1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * User interface for Resource Alloction in Resource Director Technology(RDT) 4 * 5 * Copyright (C) 2016 Intel Corporation 6 * 7 * Author: Fenghua Yu <fenghua.yu@intel.com> 8 * 9 * More information about RDT be found in the Intel (R) x86 Architecture 10 * Software Developer Manual. 11 */ 12 13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 14 15 #include <linux/cacheinfo.h> 16 #include <linux/cpu.h> 17 #include <linux/debugfs.h> 18 #include <linux/fs.h> 19 #include <linux/fs_parser.h> 20 #include <linux/sysfs.h> 21 #include <linux/kernfs.h> 22 #include <linux/seq_buf.h> 23 #include <linux/seq_file.h> 24 #include <linux/sched/signal.h> 25 #include <linux/sched/task.h> 26 #include <linux/slab.h> 27 #include <linux/task_work.h> 28 #include <linux/user_namespace.h> 29 30 #include <uapi/linux/magic.h> 31 32 #include <asm/resctrl.h> 33 #include "internal.h" 34 35 DEFINE_STATIC_KEY_FALSE(rdt_enable_key); 36 DEFINE_STATIC_KEY_FALSE(rdt_mon_enable_key); 37 DEFINE_STATIC_KEY_FALSE(rdt_alloc_enable_key); 38 static struct kernfs_root *rdt_root; 39 struct rdtgroup rdtgroup_default; 40 LIST_HEAD(rdt_all_groups); 41 42 /* Kernel fs node for "info" directory under root */ 43 static struct kernfs_node *kn_info; 44 45 /* Kernel fs node for "mon_groups" directory under root */ 46 static struct kernfs_node *kn_mongrp; 47 48 /* Kernel fs node for "mon_data" directory under root */ 49 static struct kernfs_node *kn_mondata; 50 51 static struct seq_buf last_cmd_status; 52 static char last_cmd_status_buf[512]; 53 54 struct dentry *debugfs_resctrl; 55 56 void rdt_last_cmd_clear(void) 57 { 58 lockdep_assert_held(&rdtgroup_mutex); 59 seq_buf_clear(&last_cmd_status); 60 } 61 62 void rdt_last_cmd_puts(const char *s) 63 { 64 lockdep_assert_held(&rdtgroup_mutex); 65 seq_buf_puts(&last_cmd_status, s); 66 } 67 68 void rdt_last_cmd_printf(const char *fmt, ...) 69 { 70 va_list ap; 71 72 va_start(ap, fmt); 73 lockdep_assert_held(&rdtgroup_mutex); 74 seq_buf_vprintf(&last_cmd_status, fmt, ap); 75 va_end(ap); 76 } 77 78 /* 79 * Trivial allocator for CLOSIDs. Since h/w only supports a small number, 80 * we can keep a bitmap of free CLOSIDs in a single integer. 81 * 82 * Using a global CLOSID across all resources has some advantages and 83 * some drawbacks: 84 * + We can simply set "current->closid" to assign a task to a resource 85 * group. 86 * + Context switch code can avoid extra memory references deciding which 87 * CLOSID to load into the PQR_ASSOC MSR 88 * - We give up some options in configuring resource groups across multi-socket 89 * systems. 90 * - Our choices on how to configure each resource become progressively more 91 * limited as the number of resources grows. 92 */ 93 static int closid_free_map; 94 static int closid_free_map_len; 95 96 int closids_supported(void) 97 { 98 return closid_free_map_len; 99 } 100 101 static void closid_init(void) 102 { 103 struct rdt_resource *r; 104 int rdt_min_closid = 32; 105 106 /* Compute rdt_min_closid across all resources */ 107 for_each_alloc_enabled_rdt_resource(r) 108 rdt_min_closid = min(rdt_min_closid, r->num_closid); 109 110 closid_free_map = BIT_MASK(rdt_min_closid) - 1; 111 112 /* CLOSID 0 is always reserved for the default group */ 113 closid_free_map &= ~1; 114 closid_free_map_len = rdt_min_closid; 115 } 116 117 static int closid_alloc(void) 118 { 119 u32 closid = ffs(closid_free_map); 120 121 if (closid == 0) 122 return -ENOSPC; 123 closid--; 124 closid_free_map &= ~(1 << closid); 125 126 return closid; 127 } 128 129 void closid_free(int closid) 130 { 131 closid_free_map |= 1 << closid; 132 } 133 134 /** 135 * closid_allocated - test if provided closid is in use 136 * @closid: closid to be tested 137 * 138 * Return: true if @closid is currently associated with a resource group, 139 * false if @closid is free 140 */ 141 static bool closid_allocated(unsigned int closid) 142 { 143 return (closid_free_map & (1 << closid)) == 0; 144 } 145 146 /** 147 * rdtgroup_mode_by_closid - Return mode of resource group with closid 148 * @closid: closid if the resource group 149 * 150 * Each resource group is associated with a @closid. Here the mode 151 * of a resource group can be queried by searching for it using its closid. 152 * 153 * Return: mode as &enum rdtgrp_mode of resource group with closid @closid 154 */ 155 enum rdtgrp_mode rdtgroup_mode_by_closid(int closid) 156 { 157 struct rdtgroup *rdtgrp; 158 159 list_for_each_entry(rdtgrp, &rdt_all_groups, rdtgroup_list) { 160 if (rdtgrp->closid == closid) 161 return rdtgrp->mode; 162 } 163 164 return RDT_NUM_MODES; 165 } 166 167 static const char * const rdt_mode_str[] = { 168 [RDT_MODE_SHAREABLE] = "shareable", 169 [RDT_MODE_EXCLUSIVE] = "exclusive", 170 [RDT_MODE_PSEUDO_LOCKSETUP] = "pseudo-locksetup", 171 [RDT_MODE_PSEUDO_LOCKED] = "pseudo-locked", 172 }; 173 174 /** 175 * rdtgroup_mode_str - Return the string representation of mode 176 * @mode: the resource group mode as &enum rdtgroup_mode 177 * 178 * Return: string representation of valid mode, "unknown" otherwise 179 */ 180 static const char *rdtgroup_mode_str(enum rdtgrp_mode mode) 181 { 182 if (mode < RDT_MODE_SHAREABLE || mode >= RDT_NUM_MODES) 183 return "unknown"; 184 185 return rdt_mode_str[mode]; 186 } 187 188 /* set uid and gid of rdtgroup dirs and files to that of the creator */ 189 static int rdtgroup_kn_set_ugid(struct kernfs_node *kn) 190 { 191 struct iattr iattr = { .ia_valid = ATTR_UID | ATTR_GID, 192 .ia_uid = current_fsuid(), 193 .ia_gid = current_fsgid(), }; 194 195 if (uid_eq(iattr.ia_uid, GLOBAL_ROOT_UID) && 196 gid_eq(iattr.ia_gid, GLOBAL_ROOT_GID)) 197 return 0; 198 199 return kernfs_setattr(kn, &iattr); 200 } 201 202 static int rdtgroup_add_file(struct kernfs_node *parent_kn, struct rftype *rft) 203 { 204 struct kernfs_node *kn; 205 int ret; 206 207 kn = __kernfs_create_file(parent_kn, rft->name, rft->mode, 208 GLOBAL_ROOT_UID, GLOBAL_ROOT_GID, 209 0, rft->kf_ops, rft, NULL, NULL); 210 if (IS_ERR(kn)) 211 return PTR_ERR(kn); 212 213 ret = rdtgroup_kn_set_ugid(kn); 214 if (ret) { 215 kernfs_remove(kn); 216 return ret; 217 } 218 219 return 0; 220 } 221 222 static int rdtgroup_seqfile_show(struct seq_file *m, void *arg) 223 { 224 struct kernfs_open_file *of = m->private; 225 struct rftype *rft = of->kn->priv; 226 227 if (rft->seq_show) 228 return rft->seq_show(of, m, arg); 229 return 0; 230 } 231 232 static ssize_t rdtgroup_file_write(struct kernfs_open_file *of, char *buf, 233 size_t nbytes, loff_t off) 234 { 235 struct rftype *rft = of->kn->priv; 236 237 if (rft->write) 238 return rft->write(of, buf, nbytes, off); 239 240 return -EINVAL; 241 } 242 243 static struct kernfs_ops rdtgroup_kf_single_ops = { 244 .atomic_write_len = PAGE_SIZE, 245 .write = rdtgroup_file_write, 246 .seq_show = rdtgroup_seqfile_show, 247 }; 248 249 static struct kernfs_ops kf_mondata_ops = { 250 .atomic_write_len = PAGE_SIZE, 251 .seq_show = rdtgroup_mondata_show, 252 }; 253 254 static bool is_cpu_list(struct kernfs_open_file *of) 255 { 256 struct rftype *rft = of->kn->priv; 257 258 return rft->flags & RFTYPE_FLAGS_CPUS_LIST; 259 } 260 261 static int rdtgroup_cpus_show(struct kernfs_open_file *of, 262 struct seq_file *s, void *v) 263 { 264 struct rdtgroup *rdtgrp; 265 struct cpumask *mask; 266 int ret = 0; 267 268 rdtgrp = rdtgroup_kn_lock_live(of->kn); 269 270 if (rdtgrp) { 271 if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED) { 272 if (!rdtgrp->plr->d) { 273 rdt_last_cmd_clear(); 274 rdt_last_cmd_puts("Cache domain offline\n"); 275 ret = -ENODEV; 276 } else { 277 mask = &rdtgrp->plr->d->cpu_mask; 278 seq_printf(s, is_cpu_list(of) ? 279 "%*pbl\n" : "%*pb\n", 280 cpumask_pr_args(mask)); 281 } 282 } else { 283 seq_printf(s, is_cpu_list(of) ? "%*pbl\n" : "%*pb\n", 284 cpumask_pr_args(&rdtgrp->cpu_mask)); 285 } 286 } else { 287 ret = -ENOENT; 288 } 289 rdtgroup_kn_unlock(of->kn); 290 291 return ret; 292 } 293 294 /* 295 * This is safe against resctrl_sched_in() called from __switch_to() 296 * because __switch_to() is executed with interrupts disabled. A local call 297 * from update_closid_rmid() is proteced against __switch_to() because 298 * preemption is disabled. 299 */ 300 static void update_cpu_closid_rmid(void *info) 301 { 302 struct rdtgroup *r = info; 303 304 if (r) { 305 this_cpu_write(pqr_state.default_closid, r->closid); 306 this_cpu_write(pqr_state.default_rmid, r->mon.rmid); 307 } 308 309 /* 310 * We cannot unconditionally write the MSR because the current 311 * executing task might have its own closid selected. Just reuse 312 * the context switch code. 313 */ 314 resctrl_sched_in(); 315 } 316 317 /* 318 * Update the PGR_ASSOC MSR on all cpus in @cpu_mask, 319 * 320 * Per task closids/rmids must have been set up before calling this function. 321 */ 322 static void 323 update_closid_rmid(const struct cpumask *cpu_mask, struct rdtgroup *r) 324 { 325 int cpu = get_cpu(); 326 327 if (cpumask_test_cpu(cpu, cpu_mask)) 328 update_cpu_closid_rmid(r); 329 smp_call_function_many(cpu_mask, update_cpu_closid_rmid, r, 1); 330 put_cpu(); 331 } 332 333 static int cpus_mon_write(struct rdtgroup *rdtgrp, cpumask_var_t newmask, 334 cpumask_var_t tmpmask) 335 { 336 struct rdtgroup *prgrp = rdtgrp->mon.parent, *crgrp; 337 struct list_head *head; 338 339 /* Check whether cpus belong to parent ctrl group */ 340 cpumask_andnot(tmpmask, newmask, &prgrp->cpu_mask); 341 if (cpumask_weight(tmpmask)) { 342 rdt_last_cmd_puts("Can only add CPUs to mongroup that belong to parent\n"); 343 return -EINVAL; 344 } 345 346 /* Check whether cpus are dropped from this group */ 347 cpumask_andnot(tmpmask, &rdtgrp->cpu_mask, newmask); 348 if (cpumask_weight(tmpmask)) { 349 /* Give any dropped cpus to parent rdtgroup */ 350 cpumask_or(&prgrp->cpu_mask, &prgrp->cpu_mask, tmpmask); 351 update_closid_rmid(tmpmask, prgrp); 352 } 353 354 /* 355 * If we added cpus, remove them from previous group that owned them 356 * and update per-cpu rmid 357 */ 358 cpumask_andnot(tmpmask, newmask, &rdtgrp->cpu_mask); 359 if (cpumask_weight(tmpmask)) { 360 head = &prgrp->mon.crdtgrp_list; 361 list_for_each_entry(crgrp, head, mon.crdtgrp_list) { 362 if (crgrp == rdtgrp) 363 continue; 364 cpumask_andnot(&crgrp->cpu_mask, &crgrp->cpu_mask, 365 tmpmask); 366 } 367 update_closid_rmid(tmpmask, rdtgrp); 368 } 369 370 /* Done pushing/pulling - update this group with new mask */ 371 cpumask_copy(&rdtgrp->cpu_mask, newmask); 372 373 return 0; 374 } 375 376 static void cpumask_rdtgrp_clear(struct rdtgroup *r, struct cpumask *m) 377 { 378 struct rdtgroup *crgrp; 379 380 cpumask_andnot(&r->cpu_mask, &r->cpu_mask, m); 381 /* update the child mon group masks as well*/ 382 list_for_each_entry(crgrp, &r->mon.crdtgrp_list, mon.crdtgrp_list) 383 cpumask_and(&crgrp->cpu_mask, &r->cpu_mask, &crgrp->cpu_mask); 384 } 385 386 static int cpus_ctrl_write(struct rdtgroup *rdtgrp, cpumask_var_t newmask, 387 cpumask_var_t tmpmask, cpumask_var_t tmpmask1) 388 { 389 struct rdtgroup *r, *crgrp; 390 struct list_head *head; 391 392 /* Check whether cpus are dropped from this group */ 393 cpumask_andnot(tmpmask, &rdtgrp->cpu_mask, newmask); 394 if (cpumask_weight(tmpmask)) { 395 /* Can't drop from default group */ 396 if (rdtgrp == &rdtgroup_default) { 397 rdt_last_cmd_puts("Can't drop CPUs from default group\n"); 398 return -EINVAL; 399 } 400 401 /* Give any dropped cpus to rdtgroup_default */ 402 cpumask_or(&rdtgroup_default.cpu_mask, 403 &rdtgroup_default.cpu_mask, tmpmask); 404 update_closid_rmid(tmpmask, &rdtgroup_default); 405 } 406 407 /* 408 * If we added cpus, remove them from previous group and 409 * the prev group's child groups that owned them 410 * and update per-cpu closid/rmid. 411 */ 412 cpumask_andnot(tmpmask, newmask, &rdtgrp->cpu_mask); 413 if (cpumask_weight(tmpmask)) { 414 list_for_each_entry(r, &rdt_all_groups, rdtgroup_list) { 415 if (r == rdtgrp) 416 continue; 417 cpumask_and(tmpmask1, &r->cpu_mask, tmpmask); 418 if (cpumask_weight(tmpmask1)) 419 cpumask_rdtgrp_clear(r, tmpmask1); 420 } 421 update_closid_rmid(tmpmask, rdtgrp); 422 } 423 424 /* Done pushing/pulling - update this group with new mask */ 425 cpumask_copy(&rdtgrp->cpu_mask, newmask); 426 427 /* 428 * Clear child mon group masks since there is a new parent mask 429 * now and update the rmid for the cpus the child lost. 430 */ 431 head = &rdtgrp->mon.crdtgrp_list; 432 list_for_each_entry(crgrp, head, mon.crdtgrp_list) { 433 cpumask_and(tmpmask, &rdtgrp->cpu_mask, &crgrp->cpu_mask); 434 update_closid_rmid(tmpmask, rdtgrp); 435 cpumask_clear(&crgrp->cpu_mask); 436 } 437 438 return 0; 439 } 440 441 static ssize_t rdtgroup_cpus_write(struct kernfs_open_file *of, 442 char *buf, size_t nbytes, loff_t off) 443 { 444 cpumask_var_t tmpmask, newmask, tmpmask1; 445 struct rdtgroup *rdtgrp; 446 int ret; 447 448 if (!buf) 449 return -EINVAL; 450 451 if (!zalloc_cpumask_var(&tmpmask, GFP_KERNEL)) 452 return -ENOMEM; 453 if (!zalloc_cpumask_var(&newmask, GFP_KERNEL)) { 454 free_cpumask_var(tmpmask); 455 return -ENOMEM; 456 } 457 if (!zalloc_cpumask_var(&tmpmask1, GFP_KERNEL)) { 458 free_cpumask_var(tmpmask); 459 free_cpumask_var(newmask); 460 return -ENOMEM; 461 } 462 463 rdtgrp = rdtgroup_kn_lock_live(of->kn); 464 if (!rdtgrp) { 465 ret = -ENOENT; 466 goto unlock; 467 } 468 469 if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED || 470 rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP) { 471 ret = -EINVAL; 472 rdt_last_cmd_puts("Pseudo-locking in progress\n"); 473 goto unlock; 474 } 475 476 if (is_cpu_list(of)) 477 ret = cpulist_parse(buf, newmask); 478 else 479 ret = cpumask_parse(buf, newmask); 480 481 if (ret) { 482 rdt_last_cmd_puts("Bad CPU list/mask\n"); 483 goto unlock; 484 } 485 486 /* check that user didn't specify any offline cpus */ 487 cpumask_andnot(tmpmask, newmask, cpu_online_mask); 488 if (cpumask_weight(tmpmask)) { 489 ret = -EINVAL; 490 rdt_last_cmd_puts("Can only assign online CPUs\n"); 491 goto unlock; 492 } 493 494 if (rdtgrp->type == RDTCTRL_GROUP) 495 ret = cpus_ctrl_write(rdtgrp, newmask, tmpmask, tmpmask1); 496 else if (rdtgrp->type == RDTMON_GROUP) 497 ret = cpus_mon_write(rdtgrp, newmask, tmpmask); 498 else 499 ret = -EINVAL; 500 501 unlock: 502 rdtgroup_kn_unlock(of->kn); 503 free_cpumask_var(tmpmask); 504 free_cpumask_var(newmask); 505 free_cpumask_var(tmpmask1); 506 507 return ret ?: nbytes; 508 } 509 510 struct task_move_callback { 511 struct callback_head work; 512 struct rdtgroup *rdtgrp; 513 }; 514 515 static void move_myself(struct callback_head *head) 516 { 517 struct task_move_callback *callback; 518 struct rdtgroup *rdtgrp; 519 520 callback = container_of(head, struct task_move_callback, work); 521 rdtgrp = callback->rdtgrp; 522 523 /* 524 * If resource group was deleted before this task work callback 525 * was invoked, then assign the task to root group and free the 526 * resource group. 527 */ 528 if (atomic_dec_and_test(&rdtgrp->waitcount) && 529 (rdtgrp->flags & RDT_DELETED)) { 530 current->closid = 0; 531 current->rmid = 0; 532 kfree(rdtgrp); 533 } 534 535 if (unlikely(current->flags & PF_EXITING)) 536 goto out; 537 538 preempt_disable(); 539 /* update PQR_ASSOC MSR to make resource group go into effect */ 540 resctrl_sched_in(); 541 preempt_enable(); 542 543 out: 544 kfree(callback); 545 } 546 547 static int __rdtgroup_move_task(struct task_struct *tsk, 548 struct rdtgroup *rdtgrp) 549 { 550 struct task_move_callback *callback; 551 int ret; 552 553 callback = kzalloc(sizeof(*callback), GFP_KERNEL); 554 if (!callback) 555 return -ENOMEM; 556 callback->work.func = move_myself; 557 callback->rdtgrp = rdtgrp; 558 559 /* 560 * Take a refcount, so rdtgrp cannot be freed before the 561 * callback has been invoked. 562 */ 563 atomic_inc(&rdtgrp->waitcount); 564 ret = task_work_add(tsk, &callback->work, TWA_RESUME); 565 if (ret) { 566 /* 567 * Task is exiting. Drop the refcount and free the callback. 568 * No need to check the refcount as the group cannot be 569 * deleted before the write function unlocks rdtgroup_mutex. 570 */ 571 atomic_dec(&rdtgrp->waitcount); 572 kfree(callback); 573 rdt_last_cmd_puts("Task exited\n"); 574 } else { 575 /* 576 * For ctrl_mon groups move both closid and rmid. 577 * For monitor groups, can move the tasks only from 578 * their parent CTRL group. 579 */ 580 if (rdtgrp->type == RDTCTRL_GROUP) { 581 tsk->closid = rdtgrp->closid; 582 tsk->rmid = rdtgrp->mon.rmid; 583 } else if (rdtgrp->type == RDTMON_GROUP) { 584 if (rdtgrp->mon.parent->closid == tsk->closid) { 585 tsk->rmid = rdtgrp->mon.rmid; 586 } else { 587 rdt_last_cmd_puts("Can't move task to different control group\n"); 588 ret = -EINVAL; 589 } 590 } 591 } 592 return ret; 593 } 594 595 static bool is_closid_match(struct task_struct *t, struct rdtgroup *r) 596 { 597 return (rdt_alloc_capable && 598 (r->type == RDTCTRL_GROUP) && (t->closid == r->closid)); 599 } 600 601 static bool is_rmid_match(struct task_struct *t, struct rdtgroup *r) 602 { 603 return (rdt_mon_capable && 604 (r->type == RDTMON_GROUP) && (t->rmid == r->mon.rmid)); 605 } 606 607 /** 608 * rdtgroup_tasks_assigned - Test if tasks have been assigned to resource group 609 * @r: Resource group 610 * 611 * Return: 1 if tasks have been assigned to @r, 0 otherwise 612 */ 613 int rdtgroup_tasks_assigned(struct rdtgroup *r) 614 { 615 struct task_struct *p, *t; 616 int ret = 0; 617 618 lockdep_assert_held(&rdtgroup_mutex); 619 620 rcu_read_lock(); 621 for_each_process_thread(p, t) { 622 if (is_closid_match(t, r) || is_rmid_match(t, r)) { 623 ret = 1; 624 break; 625 } 626 } 627 rcu_read_unlock(); 628 629 return ret; 630 } 631 632 static int rdtgroup_task_write_permission(struct task_struct *task, 633 struct kernfs_open_file *of) 634 { 635 const struct cred *tcred = get_task_cred(task); 636 const struct cred *cred = current_cred(); 637 int ret = 0; 638 639 /* 640 * Even if we're attaching all tasks in the thread group, we only 641 * need to check permissions on one of them. 642 */ 643 if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) && 644 !uid_eq(cred->euid, tcred->uid) && 645 !uid_eq(cred->euid, tcred->suid)) { 646 rdt_last_cmd_printf("No permission to move task %d\n", task->pid); 647 ret = -EPERM; 648 } 649 650 put_cred(tcred); 651 return ret; 652 } 653 654 static int rdtgroup_move_task(pid_t pid, struct rdtgroup *rdtgrp, 655 struct kernfs_open_file *of) 656 { 657 struct task_struct *tsk; 658 int ret; 659 660 rcu_read_lock(); 661 if (pid) { 662 tsk = find_task_by_vpid(pid); 663 if (!tsk) { 664 rcu_read_unlock(); 665 rdt_last_cmd_printf("No task %d\n", pid); 666 return -ESRCH; 667 } 668 } else { 669 tsk = current; 670 } 671 672 get_task_struct(tsk); 673 rcu_read_unlock(); 674 675 ret = rdtgroup_task_write_permission(tsk, of); 676 if (!ret) 677 ret = __rdtgroup_move_task(tsk, rdtgrp); 678 679 put_task_struct(tsk); 680 return ret; 681 } 682 683 static ssize_t rdtgroup_tasks_write(struct kernfs_open_file *of, 684 char *buf, size_t nbytes, loff_t off) 685 { 686 struct rdtgroup *rdtgrp; 687 int ret = 0; 688 pid_t pid; 689 690 if (kstrtoint(strstrip(buf), 0, &pid) || pid < 0) 691 return -EINVAL; 692 rdtgrp = rdtgroup_kn_lock_live(of->kn); 693 if (!rdtgrp) { 694 rdtgroup_kn_unlock(of->kn); 695 return -ENOENT; 696 } 697 rdt_last_cmd_clear(); 698 699 if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED || 700 rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP) { 701 ret = -EINVAL; 702 rdt_last_cmd_puts("Pseudo-locking in progress\n"); 703 goto unlock; 704 } 705 706 ret = rdtgroup_move_task(pid, rdtgrp, of); 707 708 unlock: 709 rdtgroup_kn_unlock(of->kn); 710 711 return ret ?: nbytes; 712 } 713 714 static void show_rdt_tasks(struct rdtgroup *r, struct seq_file *s) 715 { 716 struct task_struct *p, *t; 717 718 rcu_read_lock(); 719 for_each_process_thread(p, t) { 720 if (is_closid_match(t, r) || is_rmid_match(t, r)) 721 seq_printf(s, "%d\n", t->pid); 722 } 723 rcu_read_unlock(); 724 } 725 726 static int rdtgroup_tasks_show(struct kernfs_open_file *of, 727 struct seq_file *s, void *v) 728 { 729 struct rdtgroup *rdtgrp; 730 int ret = 0; 731 732 rdtgrp = rdtgroup_kn_lock_live(of->kn); 733 if (rdtgrp) 734 show_rdt_tasks(rdtgrp, s); 735 else 736 ret = -ENOENT; 737 rdtgroup_kn_unlock(of->kn); 738 739 return ret; 740 } 741 742 #ifdef CONFIG_PROC_CPU_RESCTRL 743 744 /* 745 * A task can only be part of one resctrl control group and of one monitor 746 * group which is associated to that control group. 747 * 748 * 1) res: 749 * mon: 750 * 751 * resctrl is not available. 752 * 753 * 2) res:/ 754 * mon: 755 * 756 * Task is part of the root resctrl control group, and it is not associated 757 * to any monitor group. 758 * 759 * 3) res:/ 760 * mon:mon0 761 * 762 * Task is part of the root resctrl control group and monitor group mon0. 763 * 764 * 4) res:group0 765 * mon: 766 * 767 * Task is part of resctrl control group group0, and it is not associated 768 * to any monitor group. 769 * 770 * 5) res:group0 771 * mon:mon1 772 * 773 * Task is part of resctrl control group group0 and monitor group mon1. 774 */ 775 int proc_resctrl_show(struct seq_file *s, struct pid_namespace *ns, 776 struct pid *pid, struct task_struct *tsk) 777 { 778 struct rdtgroup *rdtg; 779 int ret = 0; 780 781 mutex_lock(&rdtgroup_mutex); 782 783 /* Return empty if resctrl has not been mounted. */ 784 if (!static_branch_unlikely(&rdt_enable_key)) { 785 seq_puts(s, "res:\nmon:\n"); 786 goto unlock; 787 } 788 789 list_for_each_entry(rdtg, &rdt_all_groups, rdtgroup_list) { 790 struct rdtgroup *crg; 791 792 /* 793 * Task information is only relevant for shareable 794 * and exclusive groups. 795 */ 796 if (rdtg->mode != RDT_MODE_SHAREABLE && 797 rdtg->mode != RDT_MODE_EXCLUSIVE) 798 continue; 799 800 if (rdtg->closid != tsk->closid) 801 continue; 802 803 seq_printf(s, "res:%s%s\n", (rdtg == &rdtgroup_default) ? "/" : "", 804 rdtg->kn->name); 805 seq_puts(s, "mon:"); 806 list_for_each_entry(crg, &rdtg->mon.crdtgrp_list, 807 mon.crdtgrp_list) { 808 if (tsk->rmid != crg->mon.rmid) 809 continue; 810 seq_printf(s, "%s", crg->kn->name); 811 break; 812 } 813 seq_putc(s, '\n'); 814 goto unlock; 815 } 816 /* 817 * The above search should succeed. Otherwise return 818 * with an error. 819 */ 820 ret = -ENOENT; 821 unlock: 822 mutex_unlock(&rdtgroup_mutex); 823 824 return ret; 825 } 826 #endif 827 828 static int rdt_last_cmd_status_show(struct kernfs_open_file *of, 829 struct seq_file *seq, void *v) 830 { 831 int len; 832 833 mutex_lock(&rdtgroup_mutex); 834 len = seq_buf_used(&last_cmd_status); 835 if (len) 836 seq_printf(seq, "%.*s", len, last_cmd_status_buf); 837 else 838 seq_puts(seq, "ok\n"); 839 mutex_unlock(&rdtgroup_mutex); 840 return 0; 841 } 842 843 static int rdt_num_closids_show(struct kernfs_open_file *of, 844 struct seq_file *seq, void *v) 845 { 846 struct rdt_resource *r = of->kn->parent->priv; 847 848 seq_printf(seq, "%d\n", r->num_closid); 849 return 0; 850 } 851 852 static int rdt_default_ctrl_show(struct kernfs_open_file *of, 853 struct seq_file *seq, void *v) 854 { 855 struct rdt_resource *r = of->kn->parent->priv; 856 857 seq_printf(seq, "%x\n", r->default_ctrl); 858 return 0; 859 } 860 861 static int rdt_min_cbm_bits_show(struct kernfs_open_file *of, 862 struct seq_file *seq, void *v) 863 { 864 struct rdt_resource *r = of->kn->parent->priv; 865 866 seq_printf(seq, "%u\n", r->cache.min_cbm_bits); 867 return 0; 868 } 869 870 static int rdt_shareable_bits_show(struct kernfs_open_file *of, 871 struct seq_file *seq, void *v) 872 { 873 struct rdt_resource *r = of->kn->parent->priv; 874 875 seq_printf(seq, "%x\n", r->cache.shareable_bits); 876 return 0; 877 } 878 879 /** 880 * rdt_bit_usage_show - Display current usage of resources 881 * 882 * A domain is a shared resource that can now be allocated differently. Here 883 * we display the current regions of the domain as an annotated bitmask. 884 * For each domain of this resource its allocation bitmask 885 * is annotated as below to indicate the current usage of the corresponding bit: 886 * 0 - currently unused 887 * X - currently available for sharing and used by software and hardware 888 * H - currently used by hardware only but available for software use 889 * S - currently used and shareable by software only 890 * E - currently used exclusively by one resource group 891 * P - currently pseudo-locked by one resource group 892 */ 893 static int rdt_bit_usage_show(struct kernfs_open_file *of, 894 struct seq_file *seq, void *v) 895 { 896 struct rdt_resource *r = of->kn->parent->priv; 897 /* 898 * Use unsigned long even though only 32 bits are used to ensure 899 * test_bit() is used safely. 900 */ 901 unsigned long sw_shareable = 0, hw_shareable = 0; 902 unsigned long exclusive = 0, pseudo_locked = 0; 903 struct rdt_domain *dom; 904 int i, hwb, swb, excl, psl; 905 enum rdtgrp_mode mode; 906 bool sep = false; 907 u32 *ctrl; 908 909 mutex_lock(&rdtgroup_mutex); 910 hw_shareable = r->cache.shareable_bits; 911 list_for_each_entry(dom, &r->domains, list) { 912 if (sep) 913 seq_putc(seq, ';'); 914 ctrl = dom->ctrl_val; 915 sw_shareable = 0; 916 exclusive = 0; 917 seq_printf(seq, "%d=", dom->id); 918 for (i = 0; i < closids_supported(); i++, ctrl++) { 919 if (!closid_allocated(i)) 920 continue; 921 mode = rdtgroup_mode_by_closid(i); 922 switch (mode) { 923 case RDT_MODE_SHAREABLE: 924 sw_shareable |= *ctrl; 925 break; 926 case RDT_MODE_EXCLUSIVE: 927 exclusive |= *ctrl; 928 break; 929 case RDT_MODE_PSEUDO_LOCKSETUP: 930 /* 931 * RDT_MODE_PSEUDO_LOCKSETUP is possible 932 * here but not included since the CBM 933 * associated with this CLOSID in this mode 934 * is not initialized and no task or cpu can be 935 * assigned this CLOSID. 936 */ 937 break; 938 case RDT_MODE_PSEUDO_LOCKED: 939 case RDT_NUM_MODES: 940 WARN(1, 941 "invalid mode for closid %d\n", i); 942 break; 943 } 944 } 945 for (i = r->cache.cbm_len - 1; i >= 0; i--) { 946 pseudo_locked = dom->plr ? dom->plr->cbm : 0; 947 hwb = test_bit(i, &hw_shareable); 948 swb = test_bit(i, &sw_shareable); 949 excl = test_bit(i, &exclusive); 950 psl = test_bit(i, &pseudo_locked); 951 if (hwb && swb) 952 seq_putc(seq, 'X'); 953 else if (hwb && !swb) 954 seq_putc(seq, 'H'); 955 else if (!hwb && swb) 956 seq_putc(seq, 'S'); 957 else if (excl) 958 seq_putc(seq, 'E'); 959 else if (psl) 960 seq_putc(seq, 'P'); 961 else /* Unused bits remain */ 962 seq_putc(seq, '0'); 963 } 964 sep = true; 965 } 966 seq_putc(seq, '\n'); 967 mutex_unlock(&rdtgroup_mutex); 968 return 0; 969 } 970 971 static int rdt_min_bw_show(struct kernfs_open_file *of, 972 struct seq_file *seq, void *v) 973 { 974 struct rdt_resource *r = of->kn->parent->priv; 975 976 seq_printf(seq, "%u\n", r->membw.min_bw); 977 return 0; 978 } 979 980 static int rdt_num_rmids_show(struct kernfs_open_file *of, 981 struct seq_file *seq, void *v) 982 { 983 struct rdt_resource *r = of->kn->parent->priv; 984 985 seq_printf(seq, "%d\n", r->num_rmid); 986 987 return 0; 988 } 989 990 static int rdt_mon_features_show(struct kernfs_open_file *of, 991 struct seq_file *seq, void *v) 992 { 993 struct rdt_resource *r = of->kn->parent->priv; 994 struct mon_evt *mevt; 995 996 list_for_each_entry(mevt, &r->evt_list, list) 997 seq_printf(seq, "%s\n", mevt->name); 998 999 return 0; 1000 } 1001 1002 static int rdt_bw_gran_show(struct kernfs_open_file *of, 1003 struct seq_file *seq, void *v) 1004 { 1005 struct rdt_resource *r = of->kn->parent->priv; 1006 1007 seq_printf(seq, "%u\n", r->membw.bw_gran); 1008 return 0; 1009 } 1010 1011 static int rdt_delay_linear_show(struct kernfs_open_file *of, 1012 struct seq_file *seq, void *v) 1013 { 1014 struct rdt_resource *r = of->kn->parent->priv; 1015 1016 seq_printf(seq, "%u\n", r->membw.delay_linear); 1017 return 0; 1018 } 1019 1020 static int max_threshold_occ_show(struct kernfs_open_file *of, 1021 struct seq_file *seq, void *v) 1022 { 1023 struct rdt_resource *r = of->kn->parent->priv; 1024 1025 seq_printf(seq, "%u\n", resctrl_cqm_threshold * r->mon_scale); 1026 1027 return 0; 1028 } 1029 1030 static int rdt_thread_throttle_mode_show(struct kernfs_open_file *of, 1031 struct seq_file *seq, void *v) 1032 { 1033 struct rdt_resource *r = of->kn->parent->priv; 1034 1035 if (r->membw.throttle_mode == THREAD_THROTTLE_PER_THREAD) 1036 seq_puts(seq, "per-thread\n"); 1037 else 1038 seq_puts(seq, "max\n"); 1039 1040 return 0; 1041 } 1042 1043 static ssize_t max_threshold_occ_write(struct kernfs_open_file *of, 1044 char *buf, size_t nbytes, loff_t off) 1045 { 1046 struct rdt_resource *r = of->kn->parent->priv; 1047 unsigned int bytes; 1048 int ret; 1049 1050 ret = kstrtouint(buf, 0, &bytes); 1051 if (ret) 1052 return ret; 1053 1054 if (bytes > (boot_cpu_data.x86_cache_size * 1024)) 1055 return -EINVAL; 1056 1057 resctrl_cqm_threshold = bytes / r->mon_scale; 1058 1059 return nbytes; 1060 } 1061 1062 /* 1063 * rdtgroup_mode_show - Display mode of this resource group 1064 */ 1065 static int rdtgroup_mode_show(struct kernfs_open_file *of, 1066 struct seq_file *s, void *v) 1067 { 1068 struct rdtgroup *rdtgrp; 1069 1070 rdtgrp = rdtgroup_kn_lock_live(of->kn); 1071 if (!rdtgrp) { 1072 rdtgroup_kn_unlock(of->kn); 1073 return -ENOENT; 1074 } 1075 1076 seq_printf(s, "%s\n", rdtgroup_mode_str(rdtgrp->mode)); 1077 1078 rdtgroup_kn_unlock(of->kn); 1079 return 0; 1080 } 1081 1082 /** 1083 * rdt_cdp_peer_get - Retrieve CDP peer if it exists 1084 * @r: RDT resource to which RDT domain @d belongs 1085 * @d: Cache instance for which a CDP peer is requested 1086 * @r_cdp: RDT resource that shares hardware with @r (RDT resource peer) 1087 * Used to return the result. 1088 * @d_cdp: RDT domain that shares hardware with @d (RDT domain peer) 1089 * Used to return the result. 1090 * 1091 * RDT resources are managed independently and by extension the RDT domains 1092 * (RDT resource instances) are managed independently also. The Code and 1093 * Data Prioritization (CDP) RDT resources, while managed independently, 1094 * could refer to the same underlying hardware. For example, 1095 * RDT_RESOURCE_L2CODE and RDT_RESOURCE_L2DATA both refer to the L2 cache. 1096 * 1097 * When provided with an RDT resource @r and an instance of that RDT 1098 * resource @d rdt_cdp_peer_get() will return if there is a peer RDT 1099 * resource and the exact instance that shares the same hardware. 1100 * 1101 * Return: 0 if a CDP peer was found, <0 on error or if no CDP peer exists. 1102 * If a CDP peer was found, @r_cdp will point to the peer RDT resource 1103 * and @d_cdp will point to the peer RDT domain. 1104 */ 1105 static int rdt_cdp_peer_get(struct rdt_resource *r, struct rdt_domain *d, 1106 struct rdt_resource **r_cdp, 1107 struct rdt_domain **d_cdp) 1108 { 1109 struct rdt_resource *_r_cdp = NULL; 1110 struct rdt_domain *_d_cdp = NULL; 1111 int ret = 0; 1112 1113 switch (r->rid) { 1114 case RDT_RESOURCE_L3DATA: 1115 _r_cdp = &rdt_resources_all[RDT_RESOURCE_L3CODE]; 1116 break; 1117 case RDT_RESOURCE_L3CODE: 1118 _r_cdp = &rdt_resources_all[RDT_RESOURCE_L3DATA]; 1119 break; 1120 case RDT_RESOURCE_L2DATA: 1121 _r_cdp = &rdt_resources_all[RDT_RESOURCE_L2CODE]; 1122 break; 1123 case RDT_RESOURCE_L2CODE: 1124 _r_cdp = &rdt_resources_all[RDT_RESOURCE_L2DATA]; 1125 break; 1126 default: 1127 ret = -ENOENT; 1128 goto out; 1129 } 1130 1131 /* 1132 * When a new CPU comes online and CDP is enabled then the new 1133 * RDT domains (if any) associated with both CDP RDT resources 1134 * are added in the same CPU online routine while the 1135 * rdtgroup_mutex is held. It should thus not happen for one 1136 * RDT domain to exist and be associated with its RDT CDP 1137 * resource but there is no RDT domain associated with the 1138 * peer RDT CDP resource. Hence the WARN. 1139 */ 1140 _d_cdp = rdt_find_domain(_r_cdp, d->id, NULL); 1141 if (WARN_ON(IS_ERR_OR_NULL(_d_cdp))) { 1142 _r_cdp = NULL; 1143 _d_cdp = NULL; 1144 ret = -EINVAL; 1145 } 1146 1147 out: 1148 *r_cdp = _r_cdp; 1149 *d_cdp = _d_cdp; 1150 1151 return ret; 1152 } 1153 1154 /** 1155 * __rdtgroup_cbm_overlaps - Does CBM for intended closid overlap with other 1156 * @r: Resource to which domain instance @d belongs. 1157 * @d: The domain instance for which @closid is being tested. 1158 * @cbm: Capacity bitmask being tested. 1159 * @closid: Intended closid for @cbm. 1160 * @exclusive: Only check if overlaps with exclusive resource groups 1161 * 1162 * Checks if provided @cbm intended to be used for @closid on domain 1163 * @d overlaps with any other closids or other hardware usage associated 1164 * with this domain. If @exclusive is true then only overlaps with 1165 * resource groups in exclusive mode will be considered. If @exclusive 1166 * is false then overlaps with any resource group or hardware entities 1167 * will be considered. 1168 * 1169 * @cbm is unsigned long, even if only 32 bits are used, to make the 1170 * bitmap functions work correctly. 1171 * 1172 * Return: false if CBM does not overlap, true if it does. 1173 */ 1174 static bool __rdtgroup_cbm_overlaps(struct rdt_resource *r, struct rdt_domain *d, 1175 unsigned long cbm, int closid, bool exclusive) 1176 { 1177 enum rdtgrp_mode mode; 1178 unsigned long ctrl_b; 1179 u32 *ctrl; 1180 int i; 1181 1182 /* Check for any overlap with regions used by hardware directly */ 1183 if (!exclusive) { 1184 ctrl_b = r->cache.shareable_bits; 1185 if (bitmap_intersects(&cbm, &ctrl_b, r->cache.cbm_len)) 1186 return true; 1187 } 1188 1189 /* Check for overlap with other resource groups */ 1190 ctrl = d->ctrl_val; 1191 for (i = 0; i < closids_supported(); i++, ctrl++) { 1192 ctrl_b = *ctrl; 1193 mode = rdtgroup_mode_by_closid(i); 1194 if (closid_allocated(i) && i != closid && 1195 mode != RDT_MODE_PSEUDO_LOCKSETUP) { 1196 if (bitmap_intersects(&cbm, &ctrl_b, r->cache.cbm_len)) { 1197 if (exclusive) { 1198 if (mode == RDT_MODE_EXCLUSIVE) 1199 return true; 1200 continue; 1201 } 1202 return true; 1203 } 1204 } 1205 } 1206 1207 return false; 1208 } 1209 1210 /** 1211 * rdtgroup_cbm_overlaps - Does CBM overlap with other use of hardware 1212 * @r: Resource to which domain instance @d belongs. 1213 * @d: The domain instance for which @closid is being tested. 1214 * @cbm: Capacity bitmask being tested. 1215 * @closid: Intended closid for @cbm. 1216 * @exclusive: Only check if overlaps with exclusive resource groups 1217 * 1218 * Resources that can be allocated using a CBM can use the CBM to control 1219 * the overlap of these allocations. rdtgroup_cmb_overlaps() is the test 1220 * for overlap. Overlap test is not limited to the specific resource for 1221 * which the CBM is intended though - when dealing with CDP resources that 1222 * share the underlying hardware the overlap check should be performed on 1223 * the CDP resource sharing the hardware also. 1224 * 1225 * Refer to description of __rdtgroup_cbm_overlaps() for the details of the 1226 * overlap test. 1227 * 1228 * Return: true if CBM overlap detected, false if there is no overlap 1229 */ 1230 bool rdtgroup_cbm_overlaps(struct rdt_resource *r, struct rdt_domain *d, 1231 unsigned long cbm, int closid, bool exclusive) 1232 { 1233 struct rdt_resource *r_cdp; 1234 struct rdt_domain *d_cdp; 1235 1236 if (__rdtgroup_cbm_overlaps(r, d, cbm, closid, exclusive)) 1237 return true; 1238 1239 if (rdt_cdp_peer_get(r, d, &r_cdp, &d_cdp) < 0) 1240 return false; 1241 1242 return __rdtgroup_cbm_overlaps(r_cdp, d_cdp, cbm, closid, exclusive); 1243 } 1244 1245 /** 1246 * rdtgroup_mode_test_exclusive - Test if this resource group can be exclusive 1247 * 1248 * An exclusive resource group implies that there should be no sharing of 1249 * its allocated resources. At the time this group is considered to be 1250 * exclusive this test can determine if its current schemata supports this 1251 * setting by testing for overlap with all other resource groups. 1252 * 1253 * Return: true if resource group can be exclusive, false if there is overlap 1254 * with allocations of other resource groups and thus this resource group 1255 * cannot be exclusive. 1256 */ 1257 static bool rdtgroup_mode_test_exclusive(struct rdtgroup *rdtgrp) 1258 { 1259 int closid = rdtgrp->closid; 1260 struct rdt_resource *r; 1261 bool has_cache = false; 1262 struct rdt_domain *d; 1263 1264 for_each_alloc_enabled_rdt_resource(r) { 1265 if (r->rid == RDT_RESOURCE_MBA) 1266 continue; 1267 has_cache = true; 1268 list_for_each_entry(d, &r->domains, list) { 1269 if (rdtgroup_cbm_overlaps(r, d, d->ctrl_val[closid], 1270 rdtgrp->closid, false)) { 1271 rdt_last_cmd_puts("Schemata overlaps\n"); 1272 return false; 1273 } 1274 } 1275 } 1276 1277 if (!has_cache) { 1278 rdt_last_cmd_puts("Cannot be exclusive without CAT/CDP\n"); 1279 return false; 1280 } 1281 1282 return true; 1283 } 1284 1285 /** 1286 * rdtgroup_mode_write - Modify the resource group's mode 1287 * 1288 */ 1289 static ssize_t rdtgroup_mode_write(struct kernfs_open_file *of, 1290 char *buf, size_t nbytes, loff_t off) 1291 { 1292 struct rdtgroup *rdtgrp; 1293 enum rdtgrp_mode mode; 1294 int ret = 0; 1295 1296 /* Valid input requires a trailing newline */ 1297 if (nbytes == 0 || buf[nbytes - 1] != '\n') 1298 return -EINVAL; 1299 buf[nbytes - 1] = '\0'; 1300 1301 rdtgrp = rdtgroup_kn_lock_live(of->kn); 1302 if (!rdtgrp) { 1303 rdtgroup_kn_unlock(of->kn); 1304 return -ENOENT; 1305 } 1306 1307 rdt_last_cmd_clear(); 1308 1309 mode = rdtgrp->mode; 1310 1311 if ((!strcmp(buf, "shareable") && mode == RDT_MODE_SHAREABLE) || 1312 (!strcmp(buf, "exclusive") && mode == RDT_MODE_EXCLUSIVE) || 1313 (!strcmp(buf, "pseudo-locksetup") && 1314 mode == RDT_MODE_PSEUDO_LOCKSETUP) || 1315 (!strcmp(buf, "pseudo-locked") && mode == RDT_MODE_PSEUDO_LOCKED)) 1316 goto out; 1317 1318 if (mode == RDT_MODE_PSEUDO_LOCKED) { 1319 rdt_last_cmd_puts("Cannot change pseudo-locked group\n"); 1320 ret = -EINVAL; 1321 goto out; 1322 } 1323 1324 if (!strcmp(buf, "shareable")) { 1325 if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP) { 1326 ret = rdtgroup_locksetup_exit(rdtgrp); 1327 if (ret) 1328 goto out; 1329 } 1330 rdtgrp->mode = RDT_MODE_SHAREABLE; 1331 } else if (!strcmp(buf, "exclusive")) { 1332 if (!rdtgroup_mode_test_exclusive(rdtgrp)) { 1333 ret = -EINVAL; 1334 goto out; 1335 } 1336 if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP) { 1337 ret = rdtgroup_locksetup_exit(rdtgrp); 1338 if (ret) 1339 goto out; 1340 } 1341 rdtgrp->mode = RDT_MODE_EXCLUSIVE; 1342 } else if (!strcmp(buf, "pseudo-locksetup")) { 1343 ret = rdtgroup_locksetup_enter(rdtgrp); 1344 if (ret) 1345 goto out; 1346 rdtgrp->mode = RDT_MODE_PSEUDO_LOCKSETUP; 1347 } else { 1348 rdt_last_cmd_puts("Unknown or unsupported mode\n"); 1349 ret = -EINVAL; 1350 } 1351 1352 out: 1353 rdtgroup_kn_unlock(of->kn); 1354 return ret ?: nbytes; 1355 } 1356 1357 /** 1358 * rdtgroup_cbm_to_size - Translate CBM to size in bytes 1359 * @r: RDT resource to which @d belongs. 1360 * @d: RDT domain instance. 1361 * @cbm: bitmask for which the size should be computed. 1362 * 1363 * The bitmask provided associated with the RDT domain instance @d will be 1364 * translated into how many bytes it represents. The size in bytes is 1365 * computed by first dividing the total cache size by the CBM length to 1366 * determine how many bytes each bit in the bitmask represents. The result 1367 * is multiplied with the number of bits set in the bitmask. 1368 * 1369 * @cbm is unsigned long, even if only 32 bits are used to make the 1370 * bitmap functions work correctly. 1371 */ 1372 unsigned int rdtgroup_cbm_to_size(struct rdt_resource *r, 1373 struct rdt_domain *d, unsigned long cbm) 1374 { 1375 struct cpu_cacheinfo *ci; 1376 unsigned int size = 0; 1377 int num_b, i; 1378 1379 num_b = bitmap_weight(&cbm, r->cache.cbm_len); 1380 ci = get_cpu_cacheinfo(cpumask_any(&d->cpu_mask)); 1381 for (i = 0; i < ci->num_leaves; i++) { 1382 if (ci->info_list[i].level == r->cache_level) { 1383 size = ci->info_list[i].size / r->cache.cbm_len * num_b; 1384 break; 1385 } 1386 } 1387 1388 return size; 1389 } 1390 1391 /** 1392 * rdtgroup_size_show - Display size in bytes of allocated regions 1393 * 1394 * The "size" file mirrors the layout of the "schemata" file, printing the 1395 * size in bytes of each region instead of the capacity bitmask. 1396 * 1397 */ 1398 static int rdtgroup_size_show(struct kernfs_open_file *of, 1399 struct seq_file *s, void *v) 1400 { 1401 struct rdtgroup *rdtgrp; 1402 struct rdt_resource *r; 1403 struct rdt_domain *d; 1404 unsigned int size; 1405 int ret = 0; 1406 bool sep; 1407 u32 ctrl; 1408 1409 rdtgrp = rdtgroup_kn_lock_live(of->kn); 1410 if (!rdtgrp) { 1411 rdtgroup_kn_unlock(of->kn); 1412 return -ENOENT; 1413 } 1414 1415 if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED) { 1416 if (!rdtgrp->plr->d) { 1417 rdt_last_cmd_clear(); 1418 rdt_last_cmd_puts("Cache domain offline\n"); 1419 ret = -ENODEV; 1420 } else { 1421 seq_printf(s, "%*s:", max_name_width, 1422 rdtgrp->plr->r->name); 1423 size = rdtgroup_cbm_to_size(rdtgrp->plr->r, 1424 rdtgrp->plr->d, 1425 rdtgrp->plr->cbm); 1426 seq_printf(s, "%d=%u\n", rdtgrp->plr->d->id, size); 1427 } 1428 goto out; 1429 } 1430 1431 for_each_alloc_enabled_rdt_resource(r) { 1432 sep = false; 1433 seq_printf(s, "%*s:", max_name_width, r->name); 1434 list_for_each_entry(d, &r->domains, list) { 1435 if (sep) 1436 seq_putc(s, ';'); 1437 if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP) { 1438 size = 0; 1439 } else { 1440 ctrl = (!is_mba_sc(r) ? 1441 d->ctrl_val[rdtgrp->closid] : 1442 d->mbps_val[rdtgrp->closid]); 1443 if (r->rid == RDT_RESOURCE_MBA) 1444 size = ctrl; 1445 else 1446 size = rdtgroup_cbm_to_size(r, d, ctrl); 1447 } 1448 seq_printf(s, "%d=%u", d->id, size); 1449 sep = true; 1450 } 1451 seq_putc(s, '\n'); 1452 } 1453 1454 out: 1455 rdtgroup_kn_unlock(of->kn); 1456 1457 return ret; 1458 } 1459 1460 /* rdtgroup information files for one cache resource. */ 1461 static struct rftype res_common_files[] = { 1462 { 1463 .name = "last_cmd_status", 1464 .mode = 0444, 1465 .kf_ops = &rdtgroup_kf_single_ops, 1466 .seq_show = rdt_last_cmd_status_show, 1467 .fflags = RF_TOP_INFO, 1468 }, 1469 { 1470 .name = "num_closids", 1471 .mode = 0444, 1472 .kf_ops = &rdtgroup_kf_single_ops, 1473 .seq_show = rdt_num_closids_show, 1474 .fflags = RF_CTRL_INFO, 1475 }, 1476 { 1477 .name = "mon_features", 1478 .mode = 0444, 1479 .kf_ops = &rdtgroup_kf_single_ops, 1480 .seq_show = rdt_mon_features_show, 1481 .fflags = RF_MON_INFO, 1482 }, 1483 { 1484 .name = "num_rmids", 1485 .mode = 0444, 1486 .kf_ops = &rdtgroup_kf_single_ops, 1487 .seq_show = rdt_num_rmids_show, 1488 .fflags = RF_MON_INFO, 1489 }, 1490 { 1491 .name = "cbm_mask", 1492 .mode = 0444, 1493 .kf_ops = &rdtgroup_kf_single_ops, 1494 .seq_show = rdt_default_ctrl_show, 1495 .fflags = RF_CTRL_INFO | RFTYPE_RES_CACHE, 1496 }, 1497 { 1498 .name = "min_cbm_bits", 1499 .mode = 0444, 1500 .kf_ops = &rdtgroup_kf_single_ops, 1501 .seq_show = rdt_min_cbm_bits_show, 1502 .fflags = RF_CTRL_INFO | RFTYPE_RES_CACHE, 1503 }, 1504 { 1505 .name = "shareable_bits", 1506 .mode = 0444, 1507 .kf_ops = &rdtgroup_kf_single_ops, 1508 .seq_show = rdt_shareable_bits_show, 1509 .fflags = RF_CTRL_INFO | RFTYPE_RES_CACHE, 1510 }, 1511 { 1512 .name = "bit_usage", 1513 .mode = 0444, 1514 .kf_ops = &rdtgroup_kf_single_ops, 1515 .seq_show = rdt_bit_usage_show, 1516 .fflags = RF_CTRL_INFO | RFTYPE_RES_CACHE, 1517 }, 1518 { 1519 .name = "min_bandwidth", 1520 .mode = 0444, 1521 .kf_ops = &rdtgroup_kf_single_ops, 1522 .seq_show = rdt_min_bw_show, 1523 .fflags = RF_CTRL_INFO | RFTYPE_RES_MB, 1524 }, 1525 { 1526 .name = "bandwidth_gran", 1527 .mode = 0444, 1528 .kf_ops = &rdtgroup_kf_single_ops, 1529 .seq_show = rdt_bw_gran_show, 1530 .fflags = RF_CTRL_INFO | RFTYPE_RES_MB, 1531 }, 1532 { 1533 .name = "delay_linear", 1534 .mode = 0444, 1535 .kf_ops = &rdtgroup_kf_single_ops, 1536 .seq_show = rdt_delay_linear_show, 1537 .fflags = RF_CTRL_INFO | RFTYPE_RES_MB, 1538 }, 1539 /* 1540 * Platform specific which (if any) capabilities are provided by 1541 * thread_throttle_mode. Defer "fflags" initialization to platform 1542 * discovery. 1543 */ 1544 { 1545 .name = "thread_throttle_mode", 1546 .mode = 0444, 1547 .kf_ops = &rdtgroup_kf_single_ops, 1548 .seq_show = rdt_thread_throttle_mode_show, 1549 }, 1550 { 1551 .name = "max_threshold_occupancy", 1552 .mode = 0644, 1553 .kf_ops = &rdtgroup_kf_single_ops, 1554 .write = max_threshold_occ_write, 1555 .seq_show = max_threshold_occ_show, 1556 .fflags = RF_MON_INFO | RFTYPE_RES_CACHE, 1557 }, 1558 { 1559 .name = "cpus", 1560 .mode = 0644, 1561 .kf_ops = &rdtgroup_kf_single_ops, 1562 .write = rdtgroup_cpus_write, 1563 .seq_show = rdtgroup_cpus_show, 1564 .fflags = RFTYPE_BASE, 1565 }, 1566 { 1567 .name = "cpus_list", 1568 .mode = 0644, 1569 .kf_ops = &rdtgroup_kf_single_ops, 1570 .write = rdtgroup_cpus_write, 1571 .seq_show = rdtgroup_cpus_show, 1572 .flags = RFTYPE_FLAGS_CPUS_LIST, 1573 .fflags = RFTYPE_BASE, 1574 }, 1575 { 1576 .name = "tasks", 1577 .mode = 0644, 1578 .kf_ops = &rdtgroup_kf_single_ops, 1579 .write = rdtgroup_tasks_write, 1580 .seq_show = rdtgroup_tasks_show, 1581 .fflags = RFTYPE_BASE, 1582 }, 1583 { 1584 .name = "schemata", 1585 .mode = 0644, 1586 .kf_ops = &rdtgroup_kf_single_ops, 1587 .write = rdtgroup_schemata_write, 1588 .seq_show = rdtgroup_schemata_show, 1589 .fflags = RF_CTRL_BASE, 1590 }, 1591 { 1592 .name = "mode", 1593 .mode = 0644, 1594 .kf_ops = &rdtgroup_kf_single_ops, 1595 .write = rdtgroup_mode_write, 1596 .seq_show = rdtgroup_mode_show, 1597 .fflags = RF_CTRL_BASE, 1598 }, 1599 { 1600 .name = "size", 1601 .mode = 0444, 1602 .kf_ops = &rdtgroup_kf_single_ops, 1603 .seq_show = rdtgroup_size_show, 1604 .fflags = RF_CTRL_BASE, 1605 }, 1606 1607 }; 1608 1609 static int rdtgroup_add_files(struct kernfs_node *kn, unsigned long fflags) 1610 { 1611 struct rftype *rfts, *rft; 1612 int ret, len; 1613 1614 rfts = res_common_files; 1615 len = ARRAY_SIZE(res_common_files); 1616 1617 lockdep_assert_held(&rdtgroup_mutex); 1618 1619 for (rft = rfts; rft < rfts + len; rft++) { 1620 if (rft->fflags && ((fflags & rft->fflags) == rft->fflags)) { 1621 ret = rdtgroup_add_file(kn, rft); 1622 if (ret) 1623 goto error; 1624 } 1625 } 1626 1627 return 0; 1628 error: 1629 pr_warn("Failed to add %s, err=%d\n", rft->name, ret); 1630 while (--rft >= rfts) { 1631 if ((fflags & rft->fflags) == rft->fflags) 1632 kernfs_remove_by_name(kn, rft->name); 1633 } 1634 return ret; 1635 } 1636 1637 static struct rftype *rdtgroup_get_rftype_by_name(const char *name) 1638 { 1639 struct rftype *rfts, *rft; 1640 int len; 1641 1642 rfts = res_common_files; 1643 len = ARRAY_SIZE(res_common_files); 1644 1645 for (rft = rfts; rft < rfts + len; rft++) { 1646 if (!strcmp(rft->name, name)) 1647 return rft; 1648 } 1649 1650 return NULL; 1651 } 1652 1653 void __init thread_throttle_mode_init(void) 1654 { 1655 struct rftype *rft; 1656 1657 rft = rdtgroup_get_rftype_by_name("thread_throttle_mode"); 1658 if (!rft) 1659 return; 1660 1661 rft->fflags = RF_CTRL_INFO | RFTYPE_RES_MB; 1662 } 1663 1664 /** 1665 * rdtgroup_kn_mode_restrict - Restrict user access to named resctrl file 1666 * @r: The resource group with which the file is associated. 1667 * @name: Name of the file 1668 * 1669 * The permissions of named resctrl file, directory, or link are modified 1670 * to not allow read, write, or execute by any user. 1671 * 1672 * WARNING: This function is intended to communicate to the user that the 1673 * resctrl file has been locked down - that it is not relevant to the 1674 * particular state the system finds itself in. It should not be relied 1675 * on to protect from user access because after the file's permissions 1676 * are restricted the user can still change the permissions using chmod 1677 * from the command line. 1678 * 1679 * Return: 0 on success, <0 on failure. 1680 */ 1681 int rdtgroup_kn_mode_restrict(struct rdtgroup *r, const char *name) 1682 { 1683 struct iattr iattr = {.ia_valid = ATTR_MODE,}; 1684 struct kernfs_node *kn; 1685 int ret = 0; 1686 1687 kn = kernfs_find_and_get_ns(r->kn, name, NULL); 1688 if (!kn) 1689 return -ENOENT; 1690 1691 switch (kernfs_type(kn)) { 1692 case KERNFS_DIR: 1693 iattr.ia_mode = S_IFDIR; 1694 break; 1695 case KERNFS_FILE: 1696 iattr.ia_mode = S_IFREG; 1697 break; 1698 case KERNFS_LINK: 1699 iattr.ia_mode = S_IFLNK; 1700 break; 1701 } 1702 1703 ret = kernfs_setattr(kn, &iattr); 1704 kernfs_put(kn); 1705 return ret; 1706 } 1707 1708 /** 1709 * rdtgroup_kn_mode_restore - Restore user access to named resctrl file 1710 * @r: The resource group with which the file is associated. 1711 * @name: Name of the file 1712 * @mask: Mask of permissions that should be restored 1713 * 1714 * Restore the permissions of the named file. If @name is a directory the 1715 * permissions of its parent will be used. 1716 * 1717 * Return: 0 on success, <0 on failure. 1718 */ 1719 int rdtgroup_kn_mode_restore(struct rdtgroup *r, const char *name, 1720 umode_t mask) 1721 { 1722 struct iattr iattr = {.ia_valid = ATTR_MODE,}; 1723 struct kernfs_node *kn, *parent; 1724 struct rftype *rfts, *rft; 1725 int ret, len; 1726 1727 rfts = res_common_files; 1728 len = ARRAY_SIZE(res_common_files); 1729 1730 for (rft = rfts; rft < rfts + len; rft++) { 1731 if (!strcmp(rft->name, name)) 1732 iattr.ia_mode = rft->mode & mask; 1733 } 1734 1735 kn = kernfs_find_and_get_ns(r->kn, name, NULL); 1736 if (!kn) 1737 return -ENOENT; 1738 1739 switch (kernfs_type(kn)) { 1740 case KERNFS_DIR: 1741 parent = kernfs_get_parent(kn); 1742 if (parent) { 1743 iattr.ia_mode |= parent->mode; 1744 kernfs_put(parent); 1745 } 1746 iattr.ia_mode |= S_IFDIR; 1747 break; 1748 case KERNFS_FILE: 1749 iattr.ia_mode |= S_IFREG; 1750 break; 1751 case KERNFS_LINK: 1752 iattr.ia_mode |= S_IFLNK; 1753 break; 1754 } 1755 1756 ret = kernfs_setattr(kn, &iattr); 1757 kernfs_put(kn); 1758 return ret; 1759 } 1760 1761 static int rdtgroup_mkdir_info_resdir(struct rdt_resource *r, char *name, 1762 unsigned long fflags) 1763 { 1764 struct kernfs_node *kn_subdir; 1765 int ret; 1766 1767 kn_subdir = kernfs_create_dir(kn_info, name, 1768 kn_info->mode, r); 1769 if (IS_ERR(kn_subdir)) 1770 return PTR_ERR(kn_subdir); 1771 1772 kernfs_get(kn_subdir); 1773 ret = rdtgroup_kn_set_ugid(kn_subdir); 1774 if (ret) 1775 return ret; 1776 1777 ret = rdtgroup_add_files(kn_subdir, fflags); 1778 if (!ret) 1779 kernfs_activate(kn_subdir); 1780 1781 return ret; 1782 } 1783 1784 static int rdtgroup_create_info_dir(struct kernfs_node *parent_kn) 1785 { 1786 struct rdt_resource *r; 1787 unsigned long fflags; 1788 char name[32]; 1789 int ret; 1790 1791 /* create the directory */ 1792 kn_info = kernfs_create_dir(parent_kn, "info", parent_kn->mode, NULL); 1793 if (IS_ERR(kn_info)) 1794 return PTR_ERR(kn_info); 1795 kernfs_get(kn_info); 1796 1797 ret = rdtgroup_add_files(kn_info, RF_TOP_INFO); 1798 if (ret) 1799 goto out_destroy; 1800 1801 for_each_alloc_enabled_rdt_resource(r) { 1802 fflags = r->fflags | RF_CTRL_INFO; 1803 ret = rdtgroup_mkdir_info_resdir(r, r->name, fflags); 1804 if (ret) 1805 goto out_destroy; 1806 } 1807 1808 for_each_mon_enabled_rdt_resource(r) { 1809 fflags = r->fflags | RF_MON_INFO; 1810 sprintf(name, "%s_MON", r->name); 1811 ret = rdtgroup_mkdir_info_resdir(r, name, fflags); 1812 if (ret) 1813 goto out_destroy; 1814 } 1815 1816 /* 1817 * This extra ref will be put in kernfs_remove() and guarantees 1818 * that @rdtgrp->kn is always accessible. 1819 */ 1820 kernfs_get(kn_info); 1821 1822 ret = rdtgroup_kn_set_ugid(kn_info); 1823 if (ret) 1824 goto out_destroy; 1825 1826 kernfs_activate(kn_info); 1827 1828 return 0; 1829 1830 out_destroy: 1831 kernfs_remove(kn_info); 1832 return ret; 1833 } 1834 1835 static int 1836 mongroup_create_dir(struct kernfs_node *parent_kn, struct rdtgroup *prgrp, 1837 char *name, struct kernfs_node **dest_kn) 1838 { 1839 struct kernfs_node *kn; 1840 int ret; 1841 1842 /* create the directory */ 1843 kn = kernfs_create_dir(parent_kn, name, parent_kn->mode, prgrp); 1844 if (IS_ERR(kn)) 1845 return PTR_ERR(kn); 1846 1847 if (dest_kn) 1848 *dest_kn = kn; 1849 1850 /* 1851 * This extra ref will be put in kernfs_remove() and guarantees 1852 * that @rdtgrp->kn is always accessible. 1853 */ 1854 kernfs_get(kn); 1855 1856 ret = rdtgroup_kn_set_ugid(kn); 1857 if (ret) 1858 goto out_destroy; 1859 1860 kernfs_activate(kn); 1861 1862 return 0; 1863 1864 out_destroy: 1865 kernfs_remove(kn); 1866 return ret; 1867 } 1868 1869 static void l3_qos_cfg_update(void *arg) 1870 { 1871 bool *enable = arg; 1872 1873 wrmsrl(MSR_IA32_L3_QOS_CFG, *enable ? L3_QOS_CDP_ENABLE : 0ULL); 1874 } 1875 1876 static void l2_qos_cfg_update(void *arg) 1877 { 1878 bool *enable = arg; 1879 1880 wrmsrl(MSR_IA32_L2_QOS_CFG, *enable ? L2_QOS_CDP_ENABLE : 0ULL); 1881 } 1882 1883 static inline bool is_mba_linear(void) 1884 { 1885 return rdt_resources_all[RDT_RESOURCE_MBA].membw.delay_linear; 1886 } 1887 1888 static int set_cache_qos_cfg(int level, bool enable) 1889 { 1890 void (*update)(void *arg); 1891 struct rdt_resource *r_l; 1892 cpumask_var_t cpu_mask; 1893 struct rdt_domain *d; 1894 int cpu; 1895 1896 if (level == RDT_RESOURCE_L3) 1897 update = l3_qos_cfg_update; 1898 else if (level == RDT_RESOURCE_L2) 1899 update = l2_qos_cfg_update; 1900 else 1901 return -EINVAL; 1902 1903 if (!zalloc_cpumask_var(&cpu_mask, GFP_KERNEL)) 1904 return -ENOMEM; 1905 1906 r_l = &rdt_resources_all[level]; 1907 list_for_each_entry(d, &r_l->domains, list) { 1908 /* Pick one CPU from each domain instance to update MSR */ 1909 cpumask_set_cpu(cpumask_any(&d->cpu_mask), cpu_mask); 1910 } 1911 cpu = get_cpu(); 1912 /* Update QOS_CFG MSR on this cpu if it's in cpu_mask. */ 1913 if (cpumask_test_cpu(cpu, cpu_mask)) 1914 update(&enable); 1915 /* Update QOS_CFG MSR on all other cpus in cpu_mask. */ 1916 smp_call_function_many(cpu_mask, update, &enable, 1); 1917 put_cpu(); 1918 1919 free_cpumask_var(cpu_mask); 1920 1921 return 0; 1922 } 1923 1924 /* Restore the qos cfg state when a domain comes online */ 1925 void rdt_domain_reconfigure_cdp(struct rdt_resource *r) 1926 { 1927 if (!r->alloc_capable) 1928 return; 1929 1930 if (r == &rdt_resources_all[RDT_RESOURCE_L2DATA]) 1931 l2_qos_cfg_update(&r->alloc_enabled); 1932 1933 if (r == &rdt_resources_all[RDT_RESOURCE_L3DATA]) 1934 l3_qos_cfg_update(&r->alloc_enabled); 1935 } 1936 1937 /* 1938 * Enable or disable the MBA software controller 1939 * which helps user specify bandwidth in MBps. 1940 * MBA software controller is supported only if 1941 * MBM is supported and MBA is in linear scale. 1942 */ 1943 static int set_mba_sc(bool mba_sc) 1944 { 1945 struct rdt_resource *r = &rdt_resources_all[RDT_RESOURCE_MBA]; 1946 struct rdt_domain *d; 1947 1948 if (!is_mbm_enabled() || !is_mba_linear() || 1949 mba_sc == is_mba_sc(r)) 1950 return -EINVAL; 1951 1952 r->membw.mba_sc = mba_sc; 1953 list_for_each_entry(d, &r->domains, list) 1954 setup_default_ctrlval(r, d->ctrl_val, d->mbps_val); 1955 1956 return 0; 1957 } 1958 1959 static int cdp_enable(int level, int data_type, int code_type) 1960 { 1961 struct rdt_resource *r_ldata = &rdt_resources_all[data_type]; 1962 struct rdt_resource *r_lcode = &rdt_resources_all[code_type]; 1963 struct rdt_resource *r_l = &rdt_resources_all[level]; 1964 int ret; 1965 1966 if (!r_l->alloc_capable || !r_ldata->alloc_capable || 1967 !r_lcode->alloc_capable) 1968 return -EINVAL; 1969 1970 ret = set_cache_qos_cfg(level, true); 1971 if (!ret) { 1972 r_l->alloc_enabled = false; 1973 r_ldata->alloc_enabled = true; 1974 r_lcode->alloc_enabled = true; 1975 } 1976 return ret; 1977 } 1978 1979 static int cdpl3_enable(void) 1980 { 1981 return cdp_enable(RDT_RESOURCE_L3, RDT_RESOURCE_L3DATA, 1982 RDT_RESOURCE_L3CODE); 1983 } 1984 1985 static int cdpl2_enable(void) 1986 { 1987 return cdp_enable(RDT_RESOURCE_L2, RDT_RESOURCE_L2DATA, 1988 RDT_RESOURCE_L2CODE); 1989 } 1990 1991 static void cdp_disable(int level, int data_type, int code_type) 1992 { 1993 struct rdt_resource *r = &rdt_resources_all[level]; 1994 1995 r->alloc_enabled = r->alloc_capable; 1996 1997 if (rdt_resources_all[data_type].alloc_enabled) { 1998 rdt_resources_all[data_type].alloc_enabled = false; 1999 rdt_resources_all[code_type].alloc_enabled = false; 2000 set_cache_qos_cfg(level, false); 2001 } 2002 } 2003 2004 static void cdpl3_disable(void) 2005 { 2006 cdp_disable(RDT_RESOURCE_L3, RDT_RESOURCE_L3DATA, RDT_RESOURCE_L3CODE); 2007 } 2008 2009 static void cdpl2_disable(void) 2010 { 2011 cdp_disable(RDT_RESOURCE_L2, RDT_RESOURCE_L2DATA, RDT_RESOURCE_L2CODE); 2012 } 2013 2014 static void cdp_disable_all(void) 2015 { 2016 if (rdt_resources_all[RDT_RESOURCE_L3DATA].alloc_enabled) 2017 cdpl3_disable(); 2018 if (rdt_resources_all[RDT_RESOURCE_L2DATA].alloc_enabled) 2019 cdpl2_disable(); 2020 } 2021 2022 /* 2023 * We don't allow rdtgroup directories to be created anywhere 2024 * except the root directory. Thus when looking for the rdtgroup 2025 * structure for a kernfs node we are either looking at a directory, 2026 * in which case the rdtgroup structure is pointed at by the "priv" 2027 * field, otherwise we have a file, and need only look to the parent 2028 * to find the rdtgroup. 2029 */ 2030 static struct rdtgroup *kernfs_to_rdtgroup(struct kernfs_node *kn) 2031 { 2032 if (kernfs_type(kn) == KERNFS_DIR) { 2033 /* 2034 * All the resource directories use "kn->priv" 2035 * to point to the "struct rdtgroup" for the 2036 * resource. "info" and its subdirectories don't 2037 * have rdtgroup structures, so return NULL here. 2038 */ 2039 if (kn == kn_info || kn->parent == kn_info) 2040 return NULL; 2041 else 2042 return kn->priv; 2043 } else { 2044 return kn->parent->priv; 2045 } 2046 } 2047 2048 struct rdtgroup *rdtgroup_kn_lock_live(struct kernfs_node *kn) 2049 { 2050 struct rdtgroup *rdtgrp = kernfs_to_rdtgroup(kn); 2051 2052 if (!rdtgrp) 2053 return NULL; 2054 2055 atomic_inc(&rdtgrp->waitcount); 2056 kernfs_break_active_protection(kn); 2057 2058 mutex_lock(&rdtgroup_mutex); 2059 2060 /* Was this group deleted while we waited? */ 2061 if (rdtgrp->flags & RDT_DELETED) 2062 return NULL; 2063 2064 return rdtgrp; 2065 } 2066 2067 void rdtgroup_kn_unlock(struct kernfs_node *kn) 2068 { 2069 struct rdtgroup *rdtgrp = kernfs_to_rdtgroup(kn); 2070 2071 if (!rdtgrp) 2072 return; 2073 2074 mutex_unlock(&rdtgroup_mutex); 2075 2076 if (atomic_dec_and_test(&rdtgrp->waitcount) && 2077 (rdtgrp->flags & RDT_DELETED)) { 2078 if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP || 2079 rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED) 2080 rdtgroup_pseudo_lock_remove(rdtgrp); 2081 kernfs_unbreak_active_protection(kn); 2082 kernfs_put(rdtgrp->kn); 2083 kfree(rdtgrp); 2084 } else { 2085 kernfs_unbreak_active_protection(kn); 2086 } 2087 } 2088 2089 static int mkdir_mondata_all(struct kernfs_node *parent_kn, 2090 struct rdtgroup *prgrp, 2091 struct kernfs_node **mon_data_kn); 2092 2093 static int rdt_enable_ctx(struct rdt_fs_context *ctx) 2094 { 2095 int ret = 0; 2096 2097 if (ctx->enable_cdpl2) 2098 ret = cdpl2_enable(); 2099 2100 if (!ret && ctx->enable_cdpl3) 2101 ret = cdpl3_enable(); 2102 2103 if (!ret && ctx->enable_mba_mbps) 2104 ret = set_mba_sc(true); 2105 2106 return ret; 2107 } 2108 2109 static int rdt_get_tree(struct fs_context *fc) 2110 { 2111 struct rdt_fs_context *ctx = rdt_fc2context(fc); 2112 struct rdt_domain *dom; 2113 struct rdt_resource *r; 2114 int ret; 2115 2116 cpus_read_lock(); 2117 mutex_lock(&rdtgroup_mutex); 2118 /* 2119 * resctrl file system can only be mounted once. 2120 */ 2121 if (static_branch_unlikely(&rdt_enable_key)) { 2122 ret = -EBUSY; 2123 goto out; 2124 } 2125 2126 ret = rdt_enable_ctx(ctx); 2127 if (ret < 0) 2128 goto out_cdp; 2129 2130 closid_init(); 2131 2132 ret = rdtgroup_create_info_dir(rdtgroup_default.kn); 2133 if (ret < 0) 2134 goto out_mba; 2135 2136 if (rdt_mon_capable) { 2137 ret = mongroup_create_dir(rdtgroup_default.kn, 2138 &rdtgroup_default, "mon_groups", 2139 &kn_mongrp); 2140 if (ret < 0) 2141 goto out_info; 2142 kernfs_get(kn_mongrp); 2143 2144 ret = mkdir_mondata_all(rdtgroup_default.kn, 2145 &rdtgroup_default, &kn_mondata); 2146 if (ret < 0) 2147 goto out_mongrp; 2148 kernfs_get(kn_mondata); 2149 rdtgroup_default.mon.mon_data_kn = kn_mondata; 2150 } 2151 2152 ret = rdt_pseudo_lock_init(); 2153 if (ret) 2154 goto out_mondata; 2155 2156 ret = kernfs_get_tree(fc); 2157 if (ret < 0) 2158 goto out_psl; 2159 2160 if (rdt_alloc_capable) 2161 static_branch_enable_cpuslocked(&rdt_alloc_enable_key); 2162 if (rdt_mon_capable) 2163 static_branch_enable_cpuslocked(&rdt_mon_enable_key); 2164 2165 if (rdt_alloc_capable || rdt_mon_capable) 2166 static_branch_enable_cpuslocked(&rdt_enable_key); 2167 2168 if (is_mbm_enabled()) { 2169 r = &rdt_resources_all[RDT_RESOURCE_L3]; 2170 list_for_each_entry(dom, &r->domains, list) 2171 mbm_setup_overflow_handler(dom, MBM_OVERFLOW_INTERVAL); 2172 } 2173 2174 goto out; 2175 2176 out_psl: 2177 rdt_pseudo_lock_release(); 2178 out_mondata: 2179 if (rdt_mon_capable) 2180 kernfs_remove(kn_mondata); 2181 out_mongrp: 2182 if (rdt_mon_capable) 2183 kernfs_remove(kn_mongrp); 2184 out_info: 2185 kernfs_remove(kn_info); 2186 out_mba: 2187 if (ctx->enable_mba_mbps) 2188 set_mba_sc(false); 2189 out_cdp: 2190 cdp_disable_all(); 2191 out: 2192 rdt_last_cmd_clear(); 2193 mutex_unlock(&rdtgroup_mutex); 2194 cpus_read_unlock(); 2195 return ret; 2196 } 2197 2198 enum rdt_param { 2199 Opt_cdp, 2200 Opt_cdpl2, 2201 Opt_mba_mbps, 2202 nr__rdt_params 2203 }; 2204 2205 static const struct fs_parameter_spec rdt_fs_parameters[] = { 2206 fsparam_flag("cdp", Opt_cdp), 2207 fsparam_flag("cdpl2", Opt_cdpl2), 2208 fsparam_flag("mba_MBps", Opt_mba_mbps), 2209 {} 2210 }; 2211 2212 static int rdt_parse_param(struct fs_context *fc, struct fs_parameter *param) 2213 { 2214 struct rdt_fs_context *ctx = rdt_fc2context(fc); 2215 struct fs_parse_result result; 2216 int opt; 2217 2218 opt = fs_parse(fc, rdt_fs_parameters, param, &result); 2219 if (opt < 0) 2220 return opt; 2221 2222 switch (opt) { 2223 case Opt_cdp: 2224 ctx->enable_cdpl3 = true; 2225 return 0; 2226 case Opt_cdpl2: 2227 ctx->enable_cdpl2 = true; 2228 return 0; 2229 case Opt_mba_mbps: 2230 if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) 2231 return -EINVAL; 2232 ctx->enable_mba_mbps = true; 2233 return 0; 2234 } 2235 2236 return -EINVAL; 2237 } 2238 2239 static void rdt_fs_context_free(struct fs_context *fc) 2240 { 2241 struct rdt_fs_context *ctx = rdt_fc2context(fc); 2242 2243 kernfs_free_fs_context(fc); 2244 kfree(ctx); 2245 } 2246 2247 static const struct fs_context_operations rdt_fs_context_ops = { 2248 .free = rdt_fs_context_free, 2249 .parse_param = rdt_parse_param, 2250 .get_tree = rdt_get_tree, 2251 }; 2252 2253 static int rdt_init_fs_context(struct fs_context *fc) 2254 { 2255 struct rdt_fs_context *ctx; 2256 2257 ctx = kzalloc(sizeof(struct rdt_fs_context), GFP_KERNEL); 2258 if (!ctx) 2259 return -ENOMEM; 2260 2261 ctx->kfc.root = rdt_root; 2262 ctx->kfc.magic = RDTGROUP_SUPER_MAGIC; 2263 fc->fs_private = &ctx->kfc; 2264 fc->ops = &rdt_fs_context_ops; 2265 put_user_ns(fc->user_ns); 2266 fc->user_ns = get_user_ns(&init_user_ns); 2267 fc->global = true; 2268 return 0; 2269 } 2270 2271 static int reset_all_ctrls(struct rdt_resource *r) 2272 { 2273 struct msr_param msr_param; 2274 cpumask_var_t cpu_mask; 2275 struct rdt_domain *d; 2276 int i, cpu; 2277 2278 if (!zalloc_cpumask_var(&cpu_mask, GFP_KERNEL)) 2279 return -ENOMEM; 2280 2281 msr_param.res = r; 2282 msr_param.low = 0; 2283 msr_param.high = r->num_closid; 2284 2285 /* 2286 * Disable resource control for this resource by setting all 2287 * CBMs in all domains to the maximum mask value. Pick one CPU 2288 * from each domain to update the MSRs below. 2289 */ 2290 list_for_each_entry(d, &r->domains, list) { 2291 cpumask_set_cpu(cpumask_any(&d->cpu_mask), cpu_mask); 2292 2293 for (i = 0; i < r->num_closid; i++) 2294 d->ctrl_val[i] = r->default_ctrl; 2295 } 2296 cpu = get_cpu(); 2297 /* Update CBM on this cpu if it's in cpu_mask. */ 2298 if (cpumask_test_cpu(cpu, cpu_mask)) 2299 rdt_ctrl_update(&msr_param); 2300 /* Update CBM on all other cpus in cpu_mask. */ 2301 smp_call_function_many(cpu_mask, rdt_ctrl_update, &msr_param, 1); 2302 put_cpu(); 2303 2304 free_cpumask_var(cpu_mask); 2305 2306 return 0; 2307 } 2308 2309 /* 2310 * Move tasks from one to the other group. If @from is NULL, then all tasks 2311 * in the systems are moved unconditionally (used for teardown). 2312 * 2313 * If @mask is not NULL the cpus on which moved tasks are running are set 2314 * in that mask so the update smp function call is restricted to affected 2315 * cpus. 2316 */ 2317 static void rdt_move_group_tasks(struct rdtgroup *from, struct rdtgroup *to, 2318 struct cpumask *mask) 2319 { 2320 struct task_struct *p, *t; 2321 2322 read_lock(&tasklist_lock); 2323 for_each_process_thread(p, t) { 2324 if (!from || is_closid_match(t, from) || 2325 is_rmid_match(t, from)) { 2326 t->closid = to->closid; 2327 t->rmid = to->mon.rmid; 2328 2329 #ifdef CONFIG_SMP 2330 /* 2331 * This is safe on x86 w/o barriers as the ordering 2332 * of writing to task_cpu() and t->on_cpu is 2333 * reverse to the reading here. The detection is 2334 * inaccurate as tasks might move or schedule 2335 * before the smp function call takes place. In 2336 * such a case the function call is pointless, but 2337 * there is no other side effect. 2338 */ 2339 if (mask && t->on_cpu) 2340 cpumask_set_cpu(task_cpu(t), mask); 2341 #endif 2342 } 2343 } 2344 read_unlock(&tasklist_lock); 2345 } 2346 2347 static void free_all_child_rdtgrp(struct rdtgroup *rdtgrp) 2348 { 2349 struct rdtgroup *sentry, *stmp; 2350 struct list_head *head; 2351 2352 head = &rdtgrp->mon.crdtgrp_list; 2353 list_for_each_entry_safe(sentry, stmp, head, mon.crdtgrp_list) { 2354 free_rmid(sentry->mon.rmid); 2355 list_del(&sentry->mon.crdtgrp_list); 2356 2357 if (atomic_read(&sentry->waitcount) != 0) 2358 sentry->flags = RDT_DELETED; 2359 else 2360 kfree(sentry); 2361 } 2362 } 2363 2364 /* 2365 * Forcibly remove all of subdirectories under root. 2366 */ 2367 static void rmdir_all_sub(void) 2368 { 2369 struct rdtgroup *rdtgrp, *tmp; 2370 2371 /* Move all tasks to the default resource group */ 2372 rdt_move_group_tasks(NULL, &rdtgroup_default, NULL); 2373 2374 list_for_each_entry_safe(rdtgrp, tmp, &rdt_all_groups, rdtgroup_list) { 2375 /* Free any child rmids */ 2376 free_all_child_rdtgrp(rdtgrp); 2377 2378 /* Remove each rdtgroup other than root */ 2379 if (rdtgrp == &rdtgroup_default) 2380 continue; 2381 2382 if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP || 2383 rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED) 2384 rdtgroup_pseudo_lock_remove(rdtgrp); 2385 2386 /* 2387 * Give any CPUs back to the default group. We cannot copy 2388 * cpu_online_mask because a CPU might have executed the 2389 * offline callback already, but is still marked online. 2390 */ 2391 cpumask_or(&rdtgroup_default.cpu_mask, 2392 &rdtgroup_default.cpu_mask, &rdtgrp->cpu_mask); 2393 2394 free_rmid(rdtgrp->mon.rmid); 2395 2396 kernfs_remove(rdtgrp->kn); 2397 list_del(&rdtgrp->rdtgroup_list); 2398 2399 if (atomic_read(&rdtgrp->waitcount) != 0) 2400 rdtgrp->flags = RDT_DELETED; 2401 else 2402 kfree(rdtgrp); 2403 } 2404 /* Notify online CPUs to update per cpu storage and PQR_ASSOC MSR */ 2405 update_closid_rmid(cpu_online_mask, &rdtgroup_default); 2406 2407 kernfs_remove(kn_info); 2408 kernfs_remove(kn_mongrp); 2409 kernfs_remove(kn_mondata); 2410 } 2411 2412 static void rdt_kill_sb(struct super_block *sb) 2413 { 2414 struct rdt_resource *r; 2415 2416 cpus_read_lock(); 2417 mutex_lock(&rdtgroup_mutex); 2418 2419 set_mba_sc(false); 2420 2421 /*Put everything back to default values. */ 2422 for_each_alloc_enabled_rdt_resource(r) 2423 reset_all_ctrls(r); 2424 cdp_disable_all(); 2425 rmdir_all_sub(); 2426 rdt_pseudo_lock_release(); 2427 rdtgroup_default.mode = RDT_MODE_SHAREABLE; 2428 static_branch_disable_cpuslocked(&rdt_alloc_enable_key); 2429 static_branch_disable_cpuslocked(&rdt_mon_enable_key); 2430 static_branch_disable_cpuslocked(&rdt_enable_key); 2431 kernfs_kill_sb(sb); 2432 mutex_unlock(&rdtgroup_mutex); 2433 cpus_read_unlock(); 2434 } 2435 2436 static struct file_system_type rdt_fs_type = { 2437 .name = "resctrl", 2438 .init_fs_context = rdt_init_fs_context, 2439 .parameters = rdt_fs_parameters, 2440 .kill_sb = rdt_kill_sb, 2441 }; 2442 2443 static int mon_addfile(struct kernfs_node *parent_kn, const char *name, 2444 void *priv) 2445 { 2446 struct kernfs_node *kn; 2447 int ret = 0; 2448 2449 kn = __kernfs_create_file(parent_kn, name, 0444, 2450 GLOBAL_ROOT_UID, GLOBAL_ROOT_GID, 0, 2451 &kf_mondata_ops, priv, NULL, NULL); 2452 if (IS_ERR(kn)) 2453 return PTR_ERR(kn); 2454 2455 ret = rdtgroup_kn_set_ugid(kn); 2456 if (ret) { 2457 kernfs_remove(kn); 2458 return ret; 2459 } 2460 2461 return ret; 2462 } 2463 2464 /* 2465 * Remove all subdirectories of mon_data of ctrl_mon groups 2466 * and monitor groups with given domain id. 2467 */ 2468 void rmdir_mondata_subdir_allrdtgrp(struct rdt_resource *r, unsigned int dom_id) 2469 { 2470 struct rdtgroup *prgrp, *crgrp; 2471 char name[32]; 2472 2473 if (!r->mon_enabled) 2474 return; 2475 2476 list_for_each_entry(prgrp, &rdt_all_groups, rdtgroup_list) { 2477 sprintf(name, "mon_%s_%02d", r->name, dom_id); 2478 kernfs_remove_by_name(prgrp->mon.mon_data_kn, name); 2479 2480 list_for_each_entry(crgrp, &prgrp->mon.crdtgrp_list, mon.crdtgrp_list) 2481 kernfs_remove_by_name(crgrp->mon.mon_data_kn, name); 2482 } 2483 } 2484 2485 static int mkdir_mondata_subdir(struct kernfs_node *parent_kn, 2486 struct rdt_domain *d, 2487 struct rdt_resource *r, struct rdtgroup *prgrp) 2488 { 2489 union mon_data_bits priv; 2490 struct kernfs_node *kn; 2491 struct mon_evt *mevt; 2492 struct rmid_read rr; 2493 char name[32]; 2494 int ret; 2495 2496 sprintf(name, "mon_%s_%02d", r->name, d->id); 2497 /* create the directory */ 2498 kn = kernfs_create_dir(parent_kn, name, parent_kn->mode, prgrp); 2499 if (IS_ERR(kn)) 2500 return PTR_ERR(kn); 2501 2502 /* 2503 * This extra ref will be put in kernfs_remove() and guarantees 2504 * that kn is always accessible. 2505 */ 2506 kernfs_get(kn); 2507 ret = rdtgroup_kn_set_ugid(kn); 2508 if (ret) 2509 goto out_destroy; 2510 2511 if (WARN_ON(list_empty(&r->evt_list))) { 2512 ret = -EPERM; 2513 goto out_destroy; 2514 } 2515 2516 priv.u.rid = r->rid; 2517 priv.u.domid = d->id; 2518 list_for_each_entry(mevt, &r->evt_list, list) { 2519 priv.u.evtid = mevt->evtid; 2520 ret = mon_addfile(kn, mevt->name, priv.priv); 2521 if (ret) 2522 goto out_destroy; 2523 2524 if (is_mbm_event(mevt->evtid)) 2525 mon_event_read(&rr, r, d, prgrp, mevt->evtid, true); 2526 } 2527 kernfs_activate(kn); 2528 return 0; 2529 2530 out_destroy: 2531 kernfs_remove(kn); 2532 return ret; 2533 } 2534 2535 /* 2536 * Add all subdirectories of mon_data for "ctrl_mon" groups 2537 * and "monitor" groups with given domain id. 2538 */ 2539 void mkdir_mondata_subdir_allrdtgrp(struct rdt_resource *r, 2540 struct rdt_domain *d) 2541 { 2542 struct kernfs_node *parent_kn; 2543 struct rdtgroup *prgrp, *crgrp; 2544 struct list_head *head; 2545 2546 if (!r->mon_enabled) 2547 return; 2548 2549 list_for_each_entry(prgrp, &rdt_all_groups, rdtgroup_list) { 2550 parent_kn = prgrp->mon.mon_data_kn; 2551 mkdir_mondata_subdir(parent_kn, d, r, prgrp); 2552 2553 head = &prgrp->mon.crdtgrp_list; 2554 list_for_each_entry(crgrp, head, mon.crdtgrp_list) { 2555 parent_kn = crgrp->mon.mon_data_kn; 2556 mkdir_mondata_subdir(parent_kn, d, r, crgrp); 2557 } 2558 } 2559 } 2560 2561 static int mkdir_mondata_subdir_alldom(struct kernfs_node *parent_kn, 2562 struct rdt_resource *r, 2563 struct rdtgroup *prgrp) 2564 { 2565 struct rdt_domain *dom; 2566 int ret; 2567 2568 list_for_each_entry(dom, &r->domains, list) { 2569 ret = mkdir_mondata_subdir(parent_kn, dom, r, prgrp); 2570 if (ret) 2571 return ret; 2572 } 2573 2574 return 0; 2575 } 2576 2577 /* 2578 * This creates a directory mon_data which contains the monitored data. 2579 * 2580 * mon_data has one directory for each domain whic are named 2581 * in the format mon_<domain_name>_<domain_id>. For ex: A mon_data 2582 * with L3 domain looks as below: 2583 * ./mon_data: 2584 * mon_L3_00 2585 * mon_L3_01 2586 * mon_L3_02 2587 * ... 2588 * 2589 * Each domain directory has one file per event: 2590 * ./mon_L3_00/: 2591 * llc_occupancy 2592 * 2593 */ 2594 static int mkdir_mondata_all(struct kernfs_node *parent_kn, 2595 struct rdtgroup *prgrp, 2596 struct kernfs_node **dest_kn) 2597 { 2598 struct rdt_resource *r; 2599 struct kernfs_node *kn; 2600 int ret; 2601 2602 /* 2603 * Create the mon_data directory first. 2604 */ 2605 ret = mongroup_create_dir(parent_kn, prgrp, "mon_data", &kn); 2606 if (ret) 2607 return ret; 2608 2609 if (dest_kn) 2610 *dest_kn = kn; 2611 2612 /* 2613 * Create the subdirectories for each domain. Note that all events 2614 * in a domain like L3 are grouped into a resource whose domain is L3 2615 */ 2616 for_each_mon_enabled_rdt_resource(r) { 2617 ret = mkdir_mondata_subdir_alldom(kn, r, prgrp); 2618 if (ret) 2619 goto out_destroy; 2620 } 2621 2622 return 0; 2623 2624 out_destroy: 2625 kernfs_remove(kn); 2626 return ret; 2627 } 2628 2629 /** 2630 * cbm_ensure_valid - Enforce validity on provided CBM 2631 * @_val: Candidate CBM 2632 * @r: RDT resource to which the CBM belongs 2633 * 2634 * The provided CBM represents all cache portions available for use. This 2635 * may be represented by a bitmap that does not consist of contiguous ones 2636 * and thus be an invalid CBM. 2637 * Here the provided CBM is forced to be a valid CBM by only considering 2638 * the first set of contiguous bits as valid and clearing all bits. 2639 * The intention here is to provide a valid default CBM with which a new 2640 * resource group is initialized. The user can follow this with a 2641 * modification to the CBM if the default does not satisfy the 2642 * requirements. 2643 */ 2644 static u32 cbm_ensure_valid(u32 _val, struct rdt_resource *r) 2645 { 2646 unsigned int cbm_len = r->cache.cbm_len; 2647 unsigned long first_bit, zero_bit; 2648 unsigned long val = _val; 2649 2650 if (!val) 2651 return 0; 2652 2653 first_bit = find_first_bit(&val, cbm_len); 2654 zero_bit = find_next_zero_bit(&val, cbm_len, first_bit); 2655 2656 /* Clear any remaining bits to ensure contiguous region */ 2657 bitmap_clear(&val, zero_bit, cbm_len - zero_bit); 2658 return (u32)val; 2659 } 2660 2661 /* 2662 * Initialize cache resources per RDT domain 2663 * 2664 * Set the RDT domain up to start off with all usable allocations. That is, 2665 * all shareable and unused bits. All-zero CBM is invalid. 2666 */ 2667 static int __init_one_rdt_domain(struct rdt_domain *d, struct rdt_resource *r, 2668 u32 closid) 2669 { 2670 struct rdt_resource *r_cdp = NULL; 2671 struct rdt_domain *d_cdp = NULL; 2672 u32 used_b = 0, unused_b = 0; 2673 unsigned long tmp_cbm; 2674 enum rdtgrp_mode mode; 2675 u32 peer_ctl, *ctrl; 2676 int i; 2677 2678 rdt_cdp_peer_get(r, d, &r_cdp, &d_cdp); 2679 d->have_new_ctrl = false; 2680 d->new_ctrl = r->cache.shareable_bits; 2681 used_b = r->cache.shareable_bits; 2682 ctrl = d->ctrl_val; 2683 for (i = 0; i < closids_supported(); i++, ctrl++) { 2684 if (closid_allocated(i) && i != closid) { 2685 mode = rdtgroup_mode_by_closid(i); 2686 if (mode == RDT_MODE_PSEUDO_LOCKSETUP) 2687 /* 2688 * ctrl values for locksetup aren't relevant 2689 * until the schemata is written, and the mode 2690 * becomes RDT_MODE_PSEUDO_LOCKED. 2691 */ 2692 continue; 2693 /* 2694 * If CDP is active include peer domain's 2695 * usage to ensure there is no overlap 2696 * with an exclusive group. 2697 */ 2698 if (d_cdp) 2699 peer_ctl = d_cdp->ctrl_val[i]; 2700 else 2701 peer_ctl = 0; 2702 used_b |= *ctrl | peer_ctl; 2703 if (mode == RDT_MODE_SHAREABLE) 2704 d->new_ctrl |= *ctrl | peer_ctl; 2705 } 2706 } 2707 if (d->plr && d->plr->cbm > 0) 2708 used_b |= d->plr->cbm; 2709 unused_b = used_b ^ (BIT_MASK(r->cache.cbm_len) - 1); 2710 unused_b &= BIT_MASK(r->cache.cbm_len) - 1; 2711 d->new_ctrl |= unused_b; 2712 /* 2713 * Force the initial CBM to be valid, user can 2714 * modify the CBM based on system availability. 2715 */ 2716 d->new_ctrl = cbm_ensure_valid(d->new_ctrl, r); 2717 /* 2718 * Assign the u32 CBM to an unsigned long to ensure that 2719 * bitmap_weight() does not access out-of-bound memory. 2720 */ 2721 tmp_cbm = d->new_ctrl; 2722 if (bitmap_weight(&tmp_cbm, r->cache.cbm_len) < r->cache.min_cbm_bits) { 2723 rdt_last_cmd_printf("No space on %s:%d\n", r->name, d->id); 2724 return -ENOSPC; 2725 } 2726 d->have_new_ctrl = true; 2727 2728 return 0; 2729 } 2730 2731 /* 2732 * Initialize cache resources with default values. 2733 * 2734 * A new RDT group is being created on an allocation capable (CAT) 2735 * supporting system. Set this group up to start off with all usable 2736 * allocations. 2737 * 2738 * If there are no more shareable bits available on any domain then 2739 * the entire allocation will fail. 2740 */ 2741 static int rdtgroup_init_cat(struct rdt_resource *r, u32 closid) 2742 { 2743 struct rdt_domain *d; 2744 int ret; 2745 2746 list_for_each_entry(d, &r->domains, list) { 2747 ret = __init_one_rdt_domain(d, r, closid); 2748 if (ret < 0) 2749 return ret; 2750 } 2751 2752 return 0; 2753 } 2754 2755 /* Initialize MBA resource with default values. */ 2756 static void rdtgroup_init_mba(struct rdt_resource *r) 2757 { 2758 struct rdt_domain *d; 2759 2760 list_for_each_entry(d, &r->domains, list) { 2761 d->new_ctrl = is_mba_sc(r) ? MBA_MAX_MBPS : r->default_ctrl; 2762 d->have_new_ctrl = true; 2763 } 2764 } 2765 2766 /* Initialize the RDT group's allocations. */ 2767 static int rdtgroup_init_alloc(struct rdtgroup *rdtgrp) 2768 { 2769 struct rdt_resource *r; 2770 int ret; 2771 2772 for_each_alloc_enabled_rdt_resource(r) { 2773 if (r->rid == RDT_RESOURCE_MBA) { 2774 rdtgroup_init_mba(r); 2775 } else { 2776 ret = rdtgroup_init_cat(r, rdtgrp->closid); 2777 if (ret < 0) 2778 return ret; 2779 } 2780 2781 ret = update_domains(r, rdtgrp->closid); 2782 if (ret < 0) { 2783 rdt_last_cmd_puts("Failed to initialize allocations\n"); 2784 return ret; 2785 } 2786 2787 } 2788 2789 rdtgrp->mode = RDT_MODE_SHAREABLE; 2790 2791 return 0; 2792 } 2793 2794 static int mkdir_rdt_prepare(struct kernfs_node *parent_kn, 2795 const char *name, umode_t mode, 2796 enum rdt_group_type rtype, struct rdtgroup **r) 2797 { 2798 struct rdtgroup *prdtgrp, *rdtgrp; 2799 struct kernfs_node *kn; 2800 uint files = 0; 2801 int ret; 2802 2803 prdtgrp = rdtgroup_kn_lock_live(parent_kn); 2804 if (!prdtgrp) { 2805 ret = -ENODEV; 2806 goto out_unlock; 2807 } 2808 2809 if (rtype == RDTMON_GROUP && 2810 (prdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP || 2811 prdtgrp->mode == RDT_MODE_PSEUDO_LOCKED)) { 2812 ret = -EINVAL; 2813 rdt_last_cmd_puts("Pseudo-locking in progress\n"); 2814 goto out_unlock; 2815 } 2816 2817 /* allocate the rdtgroup. */ 2818 rdtgrp = kzalloc(sizeof(*rdtgrp), GFP_KERNEL); 2819 if (!rdtgrp) { 2820 ret = -ENOSPC; 2821 rdt_last_cmd_puts("Kernel out of memory\n"); 2822 goto out_unlock; 2823 } 2824 *r = rdtgrp; 2825 rdtgrp->mon.parent = prdtgrp; 2826 rdtgrp->type = rtype; 2827 INIT_LIST_HEAD(&rdtgrp->mon.crdtgrp_list); 2828 2829 /* kernfs creates the directory for rdtgrp */ 2830 kn = kernfs_create_dir(parent_kn, name, mode, rdtgrp); 2831 if (IS_ERR(kn)) { 2832 ret = PTR_ERR(kn); 2833 rdt_last_cmd_puts("kernfs create error\n"); 2834 goto out_free_rgrp; 2835 } 2836 rdtgrp->kn = kn; 2837 2838 /* 2839 * kernfs_remove() will drop the reference count on "kn" which 2840 * will free it. But we still need it to stick around for the 2841 * rdtgroup_kn_unlock(kn} call below. Take one extra reference 2842 * here, which will be dropped inside rdtgroup_kn_unlock(). 2843 */ 2844 kernfs_get(kn); 2845 2846 ret = rdtgroup_kn_set_ugid(kn); 2847 if (ret) { 2848 rdt_last_cmd_puts("kernfs perm error\n"); 2849 goto out_destroy; 2850 } 2851 2852 files = RFTYPE_BASE | BIT(RF_CTRLSHIFT + rtype); 2853 ret = rdtgroup_add_files(kn, files); 2854 if (ret) { 2855 rdt_last_cmd_puts("kernfs fill error\n"); 2856 goto out_destroy; 2857 } 2858 2859 if (rdt_mon_capable) { 2860 ret = alloc_rmid(); 2861 if (ret < 0) { 2862 rdt_last_cmd_puts("Out of RMIDs\n"); 2863 goto out_destroy; 2864 } 2865 rdtgrp->mon.rmid = ret; 2866 2867 ret = mkdir_mondata_all(kn, rdtgrp, &rdtgrp->mon.mon_data_kn); 2868 if (ret) { 2869 rdt_last_cmd_puts("kernfs subdir error\n"); 2870 goto out_idfree; 2871 } 2872 } 2873 kernfs_activate(kn); 2874 2875 /* 2876 * The caller unlocks the parent_kn upon success. 2877 */ 2878 return 0; 2879 2880 out_idfree: 2881 free_rmid(rdtgrp->mon.rmid); 2882 out_destroy: 2883 kernfs_remove(rdtgrp->kn); 2884 out_free_rgrp: 2885 kfree(rdtgrp); 2886 out_unlock: 2887 rdtgroup_kn_unlock(parent_kn); 2888 return ret; 2889 } 2890 2891 static void mkdir_rdt_prepare_clean(struct rdtgroup *rgrp) 2892 { 2893 kernfs_remove(rgrp->kn); 2894 free_rmid(rgrp->mon.rmid); 2895 kfree(rgrp); 2896 } 2897 2898 /* 2899 * Create a monitor group under "mon_groups" directory of a control 2900 * and monitor group(ctrl_mon). This is a resource group 2901 * to monitor a subset of tasks and cpus in its parent ctrl_mon group. 2902 */ 2903 static int rdtgroup_mkdir_mon(struct kernfs_node *parent_kn, 2904 const char *name, umode_t mode) 2905 { 2906 struct rdtgroup *rdtgrp, *prgrp; 2907 int ret; 2908 2909 ret = mkdir_rdt_prepare(parent_kn, name, mode, RDTMON_GROUP, &rdtgrp); 2910 if (ret) 2911 return ret; 2912 2913 prgrp = rdtgrp->mon.parent; 2914 rdtgrp->closid = prgrp->closid; 2915 2916 /* 2917 * Add the rdtgrp to the list of rdtgrps the parent 2918 * ctrl_mon group has to track. 2919 */ 2920 list_add_tail(&rdtgrp->mon.crdtgrp_list, &prgrp->mon.crdtgrp_list); 2921 2922 rdtgroup_kn_unlock(parent_kn); 2923 return ret; 2924 } 2925 2926 /* 2927 * These are rdtgroups created under the root directory. Can be used 2928 * to allocate and monitor resources. 2929 */ 2930 static int rdtgroup_mkdir_ctrl_mon(struct kernfs_node *parent_kn, 2931 const char *name, umode_t mode) 2932 { 2933 struct rdtgroup *rdtgrp; 2934 struct kernfs_node *kn; 2935 u32 closid; 2936 int ret; 2937 2938 ret = mkdir_rdt_prepare(parent_kn, name, mode, RDTCTRL_GROUP, &rdtgrp); 2939 if (ret) 2940 return ret; 2941 2942 kn = rdtgrp->kn; 2943 ret = closid_alloc(); 2944 if (ret < 0) { 2945 rdt_last_cmd_puts("Out of CLOSIDs\n"); 2946 goto out_common_fail; 2947 } 2948 closid = ret; 2949 ret = 0; 2950 2951 rdtgrp->closid = closid; 2952 ret = rdtgroup_init_alloc(rdtgrp); 2953 if (ret < 0) 2954 goto out_id_free; 2955 2956 list_add(&rdtgrp->rdtgroup_list, &rdt_all_groups); 2957 2958 if (rdt_mon_capable) { 2959 /* 2960 * Create an empty mon_groups directory to hold the subset 2961 * of tasks and cpus to monitor. 2962 */ 2963 ret = mongroup_create_dir(kn, rdtgrp, "mon_groups", NULL); 2964 if (ret) { 2965 rdt_last_cmd_puts("kernfs subdir error\n"); 2966 goto out_del_list; 2967 } 2968 } 2969 2970 goto out_unlock; 2971 2972 out_del_list: 2973 list_del(&rdtgrp->rdtgroup_list); 2974 out_id_free: 2975 closid_free(closid); 2976 out_common_fail: 2977 mkdir_rdt_prepare_clean(rdtgrp); 2978 out_unlock: 2979 rdtgroup_kn_unlock(parent_kn); 2980 return ret; 2981 } 2982 2983 /* 2984 * We allow creating mon groups only with in a directory called "mon_groups" 2985 * which is present in every ctrl_mon group. Check if this is a valid 2986 * "mon_groups" directory. 2987 * 2988 * 1. The directory should be named "mon_groups". 2989 * 2. The mon group itself should "not" be named "mon_groups". 2990 * This makes sure "mon_groups" directory always has a ctrl_mon group 2991 * as parent. 2992 */ 2993 static bool is_mon_groups(struct kernfs_node *kn, const char *name) 2994 { 2995 return (!strcmp(kn->name, "mon_groups") && 2996 strcmp(name, "mon_groups")); 2997 } 2998 2999 static int rdtgroup_mkdir(struct kernfs_node *parent_kn, const char *name, 3000 umode_t mode) 3001 { 3002 /* Do not accept '\n' to avoid unparsable situation. */ 3003 if (strchr(name, '\n')) 3004 return -EINVAL; 3005 3006 /* 3007 * If the parent directory is the root directory and RDT 3008 * allocation is supported, add a control and monitoring 3009 * subdirectory 3010 */ 3011 if (rdt_alloc_capable && parent_kn == rdtgroup_default.kn) 3012 return rdtgroup_mkdir_ctrl_mon(parent_kn, name, mode); 3013 3014 /* 3015 * If RDT monitoring is supported and the parent directory is a valid 3016 * "mon_groups" directory, add a monitoring subdirectory. 3017 */ 3018 if (rdt_mon_capable && is_mon_groups(parent_kn, name)) 3019 return rdtgroup_mkdir_mon(parent_kn, name, mode); 3020 3021 return -EPERM; 3022 } 3023 3024 static int rdtgroup_rmdir_mon(struct kernfs_node *kn, struct rdtgroup *rdtgrp, 3025 cpumask_var_t tmpmask) 3026 { 3027 struct rdtgroup *prdtgrp = rdtgrp->mon.parent; 3028 int cpu; 3029 3030 /* Give any tasks back to the parent group */ 3031 rdt_move_group_tasks(rdtgrp, prdtgrp, tmpmask); 3032 3033 /* Update per cpu rmid of the moved CPUs first */ 3034 for_each_cpu(cpu, &rdtgrp->cpu_mask) 3035 per_cpu(pqr_state.default_rmid, cpu) = prdtgrp->mon.rmid; 3036 /* 3037 * Update the MSR on moved CPUs and CPUs which have moved 3038 * task running on them. 3039 */ 3040 cpumask_or(tmpmask, tmpmask, &rdtgrp->cpu_mask); 3041 update_closid_rmid(tmpmask, NULL); 3042 3043 rdtgrp->flags = RDT_DELETED; 3044 free_rmid(rdtgrp->mon.rmid); 3045 3046 /* 3047 * Remove the rdtgrp from the parent ctrl_mon group's list 3048 */ 3049 WARN_ON(list_empty(&prdtgrp->mon.crdtgrp_list)); 3050 list_del(&rdtgrp->mon.crdtgrp_list); 3051 3052 /* 3053 * one extra hold on this, will drop when we kfree(rdtgrp) 3054 * in rdtgroup_kn_unlock() 3055 */ 3056 kernfs_get(kn); 3057 kernfs_remove(rdtgrp->kn); 3058 3059 return 0; 3060 } 3061 3062 static int rdtgroup_ctrl_remove(struct kernfs_node *kn, 3063 struct rdtgroup *rdtgrp) 3064 { 3065 rdtgrp->flags = RDT_DELETED; 3066 list_del(&rdtgrp->rdtgroup_list); 3067 3068 /* 3069 * one extra hold on this, will drop when we kfree(rdtgrp) 3070 * in rdtgroup_kn_unlock() 3071 */ 3072 kernfs_get(kn); 3073 kernfs_remove(rdtgrp->kn); 3074 return 0; 3075 } 3076 3077 static int rdtgroup_rmdir_ctrl(struct kernfs_node *kn, struct rdtgroup *rdtgrp, 3078 cpumask_var_t tmpmask) 3079 { 3080 int cpu; 3081 3082 /* Give any tasks back to the default group */ 3083 rdt_move_group_tasks(rdtgrp, &rdtgroup_default, tmpmask); 3084 3085 /* Give any CPUs back to the default group */ 3086 cpumask_or(&rdtgroup_default.cpu_mask, 3087 &rdtgroup_default.cpu_mask, &rdtgrp->cpu_mask); 3088 3089 /* Update per cpu closid and rmid of the moved CPUs first */ 3090 for_each_cpu(cpu, &rdtgrp->cpu_mask) { 3091 per_cpu(pqr_state.default_closid, cpu) = rdtgroup_default.closid; 3092 per_cpu(pqr_state.default_rmid, cpu) = rdtgroup_default.mon.rmid; 3093 } 3094 3095 /* 3096 * Update the MSR on moved CPUs and CPUs which have moved 3097 * task running on them. 3098 */ 3099 cpumask_or(tmpmask, tmpmask, &rdtgrp->cpu_mask); 3100 update_closid_rmid(tmpmask, NULL); 3101 3102 closid_free(rdtgrp->closid); 3103 free_rmid(rdtgrp->mon.rmid); 3104 3105 rdtgroup_ctrl_remove(kn, rdtgrp); 3106 3107 /* 3108 * Free all the child monitor group rmids. 3109 */ 3110 free_all_child_rdtgrp(rdtgrp); 3111 3112 return 0; 3113 } 3114 3115 static int rdtgroup_rmdir(struct kernfs_node *kn) 3116 { 3117 struct kernfs_node *parent_kn = kn->parent; 3118 struct rdtgroup *rdtgrp; 3119 cpumask_var_t tmpmask; 3120 int ret = 0; 3121 3122 if (!zalloc_cpumask_var(&tmpmask, GFP_KERNEL)) 3123 return -ENOMEM; 3124 3125 rdtgrp = rdtgroup_kn_lock_live(kn); 3126 if (!rdtgrp) { 3127 ret = -EPERM; 3128 goto out; 3129 } 3130 3131 /* 3132 * If the rdtgroup is a ctrl_mon group and parent directory 3133 * is the root directory, remove the ctrl_mon group. 3134 * 3135 * If the rdtgroup is a mon group and parent directory 3136 * is a valid "mon_groups" directory, remove the mon group. 3137 */ 3138 if (rdtgrp->type == RDTCTRL_GROUP && parent_kn == rdtgroup_default.kn && 3139 rdtgrp != &rdtgroup_default) { 3140 if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP || 3141 rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED) { 3142 ret = rdtgroup_ctrl_remove(kn, rdtgrp); 3143 } else { 3144 ret = rdtgroup_rmdir_ctrl(kn, rdtgrp, tmpmask); 3145 } 3146 } else if (rdtgrp->type == RDTMON_GROUP && 3147 is_mon_groups(parent_kn, kn->name)) { 3148 ret = rdtgroup_rmdir_mon(kn, rdtgrp, tmpmask); 3149 } else { 3150 ret = -EPERM; 3151 } 3152 3153 out: 3154 rdtgroup_kn_unlock(kn); 3155 free_cpumask_var(tmpmask); 3156 return ret; 3157 } 3158 3159 static int rdtgroup_show_options(struct seq_file *seq, struct kernfs_root *kf) 3160 { 3161 if (rdt_resources_all[RDT_RESOURCE_L3DATA].alloc_enabled) 3162 seq_puts(seq, ",cdp"); 3163 3164 if (rdt_resources_all[RDT_RESOURCE_L2DATA].alloc_enabled) 3165 seq_puts(seq, ",cdpl2"); 3166 3167 if (is_mba_sc(&rdt_resources_all[RDT_RESOURCE_MBA])) 3168 seq_puts(seq, ",mba_MBps"); 3169 3170 return 0; 3171 } 3172 3173 static struct kernfs_syscall_ops rdtgroup_kf_syscall_ops = { 3174 .mkdir = rdtgroup_mkdir, 3175 .rmdir = rdtgroup_rmdir, 3176 .show_options = rdtgroup_show_options, 3177 }; 3178 3179 static int __init rdtgroup_setup_root(void) 3180 { 3181 int ret; 3182 3183 rdt_root = kernfs_create_root(&rdtgroup_kf_syscall_ops, 3184 KERNFS_ROOT_CREATE_DEACTIVATED | 3185 KERNFS_ROOT_EXTRA_OPEN_PERM_CHECK, 3186 &rdtgroup_default); 3187 if (IS_ERR(rdt_root)) 3188 return PTR_ERR(rdt_root); 3189 3190 mutex_lock(&rdtgroup_mutex); 3191 3192 rdtgroup_default.closid = 0; 3193 rdtgroup_default.mon.rmid = 0; 3194 rdtgroup_default.type = RDTCTRL_GROUP; 3195 INIT_LIST_HEAD(&rdtgroup_default.mon.crdtgrp_list); 3196 3197 list_add(&rdtgroup_default.rdtgroup_list, &rdt_all_groups); 3198 3199 ret = rdtgroup_add_files(rdt_root->kn, RF_CTRL_BASE); 3200 if (ret) { 3201 kernfs_destroy_root(rdt_root); 3202 goto out; 3203 } 3204 3205 rdtgroup_default.kn = rdt_root->kn; 3206 kernfs_activate(rdtgroup_default.kn); 3207 3208 out: 3209 mutex_unlock(&rdtgroup_mutex); 3210 3211 return ret; 3212 } 3213 3214 /* 3215 * rdtgroup_init - rdtgroup initialization 3216 * 3217 * Setup resctrl file system including set up root, create mount point, 3218 * register rdtgroup filesystem, and initialize files under root directory. 3219 * 3220 * Return: 0 on success or -errno 3221 */ 3222 int __init rdtgroup_init(void) 3223 { 3224 int ret = 0; 3225 3226 seq_buf_init(&last_cmd_status, last_cmd_status_buf, 3227 sizeof(last_cmd_status_buf)); 3228 3229 ret = rdtgroup_setup_root(); 3230 if (ret) 3231 return ret; 3232 3233 ret = sysfs_create_mount_point(fs_kobj, "resctrl"); 3234 if (ret) 3235 goto cleanup_root; 3236 3237 ret = register_filesystem(&rdt_fs_type); 3238 if (ret) 3239 goto cleanup_mountpoint; 3240 3241 /* 3242 * Adding the resctrl debugfs directory here may not be ideal since 3243 * it would let the resctrl debugfs directory appear on the debugfs 3244 * filesystem before the resctrl filesystem is mounted. 3245 * It may also be ok since that would enable debugging of RDT before 3246 * resctrl is mounted. 3247 * The reason why the debugfs directory is created here and not in 3248 * rdt_get_tree() is because rdt_get_tree() takes rdtgroup_mutex and 3249 * during the debugfs directory creation also &sb->s_type->i_mutex_key 3250 * (the lockdep class of inode->i_rwsem). Other filesystem 3251 * interactions (eg. SyS_getdents) have the lock ordering: 3252 * &sb->s_type->i_mutex_key --> &mm->mmap_lock 3253 * During mmap(), called with &mm->mmap_lock, the rdtgroup_mutex 3254 * is taken, thus creating dependency: 3255 * &mm->mmap_lock --> rdtgroup_mutex for the latter that can cause 3256 * issues considering the other two lock dependencies. 3257 * By creating the debugfs directory here we avoid a dependency 3258 * that may cause deadlock (even though file operations cannot 3259 * occur until the filesystem is mounted, but I do not know how to 3260 * tell lockdep that). 3261 */ 3262 debugfs_resctrl = debugfs_create_dir("resctrl", NULL); 3263 3264 return 0; 3265 3266 cleanup_mountpoint: 3267 sysfs_remove_mount_point(fs_kobj, "resctrl"); 3268 cleanup_root: 3269 kernfs_destroy_root(rdt_root); 3270 3271 return ret; 3272 } 3273 3274 void __exit rdtgroup_exit(void) 3275 { 3276 debugfs_remove_recursive(debugfs_resctrl); 3277 unregister_filesystem(&rdt_fs_type); 3278 sysfs_remove_mount_point(fs_kobj, "resctrl"); 3279 kernfs_destroy_root(rdt_root); 3280 } 3281