside rdtgroup_kn_unlock().
2621 	 */
2622 	kernfs_get(kn);
2623 
2624 	ret = rdtgroup_kn_set_ugid(kn);
2625 	if (ret) {
2626 		rdt_last_cmd_puts("kernfs perm error\n");
2627 		goto out_destroy;
2628 	}
2629 
2630 	files = RFTYPE_BASE | BIT(RF_CTRLSHIFT + rtype);
2631 	ret = rdtgroup_add_files(kn, files);
2632 	if (ret) {
2633 		rdt_last_cmd_puts("kernfs fill error\n");
2634 		goto out_destroy;
2635 	}
2636 
2637 	if (rdt_mon_capable) {
2638 		ret = alloc_rmid();
2639 		if (ret < 0) {
2640 			rdt_last_cmd_puts("out of RMIDs\n");
2641 			goto out_destroy;
2642 		}
2643 		rdtgrp->mon.rmid = ret;
2644 
2645 		ret = mkdir_mondata_all(kn, rdtgrp, &rdtgrp->mon.mon_data_kn);
2646 		if (ret) {
2647 			rdt_last_cmd_puts("kernfs subdir error\n");
2648 			goto out_idfree;
2649 		}
2650 	}
2651 	kernfs_activate(kn);
2652 
2653 	/*
2654 	 * The caller unlocks the prgrp_kn upon success.
2655 	 */
2656 	return 0;
2657 
2658 out_idfree:
2659 	free_rmid(rdtgrp->mon.rmid);
2660 out_destroy:
2661 	kernfs_remove(rdtgrp->kn);
2662 out_free_rgrp:
2663 	kfree(rdtgrp);
2664 out_unlock:
2665 	rdtgroup_kn_unlock(prgrp_kn);
2666 	return ret;
2667 }
2668 
2669 static void mkdir_rdt_prepare_clean(struct rdtgroup *rgrp)
2670 {
2671 	kernfs_remove(rgrp->kn);
2672 	free_rmid(rgrp->mon.rmid);
2673 	kfree(rgrp);
2674 }
2675 
2676 /*
2677  * Create a monitor group under "mon_groups" directory of a control
2678  * and monitor group(ctrl_mon). This is a resource group
2679  * to monitor a subset of tasks and cpus in its parent ctrl_mon group.
2680  */
2681 static int rdtgroup_mkdir_mon(struct kernfs_node *parent_kn,
2682 			      struct kernfs_node *prgrp_kn,
2683 			      const char *name,
2684 			      umode_t mode)
2685 {
2686 	struct rdtgroup *rdtgrp, *prgrp;
2687 	int ret;
2688 
2689 	ret = mkdir_rdt_prepare(parent_kn, prgrp_kn, name, mode, RDTMON_GROUP,
2690 				&rdtgrp);
2691 	if (ret)
2692 		return ret;
2693 
2694 	prgrp = rdtgrp->mon.parent;
2695 	rdtgrp->closid = prgrp->closid;
2696 
2697 	/*
2698 	 * Add the rdtgrp to the list of rdtgrps the parent
2699 	 * ctrl_mon group has to track.
2700 	 */
2701 	list_add_tail(&rdtgrp->mon.crdtgrp_list, &prgrp->mon.crdtgrp_list);
2702 
2703 	rdtgroup_kn_unlock(prgrp_kn);
2704 	return ret;
2705 }
2706 
2707 /*
2708  * These are rdtgroups created under the root directory. Can be used
2709  * to allocate and monitor resources.
2710  */
2711 static int rdtgroup_mkdir_ctrl_mon(struct kernfs_node *parent_kn,
2712 				   struct kernfs_node *prgrp_kn,
2713 				   const char *name, umode_t mode)
2714 {
2715 	struct rdtgroup *rdtgrp;
2716 	struct kernfs_node *kn;
2717 	u32 closid;
2718 	int ret;
2719 
2720 	ret = mkdir_rdt_prepare(parent_kn, prgrp_kn, name, mode, RDTCTRL_GROUP,
2721 				&rdtgrp);
2722 	if (ret)
2723 		return ret;
2724 
2725 	kn = rdtgrp->kn;
2726 	ret = closid_alloc();
2727 	if (ret < 0) {
2728 		rdt_last_cmd_puts("out of CLOSIDs\n");
2729 		goto out_common_fail;
2730 	}
2731 	closid = ret;
2732 	ret = 0;
2733 
2734 	rdtgrp->closid = closid;
2735 	ret = rdtgroup_init_alloc(rdtgrp);
2736 	if (ret < 0)
2737 		goto out_id_free;
2738 
2739 	list_add(&rdtgrp->rdtgroup_list, &rdt_all_groups);
2740 
2741 	if (rdt_mon_capable) {
2742 		/*
2743 		 * Create an empty mon_groups directory to hold the subset
2744 		 * of tasks and cpus to monitor.
2745 		 */
2746 		ret = mongroup_create_dir(kn, NULL, "mon_groups", NULL);
2747 		if (ret) {
2748 			rdt_last_cmd_puts("kernfs subdir error\n");
2749 			goto out_del_list;
2750 		}
2751 	}
2752 
2753 	goto out_unlock;
2754 
2755 out_del_list:
2756 	list_del(&rdtgrp->rdtgroup_list);
2757 out_id_free:
2758 	closid_free(closid);
2759 out_common_fail:
2760 	mkdir_rdt_prepare_clean(rdtgrp);
2761 out_unlock:
2762 	rdtgroup_kn_unlock(prgrp_kn);
2763 	return ret;
2764 }
2765 
2766 /*
2767  * We allow creating mon groups only with in a directory called "mon_groups"
2768  * which is present in every ctrl_mon group. Check if this is a valid
2769  * "mon_groups" directory.
2770  *
2771  * 1. The directory should be named "mon_groups".
2772  * 2. The mon group itself should "not" be named "mon_groups".
2773  *   This makes sure "mon_groups" directory always has a ctrl_mon group
2774  *   as parent.
2775  */
2776 static bool is_mon_groups(struct kernfs_node *kn, const char *name)
2777 {
2778 	return (!strcmp(kn->name, "mon_groups") &&
2779 		strcmp(name, "mon_groups"));
2780 }
2781 
2782 static int rdtgroup_mkdir(struct kernfs_node *parent_kn, const char *name,
2783 			  umode_t mode)
2784 {
2785 	/* Do not accept '\n' to avoid unparsable situation. */
2786 	if (strchr(name, '\n'))
2787 		return -EINVAL;
2788 
2789 	/*
2790 	 * If the parent directory is the root directory and RDT
2791 	 * allocation is supported, add a control and monitoring
2792 	 * subdirectory
2793 	 */
2794 	if (rdt_alloc_capable && parent_kn == rdtgroup_default.kn)
2795 		return rdtgroup_mkdir_ctrl_mon(parent_kn, parent_kn, name, mode);
2796 
2797 	/*
2798 	 * If RDT monitoring is supported and the parent directory is a valid
2799 	 * "mon_groups" directory, add a monitoring subdirectory.
2800 	 */
2801 	if (rdt_mon_capable && is_mon_groups(parent_kn, name))
2802 		return rdtgroup_mkdir_mon(parent_kn, parent_kn->parent, name, mode);
2803 
2804 	return -EPERM;
2805 }
2806 
2807 static int rdtgroup_rmdir_mon(struct kernfs_node *kn, struct rdtgroup *rdtgrp,
2808 			      cpumask_var_t tmpmask)
2809 {
2810 	struct rdtgroup *prdtgrp = rdtgrp->mon.parent;
2811 	int cpu;
2812 
2813 	/* Give any tasks back to the parent group */
2814 	rdt_move_group_tasks(rdtgrp, prdtgrp, tmpmask);
2815 
2816 	/* Update per cpu rmid of the moved CPUs first */
2817 	for_each_cpu(cpu, &rdtgrp->cpu_mask)
2818 		per_cpu(pqr_state.default_rmid, cpu) = prdtgrp->mon.rmid;
2819 	/*
2820 	 * Update the MSR on moved CPUs and CPUs which have moved
2821 	 * task running on them.
2822 	 */
2823 	cpumask_or(tmpmask, tmpmask, &rdtgrp->cpu_mask);
2824 	update_closid_rmid(tmpmask, NULL);
2825 
2826 	rdtgrp->flags = RDT_DELETED;
2827 	free_rmid(rdtgrp->mon.rmid);
2828 
2829 	/*
2830 	 * Remove the rdtgrp from the parent ctrl_mon group's list
2831 	 */
2832 	WARN_ON(list_empty(&prdtgrp->mon.crdtgrp_list));
2833 	list_del(&rdtgrp->mon.crdtgrp_list);
2834 
2835 	/*
2836 	 * one extra hold on this, will drop when we kfree(rdtgrp)
2837 	 * in rdtgroup_kn_unlock()
2838 	 */
2839 	kernfs_get(kn);
2840 	kernfs_remove(rdtgrp->kn);
2841 
2842 	return 0;
2843 }
2844 
2845 static int rdtgroup_ctrl_remove(struct kernfs_node *kn,
2846 				struct rdtgroup *rdtgrp)
2847 {
2848 	rdtgrp->flags = RDT_DELETED;
2849 	list_del(&rdtgrp->rdtgroup_list);
2850 
2851 	/*
2852 	 * one extra hold on this, will drop when we kfree(rdtgrp)
2853 	 * in rdtgroup_kn_unlock()
2854 	 */
2855 	kernfs_get(kn);
2856 	kernfs_remove(rdtgrp->kn);
2857 	return 0;
2858 }
2859 
2860 static int rdtgroup_rmdir_ctrl(struct kernfs_node *kn, struct rdtgroup *rdtgrp,
2861 			       cpumask_var_t tmpmask)
2862 {
2863 	int cpu;
2864 
2865 	/* Give any tasks back to the default group */
2866 	rdt_move_group_tasks(rdtgrp, &rdtgroup_default, tmpmask);
2867 
2868 	/* Give any CPUs back to the default group */
2869 	cpumask_or(&rdtgroup_default.cpu_mask,
2870 		   &rdtgroup_default.cpu_mask, &rdtgrp->cpu_mask);
2871 
2872 	/* Update per cpu closid and rmid of the moved CPUs first */
2873 	for_each_cpu(cpu, &rdtgrp->cpu_mask) {
2874 		per_cpu(pqr_state.default_closid, cpu) = rdtgroup_default.closid;
2875 		per_cpu(pqr_state.default_rmid, cpu) = rdtgroup_default.mon.rmid;
2876 	}
2877 
2878 	/*
2879 	 * Update the MSR on moved CPUs and CPUs which have moved
2880 	 * task running on them.
2881 	 */
2882 	cpumask_or(tmpmask, tmpmask, &rdtgrp->cpu_mask);
2883 	update_closid_rmid(tmpmask, NULL);
2884 
2885 	closid_free(rdtgrp->closid);
2886 	free_rmid(rdtgrp->mon.rmid);
2887 
2888 	/*
2889 	 * Free all the child monitor group rmids.
2890 	 */
2891 	free_all_child_rdtgrp(rdtgrp);
2892 
2893 	rdtgroup_ctrl_remove(kn, rdtgrp);
2894 
2895 	return 0;
2896 }
2897 
2898 static int rdtgroup_rmdir(struct kernfs_node *kn)
2899 {
2900 	struct kernfs_node *parent_kn = kn->parent;
2901 	struct rdtgroup *rdtgrp;
2902 	cpumask_var_t tmpmask;
2903 	int ret = 0;
2904 
2905 	if (!zalloc_cpumask_var(&tmpmask, GFP_KERNEL))
2906 		return -ENOMEM;
2907 
2908 	rdtgrp = rdtgroup_kn_lock_live(kn);
2909 	if (!rdtgrp) {
2910 		ret = -EPERM;
2911 		goto out;
2912 	}
2913 
2914 	/*
2915 	 * If the rdtgroup is a ctrl_mon group and parent directory
2916 	 * is the root directory, remove the ctrl_mon group.
2917 	 *
2918 	 * If the rdtgroup is a mon group and parent directory
2919 	 * is a valid "mon_groups" directory, remove the mon group.
2920 	 */
2921 	if (rdtgrp->type == RDTCTRL_GROUP && parent_kn == rdtgroup_default.kn) {
2922 		if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP ||
2923 		    rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED) {
2924 			ret = rdtgroup_ctrl_remove(kn, rdtgrp);
2925 		} else {
2926 			ret = rdtgroup_rmdir_ctrl(kn, rdtgrp, tmpmask);
2927 		}
2928 	} else if (rdtgrp->type == RDTMON_GROUP &&
2929 		 is_mon_groups(parent_kn, kn->name)) {
2930 		ret = rdtgroup_rmdir_mon(kn, rdtgrp, tmpmask);
2931 	} else {
2932 		ret = -EPERM;
2933 	}
2934 
2935 out:
2936 	rdtgroup_kn_unlock(kn);
2937 	free_cpumask_var(tmpmask);
2938 	return ret;
2939 }
2940 
2941 static int rdtgroup_show_options(struct seq_file *seq, struct kernfs_root *kf)
2942 {
2943 	if (rdt_resources_all[RDT_RESOURCE_L3DATA].alloc_enabled)
2944 		seq_puts(seq, ",cdp");
2945 
2946 	if (rdt_resources_all[RDT_RESOURCE_L2DATA].alloc_enabled)
2947 		seq_puts(seq, ",cdpl2");
2948 
2949 	if (is_mba_sc(&rdt_resources_all[RDT_RESOURCE_MBA]))
2950 		seq_puts(seq, ",mba_MBps");
2951 
2952 	return 0;
2953 }
2954 
2955 static struct kernfs_syscall_ops rdtgroup_kf_syscall_ops = {
2956 	.mkdir		= rdtgroup_mkdir,
2957 	.rmdir		= rdtgroup_rmdir,
2958 	.show_options	= rdtgroup_show_options,
2959 };
2960 
2961 static int __init rdtgroup_setup_root(void)
2962 {
2963 	int ret;
2964 
2965 	rdt_root = kernfs_create_root(&rdtgroup_kf_syscall_ops,
2966 				      KERNFS_ROOT_CREATE_DEACTIVATED |
2967 				      KERNFS_ROOT_EXTRA_OPEN_PERM_CHECK,
2968 				      &rdtgroup_default);
2969 	if (IS_ERR(rdt_root))
2970 		return PTR_ERR(rdt_root);
2971 
2972 	mutex_lock(&rdtgroup_mutex);
2973 
2974 	rdtgroup_default.closid = 0;
2975 	rdtgroup_default.mon.rmid = 0;
2976 	rdtgroup_default.type = RDTCTRL_GROUP;
2977 	INIT_LIST_HEAD(&rdtgroup_default.mon.crdtgrp_list);
2978 
2979 	list_add(&rdtgroup_default.rdtgroup_list, &rdt_all_groups);
2980 
2981 	ret = rdtgroup_add_files(rdt_root->kn, RF_CTRL_BASE);
2982 	if (ret) {
2983 		kernfs_destroy_root(rdt_root);
2984 		goto out;
2985 	}
2986 
2987 	rdtgroup_default.kn = rdt_root->kn;
2988 	kernfs_activate(rdtgroup_default.kn);
2989 
2990 out:
2991 	mutex_unlock(&rdtgroup_mutex);
2992 
2993 	return ret;
2994 }
2995 
2996 /*
2997  * rdtgroup_init - rdtgroup initialization
2998  *
2999  * Setup resctrl file system including set up root, create mount point,
3000  * register rdtgroup filesystem, and initialize files under root directory.
3001  *
3002  * Return: 0 on success or -errno
3003  */
3004 int __init rdtgroup_init(void)
3005 {
3006 	int ret = 0;
3007 
3008 	seq_buf_init(&last_cmd_status, last_cmd_status_buf,
3009 		     sizeof(last_cmd_status_buf));
3010 
3011 	ret = rdtgroup_setup_root();
3012 	if (ret)
3013 		return ret;
3014 
3015 	ret = sysfs_create_mount_point(fs_kobj, "resctrl");
3016 	if (ret)
3017 		goto cleanup_root;
3018 
3019 	ret = register_filesystem(&rdt_fs_type);
3020 	if (ret)
3021 		goto cleanup_mountpoint;
3022 
3023 	/*
3024 	 * Adding the resctrl debugfs directory here may not be ideal since
3025 	 * it would let the resctrl debugfs directory appear on the debugfs
3026 	 * filesystem before the resctrl filesystem is mounted.
3027 	 * It may also be ok since that would enable debugging of RDT before
3028 	 * resctrl is mounted.
3029 	 * The reason why the debugfs directory is created here and not in
3030 	 * rdt_mount() is because rdt_mount() takes rdtgroup_mutex and
3031 	 * during the debugfs directory creation also &sb->s_type->i_mutex_key
3032 	 * (the lockdep class of inode->i_rwsem). Other filesystem
3033 	 * interactions (eg. SyS_getdents) have the lock ordering:
3034 	 * &sb->s_type->i_mutex_key --> &mm->mmap_sem
3035 	 * During mmap(), called with &mm->mmap_sem, the rdtgroup_mutex
3036 	 * is taken, thus creating dependency:
3037 	 * &mm->mmap_sem --> rdtgroup_mutex for the latter that can cause
3038 	 * issues considering the other two lock dependencies.
3039 	 * By creating the debugfs directory here we avoid a dependency
3040 	 * that may cause deadlock (even though file operations cannot
3041 	 * occur until the filesystem is mounted, but I do not know how to
3042 	 * tell lockdep that).
3043 	 */
3044 	debugfs_resctrl = debugfs_create_dir("resctrl", NULL);
3045 
3046 	return 0;
3047 
3048 cleanup_mountpoint:
3049 	sysfs_remove_mount_point(fs_kobj, "resctrl");
3050 cleanup_root:
3051 	kernfs_destroy_root(rdt_root);
3052 
3053 	return ret;
3054 }
3055 
3056 void __exit rdtgroup_exit(void)
3057 {
3058 	debugfs_remove_recursive(debugfs_resctrl);
3059 	unregister_filesystem(&rdt_fs_type);
3060 	sysfs_remove_mount_point(fs_kobj, "resctrl");
3061 	kernfs_destroy_root(rdt_root);
3062 }
3063