1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * User interface for Resource Allocation in Resource Director Technology(RDT)
4  *
5  * Copyright (C) 2016 Intel Corporation
6  *
7  * Author: Fenghua Yu <fenghua.yu@intel.com>
8  *
9  * More information about RDT be found in the Intel (R) x86 Architecture
10  * Software Developer Manual.
11  */
12 
13 #define pr_fmt(fmt)	KBUILD_MODNAME ": " fmt
14 
15 #include <linux/cacheinfo.h>
16 #include <linux/cpu.h>
17 #include <linux/debugfs.h>
18 #include <linux/fs.h>
19 #include <linux/fs_parser.h>
20 #include <linux/sysfs.h>
21 #include <linux/kernfs.h>
22 #include <linux/seq_buf.h>
23 #include <linux/seq_file.h>
24 #include <linux/sched/signal.h>
25 #include <linux/sched/task.h>
26 #include <linux/slab.h>
27 #include <linux/task_work.h>
28 #include <linux/user_namespace.h>
29 
30 #include <uapi/linux/magic.h>
31 
32 #include <asm/resctrl.h>
33 #include "internal.h"
34 
35 DEFINE_STATIC_KEY_FALSE(rdt_enable_key);
36 DEFINE_STATIC_KEY_FALSE(rdt_mon_enable_key);
37 DEFINE_STATIC_KEY_FALSE(rdt_alloc_enable_key);
38 static struct kernfs_root *rdt_root;
39 struct rdtgroup rdtgroup_default;
40 LIST_HEAD(rdt_all_groups);
41 
42 /* list of entries for the schemata file */
43 LIST_HEAD(resctrl_schema_all);
44 
45 /* Kernel fs node for "info" directory under root */
46 static struct kernfs_node *kn_info;
47 
48 /* Kernel fs node for "mon_groups" directory under root */
49 static struct kernfs_node *kn_mongrp;
50 
51 /* Kernel fs node for "mon_data" directory under root */
52 static struct kernfs_node *kn_mondata;
53 
54 static struct seq_buf last_cmd_status;
55 static char last_cmd_status_buf[512];
56 
57 struct dentry *debugfs_resctrl;
58 
59 void rdt_last_cmd_clear(void)
60 {
61 	lockdep_assert_held(&rdtgroup_mutex);
62 	seq_buf_clear(&last_cmd_status);
63 }
64 
65 void rdt_last_cmd_puts(const char *s)
66 {
67 	lockdep_assert_held(&rdtgroup_mutex);
68 	seq_buf_puts(&last_cmd_status, s);
69 }
70 
71 void rdt_last_cmd_printf(const char *fmt, ...)
72 {
73 	va_list ap;
74 
75 	va_start(ap, fmt);
76 	lockdep_assert_held(&rdtgroup_mutex);
77 	seq_buf_vprintf(&last_cmd_status, fmt, ap);
78 	va_end(ap);
79 }
80 
81 /*
82  * Trivial allocator for CLOSIDs. Since h/w only supports a small number,
83  * we can keep a bitmap of free CLOSIDs in a single integer.
84  *
85  * Using a global CLOSID across all resources has some advantages and
86  * some drawbacks:
87  * + We can simply set "current->closid" to assign a task to a resource
88  *   group.
89  * + Context switch code can avoid extra memory references deciding which
90  *   CLOSID to load into the PQR_ASSOC MSR
91  * - We give up some options in configuring resource groups across multi-socket
92  *   systems.
93  * - Our choices on how to configure each resource become progressively more
94  *   limited as the number of resources grows.
95  */
96 static int closid_free_map;
97 static int closid_free_map_len;
98 
99 int closids_supported(void)
100 {
101 	return closid_free_map_len;
102 }
103 
104 static void closid_init(void)
105 {
106 	struct resctrl_schema *s;
107 	u32 rdt_min_closid = 32;
108 
109 	/* Compute rdt_min_closid across all resources */
110 	list_for_each_entry(s, &resctrl_schema_all, list)
111 		rdt_min_closid = min(rdt_min_closid, s->num_closid);
112 
113 	closid_free_map = BIT_MASK(rdt_min_closid) - 1;
114 
115 	/* CLOSID 0 is always reserved for the default group */
116 	closid_free_map &= ~1;
117 	closid_free_map_len = rdt_min_closid;
118 }
119 
120 static int closid_alloc(void)
121 {
122 	u32 closid = ffs(closid_free_map);
123 
124 	if (closid == 0)
125 		return -ENOSPC;
126 	closid--;
127 	closid_free_map &= ~(1 << closid);
128 
129 	return closid;
130 }
131 
132 void closid_free(int closid)
133 {
134 	closid_free_map |= 1 << closid;
135 }
136 
137 /**
138  * closid_allocated - test if provided closid is in use
139  * @closid: closid to be tested
140  *
141  * Return: true if @closid is currently associated with a resource group,
142  * false if @closid is free
143  */
144 static bool closid_allocated(unsigned int closid)
145 {
146 	return (closid_free_map & (1 << closid)) == 0;
147 }
148 
149 /**
150  * rdtgroup_mode_by_closid - Return mode of resource group with closid
151  * @closid: closid if the resource group
152  *
153  * Each resource group is associated with a @closid. Here the mode
154  * of a resource group can be queried by searching for it using its closid.
155  *
156  * Return: mode as &enum rdtgrp_mode of resource group with closid @closid
157  */
158 enum rdtgrp_mode rdtgroup_mode_by_closid(int closid)
159 {
160 	struct rdtgroup *rdtgrp;
161 
162 	list_for_each_entry(rdtgrp, &rdt_all_groups, rdtgroup_list) {
163 		if (rdtgrp->closid == closid)
164 			return rdtgrp->mode;
165 	}
166 
167 	return RDT_NUM_MODES;
168 }
169 
170 static const char * const rdt_mode_str[] = {
171 	[RDT_MODE_SHAREABLE]		= "shareable",
172 	[RDT_MODE_EXCLUSIVE]		= "exclusive",
173 	[RDT_MODE_PSEUDO_LOCKSETUP]	= "pseudo-locksetup",
174 	[RDT_MODE_PSEUDO_LOCKED]	= "pseudo-locked",
175 };
176 
177 /**
178  * rdtgroup_mode_str - Return the string representation of mode
179  * @mode: the resource group mode as &enum rdtgroup_mode
180  *
181  * Return: string representation of valid mode, "unknown" otherwise
182  */
183 static const char *rdtgroup_mode_str(enum rdtgrp_mode mode)
184 {
185 	if (mode < RDT_MODE_SHAREABLE || mode >= RDT_NUM_MODES)
186 		return "unknown";
187 
188 	return rdt_mode_str[mode];
189 }
190 
191 /* set uid and gid of rdtgroup dirs and files to that of the creator */
192 static int rdtgroup_kn_set_ugid(struct kernfs_node *kn)
193 {
194 	struct iattr iattr = { .ia_valid = ATTR_UID | ATTR_GID,
195 				.ia_uid = current_fsuid(),
196 				.ia_gid = current_fsgid(), };
197 
198 	if (uid_eq(iattr.ia_uid, GLOBAL_ROOT_UID) &&
199 	    gid_eq(iattr.ia_gid, GLOBAL_ROOT_GID))
200 		return 0;
201 
202 	return kernfs_setattr(kn, &iattr);
203 }
204 
205 static int rdtgroup_add_file(struct kernfs_node *parent_kn, struct rftype *rft)
206 {
207 	struct kernfs_node *kn;
208 	int ret;
209 
210 	kn = __kernfs_create_file(parent_kn, rft->name, rft->mode,
211 				  GLOBAL_ROOT_UID, GLOBAL_ROOT_GID,
212 				  0, rft->kf_ops, rft, NULL, NULL);
213 	if (IS_ERR(kn))
214 		return PTR_ERR(kn);
215 
216 	ret = rdtgroup_kn_set_ugid(kn);
217 	if (ret) {
218 		kernfs_remove(kn);
219 		return ret;
220 	}
221 
222 	return 0;
223 }
224 
225 static int rdtgroup_seqfile_show(struct seq_file *m, void *arg)
226 {
227 	struct kernfs_open_file *of = m->private;
228 	struct rftype *rft = of->kn->priv;
229 
230 	if (rft->seq_show)
231 		return rft->seq_show(of, m, arg);
232 	return 0;
233 }
234 
235 static ssize_t rdtgroup_file_write(struct kernfs_open_file *of, char *buf,
236 				   size_t nbytes, loff_t off)
237 {
238 	struct rftype *rft = of->kn->priv;
239 
240 	if (rft->write)
241 		return rft->write(of, buf, nbytes, off);
242 
243 	return -EINVAL;
244 }
245 
246 static const struct kernfs_ops rdtgroup_kf_single_ops = {
247 	.atomic_write_len	= PAGE_SIZE,
248 	.write			= rdtgroup_file_write,
249 	.seq_show		= rdtgroup_seqfile_show,
250 };
251 
252 static const struct kernfs_ops kf_mondata_ops = {
253 	.atomic_write_len	= PAGE_SIZE,
254 	.seq_show		= rdtgroup_mondata_show,
255 };
256 
257 static bool is_cpu_list(struct kernfs_open_file *of)
258 {
259 	struct rftype *rft = of->kn->priv;
260 
261 	return rft->flags & RFTYPE_FLAGS_CPUS_LIST;
262 }
263 
264 static int rdtgroup_cpus_show(struct kernfs_open_file *of,
265 			      struct seq_file *s, void *v)
266 {
267 	struct rdtgroup *rdtgrp;
268 	struct cpumask *mask;
269 	int ret = 0;
270 
271 	rdtgrp = rdtgroup_kn_lock_live(of->kn);
272 
273 	if (rdtgrp) {
274 		if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED) {
275 			if (!rdtgrp->plr->d) {
276 				rdt_last_cmd_clear();
277 				rdt_last_cmd_puts("Cache domain offline\n");
278 				ret = -ENODEV;
279 			} else {
280 				mask = &rdtgrp->plr->d->cpu_mask;
281 				seq_printf(s, is_cpu_list(of) ?
282 					   "%*pbl\n" : "%*pb\n",
283 					   cpumask_pr_args(mask));
284 			}
285 		} else {
286 			seq_printf(s, is_cpu_list(of) ? "%*pbl\n" : "%*pb\n",
287 				   cpumask_pr_args(&rdtgrp->cpu_mask));
288 		}
289 	} else {
290 		ret = -ENOENT;
291 	}
292 	rdtgroup_kn_unlock(of->kn);
293 
294 	return ret;
295 }
296 
297 /*
298  * This is safe against resctrl_sched_in() called from __switch_to()
299  * because __switch_to() is executed with interrupts disabled. A local call
300  * from update_closid_rmid() is protected against __switch_to() because
301  * preemption is disabled.
302  */
303 static void update_cpu_closid_rmid(void *info)
304 {
305 	struct rdtgroup *r = info;
306 
307 	if (r) {
308 		this_cpu_write(pqr_state.default_closid, r->closid);
309 		this_cpu_write(pqr_state.default_rmid, r->mon.rmid);
310 	}
311 
312 	/*
313 	 * We cannot unconditionally write the MSR because the current
314 	 * executing task might have its own closid selected. Just reuse
315 	 * the context switch code.
316 	 */
317 	resctrl_sched_in();
318 }
319 
320 /*
321  * Update the PGR_ASSOC MSR on all cpus in @cpu_mask,
322  *
323  * Per task closids/rmids must have been set up before calling this function.
324  */
325 static void
326 update_closid_rmid(const struct cpumask *cpu_mask, struct rdtgroup *r)
327 {
328 	int cpu = get_cpu();
329 
330 	if (cpumask_test_cpu(cpu, cpu_mask))
331 		update_cpu_closid_rmid(r);
332 	smp_call_function_many(cpu_mask, update_cpu_closid_rmid, r, 1);
333 	put_cpu();
334 }
335 
336 static int cpus_mon_write(struct rdtgroup *rdtgrp, cpumask_var_t newmask,
337 			  cpumask_var_t tmpmask)
338 {
339 	struct rdtgroup *prgrp = rdtgrp->mon.parent, *crgrp;
340 	struct list_head *head;
341 
342 	/* Check whether cpus belong to parent ctrl group */
343 	cpumask_andnot(tmpmask, newmask, &prgrp->cpu_mask);
344 	if (!cpumask_empty(tmpmask)) {
345 		rdt_last_cmd_puts("Can only add CPUs to mongroup that belong to parent\n");
346 		return -EINVAL;
347 	}
348 
349 	/* Check whether cpus are dropped from this group */
350 	cpumask_andnot(tmpmask, &rdtgrp->cpu_mask, newmask);
351 	if (!cpumask_empty(tmpmask)) {
352 		/* Give any dropped cpus to parent rdtgroup */
353 		cpumask_or(&prgrp->cpu_mask, &prgrp->cpu_mask, tmpmask);
354 		update_closid_rmid(tmpmask, prgrp);
355 	}
356 
357 	/*
358 	 * If we added cpus, remove them from previous group that owned them
359 	 * and update per-cpu rmid
360 	 */
361 	cpumask_andnot(tmpmask, newmask, &rdtgrp->cpu_mask);
362 	if (!cpumask_empty(tmpmask)) {
363 		head = &prgrp->mon.crdtgrp_list;
364 		list_for_each_entry(crgrp, head, mon.crdtgrp_list) {
365 			if (crgrp == rdtgrp)
366 				continue;
367 			cpumask_andnot(&crgrp->cpu_mask, &crgrp->cpu_mask,
368 				       tmpmask);
369 		}
370 		update_closid_rmid(tmpmask, rdtgrp);
371 	}
372 
373 	/* Done pushing/pulling - update this group with new mask */
374 	cpumask_copy(&rdtgrp->cpu_mask, newmask);
375 
376 	return 0;
377 }
378 
379 static void cpumask_rdtgrp_clear(struct rdtgroup *r, struct cpumask *m)
380 {
381 	struct rdtgroup *crgrp;
382 
383 	cpumask_andnot(&r->cpu_mask, &r->cpu_mask, m);
384 	/* update the child mon group masks as well*/
385 	list_for_each_entry(crgrp, &r->mon.crdtgrp_list, mon.crdtgrp_list)
386 		cpumask_and(&crgrp->cpu_mask, &r->cpu_mask, &crgrp->cpu_mask);
387 }
388 
389 static int cpus_ctrl_write(struct rdtgroup *rdtgrp, cpumask_var_t newmask,
390 			   cpumask_var_t tmpmask, cpumask_var_t tmpmask1)
391 {
392 	struct rdtgroup *r, *crgrp;
393 	struct list_head *head;
394 
395 	/* Check whether cpus are dropped from this group */
396 	cpumask_andnot(tmpmask, &rdtgrp->cpu_mask, newmask);
397 	if (!cpumask_empty(tmpmask)) {
398 		/* Can't drop from default group */
399 		if (rdtgrp == &rdtgroup_default) {
400 			rdt_last_cmd_puts("Can't drop CPUs from default group\n");
401 			return -EINVAL;
402 		}
403 
404 		/* Give any dropped cpus to rdtgroup_default */
405 		cpumask_or(&rdtgroup_default.cpu_mask,
406 			   &rdtgroup_default.cpu_mask, tmpmask);
407 		update_closid_rmid(tmpmask, &rdtgroup_default);
408 	}
409 
410 	/*
411 	 * If we added cpus, remove them from previous group and
412 	 * the prev group's child groups that owned them
413 	 * and update per-cpu closid/rmid.
414 	 */
415 	cpumask_andnot(tmpmask, newmask, &rdtgrp->cpu_mask);
416 	if (!cpumask_empty(tmpmask)) {
417 		list_for_each_entry(r, &rdt_all_groups, rdtgroup_list) {
418 			if (r == rdtgrp)
419 				continue;
420 			cpumask_and(tmpmask1, &r->cpu_mask, tmpmask);
421 			if (!cpumask_empty(tmpmask1))
422 				cpumask_rdtgrp_clear(r, tmpmask1);
423 		}
424 		update_closid_rmid(tmpmask, rdtgrp);
425 	}
426 
427 	/* Done pushing/pulling - update this group with new mask */
428 	cpumask_copy(&rdtgrp->cpu_mask, newmask);
429 
430 	/*
431 	 * Clear child mon group masks since there is a new parent mask
432 	 * now and update the rmid for the cpus the child lost.
433 	 */
434 	head = &rdtgrp->mon.crdtgrp_list;
435 	list_for_each_entry(crgrp, head, mon.crdtgrp_list) {
436 		cpumask_and(tmpmask, &rdtgrp->cpu_mask, &crgrp->cpu_mask);
437 		update_closid_rmid(tmpmask, rdtgrp);
438 		cpumask_clear(&crgrp->cpu_mask);
439 	}
440 
441 	return 0;
442 }
443 
444 static ssize_t rdtgroup_cpus_write(struct kernfs_open_file *of,
445 				   char *buf, size_t nbytes, loff_t off)
446 {
447 	cpumask_var_t tmpmask, newmask, tmpmask1;
448 	struct rdtgroup *rdtgrp;
449 	int ret;
450 
451 	if (!buf)
452 		return -EINVAL;
453 
454 	if (!zalloc_cpumask_var(&tmpmask, GFP_KERNEL))
455 		return -ENOMEM;
456 	if (!zalloc_cpumask_var(&newmask, GFP_KERNEL)) {
457 		free_cpumask_var(tmpmask);
458 		return -ENOMEM;
459 	}
460 	if (!zalloc_cpumask_var(&tmpmask1, GFP_KERNEL)) {
461 		free_cpumask_var(tmpmask);
462 		free_cpumask_var(newmask);
463 		return -ENOMEM;
464 	}
465 
466 	rdtgrp = rdtgroup_kn_lock_live(of->kn);
467 	if (!rdtgrp) {
468 		ret = -ENOENT;
469 		goto unlock;
470 	}
471 
472 	if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED ||
473 	    rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP) {
474 		ret = -EINVAL;
475 		rdt_last_cmd_puts("Pseudo-locking in progress\n");
476 		goto unlock;
477 	}
478 
479 	if (is_cpu_list(of))
480 		ret = cpulist_parse(buf, newmask);
481 	else
482 		ret = cpumask_parse(buf, newmask);
483 
484 	if (ret) {
485 		rdt_last_cmd_puts("Bad CPU list/mask\n");
486 		goto unlock;
487 	}
488 
489 	/* check that user didn't specify any offline cpus */
490 	cpumask_andnot(tmpmask, newmask, cpu_online_mask);
491 	if (!cpumask_empty(tmpmask)) {
492 		ret = -EINVAL;
493 		rdt_last_cmd_puts("Can only assign online CPUs\n");
494 		goto unlock;
495 	}
496 
497 	if (rdtgrp->type == RDTCTRL_GROUP)
498 		ret = cpus_ctrl_write(rdtgrp, newmask, tmpmask, tmpmask1);
499 	else if (rdtgrp->type == RDTMON_GROUP)
500 		ret = cpus_mon_write(rdtgrp, newmask, tmpmask);
501 	else
502 		ret = -EINVAL;
503 
504 unlock:
505 	rdtgroup_kn_unlock(of->kn);
506 	free_cpumask_var(tmpmask);
507 	free_cpumask_var(newmask);
508 	free_cpumask_var(tmpmask1);
509 
510 	return ret ?: nbytes;
511 }
512 
513 /**
514  * rdtgroup_remove - the helper to remove resource group safely
515  * @rdtgrp: resource group to remove
516  *
517  * On resource group creation via a mkdir, an extra kernfs_node reference is
518  * taken to ensure that the rdtgroup structure remains accessible for the
519  * rdtgroup_kn_unlock() calls where it is removed.
520  *
521  * Drop the extra reference here, then free the rdtgroup structure.
522  *
523  * Return: void
524  */
525 static void rdtgroup_remove(struct rdtgroup *rdtgrp)
526 {
527 	kernfs_put(rdtgrp->kn);
528 	kfree(rdtgrp);
529 }
530 
531 static void _update_task_closid_rmid(void *task)
532 {
533 	/*
534 	 * If the task is still current on this CPU, update PQR_ASSOC MSR.
535 	 * Otherwise, the MSR is updated when the task is scheduled in.
536 	 */
537 	if (task == current)
538 		resctrl_sched_in();
539 }
540 
541 static void update_task_closid_rmid(struct task_struct *t)
542 {
543 	if (IS_ENABLED(CONFIG_SMP) && task_curr(t))
544 		smp_call_function_single(task_cpu(t), _update_task_closid_rmid, t, 1);
545 	else
546 		_update_task_closid_rmid(t);
547 }
548 
549 static int __rdtgroup_move_task(struct task_struct *tsk,
550 				struct rdtgroup *rdtgrp)
551 {
552 	/* If the task is already in rdtgrp, no need to move the task. */
553 	if ((rdtgrp->type == RDTCTRL_GROUP && tsk->closid == rdtgrp->closid &&
554 	     tsk->rmid == rdtgrp->mon.rmid) ||
555 	    (rdtgrp->type == RDTMON_GROUP && tsk->rmid == rdtgrp->mon.rmid &&
556 	     tsk->closid == rdtgrp->mon.parent->closid))
557 		return 0;
558 
559 	/*
560 	 * Set the task's closid/rmid before the PQR_ASSOC MSR can be
561 	 * updated by them.
562 	 *
563 	 * For ctrl_mon groups, move both closid and rmid.
564 	 * For monitor groups, can move the tasks only from
565 	 * their parent CTRL group.
566 	 */
567 
568 	if (rdtgrp->type == RDTCTRL_GROUP) {
569 		WRITE_ONCE(tsk->closid, rdtgrp->closid);
570 		WRITE_ONCE(tsk->rmid, rdtgrp->mon.rmid);
571 	} else if (rdtgrp->type == RDTMON_GROUP) {
572 		if (rdtgrp->mon.parent->closid == tsk->closid) {
573 			WRITE_ONCE(tsk->rmid, rdtgrp->mon.rmid);
574 		} else {
575 			rdt_last_cmd_puts("Can't move task to different control group\n");
576 			return -EINVAL;
577 		}
578 	}
579 
580 	/*
581 	 * Ensure the task's closid and rmid are written before determining if
582 	 * the task is current that will decide if it will be interrupted.
583 	 */
584 	barrier();
585 
586 	/*
587 	 * By now, the task's closid and rmid are set. If the task is current
588 	 * on a CPU, the PQR_ASSOC MSR needs to be updated to make the resource
589 	 * group go into effect. If the task is not current, the MSR will be
590 	 * updated when the task is scheduled in.
591 	 */
592 	update_task_closid_rmid(tsk);
593 
594 	return 0;
595 }
596 
597 static bool is_closid_match(struct task_struct *t, struct rdtgroup *r)
598 {
599 	return (rdt_alloc_capable &&
600 	       (r->type == RDTCTRL_GROUP) && (t->closid == r->closid));
601 }
602 
603 static bool is_rmid_match(struct task_struct *t, struct rdtgroup *r)
604 {
605 	return (rdt_mon_capable &&
606 	       (r->type == RDTMON_GROUP) && (t->rmid == r->mon.rmid));
607 }
608 
609 /**
610  * rdtgroup_tasks_assigned - Test if tasks have been assigned to resource group
611  * @r: Resource group
612  *
613  * Return: 1 if tasks have been assigned to @r, 0 otherwise
614  */
615 int rdtgroup_tasks_assigned(struct rdtgroup *r)
616 {
617 	struct task_struct *p, *t;
618 	int ret = 0;
619 
620 	lockdep_assert_held(&rdtgroup_mutex);
621 
622 	rcu_read_lock();
623 	for_each_process_thread(p, t) {
624 		if (is_closid_match(t, r) || is_rmid_match(t, r)) {
625 			ret = 1;
626 			break;
627 		}
628 	}
629 	rcu_read_unlock();
630 
631 	return ret;
632 }
633 
634 static int rdtgroup_task_write_permission(struct task_struct *task,
635 					  struct kernfs_open_file *of)
636 {
637 	const struct cred *tcred = get_task_cred(task);
638 	const struct cred *cred = current_cred();
639 	int ret = 0;
640 
641 	/*
642 	 * Even if we're attaching all tasks in the thread group, we only
643 	 * need to check permissions on one of them.
644 	 */
645 	if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) &&
646 	    !uid_eq(cred->euid, tcred->uid) &&
647 	    !uid_eq(cred->euid, tcred->suid)) {
648 		rdt_last_cmd_printf("No permission to move task %d\n", task->pid);
649 		ret = -EPERM;
650 	}
651 
652 	put_cred(tcred);
653 	return ret;
654 }
655 
656 static int rdtgroup_move_task(pid_t pid, struct rdtgroup *rdtgrp,
657 			      struct kernfs_open_file *of)
658 {
659 	struct task_struct *tsk;
660 	int ret;
661 
662 	rcu_read_lock();
663 	if (pid) {
664 		tsk = find_task_by_vpid(pid);
665 		if (!tsk) {
666 			rcu_read_unlock();
667 			rdt_last_cmd_printf("No task %d\n", pid);
668 			return -ESRCH;
669 		}
670 	} else {
671 		tsk = current;
672 	}
673 
674 	get_task_struct(tsk);
675 	rcu_read_unlock();
676 
677 	ret = rdtgroup_task_write_permission(tsk, of);
678 	if (!ret)
679 		ret = __rdtgroup_move_task(tsk, rdtgrp);
680 
681 	put_task_struct(tsk);
682 	return ret;
683 }
684 
685 static ssize_t rdtgroup_tasks_write(struct kernfs_open_file *of,
686 				    char *buf, size_t nbytes, loff_t off)
687 {
688 	struct rdtgroup *rdtgrp;
689 	int ret = 0;
690 	pid_t pid;
691 
692 	if (kstrtoint(strstrip(buf), 0, &pid) || pid < 0)
693 		return -EINVAL;
694 	rdtgrp = rdtgroup_kn_lock_live(of->kn);
695 	if (!rdtgrp) {
696 		rdtgroup_kn_unlock(of->kn);
697 		return -ENOENT;
698 	}
699 	rdt_last_cmd_clear();
700 
701 	if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED ||
702 	    rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP) {
703 		ret = -EINVAL;
704 		rdt_last_cmd_puts("Pseudo-locking in progress\n");
705 		goto unlock;
706 	}
707 
708 	ret = rdtgroup_move_task(pid, rdtgrp, of);
709 
710 unlock:
711 	rdtgroup_kn_unlock(of->kn);
712 
713 	return ret ?: nbytes;
714 }
715 
716 static void show_rdt_tasks(struct rdtgroup *r, struct seq_file *s)
717 {
718 	struct task_struct *p, *t;
719 
720 	rcu_read_lock();
721 	for_each_process_thread(p, t) {
722 		if (is_closid_match(t, r) || is_rmid_match(t, r))
723 			seq_printf(s, "%d\n", t->pid);
724 	}
725 	rcu_read_unlock();
726 }
727 
728 static int rdtgroup_tasks_show(struct kernfs_open_file *of,
729 			       struct seq_file *s, void *v)
730 {
731 	struct rdtgroup *rdtgrp;
732 	int ret = 0;
733 
734 	rdtgrp = rdtgroup_kn_lock_live(of->kn);
735 	if (rdtgrp)
736 		show_rdt_tasks(rdtgrp, s);
737 	else
738 		ret = -ENOENT;
739 	rdtgroup_kn_unlock(of->kn);
740 
741 	return ret;
742 }
743 
744 #ifdef CONFIG_PROC_CPU_RESCTRL
745 
746 /*
747  * A task can only be part of one resctrl control group and of one monitor
748  * group which is associated to that control group.
749  *
750  * 1)   res:
751  *      mon:
752  *
753  *    resctrl is not available.
754  *
755  * 2)   res:/
756  *      mon:
757  *
758  *    Task is part of the root resctrl control group, and it is not associated
759  *    to any monitor group.
760  *
761  * 3)  res:/
762  *     mon:mon0
763  *
764  *    Task is part of the root resctrl control group and monitor group mon0.
765  *
766  * 4)  res:group0
767  *     mon:
768  *
769  *    Task is part of resctrl control group group0, and it is not associated
770  *    to any monitor group.
771  *
772  * 5) res:group0
773  *    mon:mon1
774  *
775  *    Task is part of resctrl control group group0 and monitor group mon1.
776  */
777 int proc_resctrl_show(struct seq_file *s, struct pid_namespace *ns,
778 		      struct pid *pid, struct task_struct *tsk)
779 {
780 	struct rdtgroup *rdtg;
781 	int ret = 0;
782 
783 	mutex_lock(&rdtgroup_mutex);
784 
785 	/* Return empty if resctrl has not been mounted. */
786 	if (!static_branch_unlikely(&rdt_enable_key)) {
787 		seq_puts(s, "res:\nmon:\n");
788 		goto unlock;
789 	}
790 
791 	list_for_each_entry(rdtg, &rdt_all_groups, rdtgroup_list) {
792 		struct rdtgroup *crg;
793 
794 		/*
795 		 * Task information is only relevant for shareable
796 		 * and exclusive groups.
797 		 */
798 		if (rdtg->mode != RDT_MODE_SHAREABLE &&
799 		    rdtg->mode != RDT_MODE_EXCLUSIVE)
800 			continue;
801 
802 		if (rdtg->closid != tsk->closid)
803 			continue;
804 
805 		seq_printf(s, "res:%s%s\n", (rdtg == &rdtgroup_default) ? "/" : "",
806 			   rdtg->kn->name);
807 		seq_puts(s, "mon:");
808 		list_for_each_entry(crg, &rdtg->mon.crdtgrp_list,
809 				    mon.crdtgrp_list) {
810 			if (tsk->rmid != crg->mon.rmid)
811 				continue;
812 			seq_printf(s, "%s", crg->kn->name);
813 			break;
814 		}
815 		seq_putc(s, '\n');
816 		goto unlock;
817 	}
818 	/*
819 	 * The above search should succeed. Otherwise return
820 	 * with an error.
821 	 */
822 	ret = -ENOENT;
823 unlock:
824 	mutex_unlock(&rdtgroup_mutex);
825 
826 	return ret;
827 }
828 #endif
829 
830 static int rdt_last_cmd_status_show(struct kernfs_open_file *of,
831 				    struct seq_file *seq, void *v)
832 {
833 	int len;
834 
835 	mutex_lock(&rdtgroup_mutex);
836 	len = seq_buf_used(&last_cmd_status);
837 	if (len)
838 		seq_printf(seq, "%.*s", len, last_cmd_status_buf);
839 	else
840 		seq_puts(seq, "ok\n");
841 	mutex_unlock(&rdtgroup_mutex);
842 	return 0;
843 }
844 
845 static int rdt_num_closids_show(struct kernfs_open_file *of,
846 				struct seq_file *seq, void *v)
847 {
848 	struct resctrl_schema *s = of->kn->parent->priv;
849 
850 	seq_printf(seq, "%u\n", s->num_closid);
851 	return 0;
852 }
853 
854 static int rdt_default_ctrl_show(struct kernfs_open_file *of,
855 			     struct seq_file *seq, void *v)
856 {
857 	struct resctrl_schema *s = of->kn->parent->priv;
858 	struct rdt_resource *r = s->res;
859 
860 	seq_printf(seq, "%x\n", r->default_ctrl);
861 	return 0;
862 }
863 
864 static int rdt_min_cbm_bits_show(struct kernfs_open_file *of,
865 			     struct seq_file *seq, void *v)
866 {
867 	struct resctrl_schema *s = of->kn->parent->priv;
868 	struct rdt_resource *r = s->res;
869 
870 	seq_printf(seq, "%u\n", r->cache.min_cbm_bits);
871 	return 0;
872 }
873 
874 static int rdt_shareable_bits_show(struct kernfs_open_file *of,
875 				   struct seq_file *seq, void *v)
876 {
877 	struct resctrl_schema *s = of->kn->parent->priv;
878 	struct rdt_resource *r = s->res;
879 
880 	seq_printf(seq, "%x\n", r->cache.shareable_bits);
881 	return 0;
882 }
883 
884 /**
885  * rdt_bit_usage_show - Display current usage of resources
886  *
887  * A domain is a shared resource that can now be allocated differently. Here
888  * we display the current regions of the domain as an annotated bitmask.
889  * For each domain of this resource its allocation bitmask
890  * is annotated as below to indicate the current usage of the corresponding bit:
891  *   0 - currently unused
892  *   X - currently available for sharing and used by software and hardware
893  *   H - currently used by hardware only but available for software use
894  *   S - currently used and shareable by software only
895  *   E - currently used exclusively by one resource group
896  *   P - currently pseudo-locked by one resource group
897  */
898 static int rdt_bit_usage_show(struct kernfs_open_file *of,
899 			      struct seq_file *seq, void *v)
900 {
901 	struct resctrl_schema *s = of->kn->parent->priv;
902 	/*
903 	 * Use unsigned long even though only 32 bits are used to ensure
904 	 * test_bit() is used safely.
905 	 */
906 	unsigned long sw_shareable = 0, hw_shareable = 0;
907 	unsigned long exclusive = 0, pseudo_locked = 0;
908 	struct rdt_resource *r = s->res;
909 	struct rdt_domain *dom;
910 	int i, hwb, swb, excl, psl;
911 	enum rdtgrp_mode mode;
912 	bool sep = false;
913 	u32 ctrl_val;
914 
915 	mutex_lock(&rdtgroup_mutex);
916 	hw_shareable = r->cache.shareable_bits;
917 	list_for_each_entry(dom, &r->domains, list) {
918 		if (sep)
919 			seq_putc(seq, ';');
920 		sw_shareable = 0;
921 		exclusive = 0;
922 		seq_printf(seq, "%d=", dom->id);
923 		for (i = 0; i < closids_supported(); i++) {
924 			if (!closid_allocated(i))
925 				continue;
926 			ctrl_val = resctrl_arch_get_config(r, dom, i,
927 							   s->conf_type);
928 			mode = rdtgroup_mode_by_closid(i);
929 			switch (mode) {
930 			case RDT_MODE_SHAREABLE:
931 				sw_shareable |= ctrl_val;
932 				break;
933 			case RDT_MODE_EXCLUSIVE:
934 				exclusive |= ctrl_val;
935 				break;
936 			case RDT_MODE_PSEUDO_LOCKSETUP:
937 			/*
938 			 * RDT_MODE_PSEUDO_LOCKSETUP is possible
939 			 * here but not included since the CBM
940 			 * associated with this CLOSID in this mode
941 			 * is not initialized and no task or cpu can be
942 			 * assigned this CLOSID.
943 			 */
944 				break;
945 			case RDT_MODE_PSEUDO_LOCKED:
946 			case RDT_NUM_MODES:
947 				WARN(1,
948 				     "invalid mode for closid %d\n", i);
949 				break;
950 			}
951 		}
952 		for (i = r->cache.cbm_len - 1; i >= 0; i--) {
953 			pseudo_locked = dom->plr ? dom->plr->cbm : 0;
954 			hwb = test_bit(i, &hw_shareable);
955 			swb = test_bit(i, &sw_shareable);
956 			excl = test_bit(i, &exclusive);
957 			psl = test_bit(i, &pseudo_locked);
958 			if (hwb && swb)
959 				seq_putc(seq, 'X');
960 			else if (hwb && !swb)
961 				seq_putc(seq, 'H');
962 			else if (!hwb && swb)
963 				seq_putc(seq, 'S');
964 			else if (excl)
965 				seq_putc(seq, 'E');
966 			else if (psl)
967 				seq_putc(seq, 'P');
968 			else /* Unused bits remain */
969 				seq_putc(seq, '0');
970 		}
971 		sep = true;
972 	}
973 	seq_putc(seq, '\n');
974 	mutex_unlock(&rdtgroup_mutex);
975 	return 0;
976 }
977 
978 static int rdt_min_bw_show(struct kernfs_open_file *of,
979 			     struct seq_file *seq, void *v)
980 {
981 	struct resctrl_schema *s = of->kn->parent->priv;
982 	struct rdt_resource *r = s->res;
983 
984 	seq_printf(seq, "%u\n", r->membw.min_bw);
985 	return 0;
986 }
987 
988 static int rdt_num_rmids_show(struct kernfs_open_file *of,
989 			      struct seq_file *seq, void *v)
990 {
991 	struct rdt_resource *r = of->kn->parent->priv;
992 
993 	seq_printf(seq, "%d\n", r->num_rmid);
994 
995 	return 0;
996 }
997 
998 static int rdt_mon_features_show(struct kernfs_open_file *of,
999 				 struct seq_file *seq, void *v)
1000 {
1001 	struct rdt_resource *r = of->kn->parent->priv;
1002 	struct mon_evt *mevt;
1003 
1004 	list_for_each_entry(mevt, &r->evt_list, list)
1005 		seq_printf(seq, "%s\n", mevt->name);
1006 
1007 	return 0;
1008 }
1009 
1010 static int rdt_bw_gran_show(struct kernfs_open_file *of,
1011 			     struct seq_file *seq, void *v)
1012 {
1013 	struct resctrl_schema *s = of->kn->parent->priv;
1014 	struct rdt_resource *r = s->res;
1015 
1016 	seq_printf(seq, "%u\n", r->membw.bw_gran);
1017 	return 0;
1018 }
1019 
1020 static int rdt_delay_linear_show(struct kernfs_open_file *of,
1021 			     struct seq_file *seq, void *v)
1022 {
1023 	struct resctrl_schema *s = of->kn->parent->priv;
1024 	struct rdt_resource *r = s->res;
1025 
1026 	seq_printf(seq, "%u\n", r->membw.delay_linear);
1027 	return 0;
1028 }
1029 
1030 static int max_threshold_occ_show(struct kernfs_open_file *of,
1031 				  struct seq_file *seq, void *v)
1032 {
1033 	struct rdt_resource *r = of->kn->parent->priv;
1034 	struct rdt_hw_resource *hw_res = resctrl_to_arch_res(r);
1035 
1036 	seq_printf(seq, "%u\n", resctrl_cqm_threshold * hw_res->mon_scale);
1037 
1038 	return 0;
1039 }
1040 
1041 static int rdt_thread_throttle_mode_show(struct kernfs_open_file *of,
1042 					 struct seq_file *seq, void *v)
1043 {
1044 	struct resctrl_schema *s = of->kn->parent->priv;
1045 	struct rdt_resource *r = s->res;
1046 
1047 	if (r->membw.throttle_mode == THREAD_THROTTLE_PER_THREAD)
1048 		seq_puts(seq, "per-thread\n");
1049 	else
1050 		seq_puts(seq, "max\n");
1051 
1052 	return 0;
1053 }
1054 
1055 static ssize_t max_threshold_occ_write(struct kernfs_open_file *of,
1056 				       char *buf, size_t nbytes, loff_t off)
1057 {
1058 	struct rdt_hw_resource *hw_res;
1059 	unsigned int bytes;
1060 	int ret;
1061 
1062 	ret = kstrtouint(buf, 0, &bytes);
1063 	if (ret)
1064 		return ret;
1065 
1066 	if (bytes > (boot_cpu_data.x86_cache_size * 1024))
1067 		return -EINVAL;
1068 
1069 	hw_res = resctrl_to_arch_res(of->kn->parent->priv);
1070 	resctrl_cqm_threshold = bytes / hw_res->mon_scale;
1071 
1072 	return nbytes;
1073 }
1074 
1075 /*
1076  * rdtgroup_mode_show - Display mode of this resource group
1077  */
1078 static int rdtgroup_mode_show(struct kernfs_open_file *of,
1079 			      struct seq_file *s, void *v)
1080 {
1081 	struct rdtgroup *rdtgrp;
1082 
1083 	rdtgrp = rdtgroup_kn_lock_live(of->kn);
1084 	if (!rdtgrp) {
1085 		rdtgroup_kn_unlock(of->kn);
1086 		return -ENOENT;
1087 	}
1088 
1089 	seq_printf(s, "%s\n", rdtgroup_mode_str(rdtgrp->mode));
1090 
1091 	rdtgroup_kn_unlock(of->kn);
1092 	return 0;
1093 }
1094 
1095 static enum resctrl_conf_type resctrl_peer_type(enum resctrl_conf_type my_type)
1096 {
1097 	switch (my_type) {
1098 	case CDP_CODE:
1099 		return CDP_DATA;
1100 	case CDP_DATA:
1101 		return CDP_CODE;
1102 	default:
1103 	case CDP_NONE:
1104 		return CDP_NONE;
1105 	}
1106 }
1107 
1108 /**
1109  * __rdtgroup_cbm_overlaps - Does CBM for intended closid overlap with other
1110  * @r: Resource to which domain instance @d belongs.
1111  * @d: The domain instance for which @closid is being tested.
1112  * @cbm: Capacity bitmask being tested.
1113  * @closid: Intended closid for @cbm.
1114  * @exclusive: Only check if overlaps with exclusive resource groups
1115  *
1116  * Checks if provided @cbm intended to be used for @closid on domain
1117  * @d overlaps with any other closids or other hardware usage associated
1118  * with this domain. If @exclusive is true then only overlaps with
1119  * resource groups in exclusive mode will be considered. If @exclusive
1120  * is false then overlaps with any resource group or hardware entities
1121  * will be considered.
1122  *
1123  * @cbm is unsigned long, even if only 32 bits are used, to make the
1124  * bitmap functions work correctly.
1125  *
1126  * Return: false if CBM does not overlap, true if it does.
1127  */
1128 static bool __rdtgroup_cbm_overlaps(struct rdt_resource *r, struct rdt_domain *d,
1129 				    unsigned long cbm, int closid,
1130 				    enum resctrl_conf_type type, bool exclusive)
1131 {
1132 	enum rdtgrp_mode mode;
1133 	unsigned long ctrl_b;
1134 	int i;
1135 
1136 	/* Check for any overlap with regions used by hardware directly */
1137 	if (!exclusive) {
1138 		ctrl_b = r->cache.shareable_bits;
1139 		if (bitmap_intersects(&cbm, &ctrl_b, r->cache.cbm_len))
1140 			return true;
1141 	}
1142 
1143 	/* Check for overlap with other resource groups */
1144 	for (i = 0; i < closids_supported(); i++) {
1145 		ctrl_b = resctrl_arch_get_config(r, d, i, type);
1146 		mode = rdtgroup_mode_by_closid(i);
1147 		if (closid_allocated(i) && i != closid &&
1148 		    mode != RDT_MODE_PSEUDO_LOCKSETUP) {
1149 			if (bitmap_intersects(&cbm, &ctrl_b, r->cache.cbm_len)) {
1150 				if (exclusive) {
1151 					if (mode == RDT_MODE_EXCLUSIVE)
1152 						return true;
1153 					continue;
1154 				}
1155 				return true;
1156 			}
1157 		}
1158 	}
1159 
1160 	return false;
1161 }
1162 
1163 /**
1164  * rdtgroup_cbm_overlaps - Does CBM overlap with other use of hardware
1165  * @s: Schema for the resource to which domain instance @d belongs.
1166  * @d: The domain instance for which @closid is being tested.
1167  * @cbm: Capacity bitmask being tested.
1168  * @closid: Intended closid for @cbm.
1169  * @exclusive: Only check if overlaps with exclusive resource groups
1170  *
1171  * Resources that can be allocated using a CBM can use the CBM to control
1172  * the overlap of these allocations. rdtgroup_cmb_overlaps() is the test
1173  * for overlap. Overlap test is not limited to the specific resource for
1174  * which the CBM is intended though - when dealing with CDP resources that
1175  * share the underlying hardware the overlap check should be performed on
1176  * the CDP resource sharing the hardware also.
1177  *
1178  * Refer to description of __rdtgroup_cbm_overlaps() for the details of the
1179  * overlap test.
1180  *
1181  * Return: true if CBM overlap detected, false if there is no overlap
1182  */
1183 bool rdtgroup_cbm_overlaps(struct resctrl_schema *s, struct rdt_domain *d,
1184 			   unsigned long cbm, int closid, bool exclusive)
1185 {
1186 	enum resctrl_conf_type peer_type = resctrl_peer_type(s->conf_type);
1187 	struct rdt_resource *r = s->res;
1188 
1189 	if (__rdtgroup_cbm_overlaps(r, d, cbm, closid, s->conf_type,
1190 				    exclusive))
1191 		return true;
1192 
1193 	if (!resctrl_arch_get_cdp_enabled(r->rid))
1194 		return false;
1195 	return  __rdtgroup_cbm_overlaps(r, d, cbm, closid, peer_type, exclusive);
1196 }
1197 
1198 /**
1199  * rdtgroup_mode_test_exclusive - Test if this resource group can be exclusive
1200  *
1201  * An exclusive resource group implies that there should be no sharing of
1202  * its allocated resources. At the time this group is considered to be
1203  * exclusive this test can determine if its current schemata supports this
1204  * setting by testing for overlap with all other resource groups.
1205  *
1206  * Return: true if resource group can be exclusive, false if there is overlap
1207  * with allocations of other resource groups and thus this resource group
1208  * cannot be exclusive.
1209  */
1210 static bool rdtgroup_mode_test_exclusive(struct rdtgroup *rdtgrp)
1211 {
1212 	int closid = rdtgrp->closid;
1213 	struct resctrl_schema *s;
1214 	struct rdt_resource *r;
1215 	bool has_cache = false;
1216 	struct rdt_domain *d;
1217 	u32 ctrl;
1218 
1219 	list_for_each_entry(s, &resctrl_schema_all, list) {
1220 		r = s->res;
1221 		if (r->rid == RDT_RESOURCE_MBA)
1222 			continue;
1223 		has_cache = true;
1224 		list_for_each_entry(d, &r->domains, list) {
1225 			ctrl = resctrl_arch_get_config(r, d, closid,
1226 						       s->conf_type);
1227 			if (rdtgroup_cbm_overlaps(s, d, ctrl, closid, false)) {
1228 				rdt_last_cmd_puts("Schemata overlaps\n");
1229 				return false;
1230 			}
1231 		}
1232 	}
1233 
1234 	if (!has_cache) {
1235 		rdt_last_cmd_puts("Cannot be exclusive without CAT/CDP\n");
1236 		return false;
1237 	}
1238 
1239 	return true;
1240 }
1241 
1242 /**
1243  * rdtgroup_mode_write - Modify the resource group's mode
1244  *
1245  */
1246 static ssize_t rdtgroup_mode_write(struct kernfs_open_file *of,
1247 				   char *buf, size_t nbytes, loff_t off)
1248 {
1249 	struct rdtgroup *rdtgrp;
1250 	enum rdtgrp_mode mode;
1251 	int ret = 0;
1252 
1253 	/* Valid input requires a trailing newline */
1254 	if (nbytes == 0 || buf[nbytes - 1] != '\n')
1255 		return -EINVAL;
1256 	buf[nbytes - 1] = '\0';
1257 
1258 	rdtgrp = rdtgroup_kn_lock_live(of->kn);
1259 	if (!rdtgrp) {
1260 		rdtgroup_kn_unlock(of->kn);
1261 		return -ENOENT;
1262 	}
1263 
1264 	rdt_last_cmd_clear();
1265 
1266 	mode = rdtgrp->mode;
1267 
1268 	if ((!strcmp(buf, "shareable") && mode == RDT_MODE_SHAREABLE) ||
1269 	    (!strcmp(buf, "exclusive") && mode == RDT_MODE_EXCLUSIVE) ||
1270 	    (!strcmp(buf, "pseudo-locksetup") &&
1271 	     mode == RDT_MODE_PSEUDO_LOCKSETUP) ||
1272 	    (!strcmp(buf, "pseudo-locked") && mode == RDT_MODE_PSEUDO_LOCKED))
1273 		goto out;
1274 
1275 	if (mode == RDT_MODE_PSEUDO_LOCKED) {
1276 		rdt_last_cmd_puts("Cannot change pseudo-locked group\n");
1277 		ret = -EINVAL;
1278 		goto out;
1279 	}
1280 
1281 	if (!strcmp(buf, "shareable")) {
1282 		if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP) {
1283 			ret = rdtgroup_locksetup_exit(rdtgrp);
1284 			if (ret)
1285 				goto out;
1286 		}
1287 		rdtgrp->mode = RDT_MODE_SHAREABLE;
1288 	} else if (!strcmp(buf, "exclusive")) {
1289 		if (!rdtgroup_mode_test_exclusive(rdtgrp)) {
1290 			ret = -EINVAL;
1291 			goto out;
1292 		}
1293 		if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP) {
1294 			ret = rdtgroup_locksetup_exit(rdtgrp);
1295 			if (ret)
1296 				goto out;
1297 		}
1298 		rdtgrp->mode = RDT_MODE_EXCLUSIVE;
1299 	} else if (!strcmp(buf, "pseudo-locksetup")) {
1300 		ret = rdtgroup_locksetup_enter(rdtgrp);
1301 		if (ret)
1302 			goto out;
1303 		rdtgrp->mode = RDT_MODE_PSEUDO_LOCKSETUP;
1304 	} else {
1305 		rdt_last_cmd_puts("Unknown or unsupported mode\n");
1306 		ret = -EINVAL;
1307 	}
1308 
1309 out:
1310 	rdtgroup_kn_unlock(of->kn);
1311 	return ret ?: nbytes;
1312 }
1313 
1314 /**
1315  * rdtgroup_cbm_to_size - Translate CBM to size in bytes
1316  * @r: RDT resource to which @d belongs.
1317  * @d: RDT domain instance.
1318  * @cbm: bitmask for which the size should be computed.
1319  *
1320  * The bitmask provided associated with the RDT domain instance @d will be
1321  * translated into how many bytes it represents. The size in bytes is
1322  * computed by first dividing the total cache size by the CBM length to
1323  * determine how many bytes each bit in the bitmask represents. The result
1324  * is multiplied with the number of bits set in the bitmask.
1325  *
1326  * @cbm is unsigned long, even if only 32 bits are used to make the
1327  * bitmap functions work correctly.
1328  */
1329 unsigned int rdtgroup_cbm_to_size(struct rdt_resource *r,
1330 				  struct rdt_domain *d, unsigned long cbm)
1331 {
1332 	struct cpu_cacheinfo *ci;
1333 	unsigned int size = 0;
1334 	int num_b, i;
1335 
1336 	num_b = bitmap_weight(&cbm, r->cache.cbm_len);
1337 	ci = get_cpu_cacheinfo(cpumask_any(&d->cpu_mask));
1338 	for (i = 0; i < ci->num_leaves; i++) {
1339 		if (ci->info_list[i].level == r->cache_level) {
1340 			size = ci->info_list[i].size / r->cache.cbm_len * num_b;
1341 			break;
1342 		}
1343 	}
1344 
1345 	return size;
1346 }
1347 
1348 /**
1349  * rdtgroup_size_show - Display size in bytes of allocated regions
1350  *
1351  * The "size" file mirrors the layout of the "schemata" file, printing the
1352  * size in bytes of each region instead of the capacity bitmask.
1353  *
1354  */
1355 static int rdtgroup_size_show(struct kernfs_open_file *of,
1356 			      struct seq_file *s, void *v)
1357 {
1358 	struct resctrl_schema *schema;
1359 	enum resctrl_conf_type type;
1360 	struct rdtgroup *rdtgrp;
1361 	struct rdt_resource *r;
1362 	struct rdt_domain *d;
1363 	unsigned int size;
1364 	int ret = 0;
1365 	u32 closid;
1366 	bool sep;
1367 	u32 ctrl;
1368 
1369 	rdtgrp = rdtgroup_kn_lock_live(of->kn);
1370 	if (!rdtgrp) {
1371 		rdtgroup_kn_unlock(of->kn);
1372 		return -ENOENT;
1373 	}
1374 
1375 	if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED) {
1376 		if (!rdtgrp->plr->d) {
1377 			rdt_last_cmd_clear();
1378 			rdt_last_cmd_puts("Cache domain offline\n");
1379 			ret = -ENODEV;
1380 		} else {
1381 			seq_printf(s, "%*s:", max_name_width,
1382 				   rdtgrp->plr->s->name);
1383 			size = rdtgroup_cbm_to_size(rdtgrp->plr->s->res,
1384 						    rdtgrp->plr->d,
1385 						    rdtgrp->plr->cbm);
1386 			seq_printf(s, "%d=%u\n", rdtgrp->plr->d->id, size);
1387 		}
1388 		goto out;
1389 	}
1390 
1391 	closid = rdtgrp->closid;
1392 
1393 	list_for_each_entry(schema, &resctrl_schema_all, list) {
1394 		r = schema->res;
1395 		type = schema->conf_type;
1396 		sep = false;
1397 		seq_printf(s, "%*s:", max_name_width, schema->name);
1398 		list_for_each_entry(d, &r->domains, list) {
1399 			if (sep)
1400 				seq_putc(s, ';');
1401 			if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP) {
1402 				size = 0;
1403 			} else {
1404 				if (is_mba_sc(r))
1405 					ctrl = d->mbps_val[closid];
1406 				else
1407 					ctrl = resctrl_arch_get_config(r, d,
1408 								       closid,
1409 								       type);
1410 				if (r->rid == RDT_RESOURCE_MBA)
1411 					size = ctrl;
1412 				else
1413 					size = rdtgroup_cbm_to_size(r, d, ctrl);
1414 			}
1415 			seq_printf(s, "%d=%u", d->id, size);
1416 			sep = true;
1417 		}
1418 		seq_putc(s, '\n');
1419 	}
1420 
1421 out:
1422 	rdtgroup_kn_unlock(of->kn);
1423 
1424 	return ret;
1425 }
1426 
1427 /* rdtgroup information files for one cache resource. */
1428 static struct rftype res_common_files[] = {
1429 	{
1430 		.name		= "last_cmd_status",
1431 		.mode		= 0444,
1432 		.kf_ops		= &rdtgroup_kf_single_ops,
1433 		.seq_show	= rdt_last_cmd_status_show,
1434 		.fflags		= RF_TOP_INFO,
1435 	},
1436 	{
1437 		.name		= "num_closids",
1438 		.mode		= 0444,
1439 		.kf_ops		= &rdtgroup_kf_single_ops,
1440 		.seq_show	= rdt_num_closids_show,
1441 		.fflags		= RF_CTRL_INFO,
1442 	},
1443 	{
1444 		.name		= "mon_features",
1445 		.mode		= 0444,
1446 		.kf_ops		= &rdtgroup_kf_single_ops,
1447 		.seq_show	= rdt_mon_features_show,
1448 		.fflags		= RF_MON_INFO,
1449 	},
1450 	{
1451 		.name		= "num_rmids",
1452 		.mode		= 0444,
1453 		.kf_ops		= &rdtgroup_kf_single_ops,
1454 		.seq_show	= rdt_num_rmids_show,
1455 		.fflags		= RF_MON_INFO,
1456 	},
1457 	{
1458 		.name		= "cbm_mask",
1459 		.mode		= 0444,
1460 		.kf_ops		= &rdtgroup_kf_single_ops,
1461 		.seq_show	= rdt_default_ctrl_show,
1462 		.fflags		= RF_CTRL_INFO | RFTYPE_RES_CACHE,
1463 	},
1464 	{
1465 		.name		= "min_cbm_bits",
1466 		.mode		= 0444,
1467 		.kf_ops		= &rdtgroup_kf_single_ops,
1468 		.seq_show	= rdt_min_cbm_bits_show,
1469 		.fflags		= RF_CTRL_INFO | RFTYPE_RES_CACHE,
1470 	},
1471 	{
1472 		.name		= "shareable_bits",
1473 		.mode		= 0444,
1474 		.kf_ops		= &rdtgroup_kf_single_ops,
1475 		.seq_show	= rdt_shareable_bits_show,
1476 		.fflags		= RF_CTRL_INFO | RFTYPE_RES_CACHE,
1477 	},
1478 	{
1479 		.name		= "bit_usage",
1480 		.mode		= 0444,
1481 		.kf_ops		= &rdtgroup_kf_single_ops,
1482 		.seq_show	= rdt_bit_usage_show,
1483 		.fflags		= RF_CTRL_INFO | RFTYPE_RES_CACHE,
1484 	},
1485 	{
1486 		.name		= "min_bandwidth",
1487 		.mode		= 0444,
1488 		.kf_ops		= &rdtgroup_kf_single_ops,
1489 		.seq_show	= rdt_min_bw_show,
1490 		.fflags		= RF_CTRL_INFO | RFTYPE_RES_MB,
1491 	},
1492 	{
1493 		.name		= "bandwidth_gran",
1494 		.mode		= 0444,
1495 		.kf_ops		= &rdtgroup_kf_single_ops,
1496 		.seq_show	= rdt_bw_gran_show,
1497 		.fflags		= RF_CTRL_INFO | RFTYPE_RES_MB,
1498 	},
1499 	{
1500 		.name		= "delay_linear",
1501 		.mode		= 0444,
1502 		.kf_ops		= &rdtgroup_kf_single_ops,
1503 		.seq_show	= rdt_delay_linear_show,
1504 		.fflags		= RF_CTRL_INFO | RFTYPE_RES_MB,
1505 	},
1506 	/*
1507 	 * Platform specific which (if any) capabilities are provided by
1508 	 * thread_throttle_mode. Defer "fflags" initialization to platform
1509 	 * discovery.
1510 	 */
1511 	{
1512 		.name		= "thread_throttle_mode",
1513 		.mode		= 0444,
1514 		.kf_ops		= &rdtgroup_kf_single_ops,
1515 		.seq_show	= rdt_thread_throttle_mode_show,
1516 	},
1517 	{
1518 		.name		= "max_threshold_occupancy",
1519 		.mode		= 0644,
1520 		.kf_ops		= &rdtgroup_kf_single_ops,
1521 		.write		= max_threshold_occ_write,
1522 		.seq_show	= max_threshold_occ_show,
1523 		.fflags		= RF_MON_INFO | RFTYPE_RES_CACHE,
1524 	},
1525 	{
1526 		.name		= "cpus",
1527 		.mode		= 0644,
1528 		.kf_ops		= &rdtgroup_kf_single_ops,
1529 		.write		= rdtgroup_cpus_write,
1530 		.seq_show	= rdtgroup_cpus_show,
1531 		.fflags		= RFTYPE_BASE,
1532 	},
1533 	{
1534 		.name		= "cpus_list",
1535 		.mode		= 0644,
1536 		.kf_ops		= &rdtgroup_kf_single_ops,
1537 		.write		= rdtgroup_cpus_write,
1538 		.seq_show	= rdtgroup_cpus_show,
1539 		.flags		= RFTYPE_FLAGS_CPUS_LIST,
1540 		.fflags		= RFTYPE_BASE,
1541 	},
1542 	{
1543 		.name		= "tasks",
1544 		.mode		= 0644,
1545 		.kf_ops		= &rdtgroup_kf_single_ops,
1546 		.write		= rdtgroup_tasks_write,
1547 		.seq_show	= rdtgroup_tasks_show,
1548 		.fflags		= RFTYPE_BASE,
1549 	},
1550 	{
1551 		.name		= "schemata",
1552 		.mode		= 0644,
1553 		.kf_ops		= &rdtgroup_kf_single_ops,
1554 		.write		= rdtgroup_schemata_write,
1555 		.seq_show	= rdtgroup_schemata_show,
1556 		.fflags		= RF_CTRL_BASE,
1557 	},
1558 	{
1559 		.name		= "mode",
1560 		.mode		= 0644,
1561 		.kf_ops		= &rdtgroup_kf_single_ops,
1562 		.write		= rdtgroup_mode_write,
1563 		.seq_show	= rdtgroup_mode_show,
1564 		.fflags		= RF_CTRL_BASE,
1565 	},
1566 	{
1567 		.name		= "size",
1568 		.mode		= 0444,
1569 		.kf_ops		= &rdtgroup_kf_single_ops,
1570 		.seq_show	= rdtgroup_size_show,
1571 		.fflags		= RF_CTRL_BASE,
1572 	},
1573 
1574 };
1575 
1576 static int rdtgroup_add_files(struct kernfs_node *kn, unsigned long fflags)
1577 {
1578 	struct rftype *rfts, *rft;
1579 	int ret, len;
1580 
1581 	rfts = res_common_files;
1582 	len = ARRAY_SIZE(res_common_files);
1583 
1584 	lockdep_assert_held(&rdtgroup_mutex);
1585 
1586 	for (rft = rfts; rft < rfts + len; rft++) {
1587 		if (rft->fflags && ((fflags & rft->fflags) == rft->fflags)) {
1588 			ret = rdtgroup_add_file(kn, rft);
1589 			if (ret)
1590 				goto error;
1591 		}
1592 	}
1593 
1594 	return 0;
1595 error:
1596 	pr_warn("Failed to add %s, err=%d\n", rft->name, ret);
1597 	while (--rft >= rfts) {
1598 		if ((fflags & rft->fflags) == rft->fflags)
1599 			kernfs_remove_by_name(kn, rft->name);
1600 	}
1601 	return ret;
1602 }
1603 
1604 static struct rftype *rdtgroup_get_rftype_by_name(const char *name)
1605 {
1606 	struct rftype *rfts, *rft;
1607 	int len;
1608 
1609 	rfts = res_common_files;
1610 	len = ARRAY_SIZE(res_common_files);
1611 
1612 	for (rft = rfts; rft < rfts + len; rft++) {
1613 		if (!strcmp(rft->name, name))
1614 			return rft;
1615 	}
1616 
1617 	return NULL;
1618 }
1619 
1620 void __init thread_throttle_mode_init(void)
1621 {
1622 	struct rftype *rft;
1623 
1624 	rft = rdtgroup_get_rftype_by_name("thread_throttle_mode");
1625 	if (!rft)
1626 		return;
1627 
1628 	rft->fflags = RF_CTRL_INFO | RFTYPE_RES_MB;
1629 }
1630 
1631 /**
1632  * rdtgroup_kn_mode_restrict - Restrict user access to named resctrl file
1633  * @r: The resource group with which the file is associated.
1634  * @name: Name of the file
1635  *
1636  * The permissions of named resctrl file, directory, or link are modified
1637  * to not allow read, write, or execute by any user.
1638  *
1639  * WARNING: This function is intended to communicate to the user that the
1640  * resctrl file has been locked down - that it is not relevant to the
1641  * particular state the system finds itself in. It should not be relied
1642  * on to protect from user access because after the file's permissions
1643  * are restricted the user can still change the permissions using chmod
1644  * from the command line.
1645  *
1646  * Return: 0 on success, <0 on failure.
1647  */
1648 int rdtgroup_kn_mode_restrict(struct rdtgroup *r, const char *name)
1649 {
1650 	struct iattr iattr = {.ia_valid = ATTR_MODE,};
1651 	struct kernfs_node *kn;
1652 	int ret = 0;
1653 
1654 	kn = kernfs_find_and_get_ns(r->kn, name, NULL);
1655 	if (!kn)
1656 		return -ENOENT;
1657 
1658 	switch (kernfs_type(kn)) {
1659 	case KERNFS_DIR:
1660 		iattr.ia_mode = S_IFDIR;
1661 		break;
1662 	case KERNFS_FILE:
1663 		iattr.ia_mode = S_IFREG;
1664 		break;
1665 	case KERNFS_LINK:
1666 		iattr.ia_mode = S_IFLNK;
1667 		break;
1668 	}
1669 
1670 	ret = kernfs_setattr(kn, &iattr);
1671 	kernfs_put(kn);
1672 	return ret;
1673 }
1674 
1675 /**
1676  * rdtgroup_kn_mode_restore - Restore user access to named resctrl file
1677  * @r: The resource group with which the file is associated.
1678  * @name: Name of the file
1679  * @mask: Mask of permissions that should be restored
1680  *
1681  * Restore the permissions of the named file. If @name is a directory the
1682  * permissions of its parent will be used.
1683  *
1684  * Return: 0 on success, <0 on failure.
1685  */
1686 int rdtgroup_kn_mode_restore(struct rdtgroup *r, const char *name,
1687 			     umode_t mask)
1688 {
1689 	struct iattr iattr = {.ia_valid = ATTR_MODE,};
1690 	struct kernfs_node *kn, *parent;
1691 	struct rftype *rfts, *rft;
1692 	int ret, len;
1693 
1694 	rfts = res_common_files;
1695 	len = ARRAY_SIZE(res_common_files);
1696 
1697 	for (rft = rfts; rft < rfts + len; rft++) {
1698 		if (!strcmp(rft->name, name))
1699 			iattr.ia_mode = rft->mode & mask;
1700 	}
1701 
1702 	kn = kernfs_find_and_get_ns(r->kn, name, NULL);
1703 	if (!kn)
1704 		return -ENOENT;
1705 
1706 	switch (kernfs_type(kn)) {
1707 	case KERNFS_DIR:
1708 		parent = kernfs_get_parent(kn);
1709 		if (parent) {
1710 			iattr.ia_mode |= parent->mode;
1711 			kernfs_put(parent);
1712 		}
1713 		iattr.ia_mode |= S_IFDIR;
1714 		break;
1715 	case KERNFS_FILE:
1716 		iattr.ia_mode |= S_IFREG;
1717 		break;
1718 	case KERNFS_LINK:
1719 		iattr.ia_mode |= S_IFLNK;
1720 		break;
1721 	}
1722 
1723 	ret = kernfs_setattr(kn, &iattr);
1724 	kernfs_put(kn);
1725 	return ret;
1726 }
1727 
1728 static int rdtgroup_mkdir_info_resdir(void *priv, char *name,
1729 				      unsigned long fflags)
1730 {
1731 	struct kernfs_node *kn_subdir;
1732 	int ret;
1733 
1734 	kn_subdir = kernfs_create_dir(kn_info, name,
1735 				      kn_info->mode, priv);
1736 	if (IS_ERR(kn_subdir))
1737 		return PTR_ERR(kn_subdir);
1738 
1739 	ret = rdtgroup_kn_set_ugid(kn_subdir);
1740 	if (ret)
1741 		return ret;
1742 
1743 	ret = rdtgroup_add_files(kn_subdir, fflags);
1744 	if (!ret)
1745 		kernfs_activate(kn_subdir);
1746 
1747 	return ret;
1748 }
1749 
1750 static int rdtgroup_create_info_dir(struct kernfs_node *parent_kn)
1751 {
1752 	struct resctrl_schema *s;
1753 	struct rdt_resource *r;
1754 	unsigned long fflags;
1755 	char name[32];
1756 	int ret;
1757 
1758 	/* create the directory */
1759 	kn_info = kernfs_create_dir(parent_kn, "info", parent_kn->mode, NULL);
1760 	if (IS_ERR(kn_info))
1761 		return PTR_ERR(kn_info);
1762 
1763 	ret = rdtgroup_add_files(kn_info, RF_TOP_INFO);
1764 	if (ret)
1765 		goto out_destroy;
1766 
1767 	/* loop over enabled controls, these are all alloc_capable */
1768 	list_for_each_entry(s, &resctrl_schema_all, list) {
1769 		r = s->res;
1770 		fflags =  r->fflags | RF_CTRL_INFO;
1771 		ret = rdtgroup_mkdir_info_resdir(s, s->name, fflags);
1772 		if (ret)
1773 			goto out_destroy;
1774 	}
1775 
1776 	for_each_mon_capable_rdt_resource(r) {
1777 		fflags =  r->fflags | RF_MON_INFO;
1778 		sprintf(name, "%s_MON", r->name);
1779 		ret = rdtgroup_mkdir_info_resdir(r, name, fflags);
1780 		if (ret)
1781 			goto out_destroy;
1782 	}
1783 
1784 	ret = rdtgroup_kn_set_ugid(kn_info);
1785 	if (ret)
1786 		goto out_destroy;
1787 
1788 	kernfs_activate(kn_info);
1789 
1790 	return 0;
1791 
1792 out_destroy:
1793 	kernfs_remove(kn_info);
1794 	return ret;
1795 }
1796 
1797 static int
1798 mongroup_create_dir(struct kernfs_node *parent_kn, struct rdtgroup *prgrp,
1799 		    char *name, struct kernfs_node **dest_kn)
1800 {
1801 	struct kernfs_node *kn;
1802 	int ret;
1803 
1804 	/* create the directory */
1805 	kn = kernfs_create_dir(parent_kn, name, parent_kn->mode, prgrp);
1806 	if (IS_ERR(kn))
1807 		return PTR_ERR(kn);
1808 
1809 	if (dest_kn)
1810 		*dest_kn = kn;
1811 
1812 	ret = rdtgroup_kn_set_ugid(kn);
1813 	if (ret)
1814 		goto out_destroy;
1815 
1816 	kernfs_activate(kn);
1817 
1818 	return 0;
1819 
1820 out_destroy:
1821 	kernfs_remove(kn);
1822 	return ret;
1823 }
1824 
1825 static void l3_qos_cfg_update(void *arg)
1826 {
1827 	bool *enable = arg;
1828 
1829 	wrmsrl(MSR_IA32_L3_QOS_CFG, *enable ? L3_QOS_CDP_ENABLE : 0ULL);
1830 }
1831 
1832 static void l2_qos_cfg_update(void *arg)
1833 {
1834 	bool *enable = arg;
1835 
1836 	wrmsrl(MSR_IA32_L2_QOS_CFG, *enable ? L2_QOS_CDP_ENABLE : 0ULL);
1837 }
1838 
1839 static inline bool is_mba_linear(void)
1840 {
1841 	return rdt_resources_all[RDT_RESOURCE_MBA].r_resctrl.membw.delay_linear;
1842 }
1843 
1844 static int set_cache_qos_cfg(int level, bool enable)
1845 {
1846 	void (*update)(void *arg);
1847 	struct rdt_resource *r_l;
1848 	cpumask_var_t cpu_mask;
1849 	struct rdt_domain *d;
1850 	int cpu;
1851 
1852 	if (level == RDT_RESOURCE_L3)
1853 		update = l3_qos_cfg_update;
1854 	else if (level == RDT_RESOURCE_L2)
1855 		update = l2_qos_cfg_update;
1856 	else
1857 		return -EINVAL;
1858 
1859 	if (!zalloc_cpumask_var(&cpu_mask, GFP_KERNEL))
1860 		return -ENOMEM;
1861 
1862 	r_l = &rdt_resources_all[level].r_resctrl;
1863 	list_for_each_entry(d, &r_l->domains, list) {
1864 		if (r_l->cache.arch_has_per_cpu_cfg)
1865 			/* Pick all the CPUs in the domain instance */
1866 			for_each_cpu(cpu, &d->cpu_mask)
1867 				cpumask_set_cpu(cpu, cpu_mask);
1868 		else
1869 			/* Pick one CPU from each domain instance to update MSR */
1870 			cpumask_set_cpu(cpumask_any(&d->cpu_mask), cpu_mask);
1871 	}
1872 	cpu = get_cpu();
1873 	/* Update QOS_CFG MSR on this cpu if it's in cpu_mask. */
1874 	if (cpumask_test_cpu(cpu, cpu_mask))
1875 		update(&enable);
1876 	/* Update QOS_CFG MSR on all other cpus in cpu_mask. */
1877 	smp_call_function_many(cpu_mask, update, &enable, 1);
1878 	put_cpu();
1879 
1880 	free_cpumask_var(cpu_mask);
1881 
1882 	return 0;
1883 }
1884 
1885 /* Restore the qos cfg state when a domain comes online */
1886 void rdt_domain_reconfigure_cdp(struct rdt_resource *r)
1887 {
1888 	struct rdt_hw_resource *hw_res = resctrl_to_arch_res(r);
1889 
1890 	if (!r->cdp_capable)
1891 		return;
1892 
1893 	if (r->rid == RDT_RESOURCE_L2)
1894 		l2_qos_cfg_update(&hw_res->cdp_enabled);
1895 
1896 	if (r->rid == RDT_RESOURCE_L3)
1897 		l3_qos_cfg_update(&hw_res->cdp_enabled);
1898 }
1899 
1900 static int mba_sc_domain_allocate(struct rdt_resource *r, struct rdt_domain *d)
1901 {
1902 	u32 num_closid = resctrl_arch_get_num_closid(r);
1903 	int cpu = cpumask_any(&d->cpu_mask);
1904 	int i;
1905 
1906 	d->mbps_val = kcalloc_node(num_closid, sizeof(*d->mbps_val),
1907 				   GFP_KERNEL, cpu_to_node(cpu));
1908 	if (!d->mbps_val)
1909 		return -ENOMEM;
1910 
1911 	for (i = 0; i < num_closid; i++)
1912 		d->mbps_val[i] = MBA_MAX_MBPS;
1913 
1914 	return 0;
1915 }
1916 
1917 static void mba_sc_domain_destroy(struct rdt_resource *r,
1918 				  struct rdt_domain *d)
1919 {
1920 	kfree(d->mbps_val);
1921 	d->mbps_val = NULL;
1922 }
1923 
1924 /*
1925  * MBA software controller is supported only if
1926  * MBM is supported and MBA is in linear scale.
1927  */
1928 static bool supports_mba_mbps(void)
1929 {
1930 	struct rdt_resource *r = &rdt_resources_all[RDT_RESOURCE_MBA].r_resctrl;
1931 
1932 	return (is_mbm_local_enabled() &&
1933 		r->alloc_capable && is_mba_linear());
1934 }
1935 
1936 /*
1937  * Enable or disable the MBA software controller
1938  * which helps user specify bandwidth in MBps.
1939  */
1940 static int set_mba_sc(bool mba_sc)
1941 {
1942 	struct rdt_resource *r = &rdt_resources_all[RDT_RESOURCE_MBA].r_resctrl;
1943 	u32 num_closid = resctrl_arch_get_num_closid(r);
1944 	struct rdt_domain *d;
1945 	int i;
1946 
1947 	if (!supports_mba_mbps() || mba_sc == is_mba_sc(r))
1948 		return -EINVAL;
1949 
1950 	r->membw.mba_sc = mba_sc;
1951 
1952 	list_for_each_entry(d, &r->domains, list) {
1953 		for (i = 0; i < num_closid; i++)
1954 			d->mbps_val[i] = MBA_MAX_MBPS;
1955 	}
1956 
1957 	return 0;
1958 }
1959 
1960 static int cdp_enable(int level)
1961 {
1962 	struct rdt_resource *r_l = &rdt_resources_all[level].r_resctrl;
1963 	int ret;
1964 
1965 	if (!r_l->alloc_capable)
1966 		return -EINVAL;
1967 
1968 	ret = set_cache_qos_cfg(level, true);
1969 	if (!ret)
1970 		rdt_resources_all[level].cdp_enabled = true;
1971 
1972 	return ret;
1973 }
1974 
1975 static void cdp_disable(int level)
1976 {
1977 	struct rdt_hw_resource *r_hw = &rdt_resources_all[level];
1978 
1979 	if (r_hw->cdp_enabled) {
1980 		set_cache_qos_cfg(level, false);
1981 		r_hw->cdp_enabled = false;
1982 	}
1983 }
1984 
1985 int resctrl_arch_set_cdp_enabled(enum resctrl_res_level l, bool enable)
1986 {
1987 	struct rdt_hw_resource *hw_res = &rdt_resources_all[l];
1988 
1989 	if (!hw_res->r_resctrl.cdp_capable)
1990 		return -EINVAL;
1991 
1992 	if (enable)
1993 		return cdp_enable(l);
1994 
1995 	cdp_disable(l);
1996 
1997 	return 0;
1998 }
1999 
2000 static void cdp_disable_all(void)
2001 {
2002 	if (resctrl_arch_get_cdp_enabled(RDT_RESOURCE_L3))
2003 		resctrl_arch_set_cdp_enabled(RDT_RESOURCE_L3, false);
2004 	if (resctrl_arch_get_cdp_enabled(RDT_RESOURCE_L2))
2005 		resctrl_arch_set_cdp_enabled(RDT_RESOURCE_L2, false);
2006 }
2007 
2008 /*
2009  * We don't allow rdtgroup directories to be created anywhere
2010  * except the root directory. Thus when looking for the rdtgroup
2011  * structure for a kernfs node we are either looking at a directory,
2012  * in which case the rdtgroup structure is pointed at by the "priv"
2013  * field, otherwise we have a file, and need only look to the parent
2014  * to find the rdtgroup.
2015  */
2016 static struct rdtgroup *kernfs_to_rdtgroup(struct kernfs_node *kn)
2017 {
2018 	if (kernfs_type(kn) == KERNFS_DIR) {
2019 		/*
2020 		 * All the resource directories use "kn->priv"
2021 		 * to point to the "struct rdtgroup" for the
2022 		 * resource. "info" and its subdirectories don't
2023 		 * have rdtgroup structures, so return NULL here.
2024 		 */
2025 		if (kn == kn_info || kn->parent == kn_info)
2026 			return NULL;
2027 		else
2028 			return kn->priv;
2029 	} else {
2030 		return kn->parent->priv;
2031 	}
2032 }
2033 
2034 struct rdtgroup *rdtgroup_kn_lock_live(struct kernfs_node *kn)
2035 {
2036 	struct rdtgroup *rdtgrp = kernfs_to_rdtgroup(kn);
2037 
2038 	if (!rdtgrp)
2039 		return NULL;
2040 
2041 	atomic_inc(&rdtgrp->waitcount);
2042 	kernfs_break_active_protection(kn);
2043 
2044 	mutex_lock(&rdtgroup_mutex);
2045 
2046 	/* Was this group deleted while we waited? */
2047 	if (rdtgrp->flags & RDT_DELETED)
2048 		return NULL;
2049 
2050 	return rdtgrp;
2051 }
2052 
2053 void rdtgroup_kn_unlock(struct kernfs_node *kn)
2054 {
2055 	struct rdtgroup *rdtgrp = kernfs_to_rdtgroup(kn);
2056 
2057 	if (!rdtgrp)
2058 		return;
2059 
2060 	mutex_unlock(&rdtgroup_mutex);
2061 
2062 	if (atomic_dec_and_test(&rdtgrp->waitcount) &&
2063 	    (rdtgrp->flags & RDT_DELETED)) {
2064 		if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP ||
2065 		    rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED)
2066 			rdtgroup_pseudo_lock_remove(rdtgrp);
2067 		kernfs_unbreak_active_protection(kn);
2068 		rdtgroup_remove(rdtgrp);
2069 	} else {
2070 		kernfs_unbreak_active_protection(kn);
2071 	}
2072 }
2073 
2074 static int mkdir_mondata_all(struct kernfs_node *parent_kn,
2075 			     struct rdtgroup *prgrp,
2076 			     struct kernfs_node **mon_data_kn);
2077 
2078 static int rdt_enable_ctx(struct rdt_fs_context *ctx)
2079 {
2080 	int ret = 0;
2081 
2082 	if (ctx->enable_cdpl2)
2083 		ret = resctrl_arch_set_cdp_enabled(RDT_RESOURCE_L2, true);
2084 
2085 	if (!ret && ctx->enable_cdpl3)
2086 		ret = resctrl_arch_set_cdp_enabled(RDT_RESOURCE_L3, true);
2087 
2088 	if (!ret && ctx->enable_mba_mbps)
2089 		ret = set_mba_sc(true);
2090 
2091 	return ret;
2092 }
2093 
2094 static int schemata_list_add(struct rdt_resource *r, enum resctrl_conf_type type)
2095 {
2096 	struct resctrl_schema *s;
2097 	const char *suffix = "";
2098 	int ret, cl;
2099 
2100 	s = kzalloc(sizeof(*s), GFP_KERNEL);
2101 	if (!s)
2102 		return -ENOMEM;
2103 
2104 	s->res = r;
2105 	s->num_closid = resctrl_arch_get_num_closid(r);
2106 	if (resctrl_arch_get_cdp_enabled(r->rid))
2107 		s->num_closid /= 2;
2108 
2109 	s->conf_type = type;
2110 	switch (type) {
2111 	case CDP_CODE:
2112 		suffix = "CODE";
2113 		break;
2114 	case CDP_DATA:
2115 		suffix = "DATA";
2116 		break;
2117 	case CDP_NONE:
2118 		suffix = "";
2119 		break;
2120 	}
2121 
2122 	ret = snprintf(s->name, sizeof(s->name), "%s%s", r->name, suffix);
2123 	if (ret >= sizeof(s->name)) {
2124 		kfree(s);
2125 		return -EINVAL;
2126 	}
2127 
2128 	cl = strlen(s->name);
2129 
2130 	/*
2131 	 * If CDP is supported by this resource, but not enabled,
2132 	 * include the suffix. This ensures the tabular format of the
2133 	 * schemata file does not change between mounts of the filesystem.
2134 	 */
2135 	if (r->cdp_capable && !resctrl_arch_get_cdp_enabled(r->rid))
2136 		cl += 4;
2137 
2138 	if (cl > max_name_width)
2139 		max_name_width = cl;
2140 
2141 	INIT_LIST_HEAD(&s->list);
2142 	list_add(&s->list, &resctrl_schema_all);
2143 
2144 	return 0;
2145 }
2146 
2147 static int schemata_list_create(void)
2148 {
2149 	struct rdt_resource *r;
2150 	int ret = 0;
2151 
2152 	for_each_alloc_capable_rdt_resource(r) {
2153 		if (resctrl_arch_get_cdp_enabled(r->rid)) {
2154 			ret = schemata_list_add(r, CDP_CODE);
2155 			if (ret)
2156 				break;
2157 
2158 			ret = schemata_list_add(r, CDP_DATA);
2159 		} else {
2160 			ret = schemata_list_add(r, CDP_NONE);
2161 		}
2162 
2163 		if (ret)
2164 			break;
2165 	}
2166 
2167 	return ret;
2168 }
2169 
2170 static void schemata_list_destroy(void)
2171 {
2172 	struct resctrl_schema *s, *tmp;
2173 
2174 	list_for_each_entry_safe(s, tmp, &resctrl_schema_all, list) {
2175 		list_del(&s->list);
2176 		kfree(s);
2177 	}
2178 }
2179 
2180 static int rdt_get_tree(struct fs_context *fc)
2181 {
2182 	struct rdt_fs_context *ctx = rdt_fc2context(fc);
2183 	struct rdt_domain *dom;
2184 	struct rdt_resource *r;
2185 	int ret;
2186 
2187 	cpus_read_lock();
2188 	mutex_lock(&rdtgroup_mutex);
2189 	/*
2190 	 * resctrl file system can only be mounted once.
2191 	 */
2192 	if (static_branch_unlikely(&rdt_enable_key)) {
2193 		ret = -EBUSY;
2194 		goto out;
2195 	}
2196 
2197 	ret = rdt_enable_ctx(ctx);
2198 	if (ret < 0)
2199 		goto out_cdp;
2200 
2201 	ret = schemata_list_create();
2202 	if (ret) {
2203 		schemata_list_destroy();
2204 		goto out_mba;
2205 	}
2206 
2207 	closid_init();
2208 
2209 	ret = rdtgroup_create_info_dir(rdtgroup_default.kn);
2210 	if (ret < 0)
2211 		goto out_schemata_free;
2212 
2213 	if (rdt_mon_capable) {
2214 		ret = mongroup_create_dir(rdtgroup_default.kn,
2215 					  &rdtgroup_default, "mon_groups",
2216 					  &kn_mongrp);
2217 		if (ret < 0)
2218 			goto out_info;
2219 
2220 		ret = mkdir_mondata_all(rdtgroup_default.kn,
2221 					&rdtgroup_default, &kn_mondata);
2222 		if (ret < 0)
2223 			goto out_mongrp;
2224 		rdtgroup_default.mon.mon_data_kn = kn_mondata;
2225 	}
2226 
2227 	ret = rdt_pseudo_lock_init();
2228 	if (ret)
2229 		goto out_mondata;
2230 
2231 	ret = kernfs_get_tree(fc);
2232 	if (ret < 0)
2233 		goto out_psl;
2234 
2235 	if (rdt_alloc_capable)
2236 		static_branch_enable_cpuslocked(&rdt_alloc_enable_key);
2237 	if (rdt_mon_capable)
2238 		static_branch_enable_cpuslocked(&rdt_mon_enable_key);
2239 
2240 	if (rdt_alloc_capable || rdt_mon_capable)
2241 		static_branch_enable_cpuslocked(&rdt_enable_key);
2242 
2243 	if (is_mbm_enabled()) {
2244 		r = &rdt_resources_all[RDT_RESOURCE_L3].r_resctrl;
2245 		list_for_each_entry(dom, &r->domains, list)
2246 			mbm_setup_overflow_handler(dom, MBM_OVERFLOW_INTERVAL);
2247 	}
2248 
2249 	goto out;
2250 
2251 out_psl:
2252 	rdt_pseudo_lock_release();
2253 out_mondata:
2254 	if (rdt_mon_capable)
2255 		kernfs_remove(kn_mondata);
2256 out_mongrp:
2257 	if (rdt_mon_capable)
2258 		kernfs_remove(kn_mongrp);
2259 out_info:
2260 	kernfs_remove(kn_info);
2261 out_schemata_free:
2262 	schemata_list_destroy();
2263 out_mba:
2264 	if (ctx->enable_mba_mbps)
2265 		set_mba_sc(false);
2266 out_cdp:
2267 	cdp_disable_all();
2268 out:
2269 	rdt_last_cmd_clear();
2270 	mutex_unlock(&rdtgroup_mutex);
2271 	cpus_read_unlock();
2272 	return ret;
2273 }
2274 
2275 enum rdt_param {
2276 	Opt_cdp,
2277 	Opt_cdpl2,
2278 	Opt_mba_mbps,
2279 	nr__rdt_params
2280 };
2281 
2282 static const struct fs_parameter_spec rdt_fs_parameters[] = {
2283 	fsparam_flag("cdp",		Opt_cdp),
2284 	fsparam_flag("cdpl2",		Opt_cdpl2),
2285 	fsparam_flag("mba_MBps",	Opt_mba_mbps),
2286 	{}
2287 };
2288 
2289 static int rdt_parse_param(struct fs_context *fc, struct fs_parameter *param)
2290 {
2291 	struct rdt_fs_context *ctx = rdt_fc2context(fc);
2292 	struct fs_parse_result result;
2293 	int opt;
2294 
2295 	opt = fs_parse(fc, rdt_fs_parameters, param, &result);
2296 	if (opt < 0)
2297 		return opt;
2298 
2299 	switch (opt) {
2300 	case Opt_cdp:
2301 		ctx->enable_cdpl3 = true;
2302 		return 0;
2303 	case Opt_cdpl2:
2304 		ctx->enable_cdpl2 = true;
2305 		return 0;
2306 	case Opt_mba_mbps:
2307 		if (!supports_mba_mbps())
2308 			return -EINVAL;
2309 		ctx->enable_mba_mbps = true;
2310 		return 0;
2311 	}
2312 
2313 	return -EINVAL;
2314 }
2315 
2316 static void rdt_fs_context_free(struct fs_context *fc)
2317 {
2318 	struct rdt_fs_context *ctx = rdt_fc2context(fc);
2319 
2320 	kernfs_free_fs_context(fc);
2321 	kfree(ctx);
2322 }
2323 
2324 static const struct fs_context_operations rdt_fs_context_ops = {
2325 	.free		= rdt_fs_context_free,
2326 	.parse_param	= rdt_parse_param,
2327 	.get_tree	= rdt_get_tree,
2328 };
2329 
2330 static int rdt_init_fs_context(struct fs_context *fc)
2331 {
2332 	struct rdt_fs_context *ctx;
2333 
2334 	ctx = kzalloc(sizeof(struct rdt_fs_context), GFP_KERNEL);
2335 	if (!ctx)
2336 		return -ENOMEM;
2337 
2338 	ctx->kfc.root = rdt_root;
2339 	ctx->kfc.magic = RDTGROUP_SUPER_MAGIC;
2340 	fc->fs_private = &ctx->kfc;
2341 	fc->ops = &rdt_fs_context_ops;
2342 	put_user_ns(fc->user_ns);
2343 	fc->user_ns = get_user_ns(&init_user_ns);
2344 	fc->global = true;
2345 	return 0;
2346 }
2347 
2348 static int reset_all_ctrls(struct rdt_resource *r)
2349 {
2350 	struct rdt_hw_resource *hw_res = resctrl_to_arch_res(r);
2351 	struct rdt_hw_domain *hw_dom;
2352 	struct msr_param msr_param;
2353 	cpumask_var_t cpu_mask;
2354 	struct rdt_domain *d;
2355 	int i, cpu;
2356 
2357 	if (!zalloc_cpumask_var(&cpu_mask, GFP_KERNEL))
2358 		return -ENOMEM;
2359 
2360 	msr_param.res = r;
2361 	msr_param.low = 0;
2362 	msr_param.high = hw_res->num_closid;
2363 
2364 	/*
2365 	 * Disable resource control for this resource by setting all
2366 	 * CBMs in all domains to the maximum mask value. Pick one CPU
2367 	 * from each domain to update the MSRs below.
2368 	 */
2369 	list_for_each_entry(d, &r->domains, list) {
2370 		hw_dom = resctrl_to_arch_dom(d);
2371 		cpumask_set_cpu(cpumask_any(&d->cpu_mask), cpu_mask);
2372 
2373 		for (i = 0; i < hw_res->num_closid; i++) {
2374 			hw_dom->ctrl_val[i] = r->default_ctrl;
2375 			hw_dom->mbps_val[i] = MBA_MAX_MBPS;
2376 		}
2377 	}
2378 	cpu = get_cpu();
2379 	/* Update CBM on this cpu if it's in cpu_mask. */
2380 	if (cpumask_test_cpu(cpu, cpu_mask))
2381 		rdt_ctrl_update(&msr_param);
2382 	/* Update CBM on all other cpus in cpu_mask. */
2383 	smp_call_function_many(cpu_mask, rdt_ctrl_update, &msr_param, 1);
2384 	put_cpu();
2385 
2386 	free_cpumask_var(cpu_mask);
2387 
2388 	return 0;
2389 }
2390 
2391 /*
2392  * Move tasks from one to the other group. If @from is NULL, then all tasks
2393  * in the systems are moved unconditionally (used for teardown).
2394  *
2395  * If @mask is not NULL the cpus on which moved tasks are running are set
2396  * in that mask so the update smp function call is restricted to affected
2397  * cpus.
2398  */
2399 static void rdt_move_group_tasks(struct rdtgroup *from, struct rdtgroup *to,
2400 				 struct cpumask *mask)
2401 {
2402 	struct task_struct *p, *t;
2403 
2404 	read_lock(&tasklist_lock);
2405 	for_each_process_thread(p, t) {
2406 		if (!from || is_closid_match(t, from) ||
2407 		    is_rmid_match(t, from)) {
2408 			WRITE_ONCE(t->closid, to->closid);
2409 			WRITE_ONCE(t->rmid, to->mon.rmid);
2410 
2411 			/*
2412 			 * If the task is on a CPU, set the CPU in the mask.
2413 			 * The detection is inaccurate as tasks might move or
2414 			 * schedule before the smp function call takes place.
2415 			 * In such a case the function call is pointless, but
2416 			 * there is no other side effect.
2417 			 */
2418 			if (IS_ENABLED(CONFIG_SMP) && mask && task_curr(t))
2419 				cpumask_set_cpu(task_cpu(t), mask);
2420 		}
2421 	}
2422 	read_unlock(&tasklist_lock);
2423 }
2424 
2425 static void free_all_child_rdtgrp(struct rdtgroup *rdtgrp)
2426 {
2427 	struct rdtgroup *sentry, *stmp;
2428 	struct list_head *head;
2429 
2430 	head = &rdtgrp->mon.crdtgrp_list;
2431 	list_for_each_entry_safe(sentry, stmp, head, mon.crdtgrp_list) {
2432 		free_rmid(sentry->mon.rmid);
2433 		list_del(&sentry->mon.crdtgrp_list);
2434 
2435 		if (atomic_read(&sentry->waitcount) != 0)
2436 			sentry->flags = RDT_DELETED;
2437 		else
2438 			rdtgroup_remove(sentry);
2439 	}
2440 }
2441 
2442 /*
2443  * Forcibly remove all of subdirectories under root.
2444  */
2445 static void rmdir_all_sub(void)
2446 {
2447 	struct rdtgroup *rdtgrp, *tmp;
2448 
2449 	/* Move all tasks to the default resource group */
2450 	rdt_move_group_tasks(NULL, &rdtgroup_default, NULL);
2451 
2452 	list_for_each_entry_safe(rdtgrp, tmp, &rdt_all_groups, rdtgroup_list) {
2453 		/* Free any child rmids */
2454 		free_all_child_rdtgrp(rdtgrp);
2455 
2456 		/* Remove each rdtgroup other than root */
2457 		if (rdtgrp == &rdtgroup_default)
2458 			continue;
2459 
2460 		if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP ||
2461 		    rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED)
2462 			rdtgroup_pseudo_lock_remove(rdtgrp);
2463 
2464 		/*
2465 		 * Give any CPUs back to the default group. We cannot copy
2466 		 * cpu_online_mask because a CPU might have executed the
2467 		 * offline callback already, but is still marked online.
2468 		 */
2469 		cpumask_or(&rdtgroup_default.cpu_mask,
2470 			   &rdtgroup_default.cpu_mask, &rdtgrp->cpu_mask);
2471 
2472 		free_rmid(rdtgrp->mon.rmid);
2473 
2474 		kernfs_remove(rdtgrp->kn);
2475 		list_del(&rdtgrp->rdtgroup_list);
2476 
2477 		if (atomic_read(&rdtgrp->waitcount) != 0)
2478 			rdtgrp->flags = RDT_DELETED;
2479 		else
2480 			rdtgroup_remove(rdtgrp);
2481 	}
2482 	/* Notify online CPUs to update per cpu storage and PQR_ASSOC MSR */
2483 	update_closid_rmid(cpu_online_mask, &rdtgroup_default);
2484 
2485 	kernfs_remove(kn_info);
2486 	kernfs_remove(kn_mongrp);
2487 	kernfs_remove(kn_mondata);
2488 }
2489 
2490 static void rdt_kill_sb(struct super_block *sb)
2491 {
2492 	struct rdt_resource *r;
2493 
2494 	cpus_read_lock();
2495 	mutex_lock(&rdtgroup_mutex);
2496 
2497 	set_mba_sc(false);
2498 
2499 	/*Put everything back to default values. */
2500 	for_each_alloc_capable_rdt_resource(r)
2501 		reset_all_ctrls(r);
2502 	cdp_disable_all();
2503 	rmdir_all_sub();
2504 	rdt_pseudo_lock_release();
2505 	rdtgroup_default.mode = RDT_MODE_SHAREABLE;
2506 	schemata_list_destroy();
2507 	static_branch_disable_cpuslocked(&rdt_alloc_enable_key);
2508 	static_branch_disable_cpuslocked(&rdt_mon_enable_key);
2509 	static_branch_disable_cpuslocked(&rdt_enable_key);
2510 	kernfs_kill_sb(sb);
2511 	mutex_unlock(&rdtgroup_mutex);
2512 	cpus_read_unlock();
2513 }
2514 
2515 static struct file_system_type rdt_fs_type = {
2516 	.name			= "resctrl",
2517 	.init_fs_context	= rdt_init_fs_context,
2518 	.parameters		= rdt_fs_parameters,
2519 	.kill_sb		= rdt_kill_sb,
2520 };
2521 
2522 static int mon_addfile(struct kernfs_node *parent_kn, const char *name,
2523 		       void *priv)
2524 {
2525 	struct kernfs_node *kn;
2526 	int ret = 0;
2527 
2528 	kn = __kernfs_create_file(parent_kn, name, 0444,
2529 				  GLOBAL_ROOT_UID, GLOBAL_ROOT_GID, 0,
2530 				  &kf_mondata_ops, priv, NULL, NULL);
2531 	if (IS_ERR(kn))
2532 		return PTR_ERR(kn);
2533 
2534 	ret = rdtgroup_kn_set_ugid(kn);
2535 	if (ret) {
2536 		kernfs_remove(kn);
2537 		return ret;
2538 	}
2539 
2540 	return ret;
2541 }
2542 
2543 /*
2544  * Remove all subdirectories of mon_data of ctrl_mon groups
2545  * and monitor groups with given domain id.
2546  */
2547 static void rmdir_mondata_subdir_allrdtgrp(struct rdt_resource *r,
2548 					   unsigned int dom_id)
2549 {
2550 	struct rdtgroup *prgrp, *crgrp;
2551 	char name[32];
2552 
2553 	list_for_each_entry(prgrp, &rdt_all_groups, rdtgroup_list) {
2554 		sprintf(name, "mon_%s_%02d", r->name, dom_id);
2555 		kernfs_remove_by_name(prgrp->mon.mon_data_kn, name);
2556 
2557 		list_for_each_entry(crgrp, &prgrp->mon.crdtgrp_list, mon.crdtgrp_list)
2558 			kernfs_remove_by_name(crgrp->mon.mon_data_kn, name);
2559 	}
2560 }
2561 
2562 static int mkdir_mondata_subdir(struct kernfs_node *parent_kn,
2563 				struct rdt_domain *d,
2564 				struct rdt_resource *r, struct rdtgroup *prgrp)
2565 {
2566 	union mon_data_bits priv;
2567 	struct kernfs_node *kn;
2568 	struct mon_evt *mevt;
2569 	struct rmid_read rr;
2570 	char name[32];
2571 	int ret;
2572 
2573 	sprintf(name, "mon_%s_%02d", r->name, d->id);
2574 	/* create the directory */
2575 	kn = kernfs_create_dir(parent_kn, name, parent_kn->mode, prgrp);
2576 	if (IS_ERR(kn))
2577 		return PTR_ERR(kn);
2578 
2579 	ret = rdtgroup_kn_set_ugid(kn);
2580 	if (ret)
2581 		goto out_destroy;
2582 
2583 	if (WARN_ON(list_empty(&r->evt_list))) {
2584 		ret = -EPERM;
2585 		goto out_destroy;
2586 	}
2587 
2588 	priv.u.rid = r->rid;
2589 	priv.u.domid = d->id;
2590 	list_for_each_entry(mevt, &r->evt_list, list) {
2591 		priv.u.evtid = mevt->evtid;
2592 		ret = mon_addfile(kn, mevt->name, priv.priv);
2593 		if (ret)
2594 			goto out_destroy;
2595 
2596 		if (is_mbm_event(mevt->evtid))
2597 			mon_event_read(&rr, r, d, prgrp, mevt->evtid, true);
2598 	}
2599 	kernfs_activate(kn);
2600 	return 0;
2601 
2602 out_destroy:
2603 	kernfs_remove(kn);
2604 	return ret;
2605 }
2606 
2607 /*
2608  * Add all subdirectories of mon_data for "ctrl_mon" groups
2609  * and "monitor" groups with given domain id.
2610  */
2611 static void mkdir_mondata_subdir_allrdtgrp(struct rdt_resource *r,
2612 					   struct rdt_domain *d)
2613 {
2614 	struct kernfs_node *parent_kn;
2615 	struct rdtgroup *prgrp, *crgrp;
2616 	struct list_head *head;
2617 
2618 	list_for_each_entry(prgrp, &rdt_all_groups, rdtgroup_list) {
2619 		parent_kn = prgrp->mon.mon_data_kn;
2620 		mkdir_mondata_subdir(parent_kn, d, r, prgrp);
2621 
2622 		head = &prgrp->mon.crdtgrp_list;
2623 		list_for_each_entry(crgrp, head, mon.crdtgrp_list) {
2624 			parent_kn = crgrp->mon.mon_data_kn;
2625 			mkdir_mondata_subdir(parent_kn, d, r, crgrp);
2626 		}
2627 	}
2628 }
2629 
2630 static int mkdir_mondata_subdir_alldom(struct kernfs_node *parent_kn,
2631 				       struct rdt_resource *r,
2632 				       struct rdtgroup *prgrp)
2633 {
2634 	struct rdt_domain *dom;
2635 	int ret;
2636 
2637 	list_for_each_entry(dom, &r->domains, list) {
2638 		ret = mkdir_mondata_subdir(parent_kn, dom, r, prgrp);
2639 		if (ret)
2640 			return ret;
2641 	}
2642 
2643 	return 0;
2644 }
2645 
2646 /*
2647  * This creates a directory mon_data which contains the monitored data.
2648  *
2649  * mon_data has one directory for each domain which are named
2650  * in the format mon_<domain_name>_<domain_id>. For ex: A mon_data
2651  * with L3 domain looks as below:
2652  * ./mon_data:
2653  * mon_L3_00
2654  * mon_L3_01
2655  * mon_L3_02
2656  * ...
2657  *
2658  * Each domain directory has one file per event:
2659  * ./mon_L3_00/:
2660  * llc_occupancy
2661  *
2662  */
2663 static int mkdir_mondata_all(struct kernfs_node *parent_kn,
2664 			     struct rdtgroup *prgrp,
2665 			     struct kernfs_node **dest_kn)
2666 {
2667 	struct rdt_resource *r;
2668 	struct kernfs_node *kn;
2669 	int ret;
2670 
2671 	/*
2672 	 * Create the mon_data directory first.
2673 	 */
2674 	ret = mongroup_create_dir(parent_kn, prgrp, "mon_data", &kn);
2675 	if (ret)
2676 		return ret;
2677 
2678 	if (dest_kn)
2679 		*dest_kn = kn;
2680 
2681 	/*
2682 	 * Create the subdirectories for each domain. Note that all events
2683 	 * in a domain like L3 are grouped into a resource whose domain is L3
2684 	 */
2685 	for_each_mon_capable_rdt_resource(r) {
2686 		ret = mkdir_mondata_subdir_alldom(kn, r, prgrp);
2687 		if (ret)
2688 			goto out_destroy;
2689 	}
2690 
2691 	return 0;
2692 
2693 out_destroy:
2694 	kernfs_remove(kn);
2695 	return ret;
2696 }
2697 
2698 /**
2699  * cbm_ensure_valid - Enforce validity on provided CBM
2700  * @_val:	Candidate CBM
2701  * @r:		RDT resource to which the CBM belongs
2702  *
2703  * The provided CBM represents all cache portions available for use. This
2704  * may be represented by a bitmap that does not consist of contiguous ones
2705  * and thus be an invalid CBM.
2706  * Here the provided CBM is forced to be a valid CBM by only considering
2707  * the first set of contiguous bits as valid and clearing all bits.
2708  * The intention here is to provide a valid default CBM with which a new
2709  * resource group is initialized. The user can follow this with a
2710  * modification to the CBM if the default does not satisfy the
2711  * requirements.
2712  */
2713 static u32 cbm_ensure_valid(u32 _val, struct rdt_resource *r)
2714 {
2715 	unsigned int cbm_len = r->cache.cbm_len;
2716 	unsigned long first_bit, zero_bit;
2717 	unsigned long val = _val;
2718 
2719 	if (!val)
2720 		return 0;
2721 
2722 	first_bit = find_first_bit(&val, cbm_len);
2723 	zero_bit = find_next_zero_bit(&val, cbm_len, first_bit);
2724 
2725 	/* Clear any remaining bits to ensure contiguous region */
2726 	bitmap_clear(&val, zero_bit, cbm_len - zero_bit);
2727 	return (u32)val;
2728 }
2729 
2730 /*
2731  * Initialize cache resources per RDT domain
2732  *
2733  * Set the RDT domain up to start off with all usable allocations. That is,
2734  * all shareable and unused bits. All-zero CBM is invalid.
2735  */
2736 static int __init_one_rdt_domain(struct rdt_domain *d, struct resctrl_schema *s,
2737 				 u32 closid)
2738 {
2739 	enum resctrl_conf_type peer_type = resctrl_peer_type(s->conf_type);
2740 	enum resctrl_conf_type t = s->conf_type;
2741 	struct resctrl_staged_config *cfg;
2742 	struct rdt_resource *r = s->res;
2743 	u32 used_b = 0, unused_b = 0;
2744 	unsigned long tmp_cbm;
2745 	enum rdtgrp_mode mode;
2746 	u32 peer_ctl, ctrl_val;
2747 	int i;
2748 
2749 	cfg = &d->staged_config[t];
2750 	cfg->have_new_ctrl = false;
2751 	cfg->new_ctrl = r->cache.shareable_bits;
2752 	used_b = r->cache.shareable_bits;
2753 	for (i = 0; i < closids_supported(); i++) {
2754 		if (closid_allocated(i) && i != closid) {
2755 			mode = rdtgroup_mode_by_closid(i);
2756 			if (mode == RDT_MODE_PSEUDO_LOCKSETUP)
2757 				/*
2758 				 * ctrl values for locksetup aren't relevant
2759 				 * until the schemata is written, and the mode
2760 				 * becomes RDT_MODE_PSEUDO_LOCKED.
2761 				 */
2762 				continue;
2763 			/*
2764 			 * If CDP is active include peer domain's
2765 			 * usage to ensure there is no overlap
2766 			 * with an exclusive group.
2767 			 */
2768 			if (resctrl_arch_get_cdp_enabled(r->rid))
2769 				peer_ctl = resctrl_arch_get_config(r, d, i,
2770 								   peer_type);
2771 			else
2772 				peer_ctl = 0;
2773 			ctrl_val = resctrl_arch_get_config(r, d, i,
2774 							   s->conf_type);
2775 			used_b |= ctrl_val | peer_ctl;
2776 			if (mode == RDT_MODE_SHAREABLE)
2777 				cfg->new_ctrl |= ctrl_val | peer_ctl;
2778 		}
2779 	}
2780 	if (d->plr && d->plr->cbm > 0)
2781 		used_b |= d->plr->cbm;
2782 	unused_b = used_b ^ (BIT_MASK(r->cache.cbm_len) - 1);
2783 	unused_b &= BIT_MASK(r->cache.cbm_len) - 1;
2784 	cfg->new_ctrl |= unused_b;
2785 	/*
2786 	 * Force the initial CBM to be valid, user can
2787 	 * modify the CBM based on system availability.
2788 	 */
2789 	cfg->new_ctrl = cbm_ensure_valid(cfg->new_ctrl, r);
2790 	/*
2791 	 * Assign the u32 CBM to an unsigned long to ensure that
2792 	 * bitmap_weight() does not access out-of-bound memory.
2793 	 */
2794 	tmp_cbm = cfg->new_ctrl;
2795 	if (bitmap_weight(&tmp_cbm, r->cache.cbm_len) < r->cache.min_cbm_bits) {
2796 		rdt_last_cmd_printf("No space on %s:%d\n", s->name, d->id);
2797 		return -ENOSPC;
2798 	}
2799 	cfg->have_new_ctrl = true;
2800 
2801 	return 0;
2802 }
2803 
2804 /*
2805  * Initialize cache resources with default values.
2806  *
2807  * A new RDT group is being created on an allocation capable (CAT)
2808  * supporting system. Set this group up to start off with all usable
2809  * allocations.
2810  *
2811  * If there are no more shareable bits available on any domain then
2812  * the entire allocation will fail.
2813  */
2814 static int rdtgroup_init_cat(struct resctrl_schema *s, u32 closid)
2815 {
2816 	struct rdt_domain *d;
2817 	int ret;
2818 
2819 	list_for_each_entry(d, &s->res->domains, list) {
2820 		ret = __init_one_rdt_domain(d, s, closid);
2821 		if (ret < 0)
2822 			return ret;
2823 	}
2824 
2825 	return 0;
2826 }
2827 
2828 /* Initialize MBA resource with default values. */
2829 static void rdtgroup_init_mba(struct rdt_resource *r, u32 closid)
2830 {
2831 	struct resctrl_staged_config *cfg;
2832 	struct rdt_domain *d;
2833 
2834 	list_for_each_entry(d, &r->domains, list) {
2835 		if (is_mba_sc(r)) {
2836 			d->mbps_val[closid] = MBA_MAX_MBPS;
2837 			continue;
2838 		}
2839 
2840 		cfg = &d->staged_config[CDP_NONE];
2841 		cfg->new_ctrl = r->default_ctrl;
2842 		cfg->have_new_ctrl = true;
2843 	}
2844 }
2845 
2846 /* Initialize the RDT group's allocations. */
2847 static int rdtgroup_init_alloc(struct rdtgroup *rdtgrp)
2848 {
2849 	struct resctrl_schema *s;
2850 	struct rdt_resource *r;
2851 	int ret;
2852 
2853 	list_for_each_entry(s, &resctrl_schema_all, list) {
2854 		r = s->res;
2855 		if (r->rid == RDT_RESOURCE_MBA) {
2856 			rdtgroup_init_mba(r, rdtgrp->closid);
2857 			if (is_mba_sc(r))
2858 				continue;
2859 		} else {
2860 			ret = rdtgroup_init_cat(s, rdtgrp->closid);
2861 			if (ret < 0)
2862 				return ret;
2863 		}
2864 
2865 		ret = resctrl_arch_update_domains(r, rdtgrp->closid);
2866 		if (ret < 0) {
2867 			rdt_last_cmd_puts("Failed to initialize allocations\n");
2868 			return ret;
2869 		}
2870 
2871 	}
2872 
2873 	rdtgrp->mode = RDT_MODE_SHAREABLE;
2874 
2875 	return 0;
2876 }
2877 
2878 static int mkdir_rdt_prepare(struct kernfs_node *parent_kn,
2879 			     const char *name, umode_t mode,
2880 			     enum rdt_group_type rtype, struct rdtgroup **r)
2881 {
2882 	struct rdtgroup *prdtgrp, *rdtgrp;
2883 	struct kernfs_node *kn;
2884 	uint files = 0;
2885 	int ret;
2886 
2887 	prdtgrp = rdtgroup_kn_lock_live(parent_kn);
2888 	if (!prdtgrp) {
2889 		ret = -ENODEV;
2890 		goto out_unlock;
2891 	}
2892 
2893 	if (rtype == RDTMON_GROUP &&
2894 	    (prdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP ||
2895 	     prdtgrp->mode == RDT_MODE_PSEUDO_LOCKED)) {
2896 		ret = -EINVAL;
2897 		rdt_last_cmd_puts("Pseudo-locking in progress\n");
2898 		goto out_unlock;
2899 	}
2900 
2901 	/* allocate the rdtgroup. */
2902 	rdtgrp = kzalloc(sizeof(*rdtgrp), GFP_KERNEL);
2903 	if (!rdtgrp) {
2904 		ret = -ENOSPC;
2905 		rdt_last_cmd_puts("Kernel out of memory\n");
2906 		goto out_unlock;
2907 	}
2908 	*r = rdtgrp;
2909 	rdtgrp->mon.parent = prdtgrp;
2910 	rdtgrp->type = rtype;
2911 	INIT_LIST_HEAD(&rdtgrp->mon.crdtgrp_list);
2912 
2913 	/* kernfs creates the directory for rdtgrp */
2914 	kn = kernfs_create_dir(parent_kn, name, mode, rdtgrp);
2915 	if (IS_ERR(kn)) {
2916 		ret = PTR_ERR(kn);
2917 		rdt_last_cmd_puts("kernfs create error\n");
2918 		goto out_free_rgrp;
2919 	}
2920 	rdtgrp->kn = kn;
2921 
2922 	/*
2923 	 * kernfs_remove() will drop the reference count on "kn" which
2924 	 * will free it. But we still need it to stick around for the
2925 	 * rdtgroup_kn_unlock(kn) call. Take one extra reference here,
2926 	 * which will be dropped by kernfs_put() in rdtgroup_remove().
2927 	 */
2928 	kernfs_get(kn);
2929 
2930 	ret = rdtgroup_kn_set_ugid(kn);
2931 	if (ret) {
2932 		rdt_last_cmd_puts("kernfs perm error\n");
2933 		goto out_destroy;
2934 	}
2935 
2936 	files = RFTYPE_BASE | BIT(RF_CTRLSHIFT + rtype);
2937 	ret = rdtgroup_add_files(kn, files);
2938 	if (ret) {
2939 		rdt_last_cmd_puts("kernfs fill error\n");
2940 		goto out_destroy;
2941 	}
2942 
2943 	if (rdt_mon_capable) {
2944 		ret = alloc_rmid();
2945 		if (ret < 0) {
2946 			rdt_last_cmd_puts("Out of RMIDs\n");
2947 			goto out_destroy;
2948 		}
2949 		rdtgrp->mon.rmid = ret;
2950 
2951 		ret = mkdir_mondata_all(kn, rdtgrp, &rdtgrp->mon.mon_data_kn);
2952 		if (ret) {
2953 			rdt_last_cmd_puts("kernfs subdir error\n");
2954 			goto out_idfree;
2955 		}
2956 	}
2957 	kernfs_activate(kn);
2958 
2959 	/*
2960 	 * The caller unlocks the parent_kn upon success.
2961 	 */
2962 	return 0;
2963 
2964 out_idfree:
2965 	free_rmid(rdtgrp->mon.rmid);
2966 out_destroy:
2967 	kernfs_put(rdtgrp->kn);
2968 	kernfs_remove(rdtgrp->kn);
2969 out_free_rgrp:
2970 	kfree(rdtgrp);
2971 out_unlock:
2972 	rdtgroup_kn_unlock(parent_kn);
2973 	return ret;
2974 }
2975 
2976 static void mkdir_rdt_prepare_clean(struct rdtgroup *rgrp)
2977 {
2978 	kernfs_remove(rgrp->kn);
2979 	free_rmid(rgrp->mon.rmid);
2980 	rdtgroup_remove(rgrp);
2981 }
2982 
2983 /*
2984  * Create a monitor group under "mon_groups" directory of a control
2985  * and monitor group(ctrl_mon). This is a resource group
2986  * to monitor a subset of tasks and cpus in its parent ctrl_mon group.
2987  */
2988 static int rdtgroup_mkdir_mon(struct kernfs_node *parent_kn,
2989 			      const char *name, umode_t mode)
2990 {
2991 	struct rdtgroup *rdtgrp, *prgrp;
2992 	int ret;
2993 
2994 	ret = mkdir_rdt_prepare(parent_kn, name, mode, RDTMON_GROUP, &rdtgrp);
2995 	if (ret)
2996 		return ret;
2997 
2998 	prgrp = rdtgrp->mon.parent;
2999 	rdtgrp->closid = prgrp->closid;
3000 
3001 	/*
3002 	 * Add the rdtgrp to the list of rdtgrps the parent
3003 	 * ctrl_mon group has to track.
3004 	 */
3005 	list_add_tail(&rdtgrp->mon.crdtgrp_list, &prgrp->mon.crdtgrp_list);
3006 
3007 	rdtgroup_kn_unlock(parent_kn);
3008 	return ret;
3009 }
3010 
3011 /*
3012  * These are rdtgroups created under the root directory. Can be used
3013  * to allocate and monitor resources.
3014  */
3015 static int rdtgroup_mkdir_ctrl_mon(struct kernfs_node *parent_kn,
3016 				   const char *name, umode_t mode)
3017 {
3018 	struct rdtgroup *rdtgrp;
3019 	struct kernfs_node *kn;
3020 	u32 closid;
3021 	int ret;
3022 
3023 	ret = mkdir_rdt_prepare(parent_kn, name, mode, RDTCTRL_GROUP, &rdtgrp);
3024 	if (ret)
3025 		return ret;
3026 
3027 	kn = rdtgrp->kn;
3028 	ret = closid_alloc();
3029 	if (ret < 0) {
3030 		rdt_last_cmd_puts("Out of CLOSIDs\n");
3031 		goto out_common_fail;
3032 	}
3033 	closid = ret;
3034 	ret = 0;
3035 
3036 	rdtgrp->closid = closid;
3037 	ret = rdtgroup_init_alloc(rdtgrp);
3038 	if (ret < 0)
3039 		goto out_id_free;
3040 
3041 	list_add(&rdtgrp->rdtgroup_list, &rdt_all_groups);
3042 
3043 	if (rdt_mon_capable) {
3044 		/*
3045 		 * Create an empty mon_groups directory to hold the subset
3046 		 * of tasks and cpus to monitor.
3047 		 */
3048 		ret = mongroup_create_dir(kn, rdtgrp, "mon_groups", NULL);
3049 		if (ret) {
3050 			rdt_last_cmd_puts("kernfs subdir error\n");
3051 			goto out_del_list;
3052 		}
3053 	}
3054 
3055 	goto out_unlock;
3056 
3057 out_del_list:
3058 	list_del(&rdtgrp->rdtgroup_list);
3059 out_id_free:
3060 	closid_free(closid);
3061 out_common_fail:
3062 	mkdir_rdt_prepare_clean(rdtgrp);
3063 out_unlock:
3064 	rdtgroup_kn_unlock(parent_kn);
3065 	return ret;
3066 }
3067 
3068 /*
3069  * We allow creating mon groups only with in a directory called "mon_groups"
3070  * which is present in every ctrl_mon group. Check if this is a valid
3071  * "mon_groups" directory.
3072  *
3073  * 1. The directory should be named "mon_groups".
3074  * 2. The mon group itself should "not" be named "mon_groups".
3075  *   This makes sure "mon_groups" directory always has a ctrl_mon group
3076  *   as parent.
3077  */
3078 static bool is_mon_groups(struct kernfs_node *kn, const char *name)
3079 {
3080 	return (!strcmp(kn->name, "mon_groups") &&
3081 		strcmp(name, "mon_groups"));
3082 }
3083 
3084 static int rdtgroup_mkdir(struct kernfs_node *parent_kn, const char *name,
3085 			  umode_t mode)
3086 {
3087 	/* Do not accept '\n' to avoid unparsable situation. */
3088 	if (strchr(name, '\n'))
3089 		return -EINVAL;
3090 
3091 	/*
3092 	 * If the parent directory is the root directory and RDT
3093 	 * allocation is supported, add a control and monitoring
3094 	 * subdirectory
3095 	 */
3096 	if (rdt_alloc_capable && parent_kn == rdtgroup_default.kn)
3097 		return rdtgroup_mkdir_ctrl_mon(parent_kn, name, mode);
3098 
3099 	/*
3100 	 * If RDT monitoring is supported and the parent directory is a valid
3101 	 * "mon_groups" directory, add a monitoring subdirectory.
3102 	 */
3103 	if (rdt_mon_capable && is_mon_groups(parent_kn, name))
3104 		return rdtgroup_mkdir_mon(parent_kn, name, mode);
3105 
3106 	return -EPERM;
3107 }
3108 
3109 static int rdtgroup_rmdir_mon(struct rdtgroup *rdtgrp, cpumask_var_t tmpmask)
3110 {
3111 	struct rdtgroup *prdtgrp = rdtgrp->mon.parent;
3112 	int cpu;
3113 
3114 	/* Give any tasks back to the parent group */
3115 	rdt_move_group_tasks(rdtgrp, prdtgrp, tmpmask);
3116 
3117 	/* Update per cpu rmid of the moved CPUs first */
3118 	for_each_cpu(cpu, &rdtgrp->cpu_mask)
3119 		per_cpu(pqr_state.default_rmid, cpu) = prdtgrp->mon.rmid;
3120 	/*
3121 	 * Update the MSR on moved CPUs and CPUs which have moved
3122 	 * task running on them.
3123 	 */
3124 	cpumask_or(tmpmask, tmpmask, &rdtgrp->cpu_mask);
3125 	update_closid_rmid(tmpmask, NULL);
3126 
3127 	rdtgrp->flags = RDT_DELETED;
3128 	free_rmid(rdtgrp->mon.rmid);
3129 
3130 	/*
3131 	 * Remove the rdtgrp from the parent ctrl_mon group's list
3132 	 */
3133 	WARN_ON(list_empty(&prdtgrp->mon.crdtgrp_list));
3134 	list_del(&rdtgrp->mon.crdtgrp_list);
3135 
3136 	kernfs_remove(rdtgrp->kn);
3137 
3138 	return 0;
3139 }
3140 
3141 static int rdtgroup_ctrl_remove(struct rdtgroup *rdtgrp)
3142 {
3143 	rdtgrp->flags = RDT_DELETED;
3144 	list_del(&rdtgrp->rdtgroup_list);
3145 
3146 	kernfs_remove(rdtgrp->kn);
3147 	return 0;
3148 }
3149 
3150 static int rdtgroup_rmdir_ctrl(struct rdtgroup *rdtgrp, cpumask_var_t tmpmask)
3151 {
3152 	int cpu;
3153 
3154 	/* Give any tasks back to the default group */
3155 	rdt_move_group_tasks(rdtgrp, &rdtgroup_default, tmpmask);
3156 
3157 	/* Give any CPUs back to the default group */
3158 	cpumask_or(&rdtgroup_default.cpu_mask,
3159 		   &rdtgroup_default.cpu_mask, &rdtgrp->cpu_mask);
3160 
3161 	/* Update per cpu closid and rmid of the moved CPUs first */
3162 	for_each_cpu(cpu, &rdtgrp->cpu_mask) {
3163 		per_cpu(pqr_state.default_closid, cpu) = rdtgroup_default.closid;
3164 		per_cpu(pqr_state.default_rmid, cpu) = rdtgroup_default.mon.rmid;
3165 	}
3166 
3167 	/*
3168 	 * Update the MSR on moved CPUs and CPUs which have moved
3169 	 * task running on them.
3170 	 */
3171 	cpumask_or(tmpmask, tmpmask, &rdtgrp->cpu_mask);
3172 	update_closid_rmid(tmpmask, NULL);
3173 
3174 	closid_free(rdtgrp->closid);
3175 	free_rmid(rdtgrp->mon.rmid);
3176 
3177 	rdtgroup_ctrl_remove(rdtgrp);
3178 
3179 	/*
3180 	 * Free all the child monitor group rmids.
3181 	 */
3182 	free_all_child_rdtgrp(rdtgrp);
3183 
3184 	return 0;
3185 }
3186 
3187 static int rdtgroup_rmdir(struct kernfs_node *kn)
3188 {
3189 	struct kernfs_node *parent_kn = kn->parent;
3190 	struct rdtgroup *rdtgrp;
3191 	cpumask_var_t tmpmask;
3192 	int ret = 0;
3193 
3194 	if (!zalloc_cpumask_var(&tmpmask, GFP_KERNEL))
3195 		return -ENOMEM;
3196 
3197 	rdtgrp = rdtgroup_kn_lock_live(kn);
3198 	if (!rdtgrp) {
3199 		ret = -EPERM;
3200 		goto out;
3201 	}
3202 
3203 	/*
3204 	 * If the rdtgroup is a ctrl_mon group and parent directory
3205 	 * is the root directory, remove the ctrl_mon group.
3206 	 *
3207 	 * If the rdtgroup is a mon group and parent directory
3208 	 * is a valid "mon_groups" directory, remove the mon group.
3209 	 */
3210 	if (rdtgrp->type == RDTCTRL_GROUP && parent_kn == rdtgroup_default.kn &&
3211 	    rdtgrp != &rdtgroup_default) {
3212 		if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP ||
3213 		    rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED) {
3214 			ret = rdtgroup_ctrl_remove(rdtgrp);
3215 		} else {
3216 			ret = rdtgroup_rmdir_ctrl(rdtgrp, tmpmask);
3217 		}
3218 	} else if (rdtgrp->type == RDTMON_GROUP &&
3219 		 is_mon_groups(parent_kn, kn->name)) {
3220 		ret = rdtgroup_rmdir_mon(rdtgrp, tmpmask);
3221 	} else {
3222 		ret = -EPERM;
3223 	}
3224 
3225 out:
3226 	rdtgroup_kn_unlock(kn);
3227 	free_cpumask_var(tmpmask);
3228 	return ret;
3229 }
3230 
3231 static int rdtgroup_show_options(struct seq_file *seq, struct kernfs_root *kf)
3232 {
3233 	if (resctrl_arch_get_cdp_enabled(RDT_RESOURCE_L3))
3234 		seq_puts(seq, ",cdp");
3235 
3236 	if (resctrl_arch_get_cdp_enabled(RDT_RESOURCE_L2))
3237 		seq_puts(seq, ",cdpl2");
3238 
3239 	if (is_mba_sc(&rdt_resources_all[RDT_RESOURCE_MBA].r_resctrl))
3240 		seq_puts(seq, ",mba_MBps");
3241 
3242 	return 0;
3243 }
3244 
3245 static struct kernfs_syscall_ops rdtgroup_kf_syscall_ops = {
3246 	.mkdir		= rdtgroup_mkdir,
3247 	.rmdir		= rdtgroup_rmdir,
3248 	.show_options	= rdtgroup_show_options,
3249 };
3250 
3251 static int __init rdtgroup_setup_root(void)
3252 {
3253 	int ret;
3254 
3255 	rdt_root = kernfs_create_root(&rdtgroup_kf_syscall_ops,
3256 				      KERNFS_ROOT_CREATE_DEACTIVATED |
3257 				      KERNFS_ROOT_EXTRA_OPEN_PERM_CHECK,
3258 				      &rdtgroup_default);
3259 	if (IS_ERR(rdt_root))
3260 		return PTR_ERR(rdt_root);
3261 
3262 	mutex_lock(&rdtgroup_mutex);
3263 
3264 	rdtgroup_default.closid = 0;
3265 	rdtgroup_default.mon.rmid = 0;
3266 	rdtgroup_default.type = RDTCTRL_GROUP;
3267 	INIT_LIST_HEAD(&rdtgroup_default.mon.crdtgrp_list);
3268 
3269 	list_add(&rdtgroup_default.rdtgroup_list, &rdt_all_groups);
3270 
3271 	ret = rdtgroup_add_files(kernfs_root_to_node(rdt_root), RF_CTRL_BASE);
3272 	if (ret) {
3273 		kernfs_destroy_root(rdt_root);
3274 		goto out;
3275 	}
3276 
3277 	rdtgroup_default.kn = kernfs_root_to_node(rdt_root);
3278 	kernfs_activate(rdtgroup_default.kn);
3279 
3280 out:
3281 	mutex_unlock(&rdtgroup_mutex);
3282 
3283 	return ret;
3284 }
3285 
3286 static void domain_destroy_mon_state(struct rdt_domain *d)
3287 {
3288 	bitmap_free(d->rmid_busy_llc);
3289 	kfree(d->mbm_total);
3290 	kfree(d->mbm_local);
3291 }
3292 
3293 void resctrl_offline_domain(struct rdt_resource *r, struct rdt_domain *d)
3294 {
3295 	lockdep_assert_held(&rdtgroup_mutex);
3296 
3297 	if (supports_mba_mbps() && r->rid == RDT_RESOURCE_MBA)
3298 		mba_sc_domain_destroy(r, d);
3299 
3300 	if (!r->mon_capable)
3301 		return;
3302 
3303 	/*
3304 	 * If resctrl is mounted, remove all the
3305 	 * per domain monitor data directories.
3306 	 */
3307 	if (static_branch_unlikely(&rdt_mon_enable_key))
3308 		rmdir_mondata_subdir_allrdtgrp(r, d->id);
3309 
3310 	if (is_mbm_enabled())
3311 		cancel_delayed_work(&d->mbm_over);
3312 	if (is_llc_occupancy_enabled() && has_busy_rmid(r, d)) {
3313 		/*
3314 		 * When a package is going down, forcefully
3315 		 * decrement rmid->ebusy. There is no way to know
3316 		 * that the L3 was flushed and hence may lead to
3317 		 * incorrect counts in rare scenarios, but leaving
3318 		 * the RMID as busy creates RMID leaks if the
3319 		 * package never comes back.
3320 		 */
3321 		__check_limbo(d, true);
3322 		cancel_delayed_work(&d->cqm_limbo);
3323 	}
3324 
3325 	domain_destroy_mon_state(d);
3326 }
3327 
3328 static int domain_setup_mon_state(struct rdt_resource *r, struct rdt_domain *d)
3329 {
3330 	size_t tsize;
3331 
3332 	if (is_llc_occupancy_enabled()) {
3333 		d->rmid_busy_llc = bitmap_zalloc(r->num_rmid, GFP_KERNEL);
3334 		if (!d->rmid_busy_llc)
3335 			return -ENOMEM;
3336 	}
3337 	if (is_mbm_total_enabled()) {
3338 		tsize = sizeof(*d->mbm_total);
3339 		d->mbm_total = kcalloc(r->num_rmid, tsize, GFP_KERNEL);
3340 		if (!d->mbm_total) {
3341 			bitmap_free(d->rmid_busy_llc);
3342 			return -ENOMEM;
3343 		}
3344 	}
3345 	if (is_mbm_local_enabled()) {
3346 		tsize = sizeof(*d->mbm_local);
3347 		d->mbm_local = kcalloc(r->num_rmid, tsize, GFP_KERNEL);
3348 		if (!d->mbm_local) {
3349 			bitmap_free(d->rmid_busy_llc);
3350 			kfree(d->mbm_total);
3351 			return -ENOMEM;
3352 		}
3353 	}
3354 
3355 	return 0;
3356 }
3357 
3358 int resctrl_online_domain(struct rdt_resource *r, struct rdt_domain *d)
3359 {
3360 	int err;
3361 
3362 	lockdep_assert_held(&rdtgroup_mutex);
3363 
3364 	if (supports_mba_mbps() && r->rid == RDT_RESOURCE_MBA)
3365 		/* RDT_RESOURCE_MBA is never mon_capable */
3366 		return mba_sc_domain_allocate(r, d);
3367 
3368 	if (!r->mon_capable)
3369 		return 0;
3370 
3371 	err = domain_setup_mon_state(r, d);
3372 	if (err)
3373 		return err;
3374 
3375 	if (is_mbm_enabled()) {
3376 		INIT_DELAYED_WORK(&d->mbm_over, mbm_handle_overflow);
3377 		mbm_setup_overflow_handler(d, MBM_OVERFLOW_INTERVAL);
3378 	}
3379 
3380 	if (is_llc_occupancy_enabled())
3381 		INIT_DELAYED_WORK(&d->cqm_limbo, cqm_handle_limbo);
3382 
3383 	/* If resctrl is mounted, add per domain monitor data directories. */
3384 	if (static_branch_unlikely(&rdt_mon_enable_key))
3385 		mkdir_mondata_subdir_allrdtgrp(r, d);
3386 
3387 	return 0;
3388 }
3389 
3390 /*
3391  * rdtgroup_init - rdtgroup initialization
3392  *
3393  * Setup resctrl file system including set up root, create mount point,
3394  * register rdtgroup filesystem, and initialize files under root directory.
3395  *
3396  * Return: 0 on success or -errno
3397  */
3398 int __init rdtgroup_init(void)
3399 {
3400 	int ret = 0;
3401 
3402 	seq_buf_init(&last_cmd_status, last_cmd_status_buf,
3403 		     sizeof(last_cmd_status_buf));
3404 
3405 	ret = rdtgroup_setup_root();
3406 	if (ret)
3407 		return ret;
3408 
3409 	ret = sysfs_create_mount_point(fs_kobj, "resctrl");
3410 	if (ret)
3411 		goto cleanup_root;
3412 
3413 	ret = register_filesystem(&rdt_fs_type);
3414 	if (ret)
3415 		goto cleanup_mountpoint;
3416 
3417 	/*
3418 	 * Adding the resctrl debugfs directory here may not be ideal since
3419 	 * it would let the resctrl debugfs directory appear on the debugfs
3420 	 * filesystem before the resctrl filesystem is mounted.
3421 	 * It may also be ok since that would enable debugging of RDT before
3422 	 * resctrl is mounted.
3423 	 * The reason why the debugfs directory is created here and not in
3424 	 * rdt_get_tree() is because rdt_get_tree() takes rdtgroup_mutex and
3425 	 * during the debugfs directory creation also &sb->s_type->i_mutex_key
3426 	 * (the lockdep class of inode->i_rwsem). Other filesystem
3427 	 * interactions (eg. SyS_getdents) have the lock ordering:
3428 	 * &sb->s_type->i_mutex_key --> &mm->mmap_lock
3429 	 * During mmap(), called with &mm->mmap_lock, the rdtgroup_mutex
3430 	 * is taken, thus creating dependency:
3431 	 * &mm->mmap_lock --> rdtgroup_mutex for the latter that can cause
3432 	 * issues considering the other two lock dependencies.
3433 	 * By creating the debugfs directory here we avoid a dependency
3434 	 * that may cause deadlock (even though file operations cannot
3435 	 * occur until the filesystem is mounted, but I do not know how to
3436 	 * tell lockdep that).
3437 	 */
3438 	debugfs_resctrl = debugfs_create_dir("resctrl", NULL);
3439 
3440 	return 0;
3441 
3442 cleanup_mountpoint:
3443 	sysfs_remove_mount_point(fs_kobj, "resctrl");
3444 cleanup_root:
3445 	kernfs_destroy_root(rdt_root);
3446 
3447 	return ret;
3448 }
3449 
3450 void __exit rdtgroup_exit(void)
3451 {
3452 	debugfs_remove_recursive(debugfs_resctrl);
3453 	unregister_filesystem(&rdt_fs_type);
3454 	sysfs_remove_mount_point(fs_kobj, "resctrl");
3455 	kernfs_destroy_root(rdt_root);
3456 }
3457