xref: /openbmc/linux/arch/x86/kernel/cpu/resctrl/rdtgroup.c (revision 7a836736b6537b0e2633381d743d9c1559ce243c)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * User interface for Resource Allocation in Resource Director Technology(RDT)
4  *
5  * Copyright (C) 2016 Intel Corporation
6  *
7  * Author: Fenghua Yu <fenghua.yu@intel.com>
8  *
9  * More information about RDT be found in the Intel (R) x86 Architecture
10  * Software Developer Manual.
11  */
12 
13 #define pr_fmt(fmt)	KBUILD_MODNAME ": " fmt
14 
15 #include <linux/cacheinfo.h>
16 #include <linux/cpu.h>
17 #include <linux/debugfs.h>
18 #include <linux/fs.h>
19 #include <linux/fs_parser.h>
20 #include <linux/sysfs.h>
21 #include <linux/kernfs.h>
22 #include <linux/seq_buf.h>
23 #include <linux/seq_file.h>
24 #include <linux/sched/signal.h>
25 #include <linux/sched/task.h>
26 #include <linux/slab.h>
27 #include <linux/task_work.h>
28 #include <linux/user_namespace.h>
29 
30 #include <uapi/linux/magic.h>
31 
32 #include <asm/resctrl.h>
33 #include "internal.h"
34 
35 DEFINE_STATIC_KEY_FALSE(rdt_enable_key);
36 DEFINE_STATIC_KEY_FALSE(rdt_mon_enable_key);
37 DEFINE_STATIC_KEY_FALSE(rdt_alloc_enable_key);
38 static struct kernfs_root *rdt_root;
39 struct rdtgroup rdtgroup_default;
40 LIST_HEAD(rdt_all_groups);
41 
42 /* list of entries for the schemata file */
43 LIST_HEAD(resctrl_schema_all);
44 
45 /* Kernel fs node for "info" directory under root */
46 static struct kernfs_node *kn_info;
47 
48 /* Kernel fs node for "mon_groups" directory under root */
49 static struct kernfs_node *kn_mongrp;
50 
51 /* Kernel fs node for "mon_data" directory under root */
52 static struct kernfs_node *kn_mondata;
53 
54 static struct seq_buf last_cmd_status;
55 static char last_cmd_status_buf[512];
56 
57 struct dentry *debugfs_resctrl;
58 
59 void rdt_last_cmd_clear(void)
60 {
61 	lockdep_assert_held(&rdtgroup_mutex);
62 	seq_buf_clear(&last_cmd_status);
63 }
64 
65 void rdt_last_cmd_puts(const char *s)
66 {
67 	lockdep_assert_held(&rdtgroup_mutex);
68 	seq_buf_puts(&last_cmd_status, s);
69 }
70 
71 void rdt_last_cmd_printf(const char *fmt, ...)
72 {
73 	va_list ap;
74 
75 	va_start(ap, fmt);
76 	lockdep_assert_held(&rdtgroup_mutex);
77 	seq_buf_vprintf(&last_cmd_status, fmt, ap);
78 	va_end(ap);
79 }
80 
81 void rdt_staged_configs_clear(void)
82 {
83 	struct rdt_resource *r;
84 	struct rdt_domain *dom;
85 
86 	lockdep_assert_held(&rdtgroup_mutex);
87 
88 	for_each_alloc_capable_rdt_resource(r) {
89 		list_for_each_entry(dom, &r->domains, list)
90 			memset(dom->staged_config, 0, sizeof(dom->staged_config));
91 	}
92 }
93 
94 /*
95  * Trivial allocator for CLOSIDs. Since h/w only supports a small number,
96  * we can keep a bitmap of free CLOSIDs in a single integer.
97  *
98  * Using a global CLOSID across all resources has some advantages and
99  * some drawbacks:
100  * + We can simply set "current->closid" to assign a task to a resource
101  *   group.
102  * + Context switch code can avoid extra memory references deciding which
103  *   CLOSID to load into the PQR_ASSOC MSR
104  * - We give up some options in configuring resource groups across multi-socket
105  *   systems.
106  * - Our choices on how to configure each resource become progressively more
107  *   limited as the number of resources grows.
108  */
109 static int closid_free_map;
110 static int closid_free_map_len;
111 
112 int closids_supported(void)
113 {
114 	return closid_free_map_len;
115 }
116 
117 static void closid_init(void)
118 {
119 	struct resctrl_schema *s;
120 	u32 rdt_min_closid = 32;
121 
122 	/* Compute rdt_min_closid across all resources */
123 	list_for_each_entry(s, &resctrl_schema_all, list)
124 		rdt_min_closid = min(rdt_min_closid, s->num_closid);
125 
126 	closid_free_map = BIT_MASK(rdt_min_closid) - 1;
127 
128 	/* CLOSID 0 is always reserved for the default group */
129 	closid_free_map &= ~1;
130 	closid_free_map_len = rdt_min_closid;
131 }
132 
133 static int closid_alloc(void)
134 {
135 	u32 closid = ffs(closid_free_map);
136 
137 	if (closid == 0)
138 		return -ENOSPC;
139 	closid--;
140 	closid_free_map &= ~(1 << closid);
141 
142 	return closid;
143 }
144 
145 void closid_free(int closid)
146 {
147 	closid_free_map |= 1 << closid;
148 }
149 
150 /**
151  * closid_allocated - test if provided closid is in use
152  * @closid: closid to be tested
153  *
154  * Return: true if @closid is currently associated with a resource group,
155  * false if @closid is free
156  */
157 static bool closid_allocated(unsigned int closid)
158 {
159 	return (closid_free_map & (1 << closid)) == 0;
160 }
161 
162 /**
163  * rdtgroup_mode_by_closid - Return mode of resource group with closid
164  * @closid: closid if the resource group
165  *
166  * Each resource group is associated with a @closid. Here the mode
167  * of a resource group can be queried by searching for it using its closid.
168  *
169  * Return: mode as &enum rdtgrp_mode of resource group with closid @closid
170  */
171 enum rdtgrp_mode rdtgroup_mode_by_closid(int closid)
172 {
173 	struct rdtgroup *rdtgrp;
174 
175 	list_for_each_entry(rdtgrp, &rdt_all_groups, rdtgroup_list) {
176 		if (rdtgrp->closid == closid)
177 			return rdtgrp->mode;
178 	}
179 
180 	return RDT_NUM_MODES;
181 }
182 
183 static const char * const rdt_mode_str[] = {
184 	[RDT_MODE_SHAREABLE]		= "shareable",
185 	[RDT_MODE_EXCLUSIVE]		= "exclusive",
186 	[RDT_MODE_PSEUDO_LOCKSETUP]	= "pseudo-locksetup",
187 	[RDT_MODE_PSEUDO_LOCKED]	= "pseudo-locked",
188 };
189 
190 /**
191  * rdtgroup_mode_str - Return the string representation of mode
192  * @mode: the resource group mode as &enum rdtgroup_mode
193  *
194  * Return: string representation of valid mode, "unknown" otherwise
195  */
196 static const char *rdtgroup_mode_str(enum rdtgrp_mode mode)
197 {
198 	if (mode < RDT_MODE_SHAREABLE || mode >= RDT_NUM_MODES)
199 		return "unknown";
200 
201 	return rdt_mode_str[mode];
202 }
203 
204 /* set uid and gid of rdtgroup dirs and files to that of the creator */
205 static int rdtgroup_kn_set_ugid(struct kernfs_node *kn)
206 {
207 	struct iattr iattr = { .ia_valid = ATTR_UID | ATTR_GID,
208 				.ia_uid = current_fsuid(),
209 				.ia_gid = current_fsgid(), };
210 
211 	if (uid_eq(iattr.ia_uid, GLOBAL_ROOT_UID) &&
212 	    gid_eq(iattr.ia_gid, GLOBAL_ROOT_GID))
213 		return 0;
214 
215 	return kernfs_setattr(kn, &iattr);
216 }
217 
218 static int rdtgroup_add_file(struct kernfs_node *parent_kn, struct rftype *rft)
219 {
220 	struct kernfs_node *kn;
221 	int ret;
222 
223 	kn = __kernfs_create_file(parent_kn, rft->name, rft->mode,
224 				  GLOBAL_ROOT_UID, GLOBAL_ROOT_GID,
225 				  0, rft->kf_ops, rft, NULL, NULL);
226 	if (IS_ERR(kn))
227 		return PTR_ERR(kn);
228 
229 	ret = rdtgroup_kn_set_ugid(kn);
230 	if (ret) {
231 		kernfs_remove(kn);
232 		return ret;
233 	}
234 
235 	return 0;
236 }
237 
238 static int rdtgroup_seqfile_show(struct seq_file *m, void *arg)
239 {
240 	struct kernfs_open_file *of = m->private;
241 	struct rftype *rft = of->kn->priv;
242 
243 	if (rft->seq_show)
244 		return rft->seq_show(of, m, arg);
245 	return 0;
246 }
247 
248 static ssize_t rdtgroup_file_write(struct kernfs_open_file *of, char *buf,
249 				   size_t nbytes, loff_t off)
250 {
251 	struct rftype *rft = of->kn->priv;
252 
253 	if (rft->write)
254 		return rft->write(of, buf, nbytes, off);
255 
256 	return -EINVAL;
257 }
258 
259 static const struct kernfs_ops rdtgroup_kf_single_ops = {
260 	.atomic_write_len	= PAGE_SIZE,
261 	.write			= rdtgroup_file_write,
262 	.seq_show		= rdtgroup_seqfile_show,
263 };
264 
265 static const struct kernfs_ops kf_mondata_ops = {
266 	.atomic_write_len	= PAGE_SIZE,
267 	.seq_show		= rdtgroup_mondata_show,
268 };
269 
270 static bool is_cpu_list(struct kernfs_open_file *of)
271 {
272 	struct rftype *rft = of->kn->priv;
273 
274 	return rft->flags & RFTYPE_FLAGS_CPUS_LIST;
275 }
276 
277 static int rdtgroup_cpus_show(struct kernfs_open_file *of,
278 			      struct seq_file *s, void *v)
279 {
280 	struct rdtgroup *rdtgrp;
281 	struct cpumask *mask;
282 	int ret = 0;
283 
284 	rdtgrp = rdtgroup_kn_lock_live(of->kn);
285 
286 	if (rdtgrp) {
287 		if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED) {
288 			if (!rdtgrp->plr->d) {
289 				rdt_last_cmd_clear();
290 				rdt_last_cmd_puts("Cache domain offline\n");
291 				ret = -ENODEV;
292 			} else {
293 				mask = &rdtgrp->plr->d->cpu_mask;
294 				seq_printf(s, is_cpu_list(of) ?
295 					   "%*pbl\n" : "%*pb\n",
296 					   cpumask_pr_args(mask));
297 			}
298 		} else {
299 			seq_printf(s, is_cpu_list(of) ? "%*pbl\n" : "%*pb\n",
300 				   cpumask_pr_args(&rdtgrp->cpu_mask));
301 		}
302 	} else {
303 		ret = -ENOENT;
304 	}
305 	rdtgroup_kn_unlock(of->kn);
306 
307 	return ret;
308 }
309 
310 /*
311  * This is safe against resctrl_sched_in() called from __switch_to()
312  * because __switch_to() is executed with interrupts disabled. A local call
313  * from update_closid_rmid() is protected against __switch_to() because
314  * preemption is disabled.
315  */
316 static void update_cpu_closid_rmid(void *info)
317 {
318 	struct rdtgroup *r = info;
319 
320 	if (r) {
321 		this_cpu_write(pqr_state.default_closid, r->closid);
322 		this_cpu_write(pqr_state.default_rmid, r->mon.rmid);
323 	}
324 
325 	/*
326 	 * We cannot unconditionally write the MSR because the current
327 	 * executing task might have its own closid selected. Just reuse
328 	 * the context switch code.
329 	 */
330 	resctrl_sched_in(current);
331 }
332 
333 /*
334  * Update the PGR_ASSOC MSR on all cpus in @cpu_mask,
335  *
336  * Per task closids/rmids must have been set up before calling this function.
337  */
338 static void
339 update_closid_rmid(const struct cpumask *cpu_mask, struct rdtgroup *r)
340 {
341 	on_each_cpu_mask(cpu_mask, update_cpu_closid_rmid, r, 1);
342 }
343 
344 static int cpus_mon_write(struct rdtgroup *rdtgrp, cpumask_var_t newmask,
345 			  cpumask_var_t tmpmask)
346 {
347 	struct rdtgroup *prgrp = rdtgrp->mon.parent, *crgrp;
348 	struct list_head *head;
349 
350 	/* Check whether cpus belong to parent ctrl group */
351 	cpumask_andnot(tmpmask, newmask, &prgrp->cpu_mask);
352 	if (!cpumask_empty(tmpmask)) {
353 		rdt_last_cmd_puts("Can only add CPUs to mongroup that belong to parent\n");
354 		return -EINVAL;
355 	}
356 
357 	/* Check whether cpus are dropped from this group */
358 	cpumask_andnot(tmpmask, &rdtgrp->cpu_mask, newmask);
359 	if (!cpumask_empty(tmpmask)) {
360 		/* Give any dropped cpus to parent rdtgroup */
361 		cpumask_or(&prgrp->cpu_mask, &prgrp->cpu_mask, tmpmask);
362 		update_closid_rmid(tmpmask, prgrp);
363 	}
364 
365 	/*
366 	 * If we added cpus, remove them from previous group that owned them
367 	 * and update per-cpu rmid
368 	 */
369 	cpumask_andnot(tmpmask, newmask, &rdtgrp->cpu_mask);
370 	if (!cpumask_empty(tmpmask)) {
371 		head = &prgrp->mon.crdtgrp_list;
372 		list_for_each_entry(crgrp, head, mon.crdtgrp_list) {
373 			if (crgrp == rdtgrp)
374 				continue;
375 			cpumask_andnot(&crgrp->cpu_mask, &crgrp->cpu_mask,
376 				       tmpmask);
377 		}
378 		update_closid_rmid(tmpmask, rdtgrp);
379 	}
380 
381 	/* Done pushing/pulling - update this group with new mask */
382 	cpumask_copy(&rdtgrp->cpu_mask, newmask);
383 
384 	return 0;
385 }
386 
387 static void cpumask_rdtgrp_clear(struct rdtgroup *r, struct cpumask *m)
388 {
389 	struct rdtgroup *crgrp;
390 
391 	cpumask_andnot(&r->cpu_mask, &r->cpu_mask, m);
392 	/* update the child mon group masks as well*/
393 	list_for_each_entry(crgrp, &r->mon.crdtgrp_list, mon.crdtgrp_list)
394 		cpumask_and(&crgrp->cpu_mask, &r->cpu_mask, &crgrp->cpu_mask);
395 }
396 
397 static int cpus_ctrl_write(struct rdtgroup *rdtgrp, cpumask_var_t newmask,
398 			   cpumask_var_t tmpmask, cpumask_var_t tmpmask1)
399 {
400 	struct rdtgroup *r, *crgrp;
401 	struct list_head *head;
402 
403 	/* Check whether cpus are dropped from this group */
404 	cpumask_andnot(tmpmask, &rdtgrp->cpu_mask, newmask);
405 	if (!cpumask_empty(tmpmask)) {
406 		/* Can't drop from default group */
407 		if (rdtgrp == &rdtgroup_default) {
408 			rdt_last_cmd_puts("Can't drop CPUs from default group\n");
409 			return -EINVAL;
410 		}
411 
412 		/* Give any dropped cpus to rdtgroup_default */
413 		cpumask_or(&rdtgroup_default.cpu_mask,
414 			   &rdtgroup_default.cpu_mask, tmpmask);
415 		update_closid_rmid(tmpmask, &rdtgroup_default);
416 	}
417 
418 	/*
419 	 * If we added cpus, remove them from previous group and
420 	 * the prev group's child groups that owned them
421 	 * and update per-cpu closid/rmid.
422 	 */
423 	cpumask_andnot(tmpmask, newmask, &rdtgrp->cpu_mask);
424 	if (!cpumask_empty(tmpmask)) {
425 		list_for_each_entry(r, &rdt_all_groups, rdtgroup_list) {
426 			if (r == rdtgrp)
427 				continue;
428 			cpumask_and(tmpmask1, &r->cpu_mask, tmpmask);
429 			if (!cpumask_empty(tmpmask1))
430 				cpumask_rdtgrp_clear(r, tmpmask1);
431 		}
432 		update_closid_rmid(tmpmask, rdtgrp);
433 	}
434 
435 	/* Done pushing/pulling - update this group with new mask */
436 	cpumask_copy(&rdtgrp->cpu_mask, newmask);
437 
438 	/*
439 	 * Clear child mon group masks since there is a new parent mask
440 	 * now and update the rmid for the cpus the child lost.
441 	 */
442 	head = &rdtgrp->mon.crdtgrp_list;
443 	list_for_each_entry(crgrp, head, mon.crdtgrp_list) {
444 		cpumask_and(tmpmask, &rdtgrp->cpu_mask, &crgrp->cpu_mask);
445 		update_closid_rmid(tmpmask, rdtgrp);
446 		cpumask_clear(&crgrp->cpu_mask);
447 	}
448 
449 	return 0;
450 }
451 
452 static ssize_t rdtgroup_cpus_write(struct kernfs_open_file *of,
453 				   char *buf, size_t nbytes, loff_t off)
454 {
455 	cpumask_var_t tmpmask, newmask, tmpmask1;
456 	struct rdtgroup *rdtgrp;
457 	int ret;
458 
459 	if (!buf)
460 		return -EINVAL;
461 
462 	if (!zalloc_cpumask_var(&tmpmask, GFP_KERNEL))
463 		return -ENOMEM;
464 	if (!zalloc_cpumask_var(&newmask, GFP_KERNEL)) {
465 		free_cpumask_var(tmpmask);
466 		return -ENOMEM;
467 	}
468 	if (!zalloc_cpumask_var(&tmpmask1, GFP_KERNEL)) {
469 		free_cpumask_var(tmpmask);
470 		free_cpumask_var(newmask);
471 		return -ENOMEM;
472 	}
473 
474 	rdtgrp = rdtgroup_kn_lock_live(of->kn);
475 	if (!rdtgrp) {
476 		ret = -ENOENT;
477 		goto unlock;
478 	}
479 
480 	if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED ||
481 	    rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP) {
482 		ret = -EINVAL;
483 		rdt_last_cmd_puts("Pseudo-locking in progress\n");
484 		goto unlock;
485 	}
486 
487 	if (is_cpu_list(of))
488 		ret = cpulist_parse(buf, newmask);
489 	else
490 		ret = cpumask_parse(buf, newmask);
491 
492 	if (ret) {
493 		rdt_last_cmd_puts("Bad CPU list/mask\n");
494 		goto unlock;
495 	}
496 
497 	/* check that user didn't specify any offline cpus */
498 	cpumask_andnot(tmpmask, newmask, cpu_online_mask);
499 	if (!cpumask_empty(tmpmask)) {
500 		ret = -EINVAL;
501 		rdt_last_cmd_puts("Can only assign online CPUs\n");
502 		goto unlock;
503 	}
504 
505 	if (rdtgrp->type == RDTCTRL_GROUP)
506 		ret = cpus_ctrl_write(rdtgrp, newmask, tmpmask, tmpmask1);
507 	else if (rdtgrp->type == RDTMON_GROUP)
508 		ret = cpus_mon_write(rdtgrp, newmask, tmpmask);
509 	else
510 		ret = -EINVAL;
511 
512 unlock:
513 	rdtgroup_kn_unlock(of->kn);
514 	free_cpumask_var(tmpmask);
515 	free_cpumask_var(newmask);
516 	free_cpumask_var(tmpmask1);
517 
518 	return ret ?: nbytes;
519 }
520 
521 /**
522  * rdtgroup_remove - the helper to remove resource group safely
523  * @rdtgrp: resource group to remove
524  *
525  * On resource group creation via a mkdir, an extra kernfs_node reference is
526  * taken to ensure that the rdtgroup structure remains accessible for the
527  * rdtgroup_kn_unlock() calls where it is removed.
528  *
529  * Drop the extra reference here, then free the rdtgroup structure.
530  *
531  * Return: void
532  */
533 static void rdtgroup_remove(struct rdtgroup *rdtgrp)
534 {
535 	kernfs_put(rdtgrp->kn);
536 	kfree(rdtgrp);
537 }
538 
539 static void _update_task_closid_rmid(void *task)
540 {
541 	/*
542 	 * If the task is still current on this CPU, update PQR_ASSOC MSR.
543 	 * Otherwise, the MSR is updated when the task is scheduled in.
544 	 */
545 	if (task == current)
546 		resctrl_sched_in(task);
547 }
548 
549 static void update_task_closid_rmid(struct task_struct *t)
550 {
551 	if (IS_ENABLED(CONFIG_SMP) && task_curr(t))
552 		smp_call_function_single(task_cpu(t), _update_task_closid_rmid, t, 1);
553 	else
554 		_update_task_closid_rmid(t);
555 }
556 
557 static int __rdtgroup_move_task(struct task_struct *tsk,
558 				struct rdtgroup *rdtgrp)
559 {
560 	/* If the task is already in rdtgrp, no need to move the task. */
561 	if ((rdtgrp->type == RDTCTRL_GROUP && tsk->closid == rdtgrp->closid &&
562 	     tsk->rmid == rdtgrp->mon.rmid) ||
563 	    (rdtgrp->type == RDTMON_GROUP && tsk->rmid == rdtgrp->mon.rmid &&
564 	     tsk->closid == rdtgrp->mon.parent->closid))
565 		return 0;
566 
567 	/*
568 	 * Set the task's closid/rmid before the PQR_ASSOC MSR can be
569 	 * updated by them.
570 	 *
571 	 * For ctrl_mon groups, move both closid and rmid.
572 	 * For monitor groups, can move the tasks only from
573 	 * their parent CTRL group.
574 	 */
575 
576 	if (rdtgrp->type == RDTCTRL_GROUP) {
577 		WRITE_ONCE(tsk->closid, rdtgrp->closid);
578 		WRITE_ONCE(tsk->rmid, rdtgrp->mon.rmid);
579 	} else if (rdtgrp->type == RDTMON_GROUP) {
580 		if (rdtgrp->mon.parent->closid == tsk->closid) {
581 			WRITE_ONCE(tsk->rmid, rdtgrp->mon.rmid);
582 		} else {
583 			rdt_last_cmd_puts("Can't move task to different control group\n");
584 			return -EINVAL;
585 		}
586 	}
587 
588 	/*
589 	 * Ensure the task's closid and rmid are written before determining if
590 	 * the task is current that will decide if it will be interrupted.
591 	 * This pairs with the full barrier between the rq->curr update and
592 	 * resctrl_sched_in() during context switch.
593 	 */
594 	smp_mb();
595 
596 	/*
597 	 * By now, the task's closid and rmid are set. If the task is current
598 	 * on a CPU, the PQR_ASSOC MSR needs to be updated to make the resource
599 	 * group go into effect. If the task is not current, the MSR will be
600 	 * updated when the task is scheduled in.
601 	 */
602 	update_task_closid_rmid(tsk);
603 
604 	return 0;
605 }
606 
607 static bool is_closid_match(struct task_struct *t, struct rdtgroup *r)
608 {
609 	return (rdt_alloc_capable &&
610 	       (r->type == RDTCTRL_GROUP) && (t->closid == r->closid));
611 }
612 
613 static bool is_rmid_match(struct task_struct *t, struct rdtgroup *r)
614 {
615 	return (rdt_mon_capable &&
616 	       (r->type == RDTMON_GROUP) && (t->rmid == r->mon.rmid));
617 }
618 
619 /**
620  * rdtgroup_tasks_assigned - Test if tasks have been assigned to resource group
621  * @r: Resource group
622  *
623  * Return: 1 if tasks have been assigned to @r, 0 otherwise
624  */
625 int rdtgroup_tasks_assigned(struct rdtgroup *r)
626 {
627 	struct task_struct *p, *t;
628 	int ret = 0;
629 
630 	lockdep_assert_held(&rdtgroup_mutex);
631 
632 	rcu_read_lock();
633 	for_each_process_thread(p, t) {
634 		if (is_closid_match(t, r) || is_rmid_match(t, r)) {
635 			ret = 1;
636 			break;
637 		}
638 	}
639 	rcu_read_unlock();
640 
641 	return ret;
642 }
643 
644 static int rdtgroup_task_write_permission(struct task_struct *task,
645 					  struct kernfs_open_file *of)
646 {
647 	const struct cred *tcred = get_task_cred(task);
648 	const struct cred *cred = current_cred();
649 	int ret = 0;
650 
651 	/*
652 	 * Even if we're attaching all tasks in the thread group, we only
653 	 * need to check permissions on one of them.
654 	 */
655 	if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) &&
656 	    !uid_eq(cred->euid, tcred->uid) &&
657 	    !uid_eq(cred->euid, tcred->suid)) {
658 		rdt_last_cmd_printf("No permission to move task %d\n", task->pid);
659 		ret = -EPERM;
660 	}
661 
662 	put_cred(tcred);
663 	return ret;
664 }
665 
666 static int rdtgroup_move_task(pid_t pid, struct rdtgroup *rdtgrp,
667 			      struct kernfs_open_file *of)
668 {
669 	struct task_struct *tsk;
670 	int ret;
671 
672 	rcu_read_lock();
673 	if (pid) {
674 		tsk = find_task_by_vpid(pid);
675 		if (!tsk) {
676 			rcu_read_unlock();
677 			rdt_last_cmd_printf("No task %d\n", pid);
678 			return -ESRCH;
679 		}
680 	} else {
681 		tsk = current;
682 	}
683 
684 	get_task_struct(tsk);
685 	rcu_read_unlock();
686 
687 	ret = rdtgroup_task_write_permission(tsk, of);
688 	if (!ret)
689 		ret = __rdtgroup_move_task(tsk, rdtgrp);
690 
691 	put_task_struct(tsk);
692 	return ret;
693 }
694 
695 static ssize_t rdtgroup_tasks_write(struct kernfs_open_file *of,
696 				    char *buf, size_t nbytes, loff_t off)
697 {
698 	struct rdtgroup *rdtgrp;
699 	int ret = 0;
700 	pid_t pid;
701 
702 	if (kstrtoint(strstrip(buf), 0, &pid) || pid < 0)
703 		return -EINVAL;
704 	rdtgrp = rdtgroup_kn_lock_live(of->kn);
705 	if (!rdtgrp) {
706 		rdtgroup_kn_unlock(of->kn);
707 		return -ENOENT;
708 	}
709 	rdt_last_cmd_clear();
710 
711 	if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED ||
712 	    rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP) {
713 		ret = -EINVAL;
714 		rdt_last_cmd_puts("Pseudo-locking in progress\n");
715 		goto unlock;
716 	}
717 
718 	ret = rdtgroup_move_task(pid, rdtgrp, of);
719 
720 unlock:
721 	rdtgroup_kn_unlock(of->kn);
722 
723 	return ret ?: nbytes;
724 }
725 
726 static void show_rdt_tasks(struct rdtgroup *r, struct seq_file *s)
727 {
728 	struct task_struct *p, *t;
729 	pid_t pid;
730 
731 	rcu_read_lock();
732 	for_each_process_thread(p, t) {
733 		if (is_closid_match(t, r) || is_rmid_match(t, r)) {
734 			pid = task_pid_vnr(t);
735 			if (pid)
736 				seq_printf(s, "%d\n", pid);
737 		}
738 	}
739 	rcu_read_unlock();
740 }
741 
742 static int rdtgroup_tasks_show(struct kernfs_open_file *of,
743 			       struct seq_file *s, void *v)
744 {
745 	struct rdtgroup *rdtgrp;
746 	int ret = 0;
747 
748 	rdtgrp = rdtgroup_kn_lock_live(of->kn);
749 	if (rdtgrp)
750 		show_rdt_tasks(rdtgrp, s);
751 	else
752 		ret = -ENOENT;
753 	rdtgroup_kn_unlock(of->kn);
754 
755 	return ret;
756 }
757 
758 #ifdef CONFIG_PROC_CPU_RESCTRL
759 
760 /*
761  * A task can only be part of one resctrl control group and of one monitor
762  * group which is associated to that control group.
763  *
764  * 1)   res:
765  *      mon:
766  *
767  *    resctrl is not available.
768  *
769  * 2)   res:/
770  *      mon:
771  *
772  *    Task is part of the root resctrl control group, and it is not associated
773  *    to any monitor group.
774  *
775  * 3)  res:/
776  *     mon:mon0
777  *
778  *    Task is part of the root resctrl control group and monitor group mon0.
779  *
780  * 4)  res:group0
781  *     mon:
782  *
783  *    Task is part of resctrl control group group0, and it is not associated
784  *    to any monitor group.
785  *
786  * 5) res:group0
787  *    mon:mon1
788  *
789  *    Task is part of resctrl control group group0 and monitor group mon1.
790  */
791 int proc_resctrl_show(struct seq_file *s, struct pid_namespace *ns,
792 		      struct pid *pid, struct task_struct *tsk)
793 {
794 	struct rdtgroup *rdtg;
795 	int ret = 0;
796 
797 	mutex_lock(&rdtgroup_mutex);
798 
799 	/* Return empty if resctrl has not been mounted. */
800 	if (!static_branch_unlikely(&rdt_enable_key)) {
801 		seq_puts(s, "res:\nmon:\n");
802 		goto unlock;
803 	}
804 
805 	list_for_each_entry(rdtg, &rdt_all_groups, rdtgroup_list) {
806 		struct rdtgroup *crg;
807 
808 		/*
809 		 * Task information is only relevant for shareable
810 		 * and exclusive groups.
811 		 */
812 		if (rdtg->mode != RDT_MODE_SHAREABLE &&
813 		    rdtg->mode != RDT_MODE_EXCLUSIVE)
814 			continue;
815 
816 		if (rdtg->closid != tsk->closid)
817 			continue;
818 
819 		seq_printf(s, "res:%s%s\n", (rdtg == &rdtgroup_default) ? "/" : "",
820 			   rdtg->kn->name);
821 		seq_puts(s, "mon:");
822 		list_for_each_entry(crg, &rdtg->mon.crdtgrp_list,
823 				    mon.crdtgrp_list) {
824 			if (tsk->rmid != crg->mon.rmid)
825 				continue;
826 			seq_printf(s, "%s", crg->kn->name);
827 			break;
828 		}
829 		seq_putc(s, '\n');
830 		goto unlock;
831 	}
832 	/*
833 	 * The above search should succeed. Otherwise return
834 	 * with an error.
835 	 */
836 	ret = -ENOENT;
837 unlock:
838 	mutex_unlock(&rdtgroup_mutex);
839 
840 	return ret;
841 }
842 #endif
843 
844 static int rdt_last_cmd_status_show(struct kernfs_open_file *of,
845 				    struct seq_file *seq, void *v)
846 {
847 	int len;
848 
849 	mutex_lock(&rdtgroup_mutex);
850 	len = seq_buf_used(&last_cmd_status);
851 	if (len)
852 		seq_printf(seq, "%.*s", len, last_cmd_status_buf);
853 	else
854 		seq_puts(seq, "ok\n");
855 	mutex_unlock(&rdtgroup_mutex);
856 	return 0;
857 }
858 
859 static int rdt_num_closids_show(struct kernfs_open_file *of,
860 				struct seq_file *seq, void *v)
861 {
862 	struct resctrl_schema *s = of->kn->parent->priv;
863 
864 	seq_printf(seq, "%u\n", s->num_closid);
865 	return 0;
866 }
867 
868 static int rdt_default_ctrl_show(struct kernfs_open_file *of,
869 			     struct seq_file *seq, void *v)
870 {
871 	struct resctrl_schema *s = of->kn->parent->priv;
872 	struct rdt_resource *r = s->res;
873 
874 	seq_printf(seq, "%x\n", r->default_ctrl);
875 	return 0;
876 }
877 
878 static int rdt_min_cbm_bits_show(struct kernfs_open_file *of,
879 			     struct seq_file *seq, void *v)
880 {
881 	struct resctrl_schema *s = of->kn->parent->priv;
882 	struct rdt_resource *r = s->res;
883 
884 	seq_printf(seq, "%u\n", r->cache.min_cbm_bits);
885 	return 0;
886 }
887 
888 static int rdt_shareable_bits_show(struct kernfs_open_file *of,
889 				   struct seq_file *seq, void *v)
890 {
891 	struct resctrl_schema *s = of->kn->parent->priv;
892 	struct rdt_resource *r = s->res;
893 
894 	seq_printf(seq, "%x\n", r->cache.shareable_bits);
895 	return 0;
896 }
897 
898 /**
899  * rdt_bit_usage_show - Display current usage of resources
900  *
901  * A domain is a shared resource that can now be allocated differently. Here
902  * we display the current regions of the domain as an annotated bitmask.
903  * For each domain of this resource its allocation bitmask
904  * is annotated as below to indicate the current usage of the corresponding bit:
905  *   0 - currently unused
906  *   X - currently available for sharing and used by software and hardware
907  *   H - currently used by hardware only but available for software use
908  *   S - currently used and shareable by software only
909  *   E - currently used exclusively by one resource group
910  *   P - currently pseudo-locked by one resource group
911  */
912 static int rdt_bit_usage_show(struct kernfs_open_file *of,
913 			      struct seq_file *seq, void *v)
914 {
915 	struct resctrl_schema *s = of->kn->parent->priv;
916 	/*
917 	 * Use unsigned long even though only 32 bits are used to ensure
918 	 * test_bit() is used safely.
919 	 */
920 	unsigned long sw_shareable = 0, hw_shareable = 0;
921 	unsigned long exclusive = 0, pseudo_locked = 0;
922 	struct rdt_resource *r = s->res;
923 	struct rdt_domain *dom;
924 	int i, hwb, swb, excl, psl;
925 	enum rdtgrp_mode mode;
926 	bool sep = false;
927 	u32 ctrl_val;
928 
929 	mutex_lock(&rdtgroup_mutex);
930 	hw_shareable = r->cache.shareable_bits;
931 	list_for_each_entry(dom, &r->domains, list) {
932 		if (sep)
933 			seq_putc(seq, ';');
934 		sw_shareable = 0;
935 		exclusive = 0;
936 		seq_printf(seq, "%d=", dom->id);
937 		for (i = 0; i < closids_supported(); i++) {
938 			if (!closid_allocated(i))
939 				continue;
940 			ctrl_val = resctrl_arch_get_config(r, dom, i,
941 							   s->conf_type);
942 			mode = rdtgroup_mode_by_closid(i);
943 			switch (mode) {
944 			case RDT_MODE_SHAREABLE:
945 				sw_shareable |= ctrl_val;
946 				break;
947 			case RDT_MODE_EXCLUSIVE:
948 				exclusive |= ctrl_val;
949 				break;
950 			case RDT_MODE_PSEUDO_LOCKSETUP:
951 			/*
952 			 * RDT_MODE_PSEUDO_LOCKSETUP is possible
953 			 * here but not included since the CBM
954 			 * associated with this CLOSID in this mode
955 			 * is not initialized and no task or cpu can be
956 			 * assigned this CLOSID.
957 			 */
958 				break;
959 			case RDT_MODE_PSEUDO_LOCKED:
960 			case RDT_NUM_MODES:
961 				WARN(1,
962 				     "invalid mode for closid %d\n", i);
963 				break;
964 			}
965 		}
966 		for (i = r->cache.cbm_len - 1; i >= 0; i--) {
967 			pseudo_locked = dom->plr ? dom->plr->cbm : 0;
968 			hwb = test_bit(i, &hw_shareable);
969 			swb = test_bit(i, &sw_shareable);
970 			excl = test_bit(i, &exclusive);
971 			psl = test_bit(i, &pseudo_locked);
972 			if (hwb && swb)
973 				seq_putc(seq, 'X');
974 			else if (hwb && !swb)
975 				seq_putc(seq, 'H');
976 			else if (!hwb && swb)
977 				seq_putc(seq, 'S');
978 			else if (excl)
979 				seq_putc(seq, 'E');
980 			else if (psl)
981 				seq_putc(seq, 'P');
982 			else /* Unused bits remain */
983 				seq_putc(seq, '0');
984 		}
985 		sep = true;
986 	}
987 	seq_putc(seq, '\n');
988 	mutex_unlock(&rdtgroup_mutex);
989 	return 0;
990 }
991 
992 static int rdt_min_bw_show(struct kernfs_open_file *of,
993 			     struct seq_file *seq, void *v)
994 {
995 	struct resctrl_schema *s = of->kn->parent->priv;
996 	struct rdt_resource *r = s->res;
997 
998 	seq_printf(seq, "%u\n", r->membw.min_bw);
999 	return 0;
1000 }
1001 
1002 static int rdt_num_rmids_show(struct kernfs_open_file *of,
1003 			      struct seq_file *seq, void *v)
1004 {
1005 	struct rdt_resource *r = of->kn->parent->priv;
1006 
1007 	seq_printf(seq, "%d\n", r->num_rmid);
1008 
1009 	return 0;
1010 }
1011 
1012 static int rdt_mon_features_show(struct kernfs_open_file *of,
1013 				 struct seq_file *seq, void *v)
1014 {
1015 	struct rdt_resource *r = of->kn->parent->priv;
1016 	struct mon_evt *mevt;
1017 
1018 	list_for_each_entry(mevt, &r->evt_list, list) {
1019 		seq_printf(seq, "%s\n", mevt->name);
1020 		if (mevt->configurable)
1021 			seq_printf(seq, "%s_config\n", mevt->name);
1022 	}
1023 
1024 	return 0;
1025 }
1026 
1027 static int rdt_bw_gran_show(struct kernfs_open_file *of,
1028 			     struct seq_file *seq, void *v)
1029 {
1030 	struct resctrl_schema *s = of->kn->parent->priv;
1031 	struct rdt_resource *r = s->res;
1032 
1033 	seq_printf(seq, "%u\n", r->membw.bw_gran);
1034 	return 0;
1035 }
1036 
1037 static int rdt_delay_linear_show(struct kernfs_open_file *of,
1038 			     struct seq_file *seq, void *v)
1039 {
1040 	struct resctrl_schema *s = of->kn->parent->priv;
1041 	struct rdt_resource *r = s->res;
1042 
1043 	seq_printf(seq, "%u\n", r->membw.delay_linear);
1044 	return 0;
1045 }
1046 
1047 static int max_threshold_occ_show(struct kernfs_open_file *of,
1048 				  struct seq_file *seq, void *v)
1049 {
1050 	seq_printf(seq, "%u\n", resctrl_rmid_realloc_threshold);
1051 
1052 	return 0;
1053 }
1054 
1055 static int rdt_thread_throttle_mode_show(struct kernfs_open_file *of,
1056 					 struct seq_file *seq, void *v)
1057 {
1058 	struct resctrl_schema *s = of->kn->parent->priv;
1059 	struct rdt_resource *r = s->res;
1060 
1061 	if (r->membw.throttle_mode == THREAD_THROTTLE_PER_THREAD)
1062 		seq_puts(seq, "per-thread\n");
1063 	else
1064 		seq_puts(seq, "max\n");
1065 
1066 	return 0;
1067 }
1068 
1069 static ssize_t max_threshold_occ_write(struct kernfs_open_file *of,
1070 				       char *buf, size_t nbytes, loff_t off)
1071 {
1072 	unsigned int bytes;
1073 	int ret;
1074 
1075 	ret = kstrtouint(buf, 0, &bytes);
1076 	if (ret)
1077 		return ret;
1078 
1079 	if (bytes > resctrl_rmid_realloc_limit)
1080 		return -EINVAL;
1081 
1082 	resctrl_rmid_realloc_threshold = resctrl_arch_round_mon_val(bytes);
1083 
1084 	return nbytes;
1085 }
1086 
1087 /*
1088  * rdtgroup_mode_show - Display mode of this resource group
1089  */
1090 static int rdtgroup_mode_show(struct kernfs_open_file *of,
1091 			      struct seq_file *s, void *v)
1092 {
1093 	struct rdtgroup *rdtgrp;
1094 
1095 	rdtgrp = rdtgroup_kn_lock_live(of->kn);
1096 	if (!rdtgrp) {
1097 		rdtgroup_kn_unlock(of->kn);
1098 		return -ENOENT;
1099 	}
1100 
1101 	seq_printf(s, "%s\n", rdtgroup_mode_str(rdtgrp->mode));
1102 
1103 	rdtgroup_kn_unlock(of->kn);
1104 	return 0;
1105 }
1106 
1107 static enum resctrl_conf_type resctrl_peer_type(enum resctrl_conf_type my_type)
1108 {
1109 	switch (my_type) {
1110 	case CDP_CODE:
1111 		return CDP_DATA;
1112 	case CDP_DATA:
1113 		return CDP_CODE;
1114 	default:
1115 	case CDP_NONE:
1116 		return CDP_NONE;
1117 	}
1118 }
1119 
1120 /**
1121  * __rdtgroup_cbm_overlaps - Does CBM for intended closid overlap with other
1122  * @r: Resource to which domain instance @d belongs.
1123  * @d: The domain instance for which @closid is being tested.
1124  * @cbm: Capacity bitmask being tested.
1125  * @closid: Intended closid for @cbm.
1126  * @exclusive: Only check if overlaps with exclusive resource groups
1127  *
1128  * Checks if provided @cbm intended to be used for @closid on domain
1129  * @d overlaps with any other closids or other hardware usage associated
1130  * with this domain. If @exclusive is true then only overlaps with
1131  * resource groups in exclusive mode will be considered. If @exclusive
1132  * is false then overlaps with any resource group or hardware entities
1133  * will be considered.
1134  *
1135  * @cbm is unsigned long, even if only 32 bits are used, to make the
1136  * bitmap functions work correctly.
1137  *
1138  * Return: false if CBM does not overlap, true if it does.
1139  */
1140 static bool __rdtgroup_cbm_overlaps(struct rdt_resource *r, struct rdt_domain *d,
1141 				    unsigned long cbm, int closid,
1142 				    enum resctrl_conf_type type, bool exclusive)
1143 {
1144 	enum rdtgrp_mode mode;
1145 	unsigned long ctrl_b;
1146 	int i;
1147 
1148 	/* Check for any overlap with regions used by hardware directly */
1149 	if (!exclusive) {
1150 		ctrl_b = r->cache.shareable_bits;
1151 		if (bitmap_intersects(&cbm, &ctrl_b, r->cache.cbm_len))
1152 			return true;
1153 	}
1154 
1155 	/* Check for overlap with other resource groups */
1156 	for (i = 0; i < closids_supported(); i++) {
1157 		ctrl_b = resctrl_arch_get_config(r, d, i, type);
1158 		mode = rdtgroup_mode_by_closid(i);
1159 		if (closid_allocated(i) && i != closid &&
1160 		    mode != RDT_MODE_PSEUDO_LOCKSETUP) {
1161 			if (bitmap_intersects(&cbm, &ctrl_b, r->cache.cbm_len)) {
1162 				if (exclusive) {
1163 					if (mode == RDT_MODE_EXCLUSIVE)
1164 						return true;
1165 					continue;
1166 				}
1167 				return true;
1168 			}
1169 		}
1170 	}
1171 
1172 	return false;
1173 }
1174 
1175 /**
1176  * rdtgroup_cbm_overlaps - Does CBM overlap with other use of hardware
1177  * @s: Schema for the resource to which domain instance @d belongs.
1178  * @d: The domain instance for which @closid is being tested.
1179  * @cbm: Capacity bitmask being tested.
1180  * @closid: Intended closid for @cbm.
1181  * @exclusive: Only check if overlaps with exclusive resource groups
1182  *
1183  * Resources that can be allocated using a CBM can use the CBM to control
1184  * the overlap of these allocations. rdtgroup_cmb_overlaps() is the test
1185  * for overlap. Overlap test is not limited to the specific resource for
1186  * which the CBM is intended though - when dealing with CDP resources that
1187  * share the underlying hardware the overlap check should be performed on
1188  * the CDP resource sharing the hardware also.
1189  *
1190  * Refer to description of __rdtgroup_cbm_overlaps() for the details of the
1191  * overlap test.
1192  *
1193  * Return: true if CBM overlap detected, false if there is no overlap
1194  */
1195 bool rdtgroup_cbm_overlaps(struct resctrl_schema *s, struct rdt_domain *d,
1196 			   unsigned long cbm, int closid, bool exclusive)
1197 {
1198 	enum resctrl_conf_type peer_type = resctrl_peer_type(s->conf_type);
1199 	struct rdt_resource *r = s->res;
1200 
1201 	if (__rdtgroup_cbm_overlaps(r, d, cbm, closid, s->conf_type,
1202 				    exclusive))
1203 		return true;
1204 
1205 	if (!resctrl_arch_get_cdp_enabled(r->rid))
1206 		return false;
1207 	return  __rdtgroup_cbm_overlaps(r, d, cbm, closid, peer_type, exclusive);
1208 }
1209 
1210 /**
1211  * rdtgroup_mode_test_exclusive - Test if this resource group can be exclusive
1212  *
1213  * An exclusive resource group implies that there should be no sharing of
1214  * its allocated resources. At the time this group is considered to be
1215  * exclusive this test can determine if its current schemata supports this
1216  * setting by testing for overlap with all other resource groups.
1217  *
1218  * Return: true if resource group can be exclusive, false if there is overlap
1219  * with allocations of other resource groups and thus this resource group
1220  * cannot be exclusive.
1221  */
1222 static bool rdtgroup_mode_test_exclusive(struct rdtgroup *rdtgrp)
1223 {
1224 	int closid = rdtgrp->closid;
1225 	struct resctrl_schema *s;
1226 	struct rdt_resource *r;
1227 	bool has_cache = false;
1228 	struct rdt_domain *d;
1229 	u32 ctrl;
1230 
1231 	list_for_each_entry(s, &resctrl_schema_all, list) {
1232 		r = s->res;
1233 		if (r->rid == RDT_RESOURCE_MBA || r->rid == RDT_RESOURCE_SMBA)
1234 			continue;
1235 		has_cache = true;
1236 		list_for_each_entry(d, &r->domains, list) {
1237 			ctrl = resctrl_arch_get_config(r, d, closid,
1238 						       s->conf_type);
1239 			if (rdtgroup_cbm_overlaps(s, d, ctrl, closid, false)) {
1240 				rdt_last_cmd_puts("Schemata overlaps\n");
1241 				return false;
1242 			}
1243 		}
1244 	}
1245 
1246 	if (!has_cache) {
1247 		rdt_last_cmd_puts("Cannot be exclusive without CAT/CDP\n");
1248 		return false;
1249 	}
1250 
1251 	return true;
1252 }
1253 
1254 /**
1255  * rdtgroup_mode_write - Modify the resource group's mode
1256  *
1257  */
1258 static ssize_t rdtgroup_mode_write(struct kernfs_open_file *of,
1259 				   char *buf, size_t nbytes, loff_t off)
1260 {
1261 	struct rdtgroup *rdtgrp;
1262 	enum rdtgrp_mode mode;
1263 	int ret = 0;
1264 
1265 	/* Valid input requires a trailing newline */
1266 	if (nbytes == 0 || buf[nbytes - 1] != '\n')
1267 		return -EINVAL;
1268 	buf[nbytes - 1] = '\0';
1269 
1270 	rdtgrp = rdtgroup_kn_lock_live(of->kn);
1271 	if (!rdtgrp) {
1272 		rdtgroup_kn_unlock(of->kn);
1273 		return -ENOENT;
1274 	}
1275 
1276 	rdt_last_cmd_clear();
1277 
1278 	mode = rdtgrp->mode;
1279 
1280 	if ((!strcmp(buf, "shareable") && mode == RDT_MODE_SHAREABLE) ||
1281 	    (!strcmp(buf, "exclusive") && mode == RDT_MODE_EXCLUSIVE) ||
1282 	    (!strcmp(buf, "pseudo-locksetup") &&
1283 	     mode == RDT_MODE_PSEUDO_LOCKSETUP) ||
1284 	    (!strcmp(buf, "pseudo-locked") && mode == RDT_MODE_PSEUDO_LOCKED))
1285 		goto out;
1286 
1287 	if (mode == RDT_MODE_PSEUDO_LOCKED) {
1288 		rdt_last_cmd_puts("Cannot change pseudo-locked group\n");
1289 		ret = -EINVAL;
1290 		goto out;
1291 	}
1292 
1293 	if (!strcmp(buf, "shareable")) {
1294 		if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP) {
1295 			ret = rdtgroup_locksetup_exit(rdtgrp);
1296 			if (ret)
1297 				goto out;
1298 		}
1299 		rdtgrp->mode = RDT_MODE_SHAREABLE;
1300 	} else if (!strcmp(buf, "exclusive")) {
1301 		if (!rdtgroup_mode_test_exclusive(rdtgrp)) {
1302 			ret = -EINVAL;
1303 			goto out;
1304 		}
1305 		if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP) {
1306 			ret = rdtgroup_locksetup_exit(rdtgrp);
1307 			if (ret)
1308 				goto out;
1309 		}
1310 		rdtgrp->mode = RDT_MODE_EXCLUSIVE;
1311 	} else if (!strcmp(buf, "pseudo-locksetup")) {
1312 		ret = rdtgroup_locksetup_enter(rdtgrp);
1313 		if (ret)
1314 			goto out;
1315 		rdtgrp->mode = RDT_MODE_PSEUDO_LOCKSETUP;
1316 	} else {
1317 		rdt_last_cmd_puts("Unknown or unsupported mode\n");
1318 		ret = -EINVAL;
1319 	}
1320 
1321 out:
1322 	rdtgroup_kn_unlock(of->kn);
1323 	return ret ?: nbytes;
1324 }
1325 
1326 /**
1327  * rdtgroup_cbm_to_size - Translate CBM to size in bytes
1328  * @r: RDT resource to which @d belongs.
1329  * @d: RDT domain instance.
1330  * @cbm: bitmask for which the size should be computed.
1331  *
1332  * The bitmask provided associated with the RDT domain instance @d will be
1333  * translated into how many bytes it represents. The size in bytes is
1334  * computed by first dividing the total cache size by the CBM length to
1335  * determine how many bytes each bit in the bitmask represents. The result
1336  * is multiplied with the number of bits set in the bitmask.
1337  *
1338  * @cbm is unsigned long, even if only 32 bits are used to make the
1339  * bitmap functions work correctly.
1340  */
1341 unsigned int rdtgroup_cbm_to_size(struct rdt_resource *r,
1342 				  struct rdt_domain *d, unsigned long cbm)
1343 {
1344 	struct cpu_cacheinfo *ci;
1345 	unsigned int size = 0;
1346 	int num_b, i;
1347 
1348 	num_b = bitmap_weight(&cbm, r->cache.cbm_len);
1349 	ci = get_cpu_cacheinfo(cpumask_any(&d->cpu_mask));
1350 	for (i = 0; i < ci->num_leaves; i++) {
1351 		if (ci->info_list[i].level == r->cache_level) {
1352 			size = ci->info_list[i].size / r->cache.cbm_len * num_b;
1353 			break;
1354 		}
1355 	}
1356 
1357 	return size;
1358 }
1359 
1360 /**
1361  * rdtgroup_size_show - Display size in bytes of allocated regions
1362  *
1363  * The "size" file mirrors the layout of the "schemata" file, printing the
1364  * size in bytes of each region instead of the capacity bitmask.
1365  *
1366  */
1367 static int rdtgroup_size_show(struct kernfs_open_file *of,
1368 			      struct seq_file *s, void *v)
1369 {
1370 	struct resctrl_schema *schema;
1371 	enum resctrl_conf_type type;
1372 	struct rdtgroup *rdtgrp;
1373 	struct rdt_resource *r;
1374 	struct rdt_domain *d;
1375 	unsigned int size;
1376 	int ret = 0;
1377 	u32 closid;
1378 	bool sep;
1379 	u32 ctrl;
1380 
1381 	rdtgrp = rdtgroup_kn_lock_live(of->kn);
1382 	if (!rdtgrp) {
1383 		rdtgroup_kn_unlock(of->kn);
1384 		return -ENOENT;
1385 	}
1386 
1387 	if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED) {
1388 		if (!rdtgrp->plr->d) {
1389 			rdt_last_cmd_clear();
1390 			rdt_last_cmd_puts("Cache domain offline\n");
1391 			ret = -ENODEV;
1392 		} else {
1393 			seq_printf(s, "%*s:", max_name_width,
1394 				   rdtgrp->plr->s->name);
1395 			size = rdtgroup_cbm_to_size(rdtgrp->plr->s->res,
1396 						    rdtgrp->plr->d,
1397 						    rdtgrp->plr->cbm);
1398 			seq_printf(s, "%d=%u\n", rdtgrp->plr->d->id, size);
1399 		}
1400 		goto out;
1401 	}
1402 
1403 	closid = rdtgrp->closid;
1404 
1405 	list_for_each_entry(schema, &resctrl_schema_all, list) {
1406 		r = schema->res;
1407 		type = schema->conf_type;
1408 		sep = false;
1409 		seq_printf(s, "%*s:", max_name_width, schema->name);
1410 		list_for_each_entry(d, &r->domains, list) {
1411 			if (sep)
1412 				seq_putc(s, ';');
1413 			if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP) {
1414 				size = 0;
1415 			} else {
1416 				if (is_mba_sc(r))
1417 					ctrl = d->mbps_val[closid];
1418 				else
1419 					ctrl = resctrl_arch_get_config(r, d,
1420 								       closid,
1421 								       type);
1422 				if (r->rid == RDT_RESOURCE_MBA ||
1423 				    r->rid == RDT_RESOURCE_SMBA)
1424 					size = ctrl;
1425 				else
1426 					size = rdtgroup_cbm_to_size(r, d, ctrl);
1427 			}
1428 			seq_printf(s, "%d=%u", d->id, size);
1429 			sep = true;
1430 		}
1431 		seq_putc(s, '\n');
1432 	}
1433 
1434 out:
1435 	rdtgroup_kn_unlock(of->kn);
1436 
1437 	return ret;
1438 }
1439 
1440 struct mon_config_info {
1441 	u32 evtid;
1442 	u32 mon_config;
1443 };
1444 
1445 #define INVALID_CONFIG_INDEX   UINT_MAX
1446 
1447 /**
1448  * mon_event_config_index_get - get the hardware index for the
1449  *                              configurable event
1450  * @evtid: event id.
1451  *
1452  * Return: 0 for evtid == QOS_L3_MBM_TOTAL_EVENT_ID
1453  *         1 for evtid == QOS_L3_MBM_LOCAL_EVENT_ID
1454  *         INVALID_CONFIG_INDEX for invalid evtid
1455  */
1456 static inline unsigned int mon_event_config_index_get(u32 evtid)
1457 {
1458 	switch (evtid) {
1459 	case QOS_L3_MBM_TOTAL_EVENT_ID:
1460 		return 0;
1461 	case QOS_L3_MBM_LOCAL_EVENT_ID:
1462 		return 1;
1463 	default:
1464 		/* Should never reach here */
1465 		return INVALID_CONFIG_INDEX;
1466 	}
1467 }
1468 
1469 static void mon_event_config_read(void *info)
1470 {
1471 	struct mon_config_info *mon_info = info;
1472 	unsigned int index;
1473 	u64 msrval;
1474 
1475 	index = mon_event_config_index_get(mon_info->evtid);
1476 	if (index == INVALID_CONFIG_INDEX) {
1477 		pr_warn_once("Invalid event id %d\n", mon_info->evtid);
1478 		return;
1479 	}
1480 	rdmsrl(MSR_IA32_EVT_CFG_BASE + index, msrval);
1481 
1482 	/* Report only the valid event configuration bits */
1483 	mon_info->mon_config = msrval & MAX_EVT_CONFIG_BITS;
1484 }
1485 
1486 static void mondata_config_read(struct rdt_domain *d, struct mon_config_info *mon_info)
1487 {
1488 	smp_call_function_any(&d->cpu_mask, mon_event_config_read, mon_info, 1);
1489 }
1490 
1491 static int mbm_config_show(struct seq_file *s, struct rdt_resource *r, u32 evtid)
1492 {
1493 	struct mon_config_info mon_info = {0};
1494 	struct rdt_domain *dom;
1495 	bool sep = false;
1496 
1497 	mutex_lock(&rdtgroup_mutex);
1498 
1499 	list_for_each_entry(dom, &r->domains, list) {
1500 		if (sep)
1501 			seq_puts(s, ";");
1502 
1503 		memset(&mon_info, 0, sizeof(struct mon_config_info));
1504 		mon_info.evtid = evtid;
1505 		mondata_config_read(dom, &mon_info);
1506 
1507 		seq_printf(s, "%d=0x%02x", dom->id, mon_info.mon_config);
1508 		sep = true;
1509 	}
1510 	seq_puts(s, "\n");
1511 
1512 	mutex_unlock(&rdtgroup_mutex);
1513 
1514 	return 0;
1515 }
1516 
1517 static int mbm_total_bytes_config_show(struct kernfs_open_file *of,
1518 				       struct seq_file *seq, void *v)
1519 {
1520 	struct rdt_resource *r = of->kn->parent->priv;
1521 
1522 	mbm_config_show(seq, r, QOS_L3_MBM_TOTAL_EVENT_ID);
1523 
1524 	return 0;
1525 }
1526 
1527 static int mbm_local_bytes_config_show(struct kernfs_open_file *of,
1528 				       struct seq_file *seq, void *v)
1529 {
1530 	struct rdt_resource *r = of->kn->parent->priv;
1531 
1532 	mbm_config_show(seq, r, QOS_L3_MBM_LOCAL_EVENT_ID);
1533 
1534 	return 0;
1535 }
1536 
1537 static void mon_event_config_write(void *info)
1538 {
1539 	struct mon_config_info *mon_info = info;
1540 	unsigned int index;
1541 
1542 	index = mon_event_config_index_get(mon_info->evtid);
1543 	if (index == INVALID_CONFIG_INDEX) {
1544 		pr_warn_once("Invalid event id %d\n", mon_info->evtid);
1545 		return;
1546 	}
1547 	wrmsr(MSR_IA32_EVT_CFG_BASE + index, mon_info->mon_config, 0);
1548 }
1549 
1550 static int mbm_config_write_domain(struct rdt_resource *r,
1551 				   struct rdt_domain *d, u32 evtid, u32 val)
1552 {
1553 	struct mon_config_info mon_info = {0};
1554 	int ret = 0;
1555 
1556 	/*
1557 	 * Read the current config value first. If both are the same then
1558 	 * no need to write it again.
1559 	 */
1560 	mon_info.evtid = evtid;
1561 	mondata_config_read(d, &mon_info);
1562 	if (mon_info.mon_config == val)
1563 		goto out;
1564 
1565 	mon_info.mon_config = val;
1566 
1567 	/*
1568 	 * Update MSR_IA32_EVT_CFG_BASE MSR on one of the CPUs in the
1569 	 * domain. The MSRs offset from MSR MSR_IA32_EVT_CFG_BASE
1570 	 * are scoped at the domain level. Writing any of these MSRs
1571 	 * on one CPU is observed by all the CPUs in the domain.
1572 	 */
1573 	smp_call_function_any(&d->cpu_mask, mon_event_config_write,
1574 			      &mon_info, 1);
1575 
1576 	/*
1577 	 * When an Event Configuration is changed, the bandwidth counters
1578 	 * for all RMIDs and Events will be cleared by the hardware. The
1579 	 * hardware also sets MSR_IA32_QM_CTR.Unavailable (bit 62) for
1580 	 * every RMID on the next read to any event for every RMID.
1581 	 * Subsequent reads will have MSR_IA32_QM_CTR.Unavailable (bit 62)
1582 	 * cleared while it is tracked by the hardware. Clear the
1583 	 * mbm_local and mbm_total counts for all the RMIDs.
1584 	 */
1585 	resctrl_arch_reset_rmid_all(r, d);
1586 
1587 out:
1588 	return ret;
1589 }
1590 
1591 static int mon_config_write(struct rdt_resource *r, char *tok, u32 evtid)
1592 {
1593 	struct rdt_hw_resource *hw_res = resctrl_to_arch_res(r);
1594 	char *dom_str = NULL, *id_str;
1595 	unsigned long dom_id, val;
1596 	struct rdt_domain *d;
1597 	int ret = 0;
1598 
1599 next:
1600 	if (!tok || tok[0] == '\0')
1601 		return 0;
1602 
1603 	/* Start processing the strings for each domain */
1604 	dom_str = strim(strsep(&tok, ";"));
1605 	id_str = strsep(&dom_str, "=");
1606 
1607 	if (!id_str || kstrtoul(id_str, 10, &dom_id)) {
1608 		rdt_last_cmd_puts("Missing '=' or non-numeric domain id\n");
1609 		return -EINVAL;
1610 	}
1611 
1612 	if (!dom_str || kstrtoul(dom_str, 16, &val)) {
1613 		rdt_last_cmd_puts("Non-numeric event configuration value\n");
1614 		return -EINVAL;
1615 	}
1616 
1617 	/* Value from user cannot be more than the supported set of events */
1618 	if ((val & hw_res->mbm_cfg_mask) != val) {
1619 		rdt_last_cmd_printf("Invalid event configuration: max valid mask is 0x%02x\n",
1620 				    hw_res->mbm_cfg_mask);
1621 		return -EINVAL;
1622 	}
1623 
1624 	list_for_each_entry(d, &r->domains, list) {
1625 		if (d->id == dom_id) {
1626 			ret = mbm_config_write_domain(r, d, evtid, val);
1627 			if (ret)
1628 				return -EINVAL;
1629 			goto next;
1630 		}
1631 	}
1632 
1633 	return -EINVAL;
1634 }
1635 
1636 static ssize_t mbm_total_bytes_config_write(struct kernfs_open_file *of,
1637 					    char *buf, size_t nbytes,
1638 					    loff_t off)
1639 {
1640 	struct rdt_resource *r = of->kn->parent->priv;
1641 	int ret;
1642 
1643 	/* Valid input requires a trailing newline */
1644 	if (nbytes == 0 || buf[nbytes - 1] != '\n')
1645 		return -EINVAL;
1646 
1647 	mutex_lock(&rdtgroup_mutex);
1648 
1649 	rdt_last_cmd_clear();
1650 
1651 	buf[nbytes - 1] = '\0';
1652 
1653 	ret = mon_config_write(r, buf, QOS_L3_MBM_TOTAL_EVENT_ID);
1654 
1655 	mutex_unlock(&rdtgroup_mutex);
1656 
1657 	return ret ?: nbytes;
1658 }
1659 
1660 static ssize_t mbm_local_bytes_config_write(struct kernfs_open_file *of,
1661 					    char *buf, size_t nbytes,
1662 					    loff_t off)
1663 {
1664 	struct rdt_resource *r = of->kn->parent->priv;
1665 	int ret;
1666 
1667 	/* Valid input requires a trailing newline */
1668 	if (nbytes == 0 || buf[nbytes - 1] != '\n')
1669 		return -EINVAL;
1670 
1671 	mutex_lock(&rdtgroup_mutex);
1672 
1673 	rdt_last_cmd_clear();
1674 
1675 	buf[nbytes - 1] = '\0';
1676 
1677 	ret = mon_config_write(r, buf, QOS_L3_MBM_LOCAL_EVENT_ID);
1678 
1679 	mutex_unlock(&rdtgroup_mutex);
1680 
1681 	return ret ?: nbytes;
1682 }
1683 
1684 /* rdtgroup information files for one cache resource. */
1685 static struct rftype res_common_files[] = {
1686 	{
1687 		.name		= "last_cmd_status",
1688 		.mode		= 0444,
1689 		.kf_ops		= &rdtgroup_kf_single_ops,
1690 		.seq_show	= rdt_last_cmd_status_show,
1691 		.fflags		= RF_TOP_INFO,
1692 	},
1693 	{
1694 		.name		= "num_closids",
1695 		.mode		= 0444,
1696 		.kf_ops		= &rdtgroup_kf_single_ops,
1697 		.seq_show	= rdt_num_closids_show,
1698 		.fflags		= RF_CTRL_INFO,
1699 	},
1700 	{
1701 		.name		= "mon_features",
1702 		.mode		= 0444,
1703 		.kf_ops		= &rdtgroup_kf_single_ops,
1704 		.seq_show	= rdt_mon_features_show,
1705 		.fflags		= RF_MON_INFO,
1706 	},
1707 	{
1708 		.name		= "num_rmids",
1709 		.mode		= 0444,
1710 		.kf_ops		= &rdtgroup_kf_single_ops,
1711 		.seq_show	= rdt_num_rmids_show,
1712 		.fflags		= RF_MON_INFO,
1713 	},
1714 	{
1715 		.name		= "cbm_mask",
1716 		.mode		= 0444,
1717 		.kf_ops		= &rdtgroup_kf_single_ops,
1718 		.seq_show	= rdt_default_ctrl_show,
1719 		.fflags		= RF_CTRL_INFO | RFTYPE_RES_CACHE,
1720 	},
1721 	{
1722 		.name		= "min_cbm_bits",
1723 		.mode		= 0444,
1724 		.kf_ops		= &rdtgroup_kf_single_ops,
1725 		.seq_show	= rdt_min_cbm_bits_show,
1726 		.fflags		= RF_CTRL_INFO | RFTYPE_RES_CACHE,
1727 	},
1728 	{
1729 		.name		= "shareable_bits",
1730 		.mode		= 0444,
1731 		.kf_ops		= &rdtgroup_kf_single_ops,
1732 		.seq_show	= rdt_shareable_bits_show,
1733 		.fflags		= RF_CTRL_INFO | RFTYPE_RES_CACHE,
1734 	},
1735 	{
1736 		.name		= "bit_usage",
1737 		.mode		= 0444,
1738 		.kf_ops		= &rdtgroup_kf_single_ops,
1739 		.seq_show	= rdt_bit_usage_show,
1740 		.fflags		= RF_CTRL_INFO | RFTYPE_RES_CACHE,
1741 	},
1742 	{
1743 		.name		= "min_bandwidth",
1744 		.mode		= 0444,
1745 		.kf_ops		= &rdtgroup_kf_single_ops,
1746 		.seq_show	= rdt_min_bw_show,
1747 		.fflags		= RF_CTRL_INFO | RFTYPE_RES_MB,
1748 	},
1749 	{
1750 		.name		= "bandwidth_gran",
1751 		.mode		= 0444,
1752 		.kf_ops		= &rdtgroup_kf_single_ops,
1753 		.seq_show	= rdt_bw_gran_show,
1754 		.fflags		= RF_CTRL_INFO | RFTYPE_RES_MB,
1755 	},
1756 	{
1757 		.name		= "delay_linear",
1758 		.mode		= 0444,
1759 		.kf_ops		= &rdtgroup_kf_single_ops,
1760 		.seq_show	= rdt_delay_linear_show,
1761 		.fflags		= RF_CTRL_INFO | RFTYPE_RES_MB,
1762 	},
1763 	/*
1764 	 * Platform specific which (if any) capabilities are provided by
1765 	 * thread_throttle_mode. Defer "fflags" initialization to platform
1766 	 * discovery.
1767 	 */
1768 	{
1769 		.name		= "thread_throttle_mode",
1770 		.mode		= 0444,
1771 		.kf_ops		= &rdtgroup_kf_single_ops,
1772 		.seq_show	= rdt_thread_throttle_mode_show,
1773 	},
1774 	{
1775 		.name		= "max_threshold_occupancy",
1776 		.mode		= 0644,
1777 		.kf_ops		= &rdtgroup_kf_single_ops,
1778 		.write		= max_threshold_occ_write,
1779 		.seq_show	= max_threshold_occ_show,
1780 		.fflags		= RF_MON_INFO | RFTYPE_RES_CACHE,
1781 	},
1782 	{
1783 		.name		= "mbm_total_bytes_config",
1784 		.mode		= 0644,
1785 		.kf_ops		= &rdtgroup_kf_single_ops,
1786 		.seq_show	= mbm_total_bytes_config_show,
1787 		.write		= mbm_total_bytes_config_write,
1788 	},
1789 	{
1790 		.name		= "mbm_local_bytes_config",
1791 		.mode		= 0644,
1792 		.kf_ops		= &rdtgroup_kf_single_ops,
1793 		.seq_show	= mbm_local_bytes_config_show,
1794 		.write		= mbm_local_bytes_config_write,
1795 	},
1796 	{
1797 		.name		= "cpus",
1798 		.mode		= 0644,
1799 		.kf_ops		= &rdtgroup_kf_single_ops,
1800 		.write		= rdtgroup_cpus_write,
1801 		.seq_show	= rdtgroup_cpus_show,
1802 		.fflags		= RFTYPE_BASE,
1803 	},
1804 	{
1805 		.name		= "cpus_list",
1806 		.mode		= 0644,
1807 		.kf_ops		= &rdtgroup_kf_single_ops,
1808 		.write		= rdtgroup_cpus_write,
1809 		.seq_show	= rdtgroup_cpus_show,
1810 		.flags		= RFTYPE_FLAGS_CPUS_LIST,
1811 		.fflags		= RFTYPE_BASE,
1812 	},
1813 	{
1814 		.name		= "tasks",
1815 		.mode		= 0644,
1816 		.kf_ops		= &rdtgroup_kf_single_ops,
1817 		.write		= rdtgroup_tasks_write,
1818 		.seq_show	= rdtgroup_tasks_show,
1819 		.fflags		= RFTYPE_BASE,
1820 	},
1821 	{
1822 		.name		= "schemata",
1823 		.mode		= 0644,
1824 		.kf_ops		= &rdtgroup_kf_single_ops,
1825 		.write		= rdtgroup_schemata_write,
1826 		.seq_show	= rdtgroup_schemata_show,
1827 		.fflags		= RF_CTRL_BASE,
1828 	},
1829 	{
1830 		.name		= "mode",
1831 		.mode		= 0644,
1832 		.kf_ops		= &rdtgroup_kf_single_ops,
1833 		.write		= rdtgroup_mode_write,
1834 		.seq_show	= rdtgroup_mode_show,
1835 		.fflags		= RF_CTRL_BASE,
1836 	},
1837 	{
1838 		.name		= "size",
1839 		.mode		= 0444,
1840 		.kf_ops		= &rdtgroup_kf_single_ops,
1841 		.seq_show	= rdtgroup_size_show,
1842 		.fflags		= RF_CTRL_BASE,
1843 	},
1844 
1845 };
1846 
1847 static int rdtgroup_add_files(struct kernfs_node *kn, unsigned long fflags)
1848 {
1849 	struct rftype *rfts, *rft;
1850 	int ret, len;
1851 
1852 	rfts = res_common_files;
1853 	len = ARRAY_SIZE(res_common_files);
1854 
1855 	lockdep_assert_held(&rdtgroup_mutex);
1856 
1857 	for (rft = rfts; rft < rfts + len; rft++) {
1858 		if (rft->fflags && ((fflags & rft->fflags) == rft->fflags)) {
1859 			ret = rdtgroup_add_file(kn, rft);
1860 			if (ret)
1861 				goto error;
1862 		}
1863 	}
1864 
1865 	return 0;
1866 error:
1867 	pr_warn("Failed to add %s, err=%d\n", rft->name, ret);
1868 	while (--rft >= rfts) {
1869 		if ((fflags & rft->fflags) == rft->fflags)
1870 			kernfs_remove_by_name(kn, rft->name);
1871 	}
1872 	return ret;
1873 }
1874 
1875 static struct rftype *rdtgroup_get_rftype_by_name(const char *name)
1876 {
1877 	struct rftype *rfts, *rft;
1878 	int len;
1879 
1880 	rfts = res_common_files;
1881 	len = ARRAY_SIZE(res_common_files);
1882 
1883 	for (rft = rfts; rft < rfts + len; rft++) {
1884 		if (!strcmp(rft->name, name))
1885 			return rft;
1886 	}
1887 
1888 	return NULL;
1889 }
1890 
1891 void __init thread_throttle_mode_init(void)
1892 {
1893 	struct rftype *rft;
1894 
1895 	rft = rdtgroup_get_rftype_by_name("thread_throttle_mode");
1896 	if (!rft)
1897 		return;
1898 
1899 	rft->fflags = RF_CTRL_INFO | RFTYPE_RES_MB;
1900 }
1901 
1902 void __init mbm_config_rftype_init(const char *config)
1903 {
1904 	struct rftype *rft;
1905 
1906 	rft = rdtgroup_get_rftype_by_name(config);
1907 	if (rft)
1908 		rft->fflags = RF_MON_INFO | RFTYPE_RES_CACHE;
1909 }
1910 
1911 /**
1912  * rdtgroup_kn_mode_restrict - Restrict user access to named resctrl file
1913  * @r: The resource group with which the file is associated.
1914  * @name: Name of the file
1915  *
1916  * The permissions of named resctrl file, directory, or link are modified
1917  * to not allow read, write, or execute by any user.
1918  *
1919  * WARNING: This function is intended to communicate to the user that the
1920  * resctrl file has been locked down - that it is not relevant to the
1921  * particular state the system finds itself in. It should not be relied
1922  * on to protect from user access because after the file's permissions
1923  * are restricted the user can still change the permissions using chmod
1924  * from the command line.
1925  *
1926  * Return: 0 on success, <0 on failure.
1927  */
1928 int rdtgroup_kn_mode_restrict(struct rdtgroup *r, const char *name)
1929 {
1930 	struct iattr iattr = {.ia_valid = ATTR_MODE,};
1931 	struct kernfs_node *kn;
1932 	int ret = 0;
1933 
1934 	kn = kernfs_find_and_get_ns(r->kn, name, NULL);
1935 	if (!kn)
1936 		return -ENOENT;
1937 
1938 	switch (kernfs_type(kn)) {
1939 	case KERNFS_DIR:
1940 		iattr.ia_mode = S_IFDIR;
1941 		break;
1942 	case KERNFS_FILE:
1943 		iattr.ia_mode = S_IFREG;
1944 		break;
1945 	case KERNFS_LINK:
1946 		iattr.ia_mode = S_IFLNK;
1947 		break;
1948 	}
1949 
1950 	ret = kernfs_setattr(kn, &iattr);
1951 	kernfs_put(kn);
1952 	return ret;
1953 }
1954 
1955 /**
1956  * rdtgroup_kn_mode_restore - Restore user access to named resctrl file
1957  * @r: The resource group with which the file is associated.
1958  * @name: Name of the file
1959  * @mask: Mask of permissions that should be restored
1960  *
1961  * Restore the permissions of the named file. If @name is a directory the
1962  * permissions of its parent will be used.
1963  *
1964  * Return: 0 on success, <0 on failure.
1965  */
1966 int rdtgroup_kn_mode_restore(struct rdtgroup *r, const char *name,
1967 			     umode_t mask)
1968 {
1969 	struct iattr iattr = {.ia_valid = ATTR_MODE,};
1970 	struct kernfs_node *kn, *parent;
1971 	struct rftype *rfts, *rft;
1972 	int ret, len;
1973 
1974 	rfts = res_common_files;
1975 	len = ARRAY_SIZE(res_common_files);
1976 
1977 	for (rft = rfts; rft < rfts + len; rft++) {
1978 		if (!strcmp(rft->name, name))
1979 			iattr.ia_mode = rft->mode & mask;
1980 	}
1981 
1982 	kn = kernfs_find_and_get_ns(r->kn, name, NULL);
1983 	if (!kn)
1984 		return -ENOENT;
1985 
1986 	switch (kernfs_type(kn)) {
1987 	case KERNFS_DIR:
1988 		parent = kernfs_get_parent(kn);
1989 		if (parent) {
1990 			iattr.ia_mode |= parent->mode;
1991 			kernfs_put(parent);
1992 		}
1993 		iattr.ia_mode |= S_IFDIR;
1994 		break;
1995 	case KERNFS_FILE:
1996 		iattr.ia_mode |= S_IFREG;
1997 		break;
1998 	case KERNFS_LINK:
1999 		iattr.ia_mode |= S_IFLNK;
2000 		break;
2001 	}
2002 
2003 	ret = kernfs_setattr(kn, &iattr);
2004 	kernfs_put(kn);
2005 	return ret;
2006 }
2007 
2008 static int rdtgroup_mkdir_info_resdir(void *priv, char *name,
2009 				      unsigned long fflags)
2010 {
2011 	struct kernfs_node *kn_subdir;
2012 	int ret;
2013 
2014 	kn_subdir = kernfs_create_dir(kn_info, name,
2015 				      kn_info->mode, priv);
2016 	if (IS_ERR(kn_subdir))
2017 		return PTR_ERR(kn_subdir);
2018 
2019 	ret = rdtgroup_kn_set_ugid(kn_subdir);
2020 	if (ret)
2021 		return ret;
2022 
2023 	ret = rdtgroup_add_files(kn_subdir, fflags);
2024 	if (!ret)
2025 		kernfs_activate(kn_subdir);
2026 
2027 	return ret;
2028 }
2029 
2030 static int rdtgroup_create_info_dir(struct kernfs_node *parent_kn)
2031 {
2032 	struct resctrl_schema *s;
2033 	struct rdt_resource *r;
2034 	unsigned long fflags;
2035 	char name[32];
2036 	int ret;
2037 
2038 	/* create the directory */
2039 	kn_info = kernfs_create_dir(parent_kn, "info", parent_kn->mode, NULL);
2040 	if (IS_ERR(kn_info))
2041 		return PTR_ERR(kn_info);
2042 
2043 	ret = rdtgroup_add_files(kn_info, RF_TOP_INFO);
2044 	if (ret)
2045 		goto out_destroy;
2046 
2047 	/* loop over enabled controls, these are all alloc_capable */
2048 	list_for_each_entry(s, &resctrl_schema_all, list) {
2049 		r = s->res;
2050 		fflags =  r->fflags | RF_CTRL_INFO;
2051 		ret = rdtgroup_mkdir_info_resdir(s, s->name, fflags);
2052 		if (ret)
2053 			goto out_destroy;
2054 	}
2055 
2056 	for_each_mon_capable_rdt_resource(r) {
2057 		fflags =  r->fflags | RF_MON_INFO;
2058 		sprintf(name, "%s_MON", r->name);
2059 		ret = rdtgroup_mkdir_info_resdir(r, name, fflags);
2060 		if (ret)
2061 			goto out_destroy;
2062 	}
2063 
2064 	ret = rdtgroup_kn_set_ugid(kn_info);
2065 	if (ret)
2066 		goto out_destroy;
2067 
2068 	kernfs_activate(kn_info);
2069 
2070 	return 0;
2071 
2072 out_destroy:
2073 	kernfs_remove(kn_info);
2074 	return ret;
2075 }
2076 
2077 static int
2078 mongroup_create_dir(struct kernfs_node *parent_kn, struct rdtgroup *prgrp,
2079 		    char *name, struct kernfs_node **dest_kn)
2080 {
2081 	struct kernfs_node *kn;
2082 	int ret;
2083 
2084 	/* create the directory */
2085 	kn = kernfs_create_dir(parent_kn, name, parent_kn->mode, prgrp);
2086 	if (IS_ERR(kn))
2087 		return PTR_ERR(kn);
2088 
2089 	if (dest_kn)
2090 		*dest_kn = kn;
2091 
2092 	ret = rdtgroup_kn_set_ugid(kn);
2093 	if (ret)
2094 		goto out_destroy;
2095 
2096 	kernfs_activate(kn);
2097 
2098 	return 0;
2099 
2100 out_destroy:
2101 	kernfs_remove(kn);
2102 	return ret;
2103 }
2104 
2105 static void l3_qos_cfg_update(void *arg)
2106 {
2107 	bool *enable = arg;
2108 
2109 	wrmsrl(MSR_IA32_L3_QOS_CFG, *enable ? L3_QOS_CDP_ENABLE : 0ULL);
2110 }
2111 
2112 static void l2_qos_cfg_update(void *arg)
2113 {
2114 	bool *enable = arg;
2115 
2116 	wrmsrl(MSR_IA32_L2_QOS_CFG, *enable ? L2_QOS_CDP_ENABLE : 0ULL);
2117 }
2118 
2119 static inline bool is_mba_linear(void)
2120 {
2121 	return rdt_resources_all[RDT_RESOURCE_MBA].r_resctrl.membw.delay_linear;
2122 }
2123 
2124 static int set_cache_qos_cfg(int level, bool enable)
2125 {
2126 	void (*update)(void *arg);
2127 	struct rdt_resource *r_l;
2128 	cpumask_var_t cpu_mask;
2129 	struct rdt_domain *d;
2130 	int cpu;
2131 
2132 	if (level == RDT_RESOURCE_L3)
2133 		update = l3_qos_cfg_update;
2134 	else if (level == RDT_RESOURCE_L2)
2135 		update = l2_qos_cfg_update;
2136 	else
2137 		return -EINVAL;
2138 
2139 	if (!zalloc_cpumask_var(&cpu_mask, GFP_KERNEL))
2140 		return -ENOMEM;
2141 
2142 	r_l = &rdt_resources_all[level].r_resctrl;
2143 	list_for_each_entry(d, &r_l->domains, list) {
2144 		if (r_l->cache.arch_has_per_cpu_cfg)
2145 			/* Pick all the CPUs in the domain instance */
2146 			for_each_cpu(cpu, &d->cpu_mask)
2147 				cpumask_set_cpu(cpu, cpu_mask);
2148 		else
2149 			/* Pick one CPU from each domain instance to update MSR */
2150 			cpumask_set_cpu(cpumask_any(&d->cpu_mask), cpu_mask);
2151 	}
2152 
2153 	/* Update QOS_CFG MSR on all the CPUs in cpu_mask */
2154 	on_each_cpu_mask(cpu_mask, update, &enable, 1);
2155 
2156 	free_cpumask_var(cpu_mask);
2157 
2158 	return 0;
2159 }
2160 
2161 /* Restore the qos cfg state when a domain comes online */
2162 void rdt_domain_reconfigure_cdp(struct rdt_resource *r)
2163 {
2164 	struct rdt_hw_resource *hw_res = resctrl_to_arch_res(r);
2165 
2166 	if (!r->cdp_capable)
2167 		return;
2168 
2169 	if (r->rid == RDT_RESOURCE_L2)
2170 		l2_qos_cfg_update(&hw_res->cdp_enabled);
2171 
2172 	if (r->rid == RDT_RESOURCE_L3)
2173 		l3_qos_cfg_update(&hw_res->cdp_enabled);
2174 }
2175 
2176 static int mba_sc_domain_allocate(struct rdt_resource *r, struct rdt_domain *d)
2177 {
2178 	u32 num_closid = resctrl_arch_get_num_closid(r);
2179 	int cpu = cpumask_any(&d->cpu_mask);
2180 	int i;
2181 
2182 	d->mbps_val = kcalloc_node(num_closid, sizeof(*d->mbps_val),
2183 				   GFP_KERNEL, cpu_to_node(cpu));
2184 	if (!d->mbps_val)
2185 		return -ENOMEM;
2186 
2187 	for (i = 0; i < num_closid; i++)
2188 		d->mbps_val[i] = MBA_MAX_MBPS;
2189 
2190 	return 0;
2191 }
2192 
2193 static void mba_sc_domain_destroy(struct rdt_resource *r,
2194 				  struct rdt_domain *d)
2195 {
2196 	kfree(d->mbps_val);
2197 	d->mbps_val = NULL;
2198 }
2199 
2200 /*
2201  * MBA software controller is supported only if
2202  * MBM is supported and MBA is in linear scale.
2203  */
2204 static bool supports_mba_mbps(void)
2205 {
2206 	struct rdt_resource *r = &rdt_resources_all[RDT_RESOURCE_MBA].r_resctrl;
2207 
2208 	return (is_mbm_local_enabled() &&
2209 		r->alloc_capable && is_mba_linear());
2210 }
2211 
2212 /*
2213  * Enable or disable the MBA software controller
2214  * which helps user specify bandwidth in MBps.
2215  */
2216 static int set_mba_sc(bool mba_sc)
2217 {
2218 	struct rdt_resource *r = &rdt_resources_all[RDT_RESOURCE_MBA].r_resctrl;
2219 	u32 num_closid = resctrl_arch_get_num_closid(r);
2220 	struct rdt_domain *d;
2221 	int i;
2222 
2223 	if (!supports_mba_mbps() || mba_sc == is_mba_sc(r))
2224 		return -EINVAL;
2225 
2226 	r->membw.mba_sc = mba_sc;
2227 
2228 	list_for_each_entry(d, &r->domains, list) {
2229 		for (i = 0; i < num_closid; i++)
2230 			d->mbps_val[i] = MBA_MAX_MBPS;
2231 	}
2232 
2233 	return 0;
2234 }
2235 
2236 static int cdp_enable(int level)
2237 {
2238 	struct rdt_resource *r_l = &rdt_resources_all[level].r_resctrl;
2239 	int ret;
2240 
2241 	if (!r_l->alloc_capable)
2242 		return -EINVAL;
2243 
2244 	ret = set_cache_qos_cfg(level, true);
2245 	if (!ret)
2246 		rdt_resources_all[level].cdp_enabled = true;
2247 
2248 	return ret;
2249 }
2250 
2251 static void cdp_disable(int level)
2252 {
2253 	struct rdt_hw_resource *r_hw = &rdt_resources_all[level];
2254 
2255 	if (r_hw->cdp_enabled) {
2256 		set_cache_qos_cfg(level, false);
2257 		r_hw->cdp_enabled = false;
2258 	}
2259 }
2260 
2261 int resctrl_arch_set_cdp_enabled(enum resctrl_res_level l, bool enable)
2262 {
2263 	struct rdt_hw_resource *hw_res = &rdt_resources_all[l];
2264 
2265 	if (!hw_res->r_resctrl.cdp_capable)
2266 		return -EINVAL;
2267 
2268 	if (enable)
2269 		return cdp_enable(l);
2270 
2271 	cdp_disable(l);
2272 
2273 	return 0;
2274 }
2275 
2276 static void cdp_disable_all(void)
2277 {
2278 	if (resctrl_arch_get_cdp_enabled(RDT_RESOURCE_L3))
2279 		resctrl_arch_set_cdp_enabled(RDT_RESOURCE_L3, false);
2280 	if (resctrl_arch_get_cdp_enabled(RDT_RESOURCE_L2))
2281 		resctrl_arch_set_cdp_enabled(RDT_RESOURCE_L2, false);
2282 }
2283 
2284 /*
2285  * We don't allow rdtgroup directories to be created anywhere
2286  * except the root directory. Thus when looking for the rdtgroup
2287  * structure for a kernfs node we are either looking at a directory,
2288  * in which case the rdtgroup structure is pointed at by the "priv"
2289  * field, otherwise we have a file, and need only look to the parent
2290  * to find the rdtgroup.
2291  */
2292 static struct rdtgroup *kernfs_to_rdtgroup(struct kernfs_node *kn)
2293 {
2294 	if (kernfs_type(kn) == KERNFS_DIR) {
2295 		/*
2296 		 * All the resource directories use "kn->priv"
2297 		 * to point to the "struct rdtgroup" for the
2298 		 * resource. "info" and its subdirectories don't
2299 		 * have rdtgroup structures, so return NULL here.
2300 		 */
2301 		if (kn == kn_info || kn->parent == kn_info)
2302 			return NULL;
2303 		else
2304 			return kn->priv;
2305 	} else {
2306 		return kn->parent->priv;
2307 	}
2308 }
2309 
2310 static void rdtgroup_kn_get(struct rdtgroup *rdtgrp, struct kernfs_node *kn)
2311 {
2312 	atomic_inc(&rdtgrp->waitcount);
2313 	kernfs_break_active_protection(kn);
2314 }
2315 
2316 static void rdtgroup_kn_put(struct rdtgroup *rdtgrp, struct kernfs_node *kn)
2317 {
2318 	if (atomic_dec_and_test(&rdtgrp->waitcount) &&
2319 	    (rdtgrp->flags & RDT_DELETED)) {
2320 		if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP ||
2321 		    rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED)
2322 			rdtgroup_pseudo_lock_remove(rdtgrp);
2323 		kernfs_unbreak_active_protection(kn);
2324 		rdtgroup_remove(rdtgrp);
2325 	} else {
2326 		kernfs_unbreak_active_protection(kn);
2327 	}
2328 }
2329 
2330 struct rdtgroup *rdtgroup_kn_lock_live(struct kernfs_node *kn)
2331 {
2332 	struct rdtgroup *rdtgrp = kernfs_to_rdtgroup(kn);
2333 
2334 	if (!rdtgrp)
2335 		return NULL;
2336 
2337 	rdtgroup_kn_get(rdtgrp, kn);
2338 
2339 	mutex_lock(&rdtgroup_mutex);
2340 
2341 	/* Was this group deleted while we waited? */
2342 	if (rdtgrp->flags & RDT_DELETED)
2343 		return NULL;
2344 
2345 	return rdtgrp;
2346 }
2347 
2348 void rdtgroup_kn_unlock(struct kernfs_node *kn)
2349 {
2350 	struct rdtgroup *rdtgrp = kernfs_to_rdtgroup(kn);
2351 
2352 	if (!rdtgrp)
2353 		return;
2354 
2355 	mutex_unlock(&rdtgroup_mutex);
2356 	rdtgroup_kn_put(rdtgrp, kn);
2357 }
2358 
2359 static int mkdir_mondata_all(struct kernfs_node *parent_kn,
2360 			     struct rdtgroup *prgrp,
2361 			     struct kernfs_node **mon_data_kn);
2362 
2363 static int rdt_enable_ctx(struct rdt_fs_context *ctx)
2364 {
2365 	int ret = 0;
2366 
2367 	if (ctx->enable_cdpl2)
2368 		ret = resctrl_arch_set_cdp_enabled(RDT_RESOURCE_L2, true);
2369 
2370 	if (!ret && ctx->enable_cdpl3)
2371 		ret = resctrl_arch_set_cdp_enabled(RDT_RESOURCE_L3, true);
2372 
2373 	if (!ret && ctx->enable_mba_mbps)
2374 		ret = set_mba_sc(true);
2375 
2376 	return ret;
2377 }
2378 
2379 static int schemata_list_add(struct rdt_resource *r, enum resctrl_conf_type type)
2380 {
2381 	struct resctrl_schema *s;
2382 	const char *suffix = "";
2383 	int ret, cl;
2384 
2385 	s = kzalloc(sizeof(*s), GFP_KERNEL);
2386 	if (!s)
2387 		return -ENOMEM;
2388 
2389 	s->res = r;
2390 	s->num_closid = resctrl_arch_get_num_closid(r);
2391 	if (resctrl_arch_get_cdp_enabled(r->rid))
2392 		s->num_closid /= 2;
2393 
2394 	s->conf_type = type;
2395 	switch (type) {
2396 	case CDP_CODE:
2397 		suffix = "CODE";
2398 		break;
2399 	case CDP_DATA:
2400 		suffix = "DATA";
2401 		break;
2402 	case CDP_NONE:
2403 		suffix = "";
2404 		break;
2405 	}
2406 
2407 	ret = snprintf(s->name, sizeof(s->name), "%s%s", r->name, suffix);
2408 	if (ret >= sizeof(s->name)) {
2409 		kfree(s);
2410 		return -EINVAL;
2411 	}
2412 
2413 	cl = strlen(s->name);
2414 
2415 	/*
2416 	 * If CDP is supported by this resource, but not enabled,
2417 	 * include the suffix. This ensures the tabular format of the
2418 	 * schemata file does not change between mounts of the filesystem.
2419 	 */
2420 	if (r->cdp_capable && !resctrl_arch_get_cdp_enabled(r->rid))
2421 		cl += 4;
2422 
2423 	if (cl > max_name_width)
2424 		max_name_width = cl;
2425 
2426 	INIT_LIST_HEAD(&s->list);
2427 	list_add(&s->list, &resctrl_schema_all);
2428 
2429 	return 0;
2430 }
2431 
2432 static int schemata_list_create(void)
2433 {
2434 	struct rdt_resource *r;
2435 	int ret = 0;
2436 
2437 	for_each_alloc_capable_rdt_resource(r) {
2438 		if (resctrl_arch_get_cdp_enabled(r->rid)) {
2439 			ret = schemata_list_add(r, CDP_CODE);
2440 			if (ret)
2441 				break;
2442 
2443 			ret = schemata_list_add(r, CDP_DATA);
2444 		} else {
2445 			ret = schemata_list_add(r, CDP_NONE);
2446 		}
2447 
2448 		if (ret)
2449 			break;
2450 	}
2451 
2452 	return ret;
2453 }
2454 
2455 static void schemata_list_destroy(void)
2456 {
2457 	struct resctrl_schema *s, *tmp;
2458 
2459 	list_for_each_entry_safe(s, tmp, &resctrl_schema_all, list) {
2460 		list_del(&s->list);
2461 		kfree(s);
2462 	}
2463 }
2464 
2465 static int rdt_get_tree(struct fs_context *fc)
2466 {
2467 	struct rdt_fs_context *ctx = rdt_fc2context(fc);
2468 	struct rdt_domain *dom;
2469 	struct rdt_resource *r;
2470 	int ret;
2471 
2472 	cpus_read_lock();
2473 	mutex_lock(&rdtgroup_mutex);
2474 	/*
2475 	 * resctrl file system can only be mounted once.
2476 	 */
2477 	if (static_branch_unlikely(&rdt_enable_key)) {
2478 		ret = -EBUSY;
2479 		goto out;
2480 	}
2481 
2482 	ret = rdt_enable_ctx(ctx);
2483 	if (ret < 0)
2484 		goto out_cdp;
2485 
2486 	ret = schemata_list_create();
2487 	if (ret) {
2488 		schemata_list_destroy();
2489 		goto out_mba;
2490 	}
2491 
2492 	closid_init();
2493 
2494 	ret = rdtgroup_create_info_dir(rdtgroup_default.kn);
2495 	if (ret < 0)
2496 		goto out_schemata_free;
2497 
2498 	if (rdt_mon_capable) {
2499 		ret = mongroup_create_dir(rdtgroup_default.kn,
2500 					  &rdtgroup_default, "mon_groups",
2501 					  &kn_mongrp);
2502 		if (ret < 0)
2503 			goto out_info;
2504 
2505 		ret = mkdir_mondata_all(rdtgroup_default.kn,
2506 					&rdtgroup_default, &kn_mondata);
2507 		if (ret < 0)
2508 			goto out_mongrp;
2509 		rdtgroup_default.mon.mon_data_kn = kn_mondata;
2510 	}
2511 
2512 	ret = rdt_pseudo_lock_init();
2513 	if (ret)
2514 		goto out_mondata;
2515 
2516 	ret = kernfs_get_tree(fc);
2517 	if (ret < 0)
2518 		goto out_psl;
2519 
2520 	if (rdt_alloc_capable)
2521 		static_branch_enable_cpuslocked(&rdt_alloc_enable_key);
2522 	if (rdt_mon_capable)
2523 		static_branch_enable_cpuslocked(&rdt_mon_enable_key);
2524 
2525 	if (rdt_alloc_capable || rdt_mon_capable)
2526 		static_branch_enable_cpuslocked(&rdt_enable_key);
2527 
2528 	if (is_mbm_enabled()) {
2529 		r = &rdt_resources_all[RDT_RESOURCE_L3].r_resctrl;
2530 		list_for_each_entry(dom, &r->domains, list)
2531 			mbm_setup_overflow_handler(dom, MBM_OVERFLOW_INTERVAL);
2532 	}
2533 
2534 	goto out;
2535 
2536 out_psl:
2537 	rdt_pseudo_lock_release();
2538 out_mondata:
2539 	if (rdt_mon_capable)
2540 		kernfs_remove(kn_mondata);
2541 out_mongrp:
2542 	if (rdt_mon_capable)
2543 		kernfs_remove(kn_mongrp);
2544 out_info:
2545 	kernfs_remove(kn_info);
2546 out_schemata_free:
2547 	schemata_list_destroy();
2548 out_mba:
2549 	if (ctx->enable_mba_mbps)
2550 		set_mba_sc(false);
2551 out_cdp:
2552 	cdp_disable_all();
2553 out:
2554 	rdt_last_cmd_clear();
2555 	mutex_unlock(&rdtgroup_mutex);
2556 	cpus_read_unlock();
2557 	return ret;
2558 }
2559 
2560 enum rdt_param {
2561 	Opt_cdp,
2562 	Opt_cdpl2,
2563 	Opt_mba_mbps,
2564 	nr__rdt_params
2565 };
2566 
2567 static const struct fs_parameter_spec rdt_fs_parameters[] = {
2568 	fsparam_flag("cdp",		Opt_cdp),
2569 	fsparam_flag("cdpl2",		Opt_cdpl2),
2570 	fsparam_flag("mba_MBps",	Opt_mba_mbps),
2571 	{}
2572 };
2573 
2574 static int rdt_parse_param(struct fs_context *fc, struct fs_parameter *param)
2575 {
2576 	struct rdt_fs_context *ctx = rdt_fc2context(fc);
2577 	struct fs_parse_result result;
2578 	int opt;
2579 
2580 	opt = fs_parse(fc, rdt_fs_parameters, param, &result);
2581 	if (opt < 0)
2582 		return opt;
2583 
2584 	switch (opt) {
2585 	case Opt_cdp:
2586 		ctx->enable_cdpl3 = true;
2587 		return 0;
2588 	case Opt_cdpl2:
2589 		ctx->enable_cdpl2 = true;
2590 		return 0;
2591 	case Opt_mba_mbps:
2592 		if (!supports_mba_mbps())
2593 			return -EINVAL;
2594 		ctx->enable_mba_mbps = true;
2595 		return 0;
2596 	}
2597 
2598 	return -EINVAL;
2599 }
2600 
2601 static void rdt_fs_context_free(struct fs_context *fc)
2602 {
2603 	struct rdt_fs_context *ctx = rdt_fc2context(fc);
2604 
2605 	kernfs_free_fs_context(fc);
2606 	kfree(ctx);
2607 }
2608 
2609 static const struct fs_context_operations rdt_fs_context_ops = {
2610 	.free		= rdt_fs_context_free,
2611 	.parse_param	= rdt_parse_param,
2612 	.get_tree	= rdt_get_tree,
2613 };
2614 
2615 static int rdt_init_fs_context(struct fs_context *fc)
2616 {
2617 	struct rdt_fs_context *ctx;
2618 
2619 	ctx = kzalloc(sizeof(struct rdt_fs_context), GFP_KERNEL);
2620 	if (!ctx)
2621 		return -ENOMEM;
2622 
2623 	ctx->kfc.root = rdt_root;
2624 	ctx->kfc.magic = RDTGROUP_SUPER_MAGIC;
2625 	fc->fs_private = &ctx->kfc;
2626 	fc->ops = &rdt_fs_context_ops;
2627 	put_user_ns(fc->user_ns);
2628 	fc->user_ns = get_user_ns(&init_user_ns);
2629 	fc->global = true;
2630 	return 0;
2631 }
2632 
2633 static int reset_all_ctrls(struct rdt_resource *r)
2634 {
2635 	struct rdt_hw_resource *hw_res = resctrl_to_arch_res(r);
2636 	struct rdt_hw_domain *hw_dom;
2637 	struct msr_param msr_param;
2638 	cpumask_var_t cpu_mask;
2639 	struct rdt_domain *d;
2640 	int i;
2641 
2642 	if (!zalloc_cpumask_var(&cpu_mask, GFP_KERNEL))
2643 		return -ENOMEM;
2644 
2645 	msr_param.res = r;
2646 	msr_param.low = 0;
2647 	msr_param.high = hw_res->num_closid;
2648 
2649 	/*
2650 	 * Disable resource control for this resource by setting all
2651 	 * CBMs in all domains to the maximum mask value. Pick one CPU
2652 	 * from each domain to update the MSRs below.
2653 	 */
2654 	list_for_each_entry(d, &r->domains, list) {
2655 		hw_dom = resctrl_to_arch_dom(d);
2656 		cpumask_set_cpu(cpumask_any(&d->cpu_mask), cpu_mask);
2657 
2658 		for (i = 0; i < hw_res->num_closid; i++)
2659 			hw_dom->ctrl_val[i] = r->default_ctrl;
2660 	}
2661 
2662 	/* Update CBM on all the CPUs in cpu_mask */
2663 	on_each_cpu_mask(cpu_mask, rdt_ctrl_update, &msr_param, 1);
2664 
2665 	free_cpumask_var(cpu_mask);
2666 
2667 	return 0;
2668 }
2669 
2670 /*
2671  * Move tasks from one to the other group. If @from is NULL, then all tasks
2672  * in the systems are moved unconditionally (used for teardown).
2673  *
2674  * If @mask is not NULL the cpus on which moved tasks are running are set
2675  * in that mask so the update smp function call is restricted to affected
2676  * cpus.
2677  */
2678 static void rdt_move_group_tasks(struct rdtgroup *from, struct rdtgroup *to,
2679 				 struct cpumask *mask)
2680 {
2681 	struct task_struct *p, *t;
2682 
2683 	read_lock(&tasklist_lock);
2684 	for_each_process_thread(p, t) {
2685 		if (!from || is_closid_match(t, from) ||
2686 		    is_rmid_match(t, from)) {
2687 			WRITE_ONCE(t->closid, to->closid);
2688 			WRITE_ONCE(t->rmid, to->mon.rmid);
2689 
2690 			/*
2691 			 * Order the closid/rmid stores above before the loads
2692 			 * in task_curr(). This pairs with the full barrier
2693 			 * between the rq->curr update and resctrl_sched_in()
2694 			 * during context switch.
2695 			 */
2696 			smp_mb();
2697 
2698 			/*
2699 			 * If the task is on a CPU, set the CPU in the mask.
2700 			 * The detection is inaccurate as tasks might move or
2701 			 * schedule before the smp function call takes place.
2702 			 * In such a case the function call is pointless, but
2703 			 * there is no other side effect.
2704 			 */
2705 			if (IS_ENABLED(CONFIG_SMP) && mask && task_curr(t))
2706 				cpumask_set_cpu(task_cpu(t), mask);
2707 		}
2708 	}
2709 	read_unlock(&tasklist_lock);
2710 }
2711 
2712 static void free_all_child_rdtgrp(struct rdtgroup *rdtgrp)
2713 {
2714 	struct rdtgroup *sentry, *stmp;
2715 	struct list_head *head;
2716 
2717 	head = &rdtgrp->mon.crdtgrp_list;
2718 	list_for_each_entry_safe(sentry, stmp, head, mon.crdtgrp_list) {
2719 		free_rmid(sentry->mon.rmid);
2720 		list_del(&sentry->mon.crdtgrp_list);
2721 
2722 		if (atomic_read(&sentry->waitcount) != 0)
2723 			sentry->flags = RDT_DELETED;
2724 		else
2725 			rdtgroup_remove(sentry);
2726 	}
2727 }
2728 
2729 /*
2730  * Forcibly remove all of subdirectories under root.
2731  */
2732 static void rmdir_all_sub(void)
2733 {
2734 	struct rdtgroup *rdtgrp, *tmp;
2735 
2736 	/* Move all tasks to the default resource group */
2737 	rdt_move_group_tasks(NULL, &rdtgroup_default, NULL);
2738 
2739 	list_for_each_entry_safe(rdtgrp, tmp, &rdt_all_groups, rdtgroup_list) {
2740 		/* Free any child rmids */
2741 		free_all_child_rdtgrp(rdtgrp);
2742 
2743 		/* Remove each rdtgroup other than root */
2744 		if (rdtgrp == &rdtgroup_default)
2745 			continue;
2746 
2747 		if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP ||
2748 		    rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED)
2749 			rdtgroup_pseudo_lock_remove(rdtgrp);
2750 
2751 		/*
2752 		 * Give any CPUs back to the default group. We cannot copy
2753 		 * cpu_online_mask because a CPU might have executed the
2754 		 * offline callback already, but is still marked online.
2755 		 */
2756 		cpumask_or(&rdtgroup_default.cpu_mask,
2757 			   &rdtgroup_default.cpu_mask, &rdtgrp->cpu_mask);
2758 
2759 		free_rmid(rdtgrp->mon.rmid);
2760 
2761 		kernfs_remove(rdtgrp->kn);
2762 		list_del(&rdtgrp->rdtgroup_list);
2763 
2764 		if (atomic_read(&rdtgrp->waitcount) != 0)
2765 			rdtgrp->flags = RDT_DELETED;
2766 		else
2767 			rdtgroup_remove(rdtgrp);
2768 	}
2769 	/* Notify online CPUs to update per cpu storage and PQR_ASSOC MSR */
2770 	update_closid_rmid(cpu_online_mask, &rdtgroup_default);
2771 
2772 	kernfs_remove(kn_info);
2773 	kernfs_remove(kn_mongrp);
2774 	kernfs_remove(kn_mondata);
2775 }
2776 
2777 static void rdt_kill_sb(struct super_block *sb)
2778 {
2779 	struct rdt_resource *r;
2780 
2781 	cpus_read_lock();
2782 	mutex_lock(&rdtgroup_mutex);
2783 
2784 	set_mba_sc(false);
2785 
2786 	/*Put everything back to default values. */
2787 	for_each_alloc_capable_rdt_resource(r)
2788 		reset_all_ctrls(r);
2789 	cdp_disable_all();
2790 	rmdir_all_sub();
2791 	rdt_pseudo_lock_release();
2792 	rdtgroup_default.mode = RDT_MODE_SHAREABLE;
2793 	schemata_list_destroy();
2794 	static_branch_disable_cpuslocked(&rdt_alloc_enable_key);
2795 	static_branch_disable_cpuslocked(&rdt_mon_enable_key);
2796 	static_branch_disable_cpuslocked(&rdt_enable_key);
2797 	kernfs_kill_sb(sb);
2798 	mutex_unlock(&rdtgroup_mutex);
2799 	cpus_read_unlock();
2800 }
2801 
2802 static struct file_system_type rdt_fs_type = {
2803 	.name			= "resctrl",
2804 	.init_fs_context	= rdt_init_fs_context,
2805 	.parameters		= rdt_fs_parameters,
2806 	.kill_sb		= rdt_kill_sb,
2807 };
2808 
2809 static int mon_addfile(struct kernfs_node *parent_kn, const char *name,
2810 		       void *priv)
2811 {
2812 	struct kernfs_node *kn;
2813 	int ret = 0;
2814 
2815 	kn = __kernfs_create_file(parent_kn, name, 0444,
2816 				  GLOBAL_ROOT_UID, GLOBAL_ROOT_GID, 0,
2817 				  &kf_mondata_ops, priv, NULL, NULL);
2818 	if (IS_ERR(kn))
2819 		return PTR_ERR(kn);
2820 
2821 	ret = rdtgroup_kn_set_ugid(kn);
2822 	if (ret) {
2823 		kernfs_remove(kn);
2824 		return ret;
2825 	}
2826 
2827 	return ret;
2828 }
2829 
2830 /*
2831  * Remove all subdirectories of mon_data of ctrl_mon groups
2832  * and monitor groups with given domain id.
2833  */
2834 static void rmdir_mondata_subdir_allrdtgrp(struct rdt_resource *r,
2835 					   unsigned int dom_id)
2836 {
2837 	struct rdtgroup *prgrp, *crgrp;
2838 	char name[32];
2839 
2840 	list_for_each_entry(prgrp, &rdt_all_groups, rdtgroup_list) {
2841 		sprintf(name, "mon_%s_%02d", r->name, dom_id);
2842 		kernfs_remove_by_name(prgrp->mon.mon_data_kn, name);
2843 
2844 		list_for_each_entry(crgrp, &prgrp->mon.crdtgrp_list, mon.crdtgrp_list)
2845 			kernfs_remove_by_name(crgrp->mon.mon_data_kn, name);
2846 	}
2847 }
2848 
2849 static int mkdir_mondata_subdir(struct kernfs_node *parent_kn,
2850 				struct rdt_domain *d,
2851 				struct rdt_resource *r, struct rdtgroup *prgrp)
2852 {
2853 	union mon_data_bits priv;
2854 	struct kernfs_node *kn;
2855 	struct mon_evt *mevt;
2856 	struct rmid_read rr;
2857 	char name[32];
2858 	int ret;
2859 
2860 	sprintf(name, "mon_%s_%02d", r->name, d->id);
2861 	/* create the directory */
2862 	kn = kernfs_create_dir(parent_kn, name, parent_kn->mode, prgrp);
2863 	if (IS_ERR(kn))
2864 		return PTR_ERR(kn);
2865 
2866 	ret = rdtgroup_kn_set_ugid(kn);
2867 	if (ret)
2868 		goto out_destroy;
2869 
2870 	if (WARN_ON(list_empty(&r->evt_list))) {
2871 		ret = -EPERM;
2872 		goto out_destroy;
2873 	}
2874 
2875 	priv.u.rid = r->rid;
2876 	priv.u.domid = d->id;
2877 	list_for_each_entry(mevt, &r->evt_list, list) {
2878 		priv.u.evtid = mevt->evtid;
2879 		ret = mon_addfile(kn, mevt->name, priv.priv);
2880 		if (ret)
2881 			goto out_destroy;
2882 
2883 		if (is_mbm_event(mevt->evtid))
2884 			mon_event_read(&rr, r, d, prgrp, mevt->evtid, true);
2885 	}
2886 	kernfs_activate(kn);
2887 	return 0;
2888 
2889 out_destroy:
2890 	kernfs_remove(kn);
2891 	return ret;
2892 }
2893 
2894 /*
2895  * Add all subdirectories of mon_data for "ctrl_mon" groups
2896  * and "monitor" groups with given domain id.
2897  */
2898 static void mkdir_mondata_subdir_allrdtgrp(struct rdt_resource *r,
2899 					   struct rdt_domain *d)
2900 {
2901 	struct kernfs_node *parent_kn;
2902 	struct rdtgroup *prgrp, *crgrp;
2903 	struct list_head *head;
2904 
2905 	list_for_each_entry(prgrp, &rdt_all_groups, rdtgroup_list) {
2906 		parent_kn = prgrp->mon.mon_data_kn;
2907 		mkdir_mondata_subdir(parent_kn, d, r, prgrp);
2908 
2909 		head = &prgrp->mon.crdtgrp_list;
2910 		list_for_each_entry(crgrp, head, mon.crdtgrp_list) {
2911 			parent_kn = crgrp->mon.mon_data_kn;
2912 			mkdir_mondata_subdir(parent_kn, d, r, crgrp);
2913 		}
2914 	}
2915 }
2916 
2917 static int mkdir_mondata_subdir_alldom(struct kernfs_node *parent_kn,
2918 				       struct rdt_resource *r,
2919 				       struct rdtgroup *prgrp)
2920 {
2921 	struct rdt_domain *dom;
2922 	int ret;
2923 
2924 	list_for_each_entry(dom, &r->domains, list) {
2925 		ret = mkdir_mondata_subdir(parent_kn, dom, r, prgrp);
2926 		if (ret)
2927 			return ret;
2928 	}
2929 
2930 	return 0;
2931 }
2932 
2933 /*
2934  * This creates a directory mon_data which contains the monitored data.
2935  *
2936  * mon_data has one directory for each domain which are named
2937  * in the format mon_<domain_name>_<domain_id>. For ex: A mon_data
2938  * with L3 domain looks as below:
2939  * ./mon_data:
2940  * mon_L3_00
2941  * mon_L3_01
2942  * mon_L3_02
2943  * ...
2944  *
2945  * Each domain directory has one file per event:
2946  * ./mon_L3_00/:
2947  * llc_occupancy
2948  *
2949  */
2950 static int mkdir_mondata_all(struct kernfs_node *parent_kn,
2951 			     struct rdtgroup *prgrp,
2952 			     struct kernfs_node **dest_kn)
2953 {
2954 	struct rdt_resource *r;
2955 	struct kernfs_node *kn;
2956 	int ret;
2957 
2958 	/*
2959 	 * Create the mon_data directory first.
2960 	 */
2961 	ret = mongroup_create_dir(parent_kn, prgrp, "mon_data", &kn);
2962 	if (ret)
2963 		return ret;
2964 
2965 	if (dest_kn)
2966 		*dest_kn = kn;
2967 
2968 	/*
2969 	 * Create the subdirectories for each domain. Note that all events
2970 	 * in a domain like L3 are grouped into a resource whose domain is L3
2971 	 */
2972 	for_each_mon_capable_rdt_resource(r) {
2973 		ret = mkdir_mondata_subdir_alldom(kn, r, prgrp);
2974 		if (ret)
2975 			goto out_destroy;
2976 	}
2977 
2978 	return 0;
2979 
2980 out_destroy:
2981 	kernfs_remove(kn);
2982 	return ret;
2983 }
2984 
2985 /**
2986  * cbm_ensure_valid - Enforce validity on provided CBM
2987  * @_val:	Candidate CBM
2988  * @r:		RDT resource to which the CBM belongs
2989  *
2990  * The provided CBM represents all cache portions available for use. This
2991  * may be represented by a bitmap that does not consist of contiguous ones
2992  * and thus be an invalid CBM.
2993  * Here the provided CBM is forced to be a valid CBM by only considering
2994  * the first set of contiguous bits as valid and clearing all bits.
2995  * The intention here is to provide a valid default CBM with which a new
2996  * resource group is initialized. The user can follow this with a
2997  * modification to the CBM if the default does not satisfy the
2998  * requirements.
2999  */
3000 static u32 cbm_ensure_valid(u32 _val, struct rdt_resource *r)
3001 {
3002 	unsigned int cbm_len = r->cache.cbm_len;
3003 	unsigned long first_bit, zero_bit;
3004 	unsigned long val = _val;
3005 
3006 	if (!val)
3007 		return 0;
3008 
3009 	first_bit = find_first_bit(&val, cbm_len);
3010 	zero_bit = find_next_zero_bit(&val, cbm_len, first_bit);
3011 
3012 	/* Clear any remaining bits to ensure contiguous region */
3013 	bitmap_clear(&val, zero_bit, cbm_len - zero_bit);
3014 	return (u32)val;
3015 }
3016 
3017 /*
3018  * Initialize cache resources per RDT domain
3019  *
3020  * Set the RDT domain up to start off with all usable allocations. That is,
3021  * all shareable and unused bits. All-zero CBM is invalid.
3022  */
3023 static int __init_one_rdt_domain(struct rdt_domain *d, struct resctrl_schema *s,
3024 				 u32 closid)
3025 {
3026 	enum resctrl_conf_type peer_type = resctrl_peer_type(s->conf_type);
3027 	enum resctrl_conf_type t = s->conf_type;
3028 	struct resctrl_staged_config *cfg;
3029 	struct rdt_resource *r = s->res;
3030 	u32 used_b = 0, unused_b = 0;
3031 	unsigned long tmp_cbm;
3032 	enum rdtgrp_mode mode;
3033 	u32 peer_ctl, ctrl_val;
3034 	int i;
3035 
3036 	cfg = &d->staged_config[t];
3037 	cfg->have_new_ctrl = false;
3038 	cfg->new_ctrl = r->cache.shareable_bits;
3039 	used_b = r->cache.shareable_bits;
3040 	for (i = 0; i < closids_supported(); i++) {
3041 		if (closid_allocated(i) && i != closid) {
3042 			mode = rdtgroup_mode_by_closid(i);
3043 			if (mode == RDT_MODE_PSEUDO_LOCKSETUP)
3044 				/*
3045 				 * ctrl values for locksetup aren't relevant
3046 				 * until the schemata is written, and the mode
3047 				 * becomes RDT_MODE_PSEUDO_LOCKED.
3048 				 */
3049 				continue;
3050 			/*
3051 			 * If CDP is active include peer domain's
3052 			 * usage to ensure there is no overlap
3053 			 * with an exclusive group.
3054 			 */
3055 			if (resctrl_arch_get_cdp_enabled(r->rid))
3056 				peer_ctl = resctrl_arch_get_config(r, d, i,
3057 								   peer_type);
3058 			else
3059 				peer_ctl = 0;
3060 			ctrl_val = resctrl_arch_get_config(r, d, i,
3061 							   s->conf_type);
3062 			used_b |= ctrl_val | peer_ctl;
3063 			if (mode == RDT_MODE_SHAREABLE)
3064 				cfg->new_ctrl |= ctrl_val | peer_ctl;
3065 		}
3066 	}
3067 	if (d->plr && d->plr->cbm > 0)
3068 		used_b |= d->plr->cbm;
3069 	unused_b = used_b ^ (BIT_MASK(r->cache.cbm_len) - 1);
3070 	unused_b &= BIT_MASK(r->cache.cbm_len) - 1;
3071 	cfg->new_ctrl |= unused_b;
3072 	/*
3073 	 * Force the initial CBM to be valid, user can
3074 	 * modify the CBM based on system availability.
3075 	 */
3076 	cfg->new_ctrl = cbm_ensure_valid(cfg->new_ctrl, r);
3077 	/*
3078 	 * Assign the u32 CBM to an unsigned long to ensure that
3079 	 * bitmap_weight() does not access out-of-bound memory.
3080 	 */
3081 	tmp_cbm = cfg->new_ctrl;
3082 	if (bitmap_weight(&tmp_cbm, r->cache.cbm_len) < r->cache.min_cbm_bits) {
3083 		rdt_last_cmd_printf("No space on %s:%d\n", s->name, d->id);
3084 		return -ENOSPC;
3085 	}
3086 	cfg->have_new_ctrl = true;
3087 
3088 	return 0;
3089 }
3090 
3091 /*
3092  * Initialize cache resources with default values.
3093  *
3094  * A new RDT group is being created on an allocation capable (CAT)
3095  * supporting system. Set this group up to start off with all usable
3096  * allocations.
3097  *
3098  * If there are no more shareable bits available on any domain then
3099  * the entire allocation will fail.
3100  */
3101 static int rdtgroup_init_cat(struct resctrl_schema *s, u32 closid)
3102 {
3103 	struct rdt_domain *d;
3104 	int ret;
3105 
3106 	list_for_each_entry(d, &s->res->domains, list) {
3107 		ret = __init_one_rdt_domain(d, s, closid);
3108 		if (ret < 0)
3109 			return ret;
3110 	}
3111 
3112 	return 0;
3113 }
3114 
3115 /* Initialize MBA resource with default values. */
3116 static void rdtgroup_init_mba(struct rdt_resource *r, u32 closid)
3117 {
3118 	struct resctrl_staged_config *cfg;
3119 	struct rdt_domain *d;
3120 
3121 	list_for_each_entry(d, &r->domains, list) {
3122 		if (is_mba_sc(r)) {
3123 			d->mbps_val[closid] = MBA_MAX_MBPS;
3124 			continue;
3125 		}
3126 
3127 		cfg = &d->staged_config[CDP_NONE];
3128 		cfg->new_ctrl = r->default_ctrl;
3129 		cfg->have_new_ctrl = true;
3130 	}
3131 }
3132 
3133 /* Initialize the RDT group's allocations. */
3134 static int rdtgroup_init_alloc(struct rdtgroup *rdtgrp)
3135 {
3136 	struct resctrl_schema *s;
3137 	struct rdt_resource *r;
3138 	int ret = 0;
3139 
3140 	rdt_staged_configs_clear();
3141 
3142 	list_for_each_entry(s, &resctrl_schema_all, list) {
3143 		r = s->res;
3144 		if (r->rid == RDT_RESOURCE_MBA ||
3145 		    r->rid == RDT_RESOURCE_SMBA) {
3146 			rdtgroup_init_mba(r, rdtgrp->closid);
3147 			if (is_mba_sc(r))
3148 				continue;
3149 		} else {
3150 			ret = rdtgroup_init_cat(s, rdtgrp->closid);
3151 			if (ret < 0)
3152 				goto out;
3153 		}
3154 
3155 		ret = resctrl_arch_update_domains(r, rdtgrp->closid);
3156 		if (ret < 0) {
3157 			rdt_last_cmd_puts("Failed to initialize allocations\n");
3158 			goto out;
3159 		}
3160 
3161 	}
3162 
3163 	rdtgrp->mode = RDT_MODE_SHAREABLE;
3164 
3165 out:
3166 	rdt_staged_configs_clear();
3167 	return ret;
3168 }
3169 
3170 static int mkdir_rdt_prepare(struct kernfs_node *parent_kn,
3171 			     const char *name, umode_t mode,
3172 			     enum rdt_group_type rtype, struct rdtgroup **r)
3173 {
3174 	struct rdtgroup *prdtgrp, *rdtgrp;
3175 	struct kernfs_node *kn;
3176 	uint files = 0;
3177 	int ret;
3178 
3179 	prdtgrp = rdtgroup_kn_lock_live(parent_kn);
3180 	if (!prdtgrp) {
3181 		ret = -ENODEV;
3182 		goto out_unlock;
3183 	}
3184 
3185 	if (rtype == RDTMON_GROUP &&
3186 	    (prdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP ||
3187 	     prdtgrp->mode == RDT_MODE_PSEUDO_LOCKED)) {
3188 		ret = -EINVAL;
3189 		rdt_last_cmd_puts("Pseudo-locking in progress\n");
3190 		goto out_unlock;
3191 	}
3192 
3193 	/* allocate the rdtgroup. */
3194 	rdtgrp = kzalloc(sizeof(*rdtgrp), GFP_KERNEL);
3195 	if (!rdtgrp) {
3196 		ret = -ENOSPC;
3197 		rdt_last_cmd_puts("Kernel out of memory\n");
3198 		goto out_unlock;
3199 	}
3200 	*r = rdtgrp;
3201 	rdtgrp->mon.parent = prdtgrp;
3202 	rdtgrp->type = rtype;
3203 	INIT_LIST_HEAD(&rdtgrp->mon.crdtgrp_list);
3204 
3205 	/* kernfs creates the directory for rdtgrp */
3206 	kn = kernfs_create_dir(parent_kn, name, mode, rdtgrp);
3207 	if (IS_ERR(kn)) {
3208 		ret = PTR_ERR(kn);
3209 		rdt_last_cmd_puts("kernfs create error\n");
3210 		goto out_free_rgrp;
3211 	}
3212 	rdtgrp->kn = kn;
3213 
3214 	/*
3215 	 * kernfs_remove() will drop the reference count on "kn" which
3216 	 * will free it. But we still need it to stick around for the
3217 	 * rdtgroup_kn_unlock(kn) call. Take one extra reference here,
3218 	 * which will be dropped by kernfs_put() in rdtgroup_remove().
3219 	 */
3220 	kernfs_get(kn);
3221 
3222 	ret = rdtgroup_kn_set_ugid(kn);
3223 	if (ret) {
3224 		rdt_last_cmd_puts("kernfs perm error\n");
3225 		goto out_destroy;
3226 	}
3227 
3228 	files = RFTYPE_BASE | BIT(RF_CTRLSHIFT + rtype);
3229 	ret = rdtgroup_add_files(kn, files);
3230 	if (ret) {
3231 		rdt_last_cmd_puts("kernfs fill error\n");
3232 		goto out_destroy;
3233 	}
3234 
3235 	if (rdt_mon_capable) {
3236 		ret = alloc_rmid();
3237 		if (ret < 0) {
3238 			rdt_last_cmd_puts("Out of RMIDs\n");
3239 			goto out_destroy;
3240 		}
3241 		rdtgrp->mon.rmid = ret;
3242 
3243 		ret = mkdir_mondata_all(kn, rdtgrp, &rdtgrp->mon.mon_data_kn);
3244 		if (ret) {
3245 			rdt_last_cmd_puts("kernfs subdir error\n");
3246 			goto out_idfree;
3247 		}
3248 	}
3249 	kernfs_activate(kn);
3250 
3251 	/*
3252 	 * The caller unlocks the parent_kn upon success.
3253 	 */
3254 	return 0;
3255 
3256 out_idfree:
3257 	free_rmid(rdtgrp->mon.rmid);
3258 out_destroy:
3259 	kernfs_put(rdtgrp->kn);
3260 	kernfs_remove(rdtgrp->kn);
3261 out_free_rgrp:
3262 	kfree(rdtgrp);
3263 out_unlock:
3264 	rdtgroup_kn_unlock(parent_kn);
3265 	return ret;
3266 }
3267 
3268 static void mkdir_rdt_prepare_clean(struct rdtgroup *rgrp)
3269 {
3270 	kernfs_remove(rgrp->kn);
3271 	free_rmid(rgrp->mon.rmid);
3272 	rdtgroup_remove(rgrp);
3273 }
3274 
3275 /*
3276  * Create a monitor group under "mon_groups" directory of a control
3277  * and monitor group(ctrl_mon). This is a resource group
3278  * to monitor a subset of tasks and cpus in its parent ctrl_mon group.
3279  */
3280 static int rdtgroup_mkdir_mon(struct kernfs_node *parent_kn,
3281 			      const char *name, umode_t mode)
3282 {
3283 	struct rdtgroup *rdtgrp, *prgrp;
3284 	int ret;
3285 
3286 	ret = mkdir_rdt_prepare(parent_kn, name, mode, RDTMON_GROUP, &rdtgrp);
3287 	if (ret)
3288 		return ret;
3289 
3290 	prgrp = rdtgrp->mon.parent;
3291 	rdtgrp->closid = prgrp->closid;
3292 
3293 	/*
3294 	 * Add the rdtgrp to the list of rdtgrps the parent
3295 	 * ctrl_mon group has to track.
3296 	 */
3297 	list_add_tail(&rdtgrp->mon.crdtgrp_list, &prgrp->mon.crdtgrp_list);
3298 
3299 	rdtgroup_kn_unlock(parent_kn);
3300 	return ret;
3301 }
3302 
3303 /*
3304  * These are rdtgroups created under the root directory. Can be used
3305  * to allocate and monitor resources.
3306  */
3307 static int rdtgroup_mkdir_ctrl_mon(struct kernfs_node *parent_kn,
3308 				   const char *name, umode_t mode)
3309 {
3310 	struct rdtgroup *rdtgrp;
3311 	struct kernfs_node *kn;
3312 	u32 closid;
3313 	int ret;
3314 
3315 	ret = mkdir_rdt_prepare(parent_kn, name, mode, RDTCTRL_GROUP, &rdtgrp);
3316 	if (ret)
3317 		return ret;
3318 
3319 	kn = rdtgrp->kn;
3320 	ret = closid_alloc();
3321 	if (ret < 0) {
3322 		rdt_last_cmd_puts("Out of CLOSIDs\n");
3323 		goto out_common_fail;
3324 	}
3325 	closid = ret;
3326 	ret = 0;
3327 
3328 	rdtgrp->closid = closid;
3329 	ret = rdtgroup_init_alloc(rdtgrp);
3330 	if (ret < 0)
3331 		goto out_id_free;
3332 
3333 	list_add(&rdtgrp->rdtgroup_list, &rdt_all_groups);
3334 
3335 	if (rdt_mon_capable) {
3336 		/*
3337 		 * Create an empty mon_groups directory to hold the subset
3338 		 * of tasks and cpus to monitor.
3339 		 */
3340 		ret = mongroup_create_dir(kn, rdtgrp, "mon_groups", NULL);
3341 		if (ret) {
3342 			rdt_last_cmd_puts("kernfs subdir error\n");
3343 			goto out_del_list;
3344 		}
3345 	}
3346 
3347 	goto out_unlock;
3348 
3349 out_del_list:
3350 	list_del(&rdtgrp->rdtgroup_list);
3351 out_id_free:
3352 	closid_free(closid);
3353 out_common_fail:
3354 	mkdir_rdt_prepare_clean(rdtgrp);
3355 out_unlock:
3356 	rdtgroup_kn_unlock(parent_kn);
3357 	return ret;
3358 }
3359 
3360 /*
3361  * We allow creating mon groups only with in a directory called "mon_groups"
3362  * which is present in every ctrl_mon group. Check if this is a valid
3363  * "mon_groups" directory.
3364  *
3365  * 1. The directory should be named "mon_groups".
3366  * 2. The mon group itself should "not" be named "mon_groups".
3367  *   This makes sure "mon_groups" directory always has a ctrl_mon group
3368  *   as parent.
3369  */
3370 static bool is_mon_groups(struct kernfs_node *kn, const char *name)
3371 {
3372 	return (!strcmp(kn->name, "mon_groups") &&
3373 		strcmp(name, "mon_groups"));
3374 }
3375 
3376 static int rdtgroup_mkdir(struct kernfs_node *parent_kn, const char *name,
3377 			  umode_t mode)
3378 {
3379 	/* Do not accept '\n' to avoid unparsable situation. */
3380 	if (strchr(name, '\n'))
3381 		return -EINVAL;
3382 
3383 	/*
3384 	 * If the parent directory is the root directory and RDT
3385 	 * allocation is supported, add a control and monitoring
3386 	 * subdirectory
3387 	 */
3388 	if (rdt_alloc_capable && parent_kn == rdtgroup_default.kn)
3389 		return rdtgroup_mkdir_ctrl_mon(parent_kn, name, mode);
3390 
3391 	/*
3392 	 * If RDT monitoring is supported and the parent directory is a valid
3393 	 * "mon_groups" directory, add a monitoring subdirectory.
3394 	 */
3395 	if (rdt_mon_capable && is_mon_groups(parent_kn, name))
3396 		return rdtgroup_mkdir_mon(parent_kn, name, mode);
3397 
3398 	return -EPERM;
3399 }
3400 
3401 static int rdtgroup_rmdir_mon(struct rdtgroup *rdtgrp, cpumask_var_t tmpmask)
3402 {
3403 	struct rdtgroup *prdtgrp = rdtgrp->mon.parent;
3404 	int cpu;
3405 
3406 	/* Give any tasks back to the parent group */
3407 	rdt_move_group_tasks(rdtgrp, prdtgrp, tmpmask);
3408 
3409 	/* Update per cpu rmid of the moved CPUs first */
3410 	for_each_cpu(cpu, &rdtgrp->cpu_mask)
3411 		per_cpu(pqr_state.default_rmid, cpu) = prdtgrp->mon.rmid;
3412 	/*
3413 	 * Update the MSR on moved CPUs and CPUs which have moved
3414 	 * task running on them.
3415 	 */
3416 	cpumask_or(tmpmask, tmpmask, &rdtgrp->cpu_mask);
3417 	update_closid_rmid(tmpmask, NULL);
3418 
3419 	rdtgrp->flags = RDT_DELETED;
3420 	free_rmid(rdtgrp->mon.rmid);
3421 
3422 	/*
3423 	 * Remove the rdtgrp from the parent ctrl_mon group's list
3424 	 */
3425 	WARN_ON(list_empty(&prdtgrp->mon.crdtgrp_list));
3426 	list_del(&rdtgrp->mon.crdtgrp_list);
3427 
3428 	kernfs_remove(rdtgrp->kn);
3429 
3430 	return 0;
3431 }
3432 
3433 static int rdtgroup_ctrl_remove(struct rdtgroup *rdtgrp)
3434 {
3435 	rdtgrp->flags = RDT_DELETED;
3436 	list_del(&rdtgrp->rdtgroup_list);
3437 
3438 	kernfs_remove(rdtgrp->kn);
3439 	return 0;
3440 }
3441 
3442 static int rdtgroup_rmdir_ctrl(struct rdtgroup *rdtgrp, cpumask_var_t tmpmask)
3443 {
3444 	int cpu;
3445 
3446 	/* Give any tasks back to the default group */
3447 	rdt_move_group_tasks(rdtgrp, &rdtgroup_default, tmpmask);
3448 
3449 	/* Give any CPUs back to the default group */
3450 	cpumask_or(&rdtgroup_default.cpu_mask,
3451 		   &rdtgroup_default.cpu_mask, &rdtgrp->cpu_mask);
3452 
3453 	/* Update per cpu closid and rmid of the moved CPUs first */
3454 	for_each_cpu(cpu, &rdtgrp->cpu_mask) {
3455 		per_cpu(pqr_state.default_closid, cpu) = rdtgroup_default.closid;
3456 		per_cpu(pqr_state.default_rmid, cpu) = rdtgroup_default.mon.rmid;
3457 	}
3458 
3459 	/*
3460 	 * Update the MSR on moved CPUs and CPUs which have moved
3461 	 * task running on them.
3462 	 */
3463 	cpumask_or(tmpmask, tmpmask, &rdtgrp->cpu_mask);
3464 	update_closid_rmid(tmpmask, NULL);
3465 
3466 	closid_free(rdtgrp->closid);
3467 	free_rmid(rdtgrp->mon.rmid);
3468 
3469 	rdtgroup_ctrl_remove(rdtgrp);
3470 
3471 	/*
3472 	 * Free all the child monitor group rmids.
3473 	 */
3474 	free_all_child_rdtgrp(rdtgrp);
3475 
3476 	return 0;
3477 }
3478 
3479 static int rdtgroup_rmdir(struct kernfs_node *kn)
3480 {
3481 	struct kernfs_node *parent_kn = kn->parent;
3482 	struct rdtgroup *rdtgrp;
3483 	cpumask_var_t tmpmask;
3484 	int ret = 0;
3485 
3486 	if (!zalloc_cpumask_var(&tmpmask, GFP_KERNEL))
3487 		return -ENOMEM;
3488 
3489 	rdtgrp = rdtgroup_kn_lock_live(kn);
3490 	if (!rdtgrp) {
3491 		ret = -EPERM;
3492 		goto out;
3493 	}
3494 
3495 	/*
3496 	 * If the rdtgroup is a ctrl_mon group and parent directory
3497 	 * is the root directory, remove the ctrl_mon group.
3498 	 *
3499 	 * If the rdtgroup is a mon group and parent directory
3500 	 * is a valid "mon_groups" directory, remove the mon group.
3501 	 */
3502 	if (rdtgrp->type == RDTCTRL_GROUP && parent_kn == rdtgroup_default.kn &&
3503 	    rdtgrp != &rdtgroup_default) {
3504 		if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP ||
3505 		    rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED) {
3506 			ret = rdtgroup_ctrl_remove(rdtgrp);
3507 		} else {
3508 			ret = rdtgroup_rmdir_ctrl(rdtgrp, tmpmask);
3509 		}
3510 	} else if (rdtgrp->type == RDTMON_GROUP &&
3511 		 is_mon_groups(parent_kn, kn->name)) {
3512 		ret = rdtgroup_rmdir_mon(rdtgrp, tmpmask);
3513 	} else {
3514 		ret = -EPERM;
3515 	}
3516 
3517 out:
3518 	rdtgroup_kn_unlock(kn);
3519 	free_cpumask_var(tmpmask);
3520 	return ret;
3521 }
3522 
3523 /**
3524  * mongrp_reparent() - replace parent CTRL_MON group of a MON group
3525  * @rdtgrp:		the MON group whose parent should be replaced
3526  * @new_prdtgrp:	replacement parent CTRL_MON group for @rdtgrp
3527  * @cpus:		cpumask provided by the caller for use during this call
3528  *
3529  * Replaces the parent CTRL_MON group for a MON group, resulting in all member
3530  * tasks' CLOSID immediately changing to that of the new parent group.
3531  * Monitoring data for the group is unaffected by this operation.
3532  */
3533 static void mongrp_reparent(struct rdtgroup *rdtgrp,
3534 			    struct rdtgroup *new_prdtgrp,
3535 			    cpumask_var_t cpus)
3536 {
3537 	struct rdtgroup *prdtgrp = rdtgrp->mon.parent;
3538 
3539 	WARN_ON(rdtgrp->type != RDTMON_GROUP);
3540 	WARN_ON(new_prdtgrp->type != RDTCTRL_GROUP);
3541 
3542 	/* Nothing to do when simply renaming a MON group. */
3543 	if (prdtgrp == new_prdtgrp)
3544 		return;
3545 
3546 	WARN_ON(list_empty(&prdtgrp->mon.crdtgrp_list));
3547 	list_move_tail(&rdtgrp->mon.crdtgrp_list,
3548 		       &new_prdtgrp->mon.crdtgrp_list);
3549 
3550 	rdtgrp->mon.parent = new_prdtgrp;
3551 	rdtgrp->closid = new_prdtgrp->closid;
3552 
3553 	/* Propagate updated closid to all tasks in this group. */
3554 	rdt_move_group_tasks(rdtgrp, rdtgrp, cpus);
3555 
3556 	update_closid_rmid(cpus, NULL);
3557 }
3558 
3559 static int rdtgroup_rename(struct kernfs_node *kn,
3560 			   struct kernfs_node *new_parent, const char *new_name)
3561 {
3562 	struct rdtgroup *new_prdtgrp;
3563 	struct rdtgroup *rdtgrp;
3564 	cpumask_var_t tmpmask;
3565 	int ret;
3566 
3567 	rdtgrp = kernfs_to_rdtgroup(kn);
3568 	new_prdtgrp = kernfs_to_rdtgroup(new_parent);
3569 	if (!rdtgrp || !new_prdtgrp)
3570 		return -ENOENT;
3571 
3572 	/* Release both kernfs active_refs before obtaining rdtgroup mutex. */
3573 	rdtgroup_kn_get(rdtgrp, kn);
3574 	rdtgroup_kn_get(new_prdtgrp, new_parent);
3575 
3576 	mutex_lock(&rdtgroup_mutex);
3577 
3578 	rdt_last_cmd_clear();
3579 
3580 	/*
3581 	 * Don't allow kernfs_to_rdtgroup() to return a parent rdtgroup if
3582 	 * either kernfs_node is a file.
3583 	 */
3584 	if (kernfs_type(kn) != KERNFS_DIR ||
3585 	    kernfs_type(new_parent) != KERNFS_DIR) {
3586 		rdt_last_cmd_puts("Source and destination must be directories");
3587 		ret = -EPERM;
3588 		goto out;
3589 	}
3590 
3591 	if ((rdtgrp->flags & RDT_DELETED) || (new_prdtgrp->flags & RDT_DELETED)) {
3592 		ret = -ENOENT;
3593 		goto out;
3594 	}
3595 
3596 	if (rdtgrp->type != RDTMON_GROUP || !kn->parent ||
3597 	    !is_mon_groups(kn->parent, kn->name)) {
3598 		rdt_last_cmd_puts("Source must be a MON group\n");
3599 		ret = -EPERM;
3600 		goto out;
3601 	}
3602 
3603 	if (!is_mon_groups(new_parent, new_name)) {
3604 		rdt_last_cmd_puts("Destination must be a mon_groups subdirectory\n");
3605 		ret = -EPERM;
3606 		goto out;
3607 	}
3608 
3609 	/*
3610 	 * If the MON group is monitoring CPUs, the CPUs must be assigned to the
3611 	 * current parent CTRL_MON group and therefore cannot be assigned to
3612 	 * the new parent, making the move illegal.
3613 	 */
3614 	if (!cpumask_empty(&rdtgrp->cpu_mask) &&
3615 	    rdtgrp->mon.parent != new_prdtgrp) {
3616 		rdt_last_cmd_puts("Cannot move a MON group that monitors CPUs\n");
3617 		ret = -EPERM;
3618 		goto out;
3619 	}
3620 
3621 	/*
3622 	 * Allocate the cpumask for use in mongrp_reparent() to avoid the
3623 	 * possibility of failing to allocate it after kernfs_rename() has
3624 	 * succeeded.
3625 	 */
3626 	if (!zalloc_cpumask_var(&tmpmask, GFP_KERNEL)) {
3627 		ret = -ENOMEM;
3628 		goto out;
3629 	}
3630 
3631 	/*
3632 	 * Perform all input validation and allocations needed to ensure
3633 	 * mongrp_reparent() will succeed before calling kernfs_rename(),
3634 	 * otherwise it would be necessary to revert this call if
3635 	 * mongrp_reparent() failed.
3636 	 */
3637 	ret = kernfs_rename(kn, new_parent, new_name);
3638 	if (!ret)
3639 		mongrp_reparent(rdtgrp, new_prdtgrp, tmpmask);
3640 
3641 	free_cpumask_var(tmpmask);
3642 
3643 out:
3644 	mutex_unlock(&rdtgroup_mutex);
3645 	rdtgroup_kn_put(rdtgrp, kn);
3646 	rdtgroup_kn_put(new_prdtgrp, new_parent);
3647 	return ret;
3648 }
3649 
3650 static int rdtgroup_show_options(struct seq_file *seq, struct kernfs_root *kf)
3651 {
3652 	if (resctrl_arch_get_cdp_enabled(RDT_RESOURCE_L3))
3653 		seq_puts(seq, ",cdp");
3654 
3655 	if (resctrl_arch_get_cdp_enabled(RDT_RESOURCE_L2))
3656 		seq_puts(seq, ",cdpl2");
3657 
3658 	if (is_mba_sc(&rdt_resources_all[RDT_RESOURCE_MBA].r_resctrl))
3659 		seq_puts(seq, ",mba_MBps");
3660 
3661 	return 0;
3662 }
3663 
3664 static struct kernfs_syscall_ops rdtgroup_kf_syscall_ops = {
3665 	.mkdir		= rdtgroup_mkdir,
3666 	.rmdir		= rdtgroup_rmdir,
3667 	.rename		= rdtgroup_rename,
3668 	.show_options	= rdtgroup_show_options,
3669 };
3670 
3671 static int __init rdtgroup_setup_root(void)
3672 {
3673 	int ret;
3674 
3675 	rdt_root = kernfs_create_root(&rdtgroup_kf_syscall_ops,
3676 				      KERNFS_ROOT_CREATE_DEACTIVATED |
3677 				      KERNFS_ROOT_EXTRA_OPEN_PERM_CHECK,
3678 				      &rdtgroup_default);
3679 	if (IS_ERR(rdt_root))
3680 		return PTR_ERR(rdt_root);
3681 
3682 	mutex_lock(&rdtgroup_mutex);
3683 
3684 	rdtgroup_default.closid = 0;
3685 	rdtgroup_default.mon.rmid = 0;
3686 	rdtgroup_default.type = RDTCTRL_GROUP;
3687 	INIT_LIST_HEAD(&rdtgroup_default.mon.crdtgrp_list);
3688 
3689 	list_add(&rdtgroup_default.rdtgroup_list, &rdt_all_groups);
3690 
3691 	ret = rdtgroup_add_files(kernfs_root_to_node(rdt_root), RF_CTRL_BASE);
3692 	if (ret) {
3693 		kernfs_destroy_root(rdt_root);
3694 		goto out;
3695 	}
3696 
3697 	rdtgroup_default.kn = kernfs_root_to_node(rdt_root);
3698 	kernfs_activate(rdtgroup_default.kn);
3699 
3700 out:
3701 	mutex_unlock(&rdtgroup_mutex);
3702 
3703 	return ret;
3704 }
3705 
3706 static void domain_destroy_mon_state(struct rdt_domain *d)
3707 {
3708 	bitmap_free(d->rmid_busy_llc);
3709 	kfree(d->mbm_total);
3710 	kfree(d->mbm_local);
3711 }
3712 
3713 void resctrl_offline_domain(struct rdt_resource *r, struct rdt_domain *d)
3714 {
3715 	lockdep_assert_held(&rdtgroup_mutex);
3716 
3717 	if (supports_mba_mbps() && r->rid == RDT_RESOURCE_MBA)
3718 		mba_sc_domain_destroy(r, d);
3719 
3720 	if (!r->mon_capable)
3721 		return;
3722 
3723 	/*
3724 	 * If resctrl is mounted, remove all the
3725 	 * per domain monitor data directories.
3726 	 */
3727 	if (static_branch_unlikely(&rdt_mon_enable_key))
3728 		rmdir_mondata_subdir_allrdtgrp(r, d->id);
3729 
3730 	if (is_mbm_enabled())
3731 		cancel_delayed_work(&d->mbm_over);
3732 	if (is_llc_occupancy_enabled() && has_busy_rmid(r, d)) {
3733 		/*
3734 		 * When a package is going down, forcefully
3735 		 * decrement rmid->ebusy. There is no way to know
3736 		 * that the L3 was flushed and hence may lead to
3737 		 * incorrect counts in rare scenarios, but leaving
3738 		 * the RMID as busy creates RMID leaks if the
3739 		 * package never comes back.
3740 		 */
3741 		__check_limbo(d, true);
3742 		cancel_delayed_work(&d->cqm_limbo);
3743 	}
3744 
3745 	domain_destroy_mon_state(d);
3746 }
3747 
3748 static int domain_setup_mon_state(struct rdt_resource *r, struct rdt_domain *d)
3749 {
3750 	size_t tsize;
3751 
3752 	if (is_llc_occupancy_enabled()) {
3753 		d->rmid_busy_llc = bitmap_zalloc(r->num_rmid, GFP_KERNEL);
3754 		if (!d->rmid_busy_llc)
3755 			return -ENOMEM;
3756 	}
3757 	if (is_mbm_total_enabled()) {
3758 		tsize = sizeof(*d->mbm_total);
3759 		d->mbm_total = kcalloc(r->num_rmid, tsize, GFP_KERNEL);
3760 		if (!d->mbm_total) {
3761 			bitmap_free(d->rmid_busy_llc);
3762 			return -ENOMEM;
3763 		}
3764 	}
3765 	if (is_mbm_local_enabled()) {
3766 		tsize = sizeof(*d->mbm_local);
3767 		d->mbm_local = kcalloc(r->num_rmid, tsize, GFP_KERNEL);
3768 		if (!d->mbm_local) {
3769 			bitmap_free(d->rmid_busy_llc);
3770 			kfree(d->mbm_total);
3771 			return -ENOMEM;
3772 		}
3773 	}
3774 
3775 	return 0;
3776 }
3777 
3778 int resctrl_online_domain(struct rdt_resource *r, struct rdt_domain *d)
3779 {
3780 	int err;
3781 
3782 	lockdep_assert_held(&rdtgroup_mutex);
3783 
3784 	if (supports_mba_mbps() && r->rid == RDT_RESOURCE_MBA)
3785 		/* RDT_RESOURCE_MBA is never mon_capable */
3786 		return mba_sc_domain_allocate(r, d);
3787 
3788 	if (!r->mon_capable)
3789 		return 0;
3790 
3791 	err = domain_setup_mon_state(r, d);
3792 	if (err)
3793 		return err;
3794 
3795 	if (is_mbm_enabled()) {
3796 		INIT_DELAYED_WORK(&d->mbm_over, mbm_handle_overflow);
3797 		mbm_setup_overflow_handler(d, MBM_OVERFLOW_INTERVAL);
3798 	}
3799 
3800 	if (is_llc_occupancy_enabled())
3801 		INIT_DELAYED_WORK(&d->cqm_limbo, cqm_handle_limbo);
3802 
3803 	/* If resctrl is mounted, add per domain monitor data directories. */
3804 	if (static_branch_unlikely(&rdt_mon_enable_key))
3805 		mkdir_mondata_subdir_allrdtgrp(r, d);
3806 
3807 	return 0;
3808 }
3809 
3810 /*
3811  * rdtgroup_init - rdtgroup initialization
3812  *
3813  * Setup resctrl file system including set up root, create mount point,
3814  * register rdtgroup filesystem, and initialize files under root directory.
3815  *
3816  * Return: 0 on success or -errno
3817  */
3818 int __init rdtgroup_init(void)
3819 {
3820 	int ret = 0;
3821 
3822 	seq_buf_init(&last_cmd_status, last_cmd_status_buf,
3823 		     sizeof(last_cmd_status_buf));
3824 
3825 	ret = rdtgroup_setup_root();
3826 	if (ret)
3827 		return ret;
3828 
3829 	ret = sysfs_create_mount_point(fs_kobj, "resctrl");
3830 	if (ret)
3831 		goto cleanup_root;
3832 
3833 	ret = register_filesystem(&rdt_fs_type);
3834 	if (ret)
3835 		goto cleanup_mountpoint;
3836 
3837 	/*
3838 	 * Adding the resctrl debugfs directory here may not be ideal since
3839 	 * it would let the resctrl debugfs directory appear on the debugfs
3840 	 * filesystem before the resctrl filesystem is mounted.
3841 	 * It may also be ok since that would enable debugging of RDT before
3842 	 * resctrl is mounted.
3843 	 * The reason why the debugfs directory is created here and not in
3844 	 * rdt_get_tree() is because rdt_get_tree() takes rdtgroup_mutex and
3845 	 * during the debugfs directory creation also &sb->s_type->i_mutex_key
3846 	 * (the lockdep class of inode->i_rwsem). Other filesystem
3847 	 * interactions (eg. SyS_getdents) have the lock ordering:
3848 	 * &sb->s_type->i_mutex_key --> &mm->mmap_lock
3849 	 * During mmap(), called with &mm->mmap_lock, the rdtgroup_mutex
3850 	 * is taken, thus creating dependency:
3851 	 * &mm->mmap_lock --> rdtgroup_mutex for the latter that can cause
3852 	 * issues considering the other two lock dependencies.
3853 	 * By creating the debugfs directory here we avoid a dependency
3854 	 * that may cause deadlock (even though file operations cannot
3855 	 * occur until the filesystem is mounted, but I do not know how to
3856 	 * tell lockdep that).
3857 	 */
3858 	debugfs_resctrl = debugfs_create_dir("resctrl", NULL);
3859 
3860 	return 0;
3861 
3862 cleanup_mountpoint:
3863 	sysfs_remove_mount_point(fs_kobj, "resctrl");
3864 cleanup_root:
3865 	kernfs_destroy_root(rdt_root);
3866 
3867 	return ret;
3868 }
3869 
3870 void __exit rdtgroup_exit(void)
3871 {
3872 	debugfs_remove_recursive(debugfs_resctrl);
3873 	unregister_filesystem(&rdt_fs_type);
3874 	sysfs_remove_mount_point(fs_kobj, "resctrl");
3875 	kernfs_destroy_root(rdt_root);
3876 }
3877