1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * User interface for Resource Allocation in Resource Director Technology(RDT) 4 * 5 * Copyright (C) 2016 Intel Corporation 6 * 7 * Author: Fenghua Yu <fenghua.yu@intel.com> 8 * 9 * More information about RDT be found in the Intel (R) x86 Architecture 10 * Software Developer Manual. 11 */ 12 13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 14 15 #include <linux/cacheinfo.h> 16 #include <linux/cpu.h> 17 #include <linux/debugfs.h> 18 #include <linux/fs.h> 19 #include <linux/fs_parser.h> 20 #include <linux/sysfs.h> 21 #include <linux/kernfs.h> 22 #include <linux/seq_buf.h> 23 #include <linux/seq_file.h> 24 #include <linux/sched/signal.h> 25 #include <linux/sched/task.h> 26 #include <linux/slab.h> 27 #include <linux/task_work.h> 28 #include <linux/user_namespace.h> 29 30 #include <uapi/linux/magic.h> 31 32 #include <asm/resctrl.h> 33 #include "internal.h" 34 35 DEFINE_STATIC_KEY_FALSE(rdt_enable_key); 36 DEFINE_STATIC_KEY_FALSE(rdt_mon_enable_key); 37 DEFINE_STATIC_KEY_FALSE(rdt_alloc_enable_key); 38 static struct kernfs_root *rdt_root; 39 struct rdtgroup rdtgroup_default; 40 LIST_HEAD(rdt_all_groups); 41 42 /* list of entries for the schemata file */ 43 LIST_HEAD(resctrl_schema_all); 44 45 /* Kernel fs node for "info" directory under root */ 46 static struct kernfs_node *kn_info; 47 48 /* Kernel fs node for "mon_groups" directory under root */ 49 static struct kernfs_node *kn_mongrp; 50 51 /* Kernel fs node for "mon_data" directory under root */ 52 static struct kernfs_node *kn_mondata; 53 54 static struct seq_buf last_cmd_status; 55 static char last_cmd_status_buf[512]; 56 57 struct dentry *debugfs_resctrl; 58 59 void rdt_last_cmd_clear(void) 60 { 61 lockdep_assert_held(&rdtgroup_mutex); 62 seq_buf_clear(&last_cmd_status); 63 } 64 65 void rdt_last_cmd_puts(const char *s) 66 { 67 lockdep_assert_held(&rdtgroup_mutex); 68 seq_buf_puts(&last_cmd_status, s); 69 } 70 71 void rdt_last_cmd_printf(const char *fmt, ...) 72 { 73 va_list ap; 74 75 va_start(ap, fmt); 76 lockdep_assert_held(&rdtgroup_mutex); 77 seq_buf_vprintf(&last_cmd_status, fmt, ap); 78 va_end(ap); 79 } 80 81 void rdt_staged_configs_clear(void) 82 { 83 struct rdt_resource *r; 84 struct rdt_domain *dom; 85 86 lockdep_assert_held(&rdtgroup_mutex); 87 88 for_each_alloc_capable_rdt_resource(r) { 89 list_for_each_entry(dom, &r->domains, list) 90 memset(dom->staged_config, 0, sizeof(dom->staged_config)); 91 } 92 } 93 94 /* 95 * Trivial allocator for CLOSIDs. Since h/w only supports a small number, 96 * we can keep a bitmap of free CLOSIDs in a single integer. 97 * 98 * Using a global CLOSID across all resources has some advantages and 99 * some drawbacks: 100 * + We can simply set "current->closid" to assign a task to a resource 101 * group. 102 * + Context switch code can avoid extra memory references deciding which 103 * CLOSID to load into the PQR_ASSOC MSR 104 * - We give up some options in configuring resource groups across multi-socket 105 * systems. 106 * - Our choices on how to configure each resource become progressively more 107 * limited as the number of resources grows. 108 */ 109 static int closid_free_map; 110 static int closid_free_map_len; 111 112 int closids_supported(void) 113 { 114 return closid_free_map_len; 115 } 116 117 static void closid_init(void) 118 { 119 struct resctrl_schema *s; 120 u32 rdt_min_closid = 32; 121 122 /* Compute rdt_min_closid across all resources */ 123 list_for_each_entry(s, &resctrl_schema_all, list) 124 rdt_min_closid = min(rdt_min_closid, s->num_closid); 125 126 closid_free_map = BIT_MASK(rdt_min_closid) - 1; 127 128 /* CLOSID 0 is always reserved for the default group */ 129 closid_free_map &= ~1; 130 closid_free_map_len = rdt_min_closid; 131 } 132 133 static int closid_alloc(void) 134 { 135 u32 closid = ffs(closid_free_map); 136 137 if (closid == 0) 138 return -ENOSPC; 139 closid--; 140 closid_free_map &= ~(1 << closid); 141 142 return closid; 143 } 144 145 void closid_free(int closid) 146 { 147 closid_free_map |= 1 << closid; 148 } 149 150 /** 151 * closid_allocated - test if provided closid is in use 152 * @closid: closid to be tested 153 * 154 * Return: true if @closid is currently associated with a resource group, 155 * false if @closid is free 156 */ 157 static bool closid_allocated(unsigned int closid) 158 { 159 return (closid_free_map & (1 << closid)) == 0; 160 } 161 162 /** 163 * rdtgroup_mode_by_closid - Return mode of resource group with closid 164 * @closid: closid if the resource group 165 * 166 * Each resource group is associated with a @closid. Here the mode 167 * of a resource group can be queried by searching for it using its closid. 168 * 169 * Return: mode as &enum rdtgrp_mode of resource group with closid @closid 170 */ 171 enum rdtgrp_mode rdtgroup_mode_by_closid(int closid) 172 { 173 struct rdtgroup *rdtgrp; 174 175 list_for_each_entry(rdtgrp, &rdt_all_groups, rdtgroup_list) { 176 if (rdtgrp->closid == closid) 177 return rdtgrp->mode; 178 } 179 180 return RDT_NUM_MODES; 181 } 182 183 static const char * const rdt_mode_str[] = { 184 [RDT_MODE_SHAREABLE] = "shareable", 185 [RDT_MODE_EXCLUSIVE] = "exclusive", 186 [RDT_MODE_PSEUDO_LOCKSETUP] = "pseudo-locksetup", 187 [RDT_MODE_PSEUDO_LOCKED] = "pseudo-locked", 188 }; 189 190 /** 191 * rdtgroup_mode_str - Return the string representation of mode 192 * @mode: the resource group mode as &enum rdtgroup_mode 193 * 194 * Return: string representation of valid mode, "unknown" otherwise 195 */ 196 static const char *rdtgroup_mode_str(enum rdtgrp_mode mode) 197 { 198 if (mode < RDT_MODE_SHAREABLE || mode >= RDT_NUM_MODES) 199 return "unknown"; 200 201 return rdt_mode_str[mode]; 202 } 203 204 /* set uid and gid of rdtgroup dirs and files to that of the creator */ 205 static int rdtgroup_kn_set_ugid(struct kernfs_node *kn) 206 { 207 struct iattr iattr = { .ia_valid = ATTR_UID | ATTR_GID, 208 .ia_uid = current_fsuid(), 209 .ia_gid = current_fsgid(), }; 210 211 if (uid_eq(iattr.ia_uid, GLOBAL_ROOT_UID) && 212 gid_eq(iattr.ia_gid, GLOBAL_ROOT_GID)) 213 return 0; 214 215 return kernfs_setattr(kn, &iattr); 216 } 217 218 static int rdtgroup_add_file(struct kernfs_node *parent_kn, struct rftype *rft) 219 { 220 struct kernfs_node *kn; 221 int ret; 222 223 kn = __kernfs_create_file(parent_kn, rft->name, rft->mode, 224 GLOBAL_ROOT_UID, GLOBAL_ROOT_GID, 225 0, rft->kf_ops, rft, NULL, NULL); 226 if (IS_ERR(kn)) 227 return PTR_ERR(kn); 228 229 ret = rdtgroup_kn_set_ugid(kn); 230 if (ret) { 231 kernfs_remove(kn); 232 return ret; 233 } 234 235 return 0; 236 } 237 238 static int rdtgroup_seqfile_show(struct seq_file *m, void *arg) 239 { 240 struct kernfs_open_file *of = m->private; 241 struct rftype *rft = of->kn->priv; 242 243 if (rft->seq_show) 244 return rft->seq_show(of, m, arg); 245 return 0; 246 } 247 248 static ssize_t rdtgroup_file_write(struct kernfs_open_file *of, char *buf, 249 size_t nbytes, loff_t off) 250 { 251 struct rftype *rft = of->kn->priv; 252 253 if (rft->write) 254 return rft->write(of, buf, nbytes, off); 255 256 return -EINVAL; 257 } 258 259 static const struct kernfs_ops rdtgroup_kf_single_ops = { 260 .atomic_write_len = PAGE_SIZE, 261 .write = rdtgroup_file_write, 262 .seq_show = rdtgroup_seqfile_show, 263 }; 264 265 static const struct kernfs_ops kf_mondata_ops = { 266 .atomic_write_len = PAGE_SIZE, 267 .seq_show = rdtgroup_mondata_show, 268 }; 269 270 static bool is_cpu_list(struct kernfs_open_file *of) 271 { 272 struct rftype *rft = of->kn->priv; 273 274 return rft->flags & RFTYPE_FLAGS_CPUS_LIST; 275 } 276 277 static int rdtgroup_cpus_show(struct kernfs_open_file *of, 278 struct seq_file *s, void *v) 279 { 280 struct rdtgroup *rdtgrp; 281 struct cpumask *mask; 282 int ret = 0; 283 284 rdtgrp = rdtgroup_kn_lock_live(of->kn); 285 286 if (rdtgrp) { 287 if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED) { 288 if (!rdtgrp->plr->d) { 289 rdt_last_cmd_clear(); 290 rdt_last_cmd_puts("Cache domain offline\n"); 291 ret = -ENODEV; 292 } else { 293 mask = &rdtgrp->plr->d->cpu_mask; 294 seq_printf(s, is_cpu_list(of) ? 295 "%*pbl\n" : "%*pb\n", 296 cpumask_pr_args(mask)); 297 } 298 } else { 299 seq_printf(s, is_cpu_list(of) ? "%*pbl\n" : "%*pb\n", 300 cpumask_pr_args(&rdtgrp->cpu_mask)); 301 } 302 } else { 303 ret = -ENOENT; 304 } 305 rdtgroup_kn_unlock(of->kn); 306 307 return ret; 308 } 309 310 /* 311 * This is safe against resctrl_sched_in() called from __switch_to() 312 * because __switch_to() is executed with interrupts disabled. A local call 313 * from update_closid_rmid() is protected against __switch_to() because 314 * preemption is disabled. 315 */ 316 static void update_cpu_closid_rmid(void *info) 317 { 318 struct rdtgroup *r = info; 319 320 if (r) { 321 this_cpu_write(pqr_state.default_closid, r->closid); 322 this_cpu_write(pqr_state.default_rmid, r->mon.rmid); 323 } 324 325 /* 326 * We cannot unconditionally write the MSR because the current 327 * executing task might have its own closid selected. Just reuse 328 * the context switch code. 329 */ 330 resctrl_sched_in(current); 331 } 332 333 /* 334 * Update the PGR_ASSOC MSR on all cpus in @cpu_mask, 335 * 336 * Per task closids/rmids must have been set up before calling this function. 337 */ 338 static void 339 update_closid_rmid(const struct cpumask *cpu_mask, struct rdtgroup *r) 340 { 341 on_each_cpu_mask(cpu_mask, update_cpu_closid_rmid, r, 1); 342 } 343 344 static int cpus_mon_write(struct rdtgroup *rdtgrp, cpumask_var_t newmask, 345 cpumask_var_t tmpmask) 346 { 347 struct rdtgroup *prgrp = rdtgrp->mon.parent, *crgrp; 348 struct list_head *head; 349 350 /* Check whether cpus belong to parent ctrl group */ 351 cpumask_andnot(tmpmask, newmask, &prgrp->cpu_mask); 352 if (!cpumask_empty(tmpmask)) { 353 rdt_last_cmd_puts("Can only add CPUs to mongroup that belong to parent\n"); 354 return -EINVAL; 355 } 356 357 /* Check whether cpus are dropped from this group */ 358 cpumask_andnot(tmpmask, &rdtgrp->cpu_mask, newmask); 359 if (!cpumask_empty(tmpmask)) { 360 /* Give any dropped cpus to parent rdtgroup */ 361 cpumask_or(&prgrp->cpu_mask, &prgrp->cpu_mask, tmpmask); 362 update_closid_rmid(tmpmask, prgrp); 363 } 364 365 /* 366 * If we added cpus, remove them from previous group that owned them 367 * and update per-cpu rmid 368 */ 369 cpumask_andnot(tmpmask, newmask, &rdtgrp->cpu_mask); 370 if (!cpumask_empty(tmpmask)) { 371 head = &prgrp->mon.crdtgrp_list; 372 list_for_each_entry(crgrp, head, mon.crdtgrp_list) { 373 if (crgrp == rdtgrp) 374 continue; 375 cpumask_andnot(&crgrp->cpu_mask, &crgrp->cpu_mask, 376 tmpmask); 377 } 378 update_closid_rmid(tmpmask, rdtgrp); 379 } 380 381 /* Done pushing/pulling - update this group with new mask */ 382 cpumask_copy(&rdtgrp->cpu_mask, newmask); 383 384 return 0; 385 } 386 387 static void cpumask_rdtgrp_clear(struct rdtgroup *r, struct cpumask *m) 388 { 389 struct rdtgroup *crgrp; 390 391 cpumask_andnot(&r->cpu_mask, &r->cpu_mask, m); 392 /* update the child mon group masks as well*/ 393 list_for_each_entry(crgrp, &r->mon.crdtgrp_list, mon.crdtgrp_list) 394 cpumask_and(&crgrp->cpu_mask, &r->cpu_mask, &crgrp->cpu_mask); 395 } 396 397 static int cpus_ctrl_write(struct rdtgroup *rdtgrp, cpumask_var_t newmask, 398 cpumask_var_t tmpmask, cpumask_var_t tmpmask1) 399 { 400 struct rdtgroup *r, *crgrp; 401 struct list_head *head; 402 403 /* Check whether cpus are dropped from this group */ 404 cpumask_andnot(tmpmask, &rdtgrp->cpu_mask, newmask); 405 if (!cpumask_empty(tmpmask)) { 406 /* Can't drop from default group */ 407 if (rdtgrp == &rdtgroup_default) { 408 rdt_last_cmd_puts("Can't drop CPUs from default group\n"); 409 return -EINVAL; 410 } 411 412 /* Give any dropped cpus to rdtgroup_default */ 413 cpumask_or(&rdtgroup_default.cpu_mask, 414 &rdtgroup_default.cpu_mask, tmpmask); 415 update_closid_rmid(tmpmask, &rdtgroup_default); 416 } 417 418 /* 419 * If we added cpus, remove them from previous group and 420 * the prev group's child groups that owned them 421 * and update per-cpu closid/rmid. 422 */ 423 cpumask_andnot(tmpmask, newmask, &rdtgrp->cpu_mask); 424 if (!cpumask_empty(tmpmask)) { 425 list_for_each_entry(r, &rdt_all_groups, rdtgroup_list) { 426 if (r == rdtgrp) 427 continue; 428 cpumask_and(tmpmask1, &r->cpu_mask, tmpmask); 429 if (!cpumask_empty(tmpmask1)) 430 cpumask_rdtgrp_clear(r, tmpmask1); 431 } 432 update_closid_rmid(tmpmask, rdtgrp); 433 } 434 435 /* Done pushing/pulling - update this group with new mask */ 436 cpumask_copy(&rdtgrp->cpu_mask, newmask); 437 438 /* 439 * Clear child mon group masks since there is a new parent mask 440 * now and update the rmid for the cpus the child lost. 441 */ 442 head = &rdtgrp->mon.crdtgrp_list; 443 list_for_each_entry(crgrp, head, mon.crdtgrp_list) { 444 cpumask_and(tmpmask, &rdtgrp->cpu_mask, &crgrp->cpu_mask); 445 update_closid_rmid(tmpmask, rdtgrp); 446 cpumask_clear(&crgrp->cpu_mask); 447 } 448 449 return 0; 450 } 451 452 static ssize_t rdtgroup_cpus_write(struct kernfs_open_file *of, 453 char *buf, size_t nbytes, loff_t off) 454 { 455 cpumask_var_t tmpmask, newmask, tmpmask1; 456 struct rdtgroup *rdtgrp; 457 int ret; 458 459 if (!buf) 460 return -EINVAL; 461 462 if (!zalloc_cpumask_var(&tmpmask, GFP_KERNEL)) 463 return -ENOMEM; 464 if (!zalloc_cpumask_var(&newmask, GFP_KERNEL)) { 465 free_cpumask_var(tmpmask); 466 return -ENOMEM; 467 } 468 if (!zalloc_cpumask_var(&tmpmask1, GFP_KERNEL)) { 469 free_cpumask_var(tmpmask); 470 free_cpumask_var(newmask); 471 return -ENOMEM; 472 } 473 474 rdtgrp = rdtgroup_kn_lock_live(of->kn); 475 if (!rdtgrp) { 476 ret = -ENOENT; 477 goto unlock; 478 } 479 480 if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED || 481 rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP) { 482 ret = -EINVAL; 483 rdt_last_cmd_puts("Pseudo-locking in progress\n"); 484 goto unlock; 485 } 486 487 if (is_cpu_list(of)) 488 ret = cpulist_parse(buf, newmask); 489 else 490 ret = cpumask_parse(buf, newmask); 491 492 if (ret) { 493 rdt_last_cmd_puts("Bad CPU list/mask\n"); 494 goto unlock; 495 } 496 497 /* check that user didn't specify any offline cpus */ 498 cpumask_andnot(tmpmask, newmask, cpu_online_mask); 499 if (!cpumask_empty(tmpmask)) { 500 ret = -EINVAL; 501 rdt_last_cmd_puts("Can only assign online CPUs\n"); 502 goto unlock; 503 } 504 505 if (rdtgrp->type == RDTCTRL_GROUP) 506 ret = cpus_ctrl_write(rdtgrp, newmask, tmpmask, tmpmask1); 507 else if (rdtgrp->type == RDTMON_GROUP) 508 ret = cpus_mon_write(rdtgrp, newmask, tmpmask); 509 else 510 ret = -EINVAL; 511 512 unlock: 513 rdtgroup_kn_unlock(of->kn); 514 free_cpumask_var(tmpmask); 515 free_cpumask_var(newmask); 516 free_cpumask_var(tmpmask1); 517 518 return ret ?: nbytes; 519 } 520 521 /** 522 * rdtgroup_remove - the helper to remove resource group safely 523 * @rdtgrp: resource group to remove 524 * 525 * On resource group creation via a mkdir, an extra kernfs_node reference is 526 * taken to ensure that the rdtgroup structure remains accessible for the 527 * rdtgroup_kn_unlock() calls where it is removed. 528 * 529 * Drop the extra reference here, then free the rdtgroup structure. 530 * 531 * Return: void 532 */ 533 static void rdtgroup_remove(struct rdtgroup *rdtgrp) 534 { 535 kernfs_put(rdtgrp->kn); 536 kfree(rdtgrp); 537 } 538 539 static void _update_task_closid_rmid(void *task) 540 { 541 /* 542 * If the task is still current on this CPU, update PQR_ASSOC MSR. 543 * Otherwise, the MSR is updated when the task is scheduled in. 544 */ 545 if (task == current) 546 resctrl_sched_in(task); 547 } 548 549 static void update_task_closid_rmid(struct task_struct *t) 550 { 551 if (IS_ENABLED(CONFIG_SMP) && task_curr(t)) 552 smp_call_function_single(task_cpu(t), _update_task_closid_rmid, t, 1); 553 else 554 _update_task_closid_rmid(t); 555 } 556 557 static int __rdtgroup_move_task(struct task_struct *tsk, 558 struct rdtgroup *rdtgrp) 559 { 560 /* If the task is already in rdtgrp, no need to move the task. */ 561 if ((rdtgrp->type == RDTCTRL_GROUP && tsk->closid == rdtgrp->closid && 562 tsk->rmid == rdtgrp->mon.rmid) || 563 (rdtgrp->type == RDTMON_GROUP && tsk->rmid == rdtgrp->mon.rmid && 564 tsk->closid == rdtgrp->mon.parent->closid)) 565 return 0; 566 567 /* 568 * Set the task's closid/rmid before the PQR_ASSOC MSR can be 569 * updated by them. 570 * 571 * For ctrl_mon groups, move both closid and rmid. 572 * For monitor groups, can move the tasks only from 573 * their parent CTRL group. 574 */ 575 576 if (rdtgrp->type == RDTCTRL_GROUP) { 577 WRITE_ONCE(tsk->closid, rdtgrp->closid); 578 WRITE_ONCE(tsk->rmid, rdtgrp->mon.rmid); 579 } else if (rdtgrp->type == RDTMON_GROUP) { 580 if (rdtgrp->mon.parent->closid == tsk->closid) { 581 WRITE_ONCE(tsk->rmid, rdtgrp->mon.rmid); 582 } else { 583 rdt_last_cmd_puts("Can't move task to different control group\n"); 584 return -EINVAL; 585 } 586 } 587 588 /* 589 * Ensure the task's closid and rmid are written before determining if 590 * the task is current that will decide if it will be interrupted. 591 * This pairs with the full barrier between the rq->curr update and 592 * resctrl_sched_in() during context switch. 593 */ 594 smp_mb(); 595 596 /* 597 * By now, the task's closid and rmid are set. If the task is current 598 * on a CPU, the PQR_ASSOC MSR needs to be updated to make the resource 599 * group go into effect. If the task is not current, the MSR will be 600 * updated when the task is scheduled in. 601 */ 602 update_task_closid_rmid(tsk); 603 604 return 0; 605 } 606 607 static bool is_closid_match(struct task_struct *t, struct rdtgroup *r) 608 { 609 return (rdt_alloc_capable && 610 (r->type == RDTCTRL_GROUP) && (t->closid == r->closid)); 611 } 612 613 static bool is_rmid_match(struct task_struct *t, struct rdtgroup *r) 614 { 615 return (rdt_mon_capable && 616 (r->type == RDTMON_GROUP) && (t->rmid == r->mon.rmid)); 617 } 618 619 /** 620 * rdtgroup_tasks_assigned - Test if tasks have been assigned to resource group 621 * @r: Resource group 622 * 623 * Return: 1 if tasks have been assigned to @r, 0 otherwise 624 */ 625 int rdtgroup_tasks_assigned(struct rdtgroup *r) 626 { 627 struct task_struct *p, *t; 628 int ret = 0; 629 630 lockdep_assert_held(&rdtgroup_mutex); 631 632 rcu_read_lock(); 633 for_each_process_thread(p, t) { 634 if (is_closid_match(t, r) || is_rmid_match(t, r)) { 635 ret = 1; 636 break; 637 } 638 } 639 rcu_read_unlock(); 640 641 return ret; 642 } 643 644 static int rdtgroup_task_write_permission(struct task_struct *task, 645 struct kernfs_open_file *of) 646 { 647 const struct cred *tcred = get_task_cred(task); 648 const struct cred *cred = current_cred(); 649 int ret = 0; 650 651 /* 652 * Even if we're attaching all tasks in the thread group, we only 653 * need to check permissions on one of them. 654 */ 655 if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) && 656 !uid_eq(cred->euid, tcred->uid) && 657 !uid_eq(cred->euid, tcred->suid)) { 658 rdt_last_cmd_printf("No permission to move task %d\n", task->pid); 659 ret = -EPERM; 660 } 661 662 put_cred(tcred); 663 return ret; 664 } 665 666 static int rdtgroup_move_task(pid_t pid, struct rdtgroup *rdtgrp, 667 struct kernfs_open_file *of) 668 { 669 struct task_struct *tsk; 670 int ret; 671 672 rcu_read_lock(); 673 if (pid) { 674 tsk = find_task_by_vpid(pid); 675 if (!tsk) { 676 rcu_read_unlock(); 677 rdt_last_cmd_printf("No task %d\n", pid); 678 return -ESRCH; 679 } 680 } else { 681 tsk = current; 682 } 683 684 get_task_struct(tsk); 685 rcu_read_unlock(); 686 687 ret = rdtgroup_task_write_permission(tsk, of); 688 if (!ret) 689 ret = __rdtgroup_move_task(tsk, rdtgrp); 690 691 put_task_struct(tsk); 692 return ret; 693 } 694 695 static ssize_t rdtgroup_tasks_write(struct kernfs_open_file *of, 696 char *buf, size_t nbytes, loff_t off) 697 { 698 struct rdtgroup *rdtgrp; 699 int ret = 0; 700 pid_t pid; 701 702 if (kstrtoint(strstrip(buf), 0, &pid) || pid < 0) 703 return -EINVAL; 704 rdtgrp = rdtgroup_kn_lock_live(of->kn); 705 if (!rdtgrp) { 706 rdtgroup_kn_unlock(of->kn); 707 return -ENOENT; 708 } 709 rdt_last_cmd_clear(); 710 711 if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED || 712 rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP) { 713 ret = -EINVAL; 714 rdt_last_cmd_puts("Pseudo-locking in progress\n"); 715 goto unlock; 716 } 717 718 ret = rdtgroup_move_task(pid, rdtgrp, of); 719 720 unlock: 721 rdtgroup_kn_unlock(of->kn); 722 723 return ret ?: nbytes; 724 } 725 726 static void show_rdt_tasks(struct rdtgroup *r, struct seq_file *s) 727 { 728 struct task_struct *p, *t; 729 730 rcu_read_lock(); 731 for_each_process_thread(p, t) { 732 if (is_closid_match(t, r) || is_rmid_match(t, r)) 733 seq_printf(s, "%d\n", t->pid); 734 } 735 rcu_read_unlock(); 736 } 737 738 static int rdtgroup_tasks_show(struct kernfs_open_file *of, 739 struct seq_file *s, void *v) 740 { 741 struct rdtgroup *rdtgrp; 742 int ret = 0; 743 744 rdtgrp = rdtgroup_kn_lock_live(of->kn); 745 if (rdtgrp) 746 show_rdt_tasks(rdtgrp, s); 747 else 748 ret = -ENOENT; 749 rdtgroup_kn_unlock(of->kn); 750 751 return ret; 752 } 753 754 #ifdef CONFIG_PROC_CPU_RESCTRL 755 756 /* 757 * A task can only be part of one resctrl control group and of one monitor 758 * group which is associated to that control group. 759 * 760 * 1) res: 761 * mon: 762 * 763 * resctrl is not available. 764 * 765 * 2) res:/ 766 * mon: 767 * 768 * Task is part of the root resctrl control group, and it is not associated 769 * to any monitor group. 770 * 771 * 3) res:/ 772 * mon:mon0 773 * 774 * Task is part of the root resctrl control group and monitor group mon0. 775 * 776 * 4) res:group0 777 * mon: 778 * 779 * Task is part of resctrl control group group0, and it is not associated 780 * to any monitor group. 781 * 782 * 5) res:group0 783 * mon:mon1 784 * 785 * Task is part of resctrl control group group0 and monitor group mon1. 786 */ 787 int proc_resctrl_show(struct seq_file *s, struct pid_namespace *ns, 788 struct pid *pid, struct task_struct *tsk) 789 { 790 struct rdtgroup *rdtg; 791 int ret = 0; 792 793 mutex_lock(&rdtgroup_mutex); 794 795 /* Return empty if resctrl has not been mounted. */ 796 if (!static_branch_unlikely(&rdt_enable_key)) { 797 seq_puts(s, "res:\nmon:\n"); 798 goto unlock; 799 } 800 801 list_for_each_entry(rdtg, &rdt_all_groups, rdtgroup_list) { 802 struct rdtgroup *crg; 803 804 /* 805 * Task information is only relevant for shareable 806 * and exclusive groups. 807 */ 808 if (rdtg->mode != RDT_MODE_SHAREABLE && 809 rdtg->mode != RDT_MODE_EXCLUSIVE) 810 continue; 811 812 if (rdtg->closid != tsk->closid) 813 continue; 814 815 seq_printf(s, "res:%s%s\n", (rdtg == &rdtgroup_default) ? "/" : "", 816 rdtg->kn->name); 817 seq_puts(s, "mon:"); 818 list_for_each_entry(crg, &rdtg->mon.crdtgrp_list, 819 mon.crdtgrp_list) { 820 if (tsk->rmid != crg->mon.rmid) 821 continue; 822 seq_printf(s, "%s", crg->kn->name); 823 break; 824 } 825 seq_putc(s, '\n'); 826 goto unlock; 827 } 828 /* 829 * The above search should succeed. Otherwise return 830 * with an error. 831 */ 832 ret = -ENOENT; 833 unlock: 834 mutex_unlock(&rdtgroup_mutex); 835 836 return ret; 837 } 838 #endif 839 840 static int rdt_last_cmd_status_show(struct kernfs_open_file *of, 841 struct seq_file *seq, void *v) 842 { 843 int len; 844 845 mutex_lock(&rdtgroup_mutex); 846 len = seq_buf_used(&last_cmd_status); 847 if (len) 848 seq_printf(seq, "%.*s", len, last_cmd_status_buf); 849 else 850 seq_puts(seq, "ok\n"); 851 mutex_unlock(&rdtgroup_mutex); 852 return 0; 853 } 854 855 static int rdt_num_closids_show(struct kernfs_open_file *of, 856 struct seq_file *seq, void *v) 857 { 858 struct resctrl_schema *s = of->kn->parent->priv; 859 860 seq_printf(seq, "%u\n", s->num_closid); 861 return 0; 862 } 863 864 static int rdt_default_ctrl_show(struct kernfs_open_file *of, 865 struct seq_file *seq, void *v) 866 { 867 struct resctrl_schema *s = of->kn->parent->priv; 868 struct rdt_resource *r = s->res; 869 870 seq_printf(seq, "%x\n", r->default_ctrl); 871 return 0; 872 } 873 874 static int rdt_min_cbm_bits_show(struct kernfs_open_file *of, 875 struct seq_file *seq, void *v) 876 { 877 struct resctrl_schema *s = of->kn->parent->priv; 878 struct rdt_resource *r = s->res; 879 880 seq_printf(seq, "%u\n", r->cache.min_cbm_bits); 881 return 0; 882 } 883 884 static int rdt_shareable_bits_show(struct kernfs_open_file *of, 885 struct seq_file *seq, void *v) 886 { 887 struct resctrl_schema *s = of->kn->parent->priv; 888 struct rdt_resource *r = s->res; 889 890 seq_printf(seq, "%x\n", r->cache.shareable_bits); 891 return 0; 892 } 893 894 /** 895 * rdt_bit_usage_show - Display current usage of resources 896 * 897 * A domain is a shared resource that can now be allocated differently. Here 898 * we display the current regions of the domain as an annotated bitmask. 899 * For each domain of this resource its allocation bitmask 900 * is annotated as below to indicate the current usage of the corresponding bit: 901 * 0 - currently unused 902 * X - currently available for sharing and used by software and hardware 903 * H - currently used by hardware only but available for software use 904 * S - currently used and shareable by software only 905 * E - currently used exclusively by one resource group 906 * P - currently pseudo-locked by one resource group 907 */ 908 static int rdt_bit_usage_show(struct kernfs_open_file *of, 909 struct seq_file *seq, void *v) 910 { 911 struct resctrl_schema *s = of->kn->parent->priv; 912 /* 913 * Use unsigned long even though only 32 bits are used to ensure 914 * test_bit() is used safely. 915 */ 916 unsigned long sw_shareable = 0, hw_shareable = 0; 917 unsigned long exclusive = 0, pseudo_locked = 0; 918 struct rdt_resource *r = s->res; 919 struct rdt_domain *dom; 920 int i, hwb, swb, excl, psl; 921 enum rdtgrp_mode mode; 922 bool sep = false; 923 u32 ctrl_val; 924 925 mutex_lock(&rdtgroup_mutex); 926 hw_shareable = r->cache.shareable_bits; 927 list_for_each_entry(dom, &r->domains, list) { 928 if (sep) 929 seq_putc(seq, ';'); 930 sw_shareable = 0; 931 exclusive = 0; 932 seq_printf(seq, "%d=", dom->id); 933 for (i = 0; i < closids_supported(); i++) { 934 if (!closid_allocated(i)) 935 continue; 936 ctrl_val = resctrl_arch_get_config(r, dom, i, 937 s->conf_type); 938 mode = rdtgroup_mode_by_closid(i); 939 switch (mode) { 940 case RDT_MODE_SHAREABLE: 941 sw_shareable |= ctrl_val; 942 break; 943 case RDT_MODE_EXCLUSIVE: 944 exclusive |= ctrl_val; 945 break; 946 case RDT_MODE_PSEUDO_LOCKSETUP: 947 /* 948 * RDT_MODE_PSEUDO_LOCKSETUP is possible 949 * here but not included since the CBM 950 * associated with this CLOSID in this mode 951 * is not initialized and no task or cpu can be 952 * assigned this CLOSID. 953 */ 954 break; 955 case RDT_MODE_PSEUDO_LOCKED: 956 case RDT_NUM_MODES: 957 WARN(1, 958 "invalid mode for closid %d\n", i); 959 break; 960 } 961 } 962 for (i = r->cache.cbm_len - 1; i >= 0; i--) { 963 pseudo_locked = dom->plr ? dom->plr->cbm : 0; 964 hwb = test_bit(i, &hw_shareable); 965 swb = test_bit(i, &sw_shareable); 966 excl = test_bit(i, &exclusive); 967 psl = test_bit(i, &pseudo_locked); 968 if (hwb && swb) 969 seq_putc(seq, 'X'); 970 else if (hwb && !swb) 971 seq_putc(seq, 'H'); 972 else if (!hwb && swb) 973 seq_putc(seq, 'S'); 974 else if (excl) 975 seq_putc(seq, 'E'); 976 else if (psl) 977 seq_putc(seq, 'P'); 978 else /* Unused bits remain */ 979 seq_putc(seq, '0'); 980 } 981 sep = true; 982 } 983 seq_putc(seq, '\n'); 984 mutex_unlock(&rdtgroup_mutex); 985 return 0; 986 } 987 988 static int rdt_min_bw_show(struct kernfs_open_file *of, 989 struct seq_file *seq, void *v) 990 { 991 struct resctrl_schema *s = of->kn->parent->priv; 992 struct rdt_resource *r = s->res; 993 994 seq_printf(seq, "%u\n", r->membw.min_bw); 995 return 0; 996 } 997 998 static int rdt_num_rmids_show(struct kernfs_open_file *of, 999 struct seq_file *seq, void *v) 1000 { 1001 struct rdt_resource *r = of->kn->parent->priv; 1002 1003 seq_printf(seq, "%d\n", r->num_rmid); 1004 1005 return 0; 1006 } 1007 1008 static int rdt_mon_features_show(struct kernfs_open_file *of, 1009 struct seq_file *seq, void *v) 1010 { 1011 struct rdt_resource *r = of->kn->parent->priv; 1012 struct mon_evt *mevt; 1013 1014 list_for_each_entry(mevt, &r->evt_list, list) { 1015 seq_printf(seq, "%s\n", mevt->name); 1016 if (mevt->configurable) 1017 seq_printf(seq, "%s_config\n", mevt->name); 1018 } 1019 1020 return 0; 1021 } 1022 1023 static int rdt_bw_gran_show(struct kernfs_open_file *of, 1024 struct seq_file *seq, void *v) 1025 { 1026 struct resctrl_schema *s = of->kn->parent->priv; 1027 struct rdt_resource *r = s->res; 1028 1029 seq_printf(seq, "%u\n", r->membw.bw_gran); 1030 return 0; 1031 } 1032 1033 static int rdt_delay_linear_show(struct kernfs_open_file *of, 1034 struct seq_file *seq, void *v) 1035 { 1036 struct resctrl_schema *s = of->kn->parent->priv; 1037 struct rdt_resource *r = s->res; 1038 1039 seq_printf(seq, "%u\n", r->membw.delay_linear); 1040 return 0; 1041 } 1042 1043 static int max_threshold_occ_show(struct kernfs_open_file *of, 1044 struct seq_file *seq, void *v) 1045 { 1046 seq_printf(seq, "%u\n", resctrl_rmid_realloc_threshold); 1047 1048 return 0; 1049 } 1050 1051 static int rdt_thread_throttle_mode_show(struct kernfs_open_file *of, 1052 struct seq_file *seq, void *v) 1053 { 1054 struct resctrl_schema *s = of->kn->parent->priv; 1055 struct rdt_resource *r = s->res; 1056 1057 if (r->membw.throttle_mode == THREAD_THROTTLE_PER_THREAD) 1058 seq_puts(seq, "per-thread\n"); 1059 else 1060 seq_puts(seq, "max\n"); 1061 1062 return 0; 1063 } 1064 1065 static ssize_t max_threshold_occ_write(struct kernfs_open_file *of, 1066 char *buf, size_t nbytes, loff_t off) 1067 { 1068 unsigned int bytes; 1069 int ret; 1070 1071 ret = kstrtouint(buf, 0, &bytes); 1072 if (ret) 1073 return ret; 1074 1075 if (bytes > resctrl_rmid_realloc_limit) 1076 return -EINVAL; 1077 1078 resctrl_rmid_realloc_threshold = resctrl_arch_round_mon_val(bytes); 1079 1080 return nbytes; 1081 } 1082 1083 /* 1084 * rdtgroup_mode_show - Display mode of this resource group 1085 */ 1086 static int rdtgroup_mode_show(struct kernfs_open_file *of, 1087 struct seq_file *s, void *v) 1088 { 1089 struct rdtgroup *rdtgrp; 1090 1091 rdtgrp = rdtgroup_kn_lock_live(of->kn); 1092 if (!rdtgrp) { 1093 rdtgroup_kn_unlock(of->kn); 1094 return -ENOENT; 1095 } 1096 1097 seq_printf(s, "%s\n", rdtgroup_mode_str(rdtgrp->mode)); 1098 1099 rdtgroup_kn_unlock(of->kn); 1100 return 0; 1101 } 1102 1103 static enum resctrl_conf_type resctrl_peer_type(enum resctrl_conf_type my_type) 1104 { 1105 switch (my_type) { 1106 case CDP_CODE: 1107 return CDP_DATA; 1108 case CDP_DATA: 1109 return CDP_CODE; 1110 default: 1111 case CDP_NONE: 1112 return CDP_NONE; 1113 } 1114 } 1115 1116 /** 1117 * __rdtgroup_cbm_overlaps - Does CBM for intended closid overlap with other 1118 * @r: Resource to which domain instance @d belongs. 1119 * @d: The domain instance for which @closid is being tested. 1120 * @cbm: Capacity bitmask being tested. 1121 * @closid: Intended closid for @cbm. 1122 * @exclusive: Only check if overlaps with exclusive resource groups 1123 * 1124 * Checks if provided @cbm intended to be used for @closid on domain 1125 * @d overlaps with any other closids or other hardware usage associated 1126 * with this domain. If @exclusive is true then only overlaps with 1127 * resource groups in exclusive mode will be considered. If @exclusive 1128 * is false then overlaps with any resource group or hardware entities 1129 * will be considered. 1130 * 1131 * @cbm is unsigned long, even if only 32 bits are used, to make the 1132 * bitmap functions work correctly. 1133 * 1134 * Return: false if CBM does not overlap, true if it does. 1135 */ 1136 static bool __rdtgroup_cbm_overlaps(struct rdt_resource *r, struct rdt_domain *d, 1137 unsigned long cbm, int closid, 1138 enum resctrl_conf_type type, bool exclusive) 1139 { 1140 enum rdtgrp_mode mode; 1141 unsigned long ctrl_b; 1142 int i; 1143 1144 /* Check for any overlap with regions used by hardware directly */ 1145 if (!exclusive) { 1146 ctrl_b = r->cache.shareable_bits; 1147 if (bitmap_intersects(&cbm, &ctrl_b, r->cache.cbm_len)) 1148 return true; 1149 } 1150 1151 /* Check for overlap with other resource groups */ 1152 for (i = 0; i < closids_supported(); i++) { 1153 ctrl_b = resctrl_arch_get_config(r, d, i, type); 1154 mode = rdtgroup_mode_by_closid(i); 1155 if (closid_allocated(i) && i != closid && 1156 mode != RDT_MODE_PSEUDO_LOCKSETUP) { 1157 if (bitmap_intersects(&cbm, &ctrl_b, r->cache.cbm_len)) { 1158 if (exclusive) { 1159 if (mode == RDT_MODE_EXCLUSIVE) 1160 return true; 1161 continue; 1162 } 1163 return true; 1164 } 1165 } 1166 } 1167 1168 return false; 1169 } 1170 1171 /** 1172 * rdtgroup_cbm_overlaps - Does CBM overlap with other use of hardware 1173 * @s: Schema for the resource to which domain instance @d belongs. 1174 * @d: The domain instance for which @closid is being tested. 1175 * @cbm: Capacity bitmask being tested. 1176 * @closid: Intended closid for @cbm. 1177 * @exclusive: Only check if overlaps with exclusive resource groups 1178 * 1179 * Resources that can be allocated using a CBM can use the CBM to control 1180 * the overlap of these allocations. rdtgroup_cmb_overlaps() is the test 1181 * for overlap. Overlap test is not limited to the specific resource for 1182 * which the CBM is intended though - when dealing with CDP resources that 1183 * share the underlying hardware the overlap check should be performed on 1184 * the CDP resource sharing the hardware also. 1185 * 1186 * Refer to description of __rdtgroup_cbm_overlaps() for the details of the 1187 * overlap test. 1188 * 1189 * Return: true if CBM overlap detected, false if there is no overlap 1190 */ 1191 bool rdtgroup_cbm_overlaps(struct resctrl_schema *s, struct rdt_domain *d, 1192 unsigned long cbm, int closid, bool exclusive) 1193 { 1194 enum resctrl_conf_type peer_type = resctrl_peer_type(s->conf_type); 1195 struct rdt_resource *r = s->res; 1196 1197 if (__rdtgroup_cbm_overlaps(r, d, cbm, closid, s->conf_type, 1198 exclusive)) 1199 return true; 1200 1201 if (!resctrl_arch_get_cdp_enabled(r->rid)) 1202 return false; 1203 return __rdtgroup_cbm_overlaps(r, d, cbm, closid, peer_type, exclusive); 1204 } 1205 1206 /** 1207 * rdtgroup_mode_test_exclusive - Test if this resource group can be exclusive 1208 * 1209 * An exclusive resource group implies that there should be no sharing of 1210 * its allocated resources. At the time this group is considered to be 1211 * exclusive this test can determine if its current schemata supports this 1212 * setting by testing for overlap with all other resource groups. 1213 * 1214 * Return: true if resource group can be exclusive, false if there is overlap 1215 * with allocations of other resource groups and thus this resource group 1216 * cannot be exclusive. 1217 */ 1218 static bool rdtgroup_mode_test_exclusive(struct rdtgroup *rdtgrp) 1219 { 1220 int closid = rdtgrp->closid; 1221 struct resctrl_schema *s; 1222 struct rdt_resource *r; 1223 bool has_cache = false; 1224 struct rdt_domain *d; 1225 u32 ctrl; 1226 1227 list_for_each_entry(s, &resctrl_schema_all, list) { 1228 r = s->res; 1229 if (r->rid == RDT_RESOURCE_MBA || r->rid == RDT_RESOURCE_SMBA) 1230 continue; 1231 has_cache = true; 1232 list_for_each_entry(d, &r->domains, list) { 1233 ctrl = resctrl_arch_get_config(r, d, closid, 1234 s->conf_type); 1235 if (rdtgroup_cbm_overlaps(s, d, ctrl, closid, false)) { 1236 rdt_last_cmd_puts("Schemata overlaps\n"); 1237 return false; 1238 } 1239 } 1240 } 1241 1242 if (!has_cache) { 1243 rdt_last_cmd_puts("Cannot be exclusive without CAT/CDP\n"); 1244 return false; 1245 } 1246 1247 return true; 1248 } 1249 1250 /** 1251 * rdtgroup_mode_write - Modify the resource group's mode 1252 * 1253 */ 1254 static ssize_t rdtgroup_mode_write(struct kernfs_open_file *of, 1255 char *buf, size_t nbytes, loff_t off) 1256 { 1257 struct rdtgroup *rdtgrp; 1258 enum rdtgrp_mode mode; 1259 int ret = 0; 1260 1261 /* Valid input requires a trailing newline */ 1262 if (nbytes == 0 || buf[nbytes - 1] != '\n') 1263 return -EINVAL; 1264 buf[nbytes - 1] = '\0'; 1265 1266 rdtgrp = rdtgroup_kn_lock_live(of->kn); 1267 if (!rdtgrp) { 1268 rdtgroup_kn_unlock(of->kn); 1269 return -ENOENT; 1270 } 1271 1272 rdt_last_cmd_clear(); 1273 1274 mode = rdtgrp->mode; 1275 1276 if ((!strcmp(buf, "shareable") && mode == RDT_MODE_SHAREABLE) || 1277 (!strcmp(buf, "exclusive") && mode == RDT_MODE_EXCLUSIVE) || 1278 (!strcmp(buf, "pseudo-locksetup") && 1279 mode == RDT_MODE_PSEUDO_LOCKSETUP) || 1280 (!strcmp(buf, "pseudo-locked") && mode == RDT_MODE_PSEUDO_LOCKED)) 1281 goto out; 1282 1283 if (mode == RDT_MODE_PSEUDO_LOCKED) { 1284 rdt_last_cmd_puts("Cannot change pseudo-locked group\n"); 1285 ret = -EINVAL; 1286 goto out; 1287 } 1288 1289 if (!strcmp(buf, "shareable")) { 1290 if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP) { 1291 ret = rdtgroup_locksetup_exit(rdtgrp); 1292 if (ret) 1293 goto out; 1294 } 1295 rdtgrp->mode = RDT_MODE_SHAREABLE; 1296 } else if (!strcmp(buf, "exclusive")) { 1297 if (!rdtgroup_mode_test_exclusive(rdtgrp)) { 1298 ret = -EINVAL; 1299 goto out; 1300 } 1301 if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP) { 1302 ret = rdtgroup_locksetup_exit(rdtgrp); 1303 if (ret) 1304 goto out; 1305 } 1306 rdtgrp->mode = RDT_MODE_EXCLUSIVE; 1307 } else if (!strcmp(buf, "pseudo-locksetup")) { 1308 ret = rdtgroup_locksetup_enter(rdtgrp); 1309 if (ret) 1310 goto out; 1311 rdtgrp->mode = RDT_MODE_PSEUDO_LOCKSETUP; 1312 } else { 1313 rdt_last_cmd_puts("Unknown or unsupported mode\n"); 1314 ret = -EINVAL; 1315 } 1316 1317 out: 1318 rdtgroup_kn_unlock(of->kn); 1319 return ret ?: nbytes; 1320 } 1321 1322 /** 1323 * rdtgroup_cbm_to_size - Translate CBM to size in bytes 1324 * @r: RDT resource to which @d belongs. 1325 * @d: RDT domain instance. 1326 * @cbm: bitmask for which the size should be computed. 1327 * 1328 * The bitmask provided associated with the RDT domain instance @d will be 1329 * translated into how many bytes it represents. The size in bytes is 1330 * computed by first dividing the total cache size by the CBM length to 1331 * determine how many bytes each bit in the bitmask represents. The result 1332 * is multiplied with the number of bits set in the bitmask. 1333 * 1334 * @cbm is unsigned long, even if only 32 bits are used to make the 1335 * bitmap functions work correctly. 1336 */ 1337 unsigned int rdtgroup_cbm_to_size(struct rdt_resource *r, 1338 struct rdt_domain *d, unsigned long cbm) 1339 { 1340 struct cpu_cacheinfo *ci; 1341 unsigned int size = 0; 1342 int num_b, i; 1343 1344 num_b = bitmap_weight(&cbm, r->cache.cbm_len); 1345 ci = get_cpu_cacheinfo(cpumask_any(&d->cpu_mask)); 1346 for (i = 0; i < ci->num_leaves; i++) { 1347 if (ci->info_list[i].level == r->cache_level) { 1348 size = ci->info_list[i].size / r->cache.cbm_len * num_b; 1349 break; 1350 } 1351 } 1352 1353 return size; 1354 } 1355 1356 /** 1357 * rdtgroup_size_show - Display size in bytes of allocated regions 1358 * 1359 * The "size" file mirrors the layout of the "schemata" file, printing the 1360 * size in bytes of each region instead of the capacity bitmask. 1361 * 1362 */ 1363 static int rdtgroup_size_show(struct kernfs_open_file *of, 1364 struct seq_file *s, void *v) 1365 { 1366 struct resctrl_schema *schema; 1367 enum resctrl_conf_type type; 1368 struct rdtgroup *rdtgrp; 1369 struct rdt_resource *r; 1370 struct rdt_domain *d; 1371 unsigned int size; 1372 int ret = 0; 1373 u32 closid; 1374 bool sep; 1375 u32 ctrl; 1376 1377 rdtgrp = rdtgroup_kn_lock_live(of->kn); 1378 if (!rdtgrp) { 1379 rdtgroup_kn_unlock(of->kn); 1380 return -ENOENT; 1381 } 1382 1383 if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED) { 1384 if (!rdtgrp->plr->d) { 1385 rdt_last_cmd_clear(); 1386 rdt_last_cmd_puts("Cache domain offline\n"); 1387 ret = -ENODEV; 1388 } else { 1389 seq_printf(s, "%*s:", max_name_width, 1390 rdtgrp->plr->s->name); 1391 size = rdtgroup_cbm_to_size(rdtgrp->plr->s->res, 1392 rdtgrp->plr->d, 1393 rdtgrp->plr->cbm); 1394 seq_printf(s, "%d=%u\n", rdtgrp->plr->d->id, size); 1395 } 1396 goto out; 1397 } 1398 1399 closid = rdtgrp->closid; 1400 1401 list_for_each_entry(schema, &resctrl_schema_all, list) { 1402 r = schema->res; 1403 type = schema->conf_type; 1404 sep = false; 1405 seq_printf(s, "%*s:", max_name_width, schema->name); 1406 list_for_each_entry(d, &r->domains, list) { 1407 if (sep) 1408 seq_putc(s, ';'); 1409 if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP) { 1410 size = 0; 1411 } else { 1412 if (is_mba_sc(r)) 1413 ctrl = d->mbps_val[closid]; 1414 else 1415 ctrl = resctrl_arch_get_config(r, d, 1416 closid, 1417 type); 1418 if (r->rid == RDT_RESOURCE_MBA || 1419 r->rid == RDT_RESOURCE_SMBA) 1420 size = ctrl; 1421 else 1422 size = rdtgroup_cbm_to_size(r, d, ctrl); 1423 } 1424 seq_printf(s, "%d=%u", d->id, size); 1425 sep = true; 1426 } 1427 seq_putc(s, '\n'); 1428 } 1429 1430 out: 1431 rdtgroup_kn_unlock(of->kn); 1432 1433 return ret; 1434 } 1435 1436 struct mon_config_info { 1437 u32 evtid; 1438 u32 mon_config; 1439 }; 1440 1441 #define INVALID_CONFIG_INDEX UINT_MAX 1442 1443 /** 1444 * mon_event_config_index_get - get the hardware index for the 1445 * configurable event 1446 * @evtid: event id. 1447 * 1448 * Return: 0 for evtid == QOS_L3_MBM_TOTAL_EVENT_ID 1449 * 1 for evtid == QOS_L3_MBM_LOCAL_EVENT_ID 1450 * INVALID_CONFIG_INDEX for invalid evtid 1451 */ 1452 static inline unsigned int mon_event_config_index_get(u32 evtid) 1453 { 1454 switch (evtid) { 1455 case QOS_L3_MBM_TOTAL_EVENT_ID: 1456 return 0; 1457 case QOS_L3_MBM_LOCAL_EVENT_ID: 1458 return 1; 1459 default: 1460 /* Should never reach here */ 1461 return INVALID_CONFIG_INDEX; 1462 } 1463 } 1464 1465 static void mon_event_config_read(void *info) 1466 { 1467 struct mon_config_info *mon_info = info; 1468 unsigned int index; 1469 u64 msrval; 1470 1471 index = mon_event_config_index_get(mon_info->evtid); 1472 if (index == INVALID_CONFIG_INDEX) { 1473 pr_warn_once("Invalid event id %d\n", mon_info->evtid); 1474 return; 1475 } 1476 rdmsrl(MSR_IA32_EVT_CFG_BASE + index, msrval); 1477 1478 /* Report only the valid event configuration bits */ 1479 mon_info->mon_config = msrval & MAX_EVT_CONFIG_BITS; 1480 } 1481 1482 static void mondata_config_read(struct rdt_domain *d, struct mon_config_info *mon_info) 1483 { 1484 smp_call_function_any(&d->cpu_mask, mon_event_config_read, mon_info, 1); 1485 } 1486 1487 static int mbm_config_show(struct seq_file *s, struct rdt_resource *r, u32 evtid) 1488 { 1489 struct mon_config_info mon_info = {0}; 1490 struct rdt_domain *dom; 1491 bool sep = false; 1492 1493 mutex_lock(&rdtgroup_mutex); 1494 1495 list_for_each_entry(dom, &r->domains, list) { 1496 if (sep) 1497 seq_puts(s, ";"); 1498 1499 memset(&mon_info, 0, sizeof(struct mon_config_info)); 1500 mon_info.evtid = evtid; 1501 mondata_config_read(dom, &mon_info); 1502 1503 seq_printf(s, "%d=0x%02x", dom->id, mon_info.mon_config); 1504 sep = true; 1505 } 1506 seq_puts(s, "\n"); 1507 1508 mutex_unlock(&rdtgroup_mutex); 1509 1510 return 0; 1511 } 1512 1513 static int mbm_total_bytes_config_show(struct kernfs_open_file *of, 1514 struct seq_file *seq, void *v) 1515 { 1516 struct rdt_resource *r = of->kn->parent->priv; 1517 1518 mbm_config_show(seq, r, QOS_L3_MBM_TOTAL_EVENT_ID); 1519 1520 return 0; 1521 } 1522 1523 static int mbm_local_bytes_config_show(struct kernfs_open_file *of, 1524 struct seq_file *seq, void *v) 1525 { 1526 struct rdt_resource *r = of->kn->parent->priv; 1527 1528 mbm_config_show(seq, r, QOS_L3_MBM_LOCAL_EVENT_ID); 1529 1530 return 0; 1531 } 1532 1533 static void mon_event_config_write(void *info) 1534 { 1535 struct mon_config_info *mon_info = info; 1536 unsigned int index; 1537 1538 index = mon_event_config_index_get(mon_info->evtid); 1539 if (index == INVALID_CONFIG_INDEX) { 1540 pr_warn_once("Invalid event id %d\n", mon_info->evtid); 1541 return; 1542 } 1543 wrmsr(MSR_IA32_EVT_CFG_BASE + index, mon_info->mon_config, 0); 1544 } 1545 1546 static int mbm_config_write_domain(struct rdt_resource *r, 1547 struct rdt_domain *d, u32 evtid, u32 val) 1548 { 1549 struct mon_config_info mon_info = {0}; 1550 int ret = 0; 1551 1552 /* mon_config cannot be more than the supported set of events */ 1553 if (val > MAX_EVT_CONFIG_BITS) { 1554 rdt_last_cmd_puts("Invalid event configuration\n"); 1555 return -EINVAL; 1556 } 1557 1558 /* 1559 * Read the current config value first. If both are the same then 1560 * no need to write it again. 1561 */ 1562 mon_info.evtid = evtid; 1563 mondata_config_read(d, &mon_info); 1564 if (mon_info.mon_config == val) 1565 goto out; 1566 1567 mon_info.mon_config = val; 1568 1569 /* 1570 * Update MSR_IA32_EVT_CFG_BASE MSR on one of the CPUs in the 1571 * domain. The MSRs offset from MSR MSR_IA32_EVT_CFG_BASE 1572 * are scoped at the domain level. Writing any of these MSRs 1573 * on one CPU is observed by all the CPUs in the domain. 1574 */ 1575 smp_call_function_any(&d->cpu_mask, mon_event_config_write, 1576 &mon_info, 1); 1577 1578 /* 1579 * When an Event Configuration is changed, the bandwidth counters 1580 * for all RMIDs and Events will be cleared by the hardware. The 1581 * hardware also sets MSR_IA32_QM_CTR.Unavailable (bit 62) for 1582 * every RMID on the next read to any event for every RMID. 1583 * Subsequent reads will have MSR_IA32_QM_CTR.Unavailable (bit 62) 1584 * cleared while it is tracked by the hardware. Clear the 1585 * mbm_local and mbm_total counts for all the RMIDs. 1586 */ 1587 resctrl_arch_reset_rmid_all(r, d); 1588 1589 out: 1590 return ret; 1591 } 1592 1593 static int mon_config_write(struct rdt_resource *r, char *tok, u32 evtid) 1594 { 1595 char *dom_str = NULL, *id_str; 1596 unsigned long dom_id, val; 1597 struct rdt_domain *d; 1598 int ret = 0; 1599 1600 next: 1601 if (!tok || tok[0] == '\0') 1602 return 0; 1603 1604 /* Start processing the strings for each domain */ 1605 dom_str = strim(strsep(&tok, ";")); 1606 id_str = strsep(&dom_str, "="); 1607 1608 if (!id_str || kstrtoul(id_str, 10, &dom_id)) { 1609 rdt_last_cmd_puts("Missing '=' or non-numeric domain id\n"); 1610 return -EINVAL; 1611 } 1612 1613 if (!dom_str || kstrtoul(dom_str, 16, &val)) { 1614 rdt_last_cmd_puts("Non-numeric event configuration value\n"); 1615 return -EINVAL; 1616 } 1617 1618 list_for_each_entry(d, &r->domains, list) { 1619 if (d->id == dom_id) { 1620 ret = mbm_config_write_domain(r, d, evtid, val); 1621 if (ret) 1622 return -EINVAL; 1623 goto next; 1624 } 1625 } 1626 1627 return -EINVAL; 1628 } 1629 1630 static ssize_t mbm_total_bytes_config_write(struct kernfs_open_file *of, 1631 char *buf, size_t nbytes, 1632 loff_t off) 1633 { 1634 struct rdt_resource *r = of->kn->parent->priv; 1635 int ret; 1636 1637 /* Valid input requires a trailing newline */ 1638 if (nbytes == 0 || buf[nbytes - 1] != '\n') 1639 return -EINVAL; 1640 1641 mutex_lock(&rdtgroup_mutex); 1642 1643 rdt_last_cmd_clear(); 1644 1645 buf[nbytes - 1] = '\0'; 1646 1647 ret = mon_config_write(r, buf, QOS_L3_MBM_TOTAL_EVENT_ID); 1648 1649 mutex_unlock(&rdtgroup_mutex); 1650 1651 return ret ?: nbytes; 1652 } 1653 1654 static ssize_t mbm_local_bytes_config_write(struct kernfs_open_file *of, 1655 char *buf, size_t nbytes, 1656 loff_t off) 1657 { 1658 struct rdt_resource *r = of->kn->parent->priv; 1659 int ret; 1660 1661 /* Valid input requires a trailing newline */ 1662 if (nbytes == 0 || buf[nbytes - 1] != '\n') 1663 return -EINVAL; 1664 1665 mutex_lock(&rdtgroup_mutex); 1666 1667 rdt_last_cmd_clear(); 1668 1669 buf[nbytes - 1] = '\0'; 1670 1671 ret = mon_config_write(r, buf, QOS_L3_MBM_LOCAL_EVENT_ID); 1672 1673 mutex_unlock(&rdtgroup_mutex); 1674 1675 return ret ?: nbytes; 1676 } 1677 1678 /* rdtgroup information files for one cache resource. */ 1679 static struct rftype res_common_files[] = { 1680 { 1681 .name = "last_cmd_status", 1682 .mode = 0444, 1683 .kf_ops = &rdtgroup_kf_single_ops, 1684 .seq_show = rdt_last_cmd_status_show, 1685 .fflags = RF_TOP_INFO, 1686 }, 1687 { 1688 .name = "num_closids", 1689 .mode = 0444, 1690 .kf_ops = &rdtgroup_kf_single_ops, 1691 .seq_show = rdt_num_closids_show, 1692 .fflags = RF_CTRL_INFO, 1693 }, 1694 { 1695 .name = "mon_features", 1696 .mode = 0444, 1697 .kf_ops = &rdtgroup_kf_single_ops, 1698 .seq_show = rdt_mon_features_show, 1699 .fflags = RF_MON_INFO, 1700 }, 1701 { 1702 .name = "num_rmids", 1703 .mode = 0444, 1704 .kf_ops = &rdtgroup_kf_single_ops, 1705 .seq_show = rdt_num_rmids_show, 1706 .fflags = RF_MON_INFO, 1707 }, 1708 { 1709 .name = "cbm_mask", 1710 .mode = 0444, 1711 .kf_ops = &rdtgroup_kf_single_ops, 1712 .seq_show = rdt_default_ctrl_show, 1713 .fflags = RF_CTRL_INFO | RFTYPE_RES_CACHE, 1714 }, 1715 { 1716 .name = "min_cbm_bits", 1717 .mode = 0444, 1718 .kf_ops = &rdtgroup_kf_single_ops, 1719 .seq_show = rdt_min_cbm_bits_show, 1720 .fflags = RF_CTRL_INFO | RFTYPE_RES_CACHE, 1721 }, 1722 { 1723 .name = "shareable_bits", 1724 .mode = 0444, 1725 .kf_ops = &rdtgroup_kf_single_ops, 1726 .seq_show = rdt_shareable_bits_show, 1727 .fflags = RF_CTRL_INFO | RFTYPE_RES_CACHE, 1728 }, 1729 { 1730 .name = "bit_usage", 1731 .mode = 0444, 1732 .kf_ops = &rdtgroup_kf_single_ops, 1733 .seq_show = rdt_bit_usage_show, 1734 .fflags = RF_CTRL_INFO | RFTYPE_RES_CACHE, 1735 }, 1736 { 1737 .name = "min_bandwidth", 1738 .mode = 0444, 1739 .kf_ops = &rdtgroup_kf_single_ops, 1740 .seq_show = rdt_min_bw_show, 1741 .fflags = RF_CTRL_INFO | RFTYPE_RES_MB, 1742 }, 1743 { 1744 .name = "bandwidth_gran", 1745 .mode = 0444, 1746 .kf_ops = &rdtgroup_kf_single_ops, 1747 .seq_show = rdt_bw_gran_show, 1748 .fflags = RF_CTRL_INFO | RFTYPE_RES_MB, 1749 }, 1750 { 1751 .name = "delay_linear", 1752 .mode = 0444, 1753 .kf_ops = &rdtgroup_kf_single_ops, 1754 .seq_show = rdt_delay_linear_show, 1755 .fflags = RF_CTRL_INFO | RFTYPE_RES_MB, 1756 }, 1757 /* 1758 * Platform specific which (if any) capabilities are provided by 1759 * thread_throttle_mode. Defer "fflags" initialization to platform 1760 * discovery. 1761 */ 1762 { 1763 .name = "thread_throttle_mode", 1764 .mode = 0444, 1765 .kf_ops = &rdtgroup_kf_single_ops, 1766 .seq_show = rdt_thread_throttle_mode_show, 1767 }, 1768 { 1769 .name = "max_threshold_occupancy", 1770 .mode = 0644, 1771 .kf_ops = &rdtgroup_kf_single_ops, 1772 .write = max_threshold_occ_write, 1773 .seq_show = max_threshold_occ_show, 1774 .fflags = RF_MON_INFO | RFTYPE_RES_CACHE, 1775 }, 1776 { 1777 .name = "mbm_total_bytes_config", 1778 .mode = 0644, 1779 .kf_ops = &rdtgroup_kf_single_ops, 1780 .seq_show = mbm_total_bytes_config_show, 1781 .write = mbm_total_bytes_config_write, 1782 }, 1783 { 1784 .name = "mbm_local_bytes_config", 1785 .mode = 0644, 1786 .kf_ops = &rdtgroup_kf_single_ops, 1787 .seq_show = mbm_local_bytes_config_show, 1788 .write = mbm_local_bytes_config_write, 1789 }, 1790 { 1791 .name = "cpus", 1792 .mode = 0644, 1793 .kf_ops = &rdtgroup_kf_single_ops, 1794 .write = rdtgroup_cpus_write, 1795 .seq_show = rdtgroup_cpus_show, 1796 .fflags = RFTYPE_BASE, 1797 }, 1798 { 1799 .name = "cpus_list", 1800 .mode = 0644, 1801 .kf_ops = &rdtgroup_kf_single_ops, 1802 .write = rdtgroup_cpus_write, 1803 .seq_show = rdtgroup_cpus_show, 1804 .flags = RFTYPE_FLAGS_CPUS_LIST, 1805 .fflags = RFTYPE_BASE, 1806 }, 1807 { 1808 .name = "tasks", 1809 .mode = 0644, 1810 .kf_ops = &rdtgroup_kf_single_ops, 1811 .write = rdtgroup_tasks_write, 1812 .seq_show = rdtgroup_tasks_show, 1813 .fflags = RFTYPE_BASE, 1814 }, 1815 { 1816 .name = "schemata", 1817 .mode = 0644, 1818 .kf_ops = &rdtgroup_kf_single_ops, 1819 .write = rdtgroup_schemata_write, 1820 .seq_show = rdtgroup_schemata_show, 1821 .fflags = RF_CTRL_BASE, 1822 }, 1823 { 1824 .name = "mode", 1825 .mode = 0644, 1826 .kf_ops = &rdtgroup_kf_single_ops, 1827 .write = rdtgroup_mode_write, 1828 .seq_show = rdtgroup_mode_show, 1829 .fflags = RF_CTRL_BASE, 1830 }, 1831 { 1832 .name = "size", 1833 .mode = 0444, 1834 .kf_ops = &rdtgroup_kf_single_ops, 1835 .seq_show = rdtgroup_size_show, 1836 .fflags = RF_CTRL_BASE, 1837 }, 1838 1839 }; 1840 1841 static int rdtgroup_add_files(struct kernfs_node *kn, unsigned long fflags) 1842 { 1843 struct rftype *rfts, *rft; 1844 int ret, len; 1845 1846 rfts = res_common_files; 1847 len = ARRAY_SIZE(res_common_files); 1848 1849 lockdep_assert_held(&rdtgroup_mutex); 1850 1851 for (rft = rfts; rft < rfts + len; rft++) { 1852 if (rft->fflags && ((fflags & rft->fflags) == rft->fflags)) { 1853 ret = rdtgroup_add_file(kn, rft); 1854 if (ret) 1855 goto error; 1856 } 1857 } 1858 1859 return 0; 1860 error: 1861 pr_warn("Failed to add %s, err=%d\n", rft->name, ret); 1862 while (--rft >= rfts) { 1863 if ((fflags & rft->fflags) == rft->fflags) 1864 kernfs_remove_by_name(kn, rft->name); 1865 } 1866 return ret; 1867 } 1868 1869 static struct rftype *rdtgroup_get_rftype_by_name(const char *name) 1870 { 1871 struct rftype *rfts, *rft; 1872 int len; 1873 1874 rfts = res_common_files; 1875 len = ARRAY_SIZE(res_common_files); 1876 1877 for (rft = rfts; rft < rfts + len; rft++) { 1878 if (!strcmp(rft->name, name)) 1879 return rft; 1880 } 1881 1882 return NULL; 1883 } 1884 1885 void __init thread_throttle_mode_init(void) 1886 { 1887 struct rftype *rft; 1888 1889 rft = rdtgroup_get_rftype_by_name("thread_throttle_mode"); 1890 if (!rft) 1891 return; 1892 1893 rft->fflags = RF_CTRL_INFO | RFTYPE_RES_MB; 1894 } 1895 1896 void __init mbm_config_rftype_init(const char *config) 1897 { 1898 struct rftype *rft; 1899 1900 rft = rdtgroup_get_rftype_by_name(config); 1901 if (rft) 1902 rft->fflags = RF_MON_INFO | RFTYPE_RES_CACHE; 1903 } 1904 1905 /** 1906 * rdtgroup_kn_mode_restrict - Restrict user access to named resctrl file 1907 * @r: The resource group with which the file is associated. 1908 * @name: Name of the file 1909 * 1910 * The permissions of named resctrl file, directory, or link are modified 1911 * to not allow read, write, or execute by any user. 1912 * 1913 * WARNING: This function is intended to communicate to the user that the 1914 * resctrl file has been locked down - that it is not relevant to the 1915 * particular state the system finds itself in. It should not be relied 1916 * on to protect from user access because after the file's permissions 1917 * are restricted the user can still change the permissions using chmod 1918 * from the command line. 1919 * 1920 * Return: 0 on success, <0 on failure. 1921 */ 1922 int rdtgroup_kn_mode_restrict(struct rdtgroup *r, const char *name) 1923 { 1924 struct iattr iattr = {.ia_valid = ATTR_MODE,}; 1925 struct kernfs_node *kn; 1926 int ret = 0; 1927 1928 kn = kernfs_find_and_get_ns(r->kn, name, NULL); 1929 if (!kn) 1930 return -ENOENT; 1931 1932 switch (kernfs_type(kn)) { 1933 case KERNFS_DIR: 1934 iattr.ia_mode = S_IFDIR; 1935 break; 1936 case KERNFS_FILE: 1937 iattr.ia_mode = S_IFREG; 1938 break; 1939 case KERNFS_LINK: 1940 iattr.ia_mode = S_IFLNK; 1941 break; 1942 } 1943 1944 ret = kernfs_setattr(kn, &iattr); 1945 kernfs_put(kn); 1946 return ret; 1947 } 1948 1949 /** 1950 * rdtgroup_kn_mode_restore - Restore user access to named resctrl file 1951 * @r: The resource group with which the file is associated. 1952 * @name: Name of the file 1953 * @mask: Mask of permissions that should be restored 1954 * 1955 * Restore the permissions of the named file. If @name is a directory the 1956 * permissions of its parent will be used. 1957 * 1958 * Return: 0 on success, <0 on failure. 1959 */ 1960 int rdtgroup_kn_mode_restore(struct rdtgroup *r, const char *name, 1961 umode_t mask) 1962 { 1963 struct iattr iattr = {.ia_valid = ATTR_MODE,}; 1964 struct kernfs_node *kn, *parent; 1965 struct rftype *rfts, *rft; 1966 int ret, len; 1967 1968 rfts = res_common_files; 1969 len = ARRAY_SIZE(res_common_files); 1970 1971 for (rft = rfts; rft < rfts + len; rft++) { 1972 if (!strcmp(rft->name, name)) 1973 iattr.ia_mode = rft->mode & mask; 1974 } 1975 1976 kn = kernfs_find_and_get_ns(r->kn, name, NULL); 1977 if (!kn) 1978 return -ENOENT; 1979 1980 switch (kernfs_type(kn)) { 1981 case KERNFS_DIR: 1982 parent = kernfs_get_parent(kn); 1983 if (parent) { 1984 iattr.ia_mode |= parent->mode; 1985 kernfs_put(parent); 1986 } 1987 iattr.ia_mode |= S_IFDIR; 1988 break; 1989 case KERNFS_FILE: 1990 iattr.ia_mode |= S_IFREG; 1991 break; 1992 case KERNFS_LINK: 1993 iattr.ia_mode |= S_IFLNK; 1994 break; 1995 } 1996 1997 ret = kernfs_setattr(kn, &iattr); 1998 kernfs_put(kn); 1999 return ret; 2000 } 2001 2002 static int rdtgroup_mkdir_info_resdir(void *priv, char *name, 2003 unsigned long fflags) 2004 { 2005 struct kernfs_node *kn_subdir; 2006 int ret; 2007 2008 kn_subdir = kernfs_create_dir(kn_info, name, 2009 kn_info->mode, priv); 2010 if (IS_ERR(kn_subdir)) 2011 return PTR_ERR(kn_subdir); 2012 2013 ret = rdtgroup_kn_set_ugid(kn_subdir); 2014 if (ret) 2015 return ret; 2016 2017 ret = rdtgroup_add_files(kn_subdir, fflags); 2018 if (!ret) 2019 kernfs_activate(kn_subdir); 2020 2021 return ret; 2022 } 2023 2024 static int rdtgroup_create_info_dir(struct kernfs_node *parent_kn) 2025 { 2026 struct resctrl_schema *s; 2027 struct rdt_resource *r; 2028 unsigned long fflags; 2029 char name[32]; 2030 int ret; 2031 2032 /* create the directory */ 2033 kn_info = kernfs_create_dir(parent_kn, "info", parent_kn->mode, NULL); 2034 if (IS_ERR(kn_info)) 2035 return PTR_ERR(kn_info); 2036 2037 ret = rdtgroup_add_files(kn_info, RF_TOP_INFO); 2038 if (ret) 2039 goto out_destroy; 2040 2041 /* loop over enabled controls, these are all alloc_capable */ 2042 list_for_each_entry(s, &resctrl_schema_all, list) { 2043 r = s->res; 2044 fflags = r->fflags | RF_CTRL_INFO; 2045 ret = rdtgroup_mkdir_info_resdir(s, s->name, fflags); 2046 if (ret) 2047 goto out_destroy; 2048 } 2049 2050 for_each_mon_capable_rdt_resource(r) { 2051 fflags = r->fflags | RF_MON_INFO; 2052 sprintf(name, "%s_MON", r->name); 2053 ret = rdtgroup_mkdir_info_resdir(r, name, fflags); 2054 if (ret) 2055 goto out_destroy; 2056 } 2057 2058 ret = rdtgroup_kn_set_ugid(kn_info); 2059 if (ret) 2060 goto out_destroy; 2061 2062 kernfs_activate(kn_info); 2063 2064 return 0; 2065 2066 out_destroy: 2067 kernfs_remove(kn_info); 2068 return ret; 2069 } 2070 2071 static int 2072 mongroup_create_dir(struct kernfs_node *parent_kn, struct rdtgroup *prgrp, 2073 char *name, struct kernfs_node **dest_kn) 2074 { 2075 struct kernfs_node *kn; 2076 int ret; 2077 2078 /* create the directory */ 2079 kn = kernfs_create_dir(parent_kn, name, parent_kn->mode, prgrp); 2080 if (IS_ERR(kn)) 2081 return PTR_ERR(kn); 2082 2083 if (dest_kn) 2084 *dest_kn = kn; 2085 2086 ret = rdtgroup_kn_set_ugid(kn); 2087 if (ret) 2088 goto out_destroy; 2089 2090 kernfs_activate(kn); 2091 2092 return 0; 2093 2094 out_destroy: 2095 kernfs_remove(kn); 2096 return ret; 2097 } 2098 2099 static void l3_qos_cfg_update(void *arg) 2100 { 2101 bool *enable = arg; 2102 2103 wrmsrl(MSR_IA32_L3_QOS_CFG, *enable ? L3_QOS_CDP_ENABLE : 0ULL); 2104 } 2105 2106 static void l2_qos_cfg_update(void *arg) 2107 { 2108 bool *enable = arg; 2109 2110 wrmsrl(MSR_IA32_L2_QOS_CFG, *enable ? L2_QOS_CDP_ENABLE : 0ULL); 2111 } 2112 2113 static inline bool is_mba_linear(void) 2114 { 2115 return rdt_resources_all[RDT_RESOURCE_MBA].r_resctrl.membw.delay_linear; 2116 } 2117 2118 static int set_cache_qos_cfg(int level, bool enable) 2119 { 2120 void (*update)(void *arg); 2121 struct rdt_resource *r_l; 2122 cpumask_var_t cpu_mask; 2123 struct rdt_domain *d; 2124 int cpu; 2125 2126 if (level == RDT_RESOURCE_L3) 2127 update = l3_qos_cfg_update; 2128 else if (level == RDT_RESOURCE_L2) 2129 update = l2_qos_cfg_update; 2130 else 2131 return -EINVAL; 2132 2133 if (!zalloc_cpumask_var(&cpu_mask, GFP_KERNEL)) 2134 return -ENOMEM; 2135 2136 r_l = &rdt_resources_all[level].r_resctrl; 2137 list_for_each_entry(d, &r_l->domains, list) { 2138 if (r_l->cache.arch_has_per_cpu_cfg) 2139 /* Pick all the CPUs in the domain instance */ 2140 for_each_cpu(cpu, &d->cpu_mask) 2141 cpumask_set_cpu(cpu, cpu_mask); 2142 else 2143 /* Pick one CPU from each domain instance to update MSR */ 2144 cpumask_set_cpu(cpumask_any(&d->cpu_mask), cpu_mask); 2145 } 2146 2147 /* Update QOS_CFG MSR on all the CPUs in cpu_mask */ 2148 on_each_cpu_mask(cpu_mask, update, &enable, 1); 2149 2150 free_cpumask_var(cpu_mask); 2151 2152 return 0; 2153 } 2154 2155 /* Restore the qos cfg state when a domain comes online */ 2156 void rdt_domain_reconfigure_cdp(struct rdt_resource *r) 2157 { 2158 struct rdt_hw_resource *hw_res = resctrl_to_arch_res(r); 2159 2160 if (!r->cdp_capable) 2161 return; 2162 2163 if (r->rid == RDT_RESOURCE_L2) 2164 l2_qos_cfg_update(&hw_res->cdp_enabled); 2165 2166 if (r->rid == RDT_RESOURCE_L3) 2167 l3_qos_cfg_update(&hw_res->cdp_enabled); 2168 } 2169 2170 static int mba_sc_domain_allocate(struct rdt_resource *r, struct rdt_domain *d) 2171 { 2172 u32 num_closid = resctrl_arch_get_num_closid(r); 2173 int cpu = cpumask_any(&d->cpu_mask); 2174 int i; 2175 2176 d->mbps_val = kcalloc_node(num_closid, sizeof(*d->mbps_val), 2177 GFP_KERNEL, cpu_to_node(cpu)); 2178 if (!d->mbps_val) 2179 return -ENOMEM; 2180 2181 for (i = 0; i < num_closid; i++) 2182 d->mbps_val[i] = MBA_MAX_MBPS; 2183 2184 return 0; 2185 } 2186 2187 static void mba_sc_domain_destroy(struct rdt_resource *r, 2188 struct rdt_domain *d) 2189 { 2190 kfree(d->mbps_val); 2191 d->mbps_val = NULL; 2192 } 2193 2194 /* 2195 * MBA software controller is supported only if 2196 * MBM is supported and MBA is in linear scale. 2197 */ 2198 static bool supports_mba_mbps(void) 2199 { 2200 struct rdt_resource *r = &rdt_resources_all[RDT_RESOURCE_MBA].r_resctrl; 2201 2202 return (is_mbm_local_enabled() && 2203 r->alloc_capable && is_mba_linear()); 2204 } 2205 2206 /* 2207 * Enable or disable the MBA software controller 2208 * which helps user specify bandwidth in MBps. 2209 */ 2210 static int set_mba_sc(bool mba_sc) 2211 { 2212 struct rdt_resource *r = &rdt_resources_all[RDT_RESOURCE_MBA].r_resctrl; 2213 u32 num_closid = resctrl_arch_get_num_closid(r); 2214 struct rdt_domain *d; 2215 int i; 2216 2217 if (!supports_mba_mbps() || mba_sc == is_mba_sc(r)) 2218 return -EINVAL; 2219 2220 r->membw.mba_sc = mba_sc; 2221 2222 list_for_each_entry(d, &r->domains, list) { 2223 for (i = 0; i < num_closid; i++) 2224 d->mbps_val[i] = MBA_MAX_MBPS; 2225 } 2226 2227 return 0; 2228 } 2229 2230 static int cdp_enable(int level) 2231 { 2232 struct rdt_resource *r_l = &rdt_resources_all[level].r_resctrl; 2233 int ret; 2234 2235 if (!r_l->alloc_capable) 2236 return -EINVAL; 2237 2238 ret = set_cache_qos_cfg(level, true); 2239 if (!ret) 2240 rdt_resources_all[level].cdp_enabled = true; 2241 2242 return ret; 2243 } 2244 2245 static void cdp_disable(int level) 2246 { 2247 struct rdt_hw_resource *r_hw = &rdt_resources_all[level]; 2248 2249 if (r_hw->cdp_enabled) { 2250 set_cache_qos_cfg(level, false); 2251 r_hw->cdp_enabled = false; 2252 } 2253 } 2254 2255 int resctrl_arch_set_cdp_enabled(enum resctrl_res_level l, bool enable) 2256 { 2257 struct rdt_hw_resource *hw_res = &rdt_resources_all[l]; 2258 2259 if (!hw_res->r_resctrl.cdp_capable) 2260 return -EINVAL; 2261 2262 if (enable) 2263 return cdp_enable(l); 2264 2265 cdp_disable(l); 2266 2267 return 0; 2268 } 2269 2270 static void cdp_disable_all(void) 2271 { 2272 if (resctrl_arch_get_cdp_enabled(RDT_RESOURCE_L3)) 2273 resctrl_arch_set_cdp_enabled(RDT_RESOURCE_L3, false); 2274 if (resctrl_arch_get_cdp_enabled(RDT_RESOURCE_L2)) 2275 resctrl_arch_set_cdp_enabled(RDT_RESOURCE_L2, false); 2276 } 2277 2278 /* 2279 * We don't allow rdtgroup directories to be created anywhere 2280 * except the root directory. Thus when looking for the rdtgroup 2281 * structure for a kernfs node we are either looking at a directory, 2282 * in which case the rdtgroup structure is pointed at by the "priv" 2283 * field, otherwise we have a file, and need only look to the parent 2284 * to find the rdtgroup. 2285 */ 2286 static struct rdtgroup *kernfs_to_rdtgroup(struct kernfs_node *kn) 2287 { 2288 if (kernfs_type(kn) == KERNFS_DIR) { 2289 /* 2290 * All the resource directories use "kn->priv" 2291 * to point to the "struct rdtgroup" for the 2292 * resource. "info" and its subdirectories don't 2293 * have rdtgroup structures, so return NULL here. 2294 */ 2295 if (kn == kn_info || kn->parent == kn_info) 2296 return NULL; 2297 else 2298 return kn->priv; 2299 } else { 2300 return kn->parent->priv; 2301 } 2302 } 2303 2304 struct rdtgroup *rdtgroup_kn_lock_live(struct kernfs_node *kn) 2305 { 2306 struct rdtgroup *rdtgrp = kernfs_to_rdtgroup(kn); 2307 2308 if (!rdtgrp) 2309 return NULL; 2310 2311 atomic_inc(&rdtgrp->waitcount); 2312 kernfs_break_active_protection(kn); 2313 2314 mutex_lock(&rdtgroup_mutex); 2315 2316 /* Was this group deleted while we waited? */ 2317 if (rdtgrp->flags & RDT_DELETED) 2318 return NULL; 2319 2320 return rdtgrp; 2321 } 2322 2323 void rdtgroup_kn_unlock(struct kernfs_node *kn) 2324 { 2325 struct rdtgroup *rdtgrp = kernfs_to_rdtgroup(kn); 2326 2327 if (!rdtgrp) 2328 return; 2329 2330 mutex_unlock(&rdtgroup_mutex); 2331 2332 if (atomic_dec_and_test(&rdtgrp->waitcount) && 2333 (rdtgrp->flags & RDT_DELETED)) { 2334 if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP || 2335 rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED) 2336 rdtgroup_pseudo_lock_remove(rdtgrp); 2337 kernfs_unbreak_active_protection(kn); 2338 rdtgroup_remove(rdtgrp); 2339 } else { 2340 kernfs_unbreak_active_protection(kn); 2341 } 2342 } 2343 2344 static int mkdir_mondata_all(struct kernfs_node *parent_kn, 2345 struct rdtgroup *prgrp, 2346 struct kernfs_node **mon_data_kn); 2347 2348 static int rdt_enable_ctx(struct rdt_fs_context *ctx) 2349 { 2350 int ret = 0; 2351 2352 if (ctx->enable_cdpl2) 2353 ret = resctrl_arch_set_cdp_enabled(RDT_RESOURCE_L2, true); 2354 2355 if (!ret && ctx->enable_cdpl3) 2356 ret = resctrl_arch_set_cdp_enabled(RDT_RESOURCE_L3, true); 2357 2358 if (!ret && ctx->enable_mba_mbps) 2359 ret = set_mba_sc(true); 2360 2361 return ret; 2362 } 2363 2364 static int schemata_list_add(struct rdt_resource *r, enum resctrl_conf_type type) 2365 { 2366 struct resctrl_schema *s; 2367 const char *suffix = ""; 2368 int ret, cl; 2369 2370 s = kzalloc(sizeof(*s), GFP_KERNEL); 2371 if (!s) 2372 return -ENOMEM; 2373 2374 s->res = r; 2375 s->num_closid = resctrl_arch_get_num_closid(r); 2376 if (resctrl_arch_get_cdp_enabled(r->rid)) 2377 s->num_closid /= 2; 2378 2379 s->conf_type = type; 2380 switch (type) { 2381 case CDP_CODE: 2382 suffix = "CODE"; 2383 break; 2384 case CDP_DATA: 2385 suffix = "DATA"; 2386 break; 2387 case CDP_NONE: 2388 suffix = ""; 2389 break; 2390 } 2391 2392 ret = snprintf(s->name, sizeof(s->name), "%s%s", r->name, suffix); 2393 if (ret >= sizeof(s->name)) { 2394 kfree(s); 2395 return -EINVAL; 2396 } 2397 2398 cl = strlen(s->name); 2399 2400 /* 2401 * If CDP is supported by this resource, but not enabled, 2402 * include the suffix. This ensures the tabular format of the 2403 * schemata file does not change between mounts of the filesystem. 2404 */ 2405 if (r->cdp_capable && !resctrl_arch_get_cdp_enabled(r->rid)) 2406 cl += 4; 2407 2408 if (cl > max_name_width) 2409 max_name_width = cl; 2410 2411 INIT_LIST_HEAD(&s->list); 2412 list_add(&s->list, &resctrl_schema_all); 2413 2414 return 0; 2415 } 2416 2417 static int schemata_list_create(void) 2418 { 2419 struct rdt_resource *r; 2420 int ret = 0; 2421 2422 for_each_alloc_capable_rdt_resource(r) { 2423 if (resctrl_arch_get_cdp_enabled(r->rid)) { 2424 ret = schemata_list_add(r, CDP_CODE); 2425 if (ret) 2426 break; 2427 2428 ret = schemata_list_add(r, CDP_DATA); 2429 } else { 2430 ret = schemata_list_add(r, CDP_NONE); 2431 } 2432 2433 if (ret) 2434 break; 2435 } 2436 2437 return ret; 2438 } 2439 2440 static void schemata_list_destroy(void) 2441 { 2442 struct resctrl_schema *s, *tmp; 2443 2444 list_for_each_entry_safe(s, tmp, &resctrl_schema_all, list) { 2445 list_del(&s->list); 2446 kfree(s); 2447 } 2448 } 2449 2450 static int rdt_get_tree(struct fs_context *fc) 2451 { 2452 struct rdt_fs_context *ctx = rdt_fc2context(fc); 2453 struct rdt_domain *dom; 2454 struct rdt_resource *r; 2455 int ret; 2456 2457 cpus_read_lock(); 2458 mutex_lock(&rdtgroup_mutex); 2459 /* 2460 * resctrl file system can only be mounted once. 2461 */ 2462 if (static_branch_unlikely(&rdt_enable_key)) { 2463 ret = -EBUSY; 2464 goto out; 2465 } 2466 2467 ret = rdt_enable_ctx(ctx); 2468 if (ret < 0) 2469 goto out_cdp; 2470 2471 ret = schemata_list_create(); 2472 if (ret) { 2473 schemata_list_destroy(); 2474 goto out_mba; 2475 } 2476 2477 closid_init(); 2478 2479 ret = rdtgroup_create_info_dir(rdtgroup_default.kn); 2480 if (ret < 0) 2481 goto out_schemata_free; 2482 2483 if (rdt_mon_capable) { 2484 ret = mongroup_create_dir(rdtgroup_default.kn, 2485 &rdtgroup_default, "mon_groups", 2486 &kn_mongrp); 2487 if (ret < 0) 2488 goto out_info; 2489 2490 ret = mkdir_mondata_all(rdtgroup_default.kn, 2491 &rdtgroup_default, &kn_mondata); 2492 if (ret < 0) 2493 goto out_mongrp; 2494 rdtgroup_default.mon.mon_data_kn = kn_mondata; 2495 } 2496 2497 ret = rdt_pseudo_lock_init(); 2498 if (ret) 2499 goto out_mondata; 2500 2501 ret = kernfs_get_tree(fc); 2502 if (ret < 0) 2503 goto out_psl; 2504 2505 if (rdt_alloc_capable) 2506 static_branch_enable_cpuslocked(&rdt_alloc_enable_key); 2507 if (rdt_mon_capable) 2508 static_branch_enable_cpuslocked(&rdt_mon_enable_key); 2509 2510 if (rdt_alloc_capable || rdt_mon_capable) 2511 static_branch_enable_cpuslocked(&rdt_enable_key); 2512 2513 if (is_mbm_enabled()) { 2514 r = &rdt_resources_all[RDT_RESOURCE_L3].r_resctrl; 2515 list_for_each_entry(dom, &r->domains, list) 2516 mbm_setup_overflow_handler(dom, MBM_OVERFLOW_INTERVAL); 2517 } 2518 2519 goto out; 2520 2521 out_psl: 2522 rdt_pseudo_lock_release(); 2523 out_mondata: 2524 if (rdt_mon_capable) 2525 kernfs_remove(kn_mondata); 2526 out_mongrp: 2527 if (rdt_mon_capable) 2528 kernfs_remove(kn_mongrp); 2529 out_info: 2530 kernfs_remove(kn_info); 2531 out_schemata_free: 2532 schemata_list_destroy(); 2533 out_mba: 2534 if (ctx->enable_mba_mbps) 2535 set_mba_sc(false); 2536 out_cdp: 2537 cdp_disable_all(); 2538 out: 2539 rdt_last_cmd_clear(); 2540 mutex_unlock(&rdtgroup_mutex); 2541 cpus_read_unlock(); 2542 return ret; 2543 } 2544 2545 enum rdt_param { 2546 Opt_cdp, 2547 Opt_cdpl2, 2548 Opt_mba_mbps, 2549 nr__rdt_params 2550 }; 2551 2552 static const struct fs_parameter_spec rdt_fs_parameters[] = { 2553 fsparam_flag("cdp", Opt_cdp), 2554 fsparam_flag("cdpl2", Opt_cdpl2), 2555 fsparam_flag("mba_MBps", Opt_mba_mbps), 2556 {} 2557 }; 2558 2559 static int rdt_parse_param(struct fs_context *fc, struct fs_parameter *param) 2560 { 2561 struct rdt_fs_context *ctx = rdt_fc2context(fc); 2562 struct fs_parse_result result; 2563 int opt; 2564 2565 opt = fs_parse(fc, rdt_fs_parameters, param, &result); 2566 if (opt < 0) 2567 return opt; 2568 2569 switch (opt) { 2570 case Opt_cdp: 2571 ctx->enable_cdpl3 = true; 2572 return 0; 2573 case Opt_cdpl2: 2574 ctx->enable_cdpl2 = true; 2575 return 0; 2576 case Opt_mba_mbps: 2577 if (!supports_mba_mbps()) 2578 return -EINVAL; 2579 ctx->enable_mba_mbps = true; 2580 return 0; 2581 } 2582 2583 return -EINVAL; 2584 } 2585 2586 static void rdt_fs_context_free(struct fs_context *fc) 2587 { 2588 struct rdt_fs_context *ctx = rdt_fc2context(fc); 2589 2590 kernfs_free_fs_context(fc); 2591 kfree(ctx); 2592 } 2593 2594 static const struct fs_context_operations rdt_fs_context_ops = { 2595 .free = rdt_fs_context_free, 2596 .parse_param = rdt_parse_param, 2597 .get_tree = rdt_get_tree, 2598 }; 2599 2600 static int rdt_init_fs_context(struct fs_context *fc) 2601 { 2602 struct rdt_fs_context *ctx; 2603 2604 ctx = kzalloc(sizeof(struct rdt_fs_context), GFP_KERNEL); 2605 if (!ctx) 2606 return -ENOMEM; 2607 2608 ctx->kfc.root = rdt_root; 2609 ctx->kfc.magic = RDTGROUP_SUPER_MAGIC; 2610 fc->fs_private = &ctx->kfc; 2611 fc->ops = &rdt_fs_context_ops; 2612 put_user_ns(fc->user_ns); 2613 fc->user_ns = get_user_ns(&init_user_ns); 2614 fc->global = true; 2615 return 0; 2616 } 2617 2618 static int reset_all_ctrls(struct rdt_resource *r) 2619 { 2620 struct rdt_hw_resource *hw_res = resctrl_to_arch_res(r); 2621 struct rdt_hw_domain *hw_dom; 2622 struct msr_param msr_param; 2623 cpumask_var_t cpu_mask; 2624 struct rdt_domain *d; 2625 int i; 2626 2627 if (!zalloc_cpumask_var(&cpu_mask, GFP_KERNEL)) 2628 return -ENOMEM; 2629 2630 msr_param.res = r; 2631 msr_param.low = 0; 2632 msr_param.high = hw_res->num_closid; 2633 2634 /* 2635 * Disable resource control for this resource by setting all 2636 * CBMs in all domains to the maximum mask value. Pick one CPU 2637 * from each domain to update the MSRs below. 2638 */ 2639 list_for_each_entry(d, &r->domains, list) { 2640 hw_dom = resctrl_to_arch_dom(d); 2641 cpumask_set_cpu(cpumask_any(&d->cpu_mask), cpu_mask); 2642 2643 for (i = 0; i < hw_res->num_closid; i++) 2644 hw_dom->ctrl_val[i] = r->default_ctrl; 2645 } 2646 2647 /* Update CBM on all the CPUs in cpu_mask */ 2648 on_each_cpu_mask(cpu_mask, rdt_ctrl_update, &msr_param, 1); 2649 2650 free_cpumask_var(cpu_mask); 2651 2652 return 0; 2653 } 2654 2655 /* 2656 * Move tasks from one to the other group. If @from is NULL, then all tasks 2657 * in the systems are moved unconditionally (used for teardown). 2658 * 2659 * If @mask is not NULL the cpus on which moved tasks are running are set 2660 * in that mask so the update smp function call is restricted to affected 2661 * cpus. 2662 */ 2663 static void rdt_move_group_tasks(struct rdtgroup *from, struct rdtgroup *to, 2664 struct cpumask *mask) 2665 { 2666 struct task_struct *p, *t; 2667 2668 read_lock(&tasklist_lock); 2669 for_each_process_thread(p, t) { 2670 if (!from || is_closid_match(t, from) || 2671 is_rmid_match(t, from)) { 2672 WRITE_ONCE(t->closid, to->closid); 2673 WRITE_ONCE(t->rmid, to->mon.rmid); 2674 2675 /* 2676 * Order the closid/rmid stores above before the loads 2677 * in task_curr(). This pairs with the full barrier 2678 * between the rq->curr update and resctrl_sched_in() 2679 * during context switch. 2680 */ 2681 smp_mb(); 2682 2683 /* 2684 * If the task is on a CPU, set the CPU in the mask. 2685 * The detection is inaccurate as tasks might move or 2686 * schedule before the smp function call takes place. 2687 * In such a case the function call is pointless, but 2688 * there is no other side effect. 2689 */ 2690 if (IS_ENABLED(CONFIG_SMP) && mask && task_curr(t)) 2691 cpumask_set_cpu(task_cpu(t), mask); 2692 } 2693 } 2694 read_unlock(&tasklist_lock); 2695 } 2696 2697 static void free_all_child_rdtgrp(struct rdtgroup *rdtgrp) 2698 { 2699 struct rdtgroup *sentry, *stmp; 2700 struct list_head *head; 2701 2702 head = &rdtgrp->mon.crdtgrp_list; 2703 list_for_each_entry_safe(sentry, stmp, head, mon.crdtgrp_list) { 2704 free_rmid(sentry->mon.rmid); 2705 list_del(&sentry->mon.crdtgrp_list); 2706 2707 if (atomic_read(&sentry->waitcount) != 0) 2708 sentry->flags = RDT_DELETED; 2709 else 2710 rdtgroup_remove(sentry); 2711 } 2712 } 2713 2714 /* 2715 * Forcibly remove all of subdirectories under root. 2716 */ 2717 static void rmdir_all_sub(void) 2718 { 2719 struct rdtgroup *rdtgrp, *tmp; 2720 2721 /* Move all tasks to the default resource group */ 2722 rdt_move_group_tasks(NULL, &rdtgroup_default, NULL); 2723 2724 list_for_each_entry_safe(rdtgrp, tmp, &rdt_all_groups, rdtgroup_list) { 2725 /* Free any child rmids */ 2726 free_all_child_rdtgrp(rdtgrp); 2727 2728 /* Remove each rdtgroup other than root */ 2729 if (rdtgrp == &rdtgroup_default) 2730 continue; 2731 2732 if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP || 2733 rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED) 2734 rdtgroup_pseudo_lock_remove(rdtgrp); 2735 2736 /* 2737 * Give any CPUs back to the default group. We cannot copy 2738 * cpu_online_mask because a CPU might have executed the 2739 * offline callback already, but is still marked online. 2740 */ 2741 cpumask_or(&rdtgroup_default.cpu_mask, 2742 &rdtgroup_default.cpu_mask, &rdtgrp->cpu_mask); 2743 2744 free_rmid(rdtgrp->mon.rmid); 2745 2746 kernfs_remove(rdtgrp->kn); 2747 list_del(&rdtgrp->rdtgroup_list); 2748 2749 if (atomic_read(&rdtgrp->waitcount) != 0) 2750 rdtgrp->flags = RDT_DELETED; 2751 else 2752 rdtgroup_remove(rdtgrp); 2753 } 2754 /* Notify online CPUs to update per cpu storage and PQR_ASSOC MSR */ 2755 update_closid_rmid(cpu_online_mask, &rdtgroup_default); 2756 2757 kernfs_remove(kn_info); 2758 kernfs_remove(kn_mongrp); 2759 kernfs_remove(kn_mondata); 2760 } 2761 2762 static void rdt_kill_sb(struct super_block *sb) 2763 { 2764 struct rdt_resource *r; 2765 2766 cpus_read_lock(); 2767 mutex_lock(&rdtgroup_mutex); 2768 2769 set_mba_sc(false); 2770 2771 /*Put everything back to default values. */ 2772 for_each_alloc_capable_rdt_resource(r) 2773 reset_all_ctrls(r); 2774 cdp_disable_all(); 2775 rmdir_all_sub(); 2776 rdt_pseudo_lock_release(); 2777 rdtgroup_default.mode = RDT_MODE_SHAREABLE; 2778 schemata_list_destroy(); 2779 static_branch_disable_cpuslocked(&rdt_alloc_enable_key); 2780 static_branch_disable_cpuslocked(&rdt_mon_enable_key); 2781 static_branch_disable_cpuslocked(&rdt_enable_key); 2782 kernfs_kill_sb(sb); 2783 mutex_unlock(&rdtgroup_mutex); 2784 cpus_read_unlock(); 2785 } 2786 2787 static struct file_system_type rdt_fs_type = { 2788 .name = "resctrl", 2789 .init_fs_context = rdt_init_fs_context, 2790 .parameters = rdt_fs_parameters, 2791 .kill_sb = rdt_kill_sb, 2792 }; 2793 2794 static int mon_addfile(struct kernfs_node *parent_kn, const char *name, 2795 void *priv) 2796 { 2797 struct kernfs_node *kn; 2798 int ret = 0; 2799 2800 kn = __kernfs_create_file(parent_kn, name, 0444, 2801 GLOBAL_ROOT_UID, GLOBAL_ROOT_GID, 0, 2802 &kf_mondata_ops, priv, NULL, NULL); 2803 if (IS_ERR(kn)) 2804 return PTR_ERR(kn); 2805 2806 ret = rdtgroup_kn_set_ugid(kn); 2807 if (ret) { 2808 kernfs_remove(kn); 2809 return ret; 2810 } 2811 2812 return ret; 2813 } 2814 2815 /* 2816 * Remove all subdirectories of mon_data of ctrl_mon groups 2817 * and monitor groups with given domain id. 2818 */ 2819 static void rmdir_mondata_subdir_allrdtgrp(struct rdt_resource *r, 2820 unsigned int dom_id) 2821 { 2822 struct rdtgroup *prgrp, *crgrp; 2823 char name[32]; 2824 2825 list_for_each_entry(prgrp, &rdt_all_groups, rdtgroup_list) { 2826 sprintf(name, "mon_%s_%02d", r->name, dom_id); 2827 kernfs_remove_by_name(prgrp->mon.mon_data_kn, name); 2828 2829 list_for_each_entry(crgrp, &prgrp->mon.crdtgrp_list, mon.crdtgrp_list) 2830 kernfs_remove_by_name(crgrp->mon.mon_data_kn, name); 2831 } 2832 } 2833 2834 static int mkdir_mondata_subdir(struct kernfs_node *parent_kn, 2835 struct rdt_domain *d, 2836 struct rdt_resource *r, struct rdtgroup *prgrp) 2837 { 2838 union mon_data_bits priv; 2839 struct kernfs_node *kn; 2840 struct mon_evt *mevt; 2841 struct rmid_read rr; 2842 char name[32]; 2843 int ret; 2844 2845 sprintf(name, "mon_%s_%02d", r->name, d->id); 2846 /* create the directory */ 2847 kn = kernfs_create_dir(parent_kn, name, parent_kn->mode, prgrp); 2848 if (IS_ERR(kn)) 2849 return PTR_ERR(kn); 2850 2851 ret = rdtgroup_kn_set_ugid(kn); 2852 if (ret) 2853 goto out_destroy; 2854 2855 if (WARN_ON(list_empty(&r->evt_list))) { 2856 ret = -EPERM; 2857 goto out_destroy; 2858 } 2859 2860 priv.u.rid = r->rid; 2861 priv.u.domid = d->id; 2862 list_for_each_entry(mevt, &r->evt_list, list) { 2863 priv.u.evtid = mevt->evtid; 2864 ret = mon_addfile(kn, mevt->name, priv.priv); 2865 if (ret) 2866 goto out_destroy; 2867 2868 if (is_mbm_event(mevt->evtid)) 2869 mon_event_read(&rr, r, d, prgrp, mevt->evtid, true); 2870 } 2871 kernfs_activate(kn); 2872 return 0; 2873 2874 out_destroy: 2875 kernfs_remove(kn); 2876 return ret; 2877 } 2878 2879 /* 2880 * Add all subdirectories of mon_data for "ctrl_mon" groups 2881 * and "monitor" groups with given domain id. 2882 */ 2883 static void mkdir_mondata_subdir_allrdtgrp(struct rdt_resource *r, 2884 struct rdt_domain *d) 2885 { 2886 struct kernfs_node *parent_kn; 2887 struct rdtgroup *prgrp, *crgrp; 2888 struct list_head *head; 2889 2890 list_for_each_entry(prgrp, &rdt_all_groups, rdtgroup_list) { 2891 parent_kn = prgrp->mon.mon_data_kn; 2892 mkdir_mondata_subdir(parent_kn, d, r, prgrp); 2893 2894 head = &prgrp->mon.crdtgrp_list; 2895 list_for_each_entry(crgrp, head, mon.crdtgrp_list) { 2896 parent_kn = crgrp->mon.mon_data_kn; 2897 mkdir_mondata_subdir(parent_kn, d, r, crgrp); 2898 } 2899 } 2900 } 2901 2902 static int mkdir_mondata_subdir_alldom(struct kernfs_node *parent_kn, 2903 struct rdt_resource *r, 2904 struct rdtgroup *prgrp) 2905 { 2906 struct rdt_domain *dom; 2907 int ret; 2908 2909 list_for_each_entry(dom, &r->domains, list) { 2910 ret = mkdir_mondata_subdir(parent_kn, dom, r, prgrp); 2911 if (ret) 2912 return ret; 2913 } 2914 2915 return 0; 2916 } 2917 2918 /* 2919 * This creates a directory mon_data which contains the monitored data. 2920 * 2921 * mon_data has one directory for each domain which are named 2922 * in the format mon_<domain_name>_<domain_id>. For ex: A mon_data 2923 * with L3 domain looks as below: 2924 * ./mon_data: 2925 * mon_L3_00 2926 * mon_L3_01 2927 * mon_L3_02 2928 * ... 2929 * 2930 * Each domain directory has one file per event: 2931 * ./mon_L3_00/: 2932 * llc_occupancy 2933 * 2934 */ 2935 static int mkdir_mondata_all(struct kernfs_node *parent_kn, 2936 struct rdtgroup *prgrp, 2937 struct kernfs_node **dest_kn) 2938 { 2939 struct rdt_resource *r; 2940 struct kernfs_node *kn; 2941 int ret; 2942 2943 /* 2944 * Create the mon_data directory first. 2945 */ 2946 ret = mongroup_create_dir(parent_kn, prgrp, "mon_data", &kn); 2947 if (ret) 2948 return ret; 2949 2950 if (dest_kn) 2951 *dest_kn = kn; 2952 2953 /* 2954 * Create the subdirectories for each domain. Note that all events 2955 * in a domain like L3 are grouped into a resource whose domain is L3 2956 */ 2957 for_each_mon_capable_rdt_resource(r) { 2958 ret = mkdir_mondata_subdir_alldom(kn, r, prgrp); 2959 if (ret) 2960 goto out_destroy; 2961 } 2962 2963 return 0; 2964 2965 out_destroy: 2966 kernfs_remove(kn); 2967 return ret; 2968 } 2969 2970 /** 2971 * cbm_ensure_valid - Enforce validity on provided CBM 2972 * @_val: Candidate CBM 2973 * @r: RDT resource to which the CBM belongs 2974 * 2975 * The provided CBM represents all cache portions available for use. This 2976 * may be represented by a bitmap that does not consist of contiguous ones 2977 * and thus be an invalid CBM. 2978 * Here the provided CBM is forced to be a valid CBM by only considering 2979 * the first set of contiguous bits as valid and clearing all bits. 2980 * The intention here is to provide a valid default CBM with which a new 2981 * resource group is initialized. The user can follow this with a 2982 * modification to the CBM if the default does not satisfy the 2983 * requirements. 2984 */ 2985 static u32 cbm_ensure_valid(u32 _val, struct rdt_resource *r) 2986 { 2987 unsigned int cbm_len = r->cache.cbm_len; 2988 unsigned long first_bit, zero_bit; 2989 unsigned long val = _val; 2990 2991 if (!val) 2992 return 0; 2993 2994 first_bit = find_first_bit(&val, cbm_len); 2995 zero_bit = find_next_zero_bit(&val, cbm_len, first_bit); 2996 2997 /* Clear any remaining bits to ensure contiguous region */ 2998 bitmap_clear(&val, zero_bit, cbm_len - zero_bit); 2999 return (u32)val; 3000 } 3001 3002 /* 3003 * Initialize cache resources per RDT domain 3004 * 3005 * Set the RDT domain up to start off with all usable allocations. That is, 3006 * all shareable and unused bits. All-zero CBM is invalid. 3007 */ 3008 static int __init_one_rdt_domain(struct rdt_domain *d, struct resctrl_schema *s, 3009 u32 closid) 3010 { 3011 enum resctrl_conf_type peer_type = resctrl_peer_type(s->conf_type); 3012 enum resctrl_conf_type t = s->conf_type; 3013 struct resctrl_staged_config *cfg; 3014 struct rdt_resource *r = s->res; 3015 u32 used_b = 0, unused_b = 0; 3016 unsigned long tmp_cbm; 3017 enum rdtgrp_mode mode; 3018 u32 peer_ctl, ctrl_val; 3019 int i; 3020 3021 cfg = &d->staged_config[t]; 3022 cfg->have_new_ctrl = false; 3023 cfg->new_ctrl = r->cache.shareable_bits; 3024 used_b = r->cache.shareable_bits; 3025 for (i = 0; i < closids_supported(); i++) { 3026 if (closid_allocated(i) && i != closid) { 3027 mode = rdtgroup_mode_by_closid(i); 3028 if (mode == RDT_MODE_PSEUDO_LOCKSETUP) 3029 /* 3030 * ctrl values for locksetup aren't relevant 3031 * until the schemata is written, and the mode 3032 * becomes RDT_MODE_PSEUDO_LOCKED. 3033 */ 3034 continue; 3035 /* 3036 * If CDP is active include peer domain's 3037 * usage to ensure there is no overlap 3038 * with an exclusive group. 3039 */ 3040 if (resctrl_arch_get_cdp_enabled(r->rid)) 3041 peer_ctl = resctrl_arch_get_config(r, d, i, 3042 peer_type); 3043 else 3044 peer_ctl = 0; 3045 ctrl_val = resctrl_arch_get_config(r, d, i, 3046 s->conf_type); 3047 used_b |= ctrl_val | peer_ctl; 3048 if (mode == RDT_MODE_SHAREABLE) 3049 cfg->new_ctrl |= ctrl_val | peer_ctl; 3050 } 3051 } 3052 if (d->plr && d->plr->cbm > 0) 3053 used_b |= d->plr->cbm; 3054 unused_b = used_b ^ (BIT_MASK(r->cache.cbm_len) - 1); 3055 unused_b &= BIT_MASK(r->cache.cbm_len) - 1; 3056 cfg->new_ctrl |= unused_b; 3057 /* 3058 * Force the initial CBM to be valid, user can 3059 * modify the CBM based on system availability. 3060 */ 3061 cfg->new_ctrl = cbm_ensure_valid(cfg->new_ctrl, r); 3062 /* 3063 * Assign the u32 CBM to an unsigned long to ensure that 3064 * bitmap_weight() does not access out-of-bound memory. 3065 */ 3066 tmp_cbm = cfg->new_ctrl; 3067 if (bitmap_weight(&tmp_cbm, r->cache.cbm_len) < r->cache.min_cbm_bits) { 3068 rdt_last_cmd_printf("No space on %s:%d\n", s->name, d->id); 3069 return -ENOSPC; 3070 } 3071 cfg->have_new_ctrl = true; 3072 3073 return 0; 3074 } 3075 3076 /* 3077 * Initialize cache resources with default values. 3078 * 3079 * A new RDT group is being created on an allocation capable (CAT) 3080 * supporting system. Set this group up to start off with all usable 3081 * allocations. 3082 * 3083 * If there are no more shareable bits available on any domain then 3084 * the entire allocation will fail. 3085 */ 3086 static int rdtgroup_init_cat(struct resctrl_schema *s, u32 closid) 3087 { 3088 struct rdt_domain *d; 3089 int ret; 3090 3091 list_for_each_entry(d, &s->res->domains, list) { 3092 ret = __init_one_rdt_domain(d, s, closid); 3093 if (ret < 0) 3094 return ret; 3095 } 3096 3097 return 0; 3098 } 3099 3100 /* Initialize MBA resource with default values. */ 3101 static void rdtgroup_init_mba(struct rdt_resource *r, u32 closid) 3102 { 3103 struct resctrl_staged_config *cfg; 3104 struct rdt_domain *d; 3105 3106 list_for_each_entry(d, &r->domains, list) { 3107 if (is_mba_sc(r)) { 3108 d->mbps_val[closid] = MBA_MAX_MBPS; 3109 continue; 3110 } 3111 3112 cfg = &d->staged_config[CDP_NONE]; 3113 cfg->new_ctrl = r->default_ctrl; 3114 cfg->have_new_ctrl = true; 3115 } 3116 } 3117 3118 /* Initialize the RDT group's allocations. */ 3119 static int rdtgroup_init_alloc(struct rdtgroup *rdtgrp) 3120 { 3121 struct resctrl_schema *s; 3122 struct rdt_resource *r; 3123 int ret = 0; 3124 3125 rdt_staged_configs_clear(); 3126 3127 list_for_each_entry(s, &resctrl_schema_all, list) { 3128 r = s->res; 3129 if (r->rid == RDT_RESOURCE_MBA || 3130 r->rid == RDT_RESOURCE_SMBA) { 3131 rdtgroup_init_mba(r, rdtgrp->closid); 3132 if (is_mba_sc(r)) 3133 continue; 3134 } else { 3135 ret = rdtgroup_init_cat(s, rdtgrp->closid); 3136 if (ret < 0) 3137 goto out; 3138 } 3139 3140 ret = resctrl_arch_update_domains(r, rdtgrp->closid); 3141 if (ret < 0) { 3142 rdt_last_cmd_puts("Failed to initialize allocations\n"); 3143 goto out; 3144 } 3145 3146 } 3147 3148 rdtgrp->mode = RDT_MODE_SHAREABLE; 3149 3150 out: 3151 rdt_staged_configs_clear(); 3152 return ret; 3153 } 3154 3155 static int mkdir_rdt_prepare(struct kernfs_node *parent_kn, 3156 const char *name, umode_t mode, 3157 enum rdt_group_type rtype, struct rdtgroup **r) 3158 { 3159 struct rdtgroup *prdtgrp, *rdtgrp; 3160 struct kernfs_node *kn; 3161 uint files = 0; 3162 int ret; 3163 3164 prdtgrp = rdtgroup_kn_lock_live(parent_kn); 3165 if (!prdtgrp) { 3166 ret = -ENODEV; 3167 goto out_unlock; 3168 } 3169 3170 if (rtype == RDTMON_GROUP && 3171 (prdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP || 3172 prdtgrp->mode == RDT_MODE_PSEUDO_LOCKED)) { 3173 ret = -EINVAL; 3174 rdt_last_cmd_puts("Pseudo-locking in progress\n"); 3175 goto out_unlock; 3176 } 3177 3178 /* allocate the rdtgroup. */ 3179 rdtgrp = kzalloc(sizeof(*rdtgrp), GFP_KERNEL); 3180 if (!rdtgrp) { 3181 ret = -ENOSPC; 3182 rdt_last_cmd_puts("Kernel out of memory\n"); 3183 goto out_unlock; 3184 } 3185 *r = rdtgrp; 3186 rdtgrp->mon.parent = prdtgrp; 3187 rdtgrp->type = rtype; 3188 INIT_LIST_HEAD(&rdtgrp->mon.crdtgrp_list); 3189 3190 /* kernfs creates the directory for rdtgrp */ 3191 kn = kernfs_create_dir(parent_kn, name, mode, rdtgrp); 3192 if (IS_ERR(kn)) { 3193 ret = PTR_ERR(kn); 3194 rdt_last_cmd_puts("kernfs create error\n"); 3195 goto out_free_rgrp; 3196 } 3197 rdtgrp->kn = kn; 3198 3199 /* 3200 * kernfs_remove() will drop the reference count on "kn" which 3201 * will free it. But we still need it to stick around for the 3202 * rdtgroup_kn_unlock(kn) call. Take one extra reference here, 3203 * which will be dropped by kernfs_put() in rdtgroup_remove(). 3204 */ 3205 kernfs_get(kn); 3206 3207 ret = rdtgroup_kn_set_ugid(kn); 3208 if (ret) { 3209 rdt_last_cmd_puts("kernfs perm error\n"); 3210 goto out_destroy; 3211 } 3212 3213 files = RFTYPE_BASE | BIT(RF_CTRLSHIFT + rtype); 3214 ret = rdtgroup_add_files(kn, files); 3215 if (ret) { 3216 rdt_last_cmd_puts("kernfs fill error\n"); 3217 goto out_destroy; 3218 } 3219 3220 if (rdt_mon_capable) { 3221 ret = alloc_rmid(); 3222 if (ret < 0) { 3223 rdt_last_cmd_puts("Out of RMIDs\n"); 3224 goto out_destroy; 3225 } 3226 rdtgrp->mon.rmid = ret; 3227 3228 ret = mkdir_mondata_all(kn, rdtgrp, &rdtgrp->mon.mon_data_kn); 3229 if (ret) { 3230 rdt_last_cmd_puts("kernfs subdir error\n"); 3231 goto out_idfree; 3232 } 3233 } 3234 kernfs_activate(kn); 3235 3236 /* 3237 * The caller unlocks the parent_kn upon success. 3238 */ 3239 return 0; 3240 3241 out_idfree: 3242 free_rmid(rdtgrp->mon.rmid); 3243 out_destroy: 3244 kernfs_put(rdtgrp->kn); 3245 kernfs_remove(rdtgrp->kn); 3246 out_free_rgrp: 3247 kfree(rdtgrp); 3248 out_unlock: 3249 rdtgroup_kn_unlock(parent_kn); 3250 return ret; 3251 } 3252 3253 static void mkdir_rdt_prepare_clean(struct rdtgroup *rgrp) 3254 { 3255 kernfs_remove(rgrp->kn); 3256 free_rmid(rgrp->mon.rmid); 3257 rdtgroup_remove(rgrp); 3258 } 3259 3260 /* 3261 * Create a monitor group under "mon_groups" directory of a control 3262 * and monitor group(ctrl_mon). This is a resource group 3263 * to monitor a subset of tasks and cpus in its parent ctrl_mon group. 3264 */ 3265 static int rdtgroup_mkdir_mon(struct kernfs_node *parent_kn, 3266 const char *name, umode_t mode) 3267 { 3268 struct rdtgroup *rdtgrp, *prgrp; 3269 int ret; 3270 3271 ret = mkdir_rdt_prepare(parent_kn, name, mode, RDTMON_GROUP, &rdtgrp); 3272 if (ret) 3273 return ret; 3274 3275 prgrp = rdtgrp->mon.parent; 3276 rdtgrp->closid = prgrp->closid; 3277 3278 /* 3279 * Add the rdtgrp to the list of rdtgrps the parent 3280 * ctrl_mon group has to track. 3281 */ 3282 list_add_tail(&rdtgrp->mon.crdtgrp_list, &prgrp->mon.crdtgrp_list); 3283 3284 rdtgroup_kn_unlock(parent_kn); 3285 return ret; 3286 } 3287 3288 /* 3289 * These are rdtgroups created under the root directory. Can be used 3290 * to allocate and monitor resources. 3291 */ 3292 static int rdtgroup_mkdir_ctrl_mon(struct kernfs_node *parent_kn, 3293 const char *name, umode_t mode) 3294 { 3295 struct rdtgroup *rdtgrp; 3296 struct kernfs_node *kn; 3297 u32 closid; 3298 int ret; 3299 3300 ret = mkdir_rdt_prepare(parent_kn, name, mode, RDTCTRL_GROUP, &rdtgrp); 3301 if (ret) 3302 return ret; 3303 3304 kn = rdtgrp->kn; 3305 ret = closid_alloc(); 3306 if (ret < 0) { 3307 rdt_last_cmd_puts("Out of CLOSIDs\n"); 3308 goto out_common_fail; 3309 } 3310 closid = ret; 3311 ret = 0; 3312 3313 rdtgrp->closid = closid; 3314 ret = rdtgroup_init_alloc(rdtgrp); 3315 if (ret < 0) 3316 goto out_id_free; 3317 3318 list_add(&rdtgrp->rdtgroup_list, &rdt_all_groups); 3319 3320 if (rdt_mon_capable) { 3321 /* 3322 * Create an empty mon_groups directory to hold the subset 3323 * of tasks and cpus to monitor. 3324 */ 3325 ret = mongroup_create_dir(kn, rdtgrp, "mon_groups", NULL); 3326 if (ret) { 3327 rdt_last_cmd_puts("kernfs subdir error\n"); 3328 goto out_del_list; 3329 } 3330 } 3331 3332 goto out_unlock; 3333 3334 out_del_list: 3335 list_del(&rdtgrp->rdtgroup_list); 3336 out_id_free: 3337 closid_free(closid); 3338 out_common_fail: 3339 mkdir_rdt_prepare_clean(rdtgrp); 3340 out_unlock: 3341 rdtgroup_kn_unlock(parent_kn); 3342 return ret; 3343 } 3344 3345 /* 3346 * We allow creating mon groups only with in a directory called "mon_groups" 3347 * which is present in every ctrl_mon group. Check if this is a valid 3348 * "mon_groups" directory. 3349 * 3350 * 1. The directory should be named "mon_groups". 3351 * 2. The mon group itself should "not" be named "mon_groups". 3352 * This makes sure "mon_groups" directory always has a ctrl_mon group 3353 * as parent. 3354 */ 3355 static bool is_mon_groups(struct kernfs_node *kn, const char *name) 3356 { 3357 return (!strcmp(kn->name, "mon_groups") && 3358 strcmp(name, "mon_groups")); 3359 } 3360 3361 static int rdtgroup_mkdir(struct kernfs_node *parent_kn, const char *name, 3362 umode_t mode) 3363 { 3364 /* Do not accept '\n' to avoid unparsable situation. */ 3365 if (strchr(name, '\n')) 3366 return -EINVAL; 3367 3368 /* 3369 * If the parent directory is the root directory and RDT 3370 * allocation is supported, add a control and monitoring 3371 * subdirectory 3372 */ 3373 if (rdt_alloc_capable && parent_kn == rdtgroup_default.kn) 3374 return rdtgroup_mkdir_ctrl_mon(parent_kn, name, mode); 3375 3376 /* 3377 * If RDT monitoring is supported and the parent directory is a valid 3378 * "mon_groups" directory, add a monitoring subdirectory. 3379 */ 3380 if (rdt_mon_capable && is_mon_groups(parent_kn, name)) 3381 return rdtgroup_mkdir_mon(parent_kn, name, mode); 3382 3383 return -EPERM; 3384 } 3385 3386 static int rdtgroup_rmdir_mon(struct rdtgroup *rdtgrp, cpumask_var_t tmpmask) 3387 { 3388 struct rdtgroup *prdtgrp = rdtgrp->mon.parent; 3389 int cpu; 3390 3391 /* Give any tasks back to the parent group */ 3392 rdt_move_group_tasks(rdtgrp, prdtgrp, tmpmask); 3393 3394 /* Update per cpu rmid of the moved CPUs first */ 3395 for_each_cpu(cpu, &rdtgrp->cpu_mask) 3396 per_cpu(pqr_state.default_rmid, cpu) = prdtgrp->mon.rmid; 3397 /* 3398 * Update the MSR on moved CPUs and CPUs which have moved 3399 * task running on them. 3400 */ 3401 cpumask_or(tmpmask, tmpmask, &rdtgrp->cpu_mask); 3402 update_closid_rmid(tmpmask, NULL); 3403 3404 rdtgrp->flags = RDT_DELETED; 3405 free_rmid(rdtgrp->mon.rmid); 3406 3407 /* 3408 * Remove the rdtgrp from the parent ctrl_mon group's list 3409 */ 3410 WARN_ON(list_empty(&prdtgrp->mon.crdtgrp_list)); 3411 list_del(&rdtgrp->mon.crdtgrp_list); 3412 3413 kernfs_remove(rdtgrp->kn); 3414 3415 return 0; 3416 } 3417 3418 static int rdtgroup_ctrl_remove(struct rdtgroup *rdtgrp) 3419 { 3420 rdtgrp->flags = RDT_DELETED; 3421 list_del(&rdtgrp->rdtgroup_list); 3422 3423 kernfs_remove(rdtgrp->kn); 3424 return 0; 3425 } 3426 3427 static int rdtgroup_rmdir_ctrl(struct rdtgroup *rdtgrp, cpumask_var_t tmpmask) 3428 { 3429 int cpu; 3430 3431 /* Give any tasks back to the default group */ 3432 rdt_move_group_tasks(rdtgrp, &rdtgroup_default, tmpmask); 3433 3434 /* Give any CPUs back to the default group */ 3435 cpumask_or(&rdtgroup_default.cpu_mask, 3436 &rdtgroup_default.cpu_mask, &rdtgrp->cpu_mask); 3437 3438 /* Update per cpu closid and rmid of the moved CPUs first */ 3439 for_each_cpu(cpu, &rdtgrp->cpu_mask) { 3440 per_cpu(pqr_state.default_closid, cpu) = rdtgroup_default.closid; 3441 per_cpu(pqr_state.default_rmid, cpu) = rdtgroup_default.mon.rmid; 3442 } 3443 3444 /* 3445 * Update the MSR on moved CPUs and CPUs which have moved 3446 * task running on them. 3447 */ 3448 cpumask_or(tmpmask, tmpmask, &rdtgrp->cpu_mask); 3449 update_closid_rmid(tmpmask, NULL); 3450 3451 closid_free(rdtgrp->closid); 3452 free_rmid(rdtgrp->mon.rmid); 3453 3454 rdtgroup_ctrl_remove(rdtgrp); 3455 3456 /* 3457 * Free all the child monitor group rmids. 3458 */ 3459 free_all_child_rdtgrp(rdtgrp); 3460 3461 return 0; 3462 } 3463 3464 static int rdtgroup_rmdir(struct kernfs_node *kn) 3465 { 3466 struct kernfs_node *parent_kn = kn->parent; 3467 struct rdtgroup *rdtgrp; 3468 cpumask_var_t tmpmask; 3469 int ret = 0; 3470 3471 if (!zalloc_cpumask_var(&tmpmask, GFP_KERNEL)) 3472 return -ENOMEM; 3473 3474 rdtgrp = rdtgroup_kn_lock_live(kn); 3475 if (!rdtgrp) { 3476 ret = -EPERM; 3477 goto out; 3478 } 3479 3480 /* 3481 * If the rdtgroup is a ctrl_mon group and parent directory 3482 * is the root directory, remove the ctrl_mon group. 3483 * 3484 * If the rdtgroup is a mon group and parent directory 3485 * is a valid "mon_groups" directory, remove the mon group. 3486 */ 3487 if (rdtgrp->type == RDTCTRL_GROUP && parent_kn == rdtgroup_default.kn && 3488 rdtgrp != &rdtgroup_default) { 3489 if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP || 3490 rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED) { 3491 ret = rdtgroup_ctrl_remove(rdtgrp); 3492 } else { 3493 ret = rdtgroup_rmdir_ctrl(rdtgrp, tmpmask); 3494 } 3495 } else if (rdtgrp->type == RDTMON_GROUP && 3496 is_mon_groups(parent_kn, kn->name)) { 3497 ret = rdtgroup_rmdir_mon(rdtgrp, tmpmask); 3498 } else { 3499 ret = -EPERM; 3500 } 3501 3502 out: 3503 rdtgroup_kn_unlock(kn); 3504 free_cpumask_var(tmpmask); 3505 return ret; 3506 } 3507 3508 static int rdtgroup_show_options(struct seq_file *seq, struct kernfs_root *kf) 3509 { 3510 if (resctrl_arch_get_cdp_enabled(RDT_RESOURCE_L3)) 3511 seq_puts(seq, ",cdp"); 3512 3513 if (resctrl_arch_get_cdp_enabled(RDT_RESOURCE_L2)) 3514 seq_puts(seq, ",cdpl2"); 3515 3516 if (is_mba_sc(&rdt_resources_all[RDT_RESOURCE_MBA].r_resctrl)) 3517 seq_puts(seq, ",mba_MBps"); 3518 3519 return 0; 3520 } 3521 3522 static struct kernfs_syscall_ops rdtgroup_kf_syscall_ops = { 3523 .mkdir = rdtgroup_mkdir, 3524 .rmdir = rdtgroup_rmdir, 3525 .show_options = rdtgroup_show_options, 3526 }; 3527 3528 static int __init rdtgroup_setup_root(void) 3529 { 3530 int ret; 3531 3532 rdt_root = kernfs_create_root(&rdtgroup_kf_syscall_ops, 3533 KERNFS_ROOT_CREATE_DEACTIVATED | 3534 KERNFS_ROOT_EXTRA_OPEN_PERM_CHECK, 3535 &rdtgroup_default); 3536 if (IS_ERR(rdt_root)) 3537 return PTR_ERR(rdt_root); 3538 3539 mutex_lock(&rdtgroup_mutex); 3540 3541 rdtgroup_default.closid = 0; 3542 rdtgroup_default.mon.rmid = 0; 3543 rdtgroup_default.type = RDTCTRL_GROUP; 3544 INIT_LIST_HEAD(&rdtgroup_default.mon.crdtgrp_list); 3545 3546 list_add(&rdtgroup_default.rdtgroup_list, &rdt_all_groups); 3547 3548 ret = rdtgroup_add_files(kernfs_root_to_node(rdt_root), RF_CTRL_BASE); 3549 if (ret) { 3550 kernfs_destroy_root(rdt_root); 3551 goto out; 3552 } 3553 3554 rdtgroup_default.kn = kernfs_root_to_node(rdt_root); 3555 kernfs_activate(rdtgroup_default.kn); 3556 3557 out: 3558 mutex_unlock(&rdtgroup_mutex); 3559 3560 return ret; 3561 } 3562 3563 static void domain_destroy_mon_state(struct rdt_domain *d) 3564 { 3565 bitmap_free(d->rmid_busy_llc); 3566 kfree(d->mbm_total); 3567 kfree(d->mbm_local); 3568 } 3569 3570 void resctrl_offline_domain(struct rdt_resource *r, struct rdt_domain *d) 3571 { 3572 lockdep_assert_held(&rdtgroup_mutex); 3573 3574 if (supports_mba_mbps() && r->rid == RDT_RESOURCE_MBA) 3575 mba_sc_domain_destroy(r, d); 3576 3577 if (!r->mon_capable) 3578 return; 3579 3580 /* 3581 * If resctrl is mounted, remove all the 3582 * per domain monitor data directories. 3583 */ 3584 if (static_branch_unlikely(&rdt_mon_enable_key)) 3585 rmdir_mondata_subdir_allrdtgrp(r, d->id); 3586 3587 if (is_mbm_enabled()) 3588 cancel_delayed_work(&d->mbm_over); 3589 if (is_llc_occupancy_enabled() && has_busy_rmid(r, d)) { 3590 /* 3591 * When a package is going down, forcefully 3592 * decrement rmid->ebusy. There is no way to know 3593 * that the L3 was flushed and hence may lead to 3594 * incorrect counts in rare scenarios, but leaving 3595 * the RMID as busy creates RMID leaks if the 3596 * package never comes back. 3597 */ 3598 __check_limbo(d, true); 3599 cancel_delayed_work(&d->cqm_limbo); 3600 } 3601 3602 domain_destroy_mon_state(d); 3603 } 3604 3605 static int domain_setup_mon_state(struct rdt_resource *r, struct rdt_domain *d) 3606 { 3607 size_t tsize; 3608 3609 if (is_llc_occupancy_enabled()) { 3610 d->rmid_busy_llc = bitmap_zalloc(r->num_rmid, GFP_KERNEL); 3611 if (!d->rmid_busy_llc) 3612 return -ENOMEM; 3613 } 3614 if (is_mbm_total_enabled()) { 3615 tsize = sizeof(*d->mbm_total); 3616 d->mbm_total = kcalloc(r->num_rmid, tsize, GFP_KERNEL); 3617 if (!d->mbm_total) { 3618 bitmap_free(d->rmid_busy_llc); 3619 return -ENOMEM; 3620 } 3621 } 3622 if (is_mbm_local_enabled()) { 3623 tsize = sizeof(*d->mbm_local); 3624 d->mbm_local = kcalloc(r->num_rmid, tsize, GFP_KERNEL); 3625 if (!d->mbm_local) { 3626 bitmap_free(d->rmid_busy_llc); 3627 kfree(d->mbm_total); 3628 return -ENOMEM; 3629 } 3630 } 3631 3632 return 0; 3633 } 3634 3635 int resctrl_online_domain(struct rdt_resource *r, struct rdt_domain *d) 3636 { 3637 int err; 3638 3639 lockdep_assert_held(&rdtgroup_mutex); 3640 3641 if (supports_mba_mbps() && r->rid == RDT_RESOURCE_MBA) 3642 /* RDT_RESOURCE_MBA is never mon_capable */ 3643 return mba_sc_domain_allocate(r, d); 3644 3645 if (!r->mon_capable) 3646 return 0; 3647 3648 err = domain_setup_mon_state(r, d); 3649 if (err) 3650 return err; 3651 3652 if (is_mbm_enabled()) { 3653 INIT_DELAYED_WORK(&d->mbm_over, mbm_handle_overflow); 3654 mbm_setup_overflow_handler(d, MBM_OVERFLOW_INTERVAL); 3655 } 3656 3657 if (is_llc_occupancy_enabled()) 3658 INIT_DELAYED_WORK(&d->cqm_limbo, cqm_handle_limbo); 3659 3660 /* If resctrl is mounted, add per domain monitor data directories. */ 3661 if (static_branch_unlikely(&rdt_mon_enable_key)) 3662 mkdir_mondata_subdir_allrdtgrp(r, d); 3663 3664 return 0; 3665 } 3666 3667 /* 3668 * rdtgroup_init - rdtgroup initialization 3669 * 3670 * Setup resctrl file system including set up root, create mount point, 3671 * register rdtgroup filesystem, and initialize files under root directory. 3672 * 3673 * Return: 0 on success or -errno 3674 */ 3675 int __init rdtgroup_init(void) 3676 { 3677 int ret = 0; 3678 3679 seq_buf_init(&last_cmd_status, last_cmd_status_buf, 3680 sizeof(last_cmd_status_buf)); 3681 3682 ret = rdtgroup_setup_root(); 3683 if (ret) 3684 return ret; 3685 3686 ret = sysfs_create_mount_point(fs_kobj, "resctrl"); 3687 if (ret) 3688 goto cleanup_root; 3689 3690 ret = register_filesystem(&rdt_fs_type); 3691 if (ret) 3692 goto cleanup_mountpoint; 3693 3694 /* 3695 * Adding the resctrl debugfs directory here may not be ideal since 3696 * it would let the resctrl debugfs directory appear on the debugfs 3697 * filesystem before the resctrl filesystem is mounted. 3698 * It may also be ok since that would enable debugging of RDT before 3699 * resctrl is mounted. 3700 * The reason why the debugfs directory is created here and not in 3701 * rdt_get_tree() is because rdt_get_tree() takes rdtgroup_mutex and 3702 * during the debugfs directory creation also &sb->s_type->i_mutex_key 3703 * (the lockdep class of inode->i_rwsem). Other filesystem 3704 * interactions (eg. SyS_getdents) have the lock ordering: 3705 * &sb->s_type->i_mutex_key --> &mm->mmap_lock 3706 * During mmap(), called with &mm->mmap_lock, the rdtgroup_mutex 3707 * is taken, thus creating dependency: 3708 * &mm->mmap_lock --> rdtgroup_mutex for the latter that can cause 3709 * issues considering the other two lock dependencies. 3710 * By creating the debugfs directory here we avoid a dependency 3711 * that may cause deadlock (even though file operations cannot 3712 * occur until the filesystem is mounted, but I do not know how to 3713 * tell lockdep that). 3714 */ 3715 debugfs_resctrl = debugfs_create_dir("resctrl", NULL); 3716 3717 return 0; 3718 3719 cleanup_mountpoint: 3720 sysfs_remove_mount_point(fs_kobj, "resctrl"); 3721 cleanup_root: 3722 kernfs_destroy_root(rdt_root); 3723 3724 return ret; 3725 } 3726 3727 void __exit rdtgroup_exit(void) 3728 { 3729 debugfs_remove_recursive(debugfs_resctrl); 3730 unregister_filesystem(&rdt_fs_type); 3731 sysfs_remove_mount_point(fs_kobj, "resctrl"); 3732 kernfs_destroy_root(rdt_root); 3733 } 3734