xref: /openbmc/linux/arch/x86/kernel/cpu/resctrl/rdtgroup.c (revision 4f727ecefefbd180de10e25b3e74c03dce3f1e75)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * User interface for Resource Alloction in Resource Director Technology(RDT)
4  *
5  * Copyright (C) 2016 Intel Corporation
6  *
7  * Author: Fenghua Yu <fenghua.yu@intel.com>
8  *
9  * More information about RDT be found in the Intel (R) x86 Architecture
10  * Software Developer Manual.
11  */
12 
13 #define pr_fmt(fmt)	KBUILD_MODNAME ": " fmt
14 
15 #include <linux/cacheinfo.h>
16 #include <linux/cpu.h>
17 #include <linux/debugfs.h>
18 #include <linux/fs.h>
19 #include <linux/fs_parser.h>
20 #include <linux/sysfs.h>
21 #include <linux/kernfs.h>
22 #include <linux/seq_buf.h>
23 #include <linux/seq_file.h>
24 #include <linux/sched/signal.h>
25 #include <linux/sched/task.h>
26 #include <linux/slab.h>
27 #include <linux/task_work.h>
28 #include <linux/user_namespace.h>
29 
30 #include <uapi/linux/magic.h>
31 
32 #include <asm/resctrl_sched.h>
33 #include "internal.h"
34 
35 DEFINE_STATIC_KEY_FALSE(rdt_enable_key);
36 DEFINE_STATIC_KEY_FALSE(rdt_mon_enable_key);
37 DEFINE_STATIC_KEY_FALSE(rdt_alloc_enable_key);
38 static struct kernfs_root *rdt_root;
39 struct rdtgroup rdtgroup_default;
40 LIST_HEAD(rdt_all_groups);
41 
42 /* Kernel fs node for "info" directory under root */
43 static struct kernfs_node *kn_info;
44 
45 /* Kernel fs node for "mon_groups" directory under root */
46 static struct kernfs_node *kn_mongrp;
47 
48 /* Kernel fs node for "mon_data" directory under root */
49 static struct kernfs_node *kn_mondata;
50 
51 static struct seq_buf last_cmd_status;
52 static char last_cmd_status_buf[512];
53 
54 struct dentry *debugfs_resctrl;
55 
56 void rdt_last_cmd_clear(void)
57 {
58 	lockdep_assert_held(&rdtgroup_mutex);
59 	seq_buf_clear(&last_cmd_status);
60 }
61 
62 void rdt_last_cmd_puts(const char *s)
63 {
64 	lockdep_assert_held(&rdtgroup_mutex);
65 	seq_buf_puts(&last_cmd_status, s);
66 }
67 
68 void rdt_last_cmd_printf(const char *fmt, ...)
69 {
70 	va_list ap;
71 
72 	va_start(ap, fmt);
73 	lockdep_assert_held(&rdtgroup_mutex);
74 	seq_buf_vprintf(&last_cmd_status, fmt, ap);
75 	va_end(ap);
76 }
77 
78 /*
79  * Trivial allocator for CLOSIDs. Since h/w only supports a small number,
80  * we can keep a bitmap of free CLOSIDs in a single integer.
81  *
82  * Using a global CLOSID across all resources has some advantages and
83  * some drawbacks:
84  * + We can simply set "current->closid" to assign a task to a resource
85  *   group.
86  * + Context switch code can avoid extra memory references deciding which
87  *   CLOSID to load into the PQR_ASSOC MSR
88  * - We give up some options in configuring resource groups across multi-socket
89  *   systems.
90  * - Our choices on how to configure each resource become progressively more
91  *   limited as the number of resources grows.
92  */
93 static int closid_free_map;
94 static int closid_free_map_len;
95 
96 int closids_supported(void)
97 {
98 	return closid_free_map_len;
99 }
100 
101 static void closid_init(void)
102 {
103 	struct rdt_resource *r;
104 	int rdt_min_closid = 32;
105 
106 	/* Compute rdt_min_closid across all resources */
107 	for_each_alloc_enabled_rdt_resource(r)
108 		rdt_min_closid = min(rdt_min_closid, r->num_closid);
109 
110 	closid_free_map = BIT_MASK(rdt_min_closid) - 1;
111 
112 	/* CLOSID 0 is always reserved for the default group */
113 	closid_free_map &= ~1;
114 	closid_free_map_len = rdt_min_closid;
115 }
116 
117 static int closid_alloc(void)
118 {
119 	u32 closid = ffs(closid_free_map);
120 
121 	if (closid == 0)
122 		return -ENOSPC;
123 	closid--;
124 	closid_free_map &= ~(1 << closid);
125 
126 	return closid;
127 }
128 
129 void closid_free(int closid)
130 {
131 	closid_free_map |= 1 << closid;
132 }
133 
134 /**
135  * closid_allocated - test if provided closid is in use
136  * @closid: closid to be tested
137  *
138  * Return: true if @closid is currently associated with a resource group,
139  * false if @closid is free
140  */
141 static bool closid_allocated(unsigned int closid)
142 {
143 	return (closid_free_map & (1 << closid)) == 0;
144 }
145 
146 /**
147  * rdtgroup_mode_by_closid - Return mode of resource group with closid
148  * @closid: closid if the resource group
149  *
150  * Each resource group is associated with a @closid. Here the mode
151  * of a resource group can be queried by searching for it using its closid.
152  *
153  * Return: mode as &enum rdtgrp_mode of resource group with closid @closid
154  */
155 enum rdtgrp_mode rdtgroup_mode_by_closid(int closid)
156 {
157 	struct rdtgroup *rdtgrp;
158 
159 	list_for_each_entry(rdtgrp, &rdt_all_groups, rdtgroup_list) {
160 		if (rdtgrp->closid == closid)
161 			return rdtgrp->mode;
162 	}
163 
164 	return RDT_NUM_MODES;
165 }
166 
167 static const char * const rdt_mode_str[] = {
168 	[RDT_MODE_SHAREABLE]		= "shareable",
169 	[RDT_MODE_EXCLUSIVE]		= "exclusive",
170 	[RDT_MODE_PSEUDO_LOCKSETUP]	= "pseudo-locksetup",
171 	[RDT_MODE_PSEUDO_LOCKED]	= "pseudo-locked",
172 };
173 
174 /**
175  * rdtgroup_mode_str - Return the string representation of mode
176  * @mode: the resource group mode as &enum rdtgroup_mode
177  *
178  * Return: string representation of valid mode, "unknown" otherwise
179  */
180 static const char *rdtgroup_mode_str(enum rdtgrp_mode mode)
181 {
182 	if (mode < RDT_MODE_SHAREABLE || mode >= RDT_NUM_MODES)
183 		return "unknown";
184 
185 	return rdt_mode_str[mode];
186 }
187 
188 /* set uid and gid of rdtgroup dirs and files to that of the creator */
189 static int rdtgroup_kn_set_ugid(struct kernfs_node *kn)
190 {
191 	struct iattr iattr = { .ia_valid = ATTR_UID | ATTR_GID,
192 				.ia_uid = current_fsuid(),
193 				.ia_gid = current_fsgid(), };
194 
195 	if (uid_eq(iattr.ia_uid, GLOBAL_ROOT_UID) &&
196 	    gid_eq(iattr.ia_gid, GLOBAL_ROOT_GID))
197 		return 0;
198 
199 	return kernfs_setattr(kn, &iattr);
200 }
201 
202 static int rdtgroup_add_file(struct kernfs_node *parent_kn, struct rftype *rft)
203 {
204 	struct kernfs_node *kn;
205 	int ret;
206 
207 	kn = __kernfs_create_file(parent_kn, rft->name, rft->mode,
208 				  GLOBAL_ROOT_UID, GLOBAL_ROOT_GID,
209 				  0, rft->kf_ops, rft, NULL, NULL);
210 	if (IS_ERR(kn))
211 		return PTR_ERR(kn);
212 
213 	ret = rdtgroup_kn_set_ugid(kn);
214 	if (ret) {
215 		kernfs_remove(kn);
216 		return ret;
217 	}
218 
219 	return 0;
220 }
221 
222 static int rdtgroup_seqfile_show(struct seq_file *m, void *arg)
223 {
224 	struct kernfs_open_file *of = m->private;
225 	struct rftype *rft = of->kn->priv;
226 
227 	if (rft->seq_show)
228 		return rft->seq_show(of, m, arg);
229 	return 0;
230 }
231 
232 static ssize_t rdtgroup_file_write(struct kernfs_open_file *of, char *buf,
233 				   size_t nbytes, loff_t off)
234 {
235 	struct rftype *rft = of->kn->priv;
236 
237 	if (rft->write)
238 		return rft->write(of, buf, nbytes, off);
239 
240 	return -EINVAL;
241 }
242 
243 static struct kernfs_ops rdtgroup_kf_single_ops = {
244 	.atomic_write_len	= PAGE_SIZE,
245 	.write			= rdtgroup_file_write,
246 	.seq_show		= rdtgroup_seqfile_show,
247 };
248 
249 static struct kernfs_ops kf_mondata_ops = {
250 	.atomic_write_len	= PAGE_SIZE,
251 	.seq_show		= rdtgroup_mondata_show,
252 };
253 
254 static bool is_cpu_list(struct kernfs_open_file *of)
255 {
256 	struct rftype *rft = of->kn->priv;
257 
258 	return rft->flags & RFTYPE_FLAGS_CPUS_LIST;
259 }
260 
261 static int rdtgroup_cpus_show(struct kernfs_open_file *of,
262 			      struct seq_file *s, void *v)
263 {
264 	struct rdtgroup *rdtgrp;
265 	struct cpumask *mask;
266 	int ret = 0;
267 
268 	rdtgrp = rdtgroup_kn_lock_live(of->kn);
269 
270 	if (rdtgrp) {
271 		if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED) {
272 			if (!rdtgrp->plr->d) {
273 				rdt_last_cmd_clear();
274 				rdt_last_cmd_puts("Cache domain offline\n");
275 				ret = -ENODEV;
276 			} else {
277 				mask = &rdtgrp->plr->d->cpu_mask;
278 				seq_printf(s, is_cpu_list(of) ?
279 					   "%*pbl\n" : "%*pb\n",
280 					   cpumask_pr_args(mask));
281 			}
282 		} else {
283 			seq_printf(s, is_cpu_list(of) ? "%*pbl\n" : "%*pb\n",
284 				   cpumask_pr_args(&rdtgrp->cpu_mask));
285 		}
286 	} else {
287 		ret = -ENOENT;
288 	}
289 	rdtgroup_kn_unlock(of->kn);
290 
291 	return ret;
292 }
293 
294 /*
295  * This is safe against resctrl_sched_in() called from __switch_to()
296  * because __switch_to() is executed with interrupts disabled. A local call
297  * from update_closid_rmid() is proteced against __switch_to() because
298  * preemption is disabled.
299  */
300 static void update_cpu_closid_rmid(void *info)
301 {
302 	struct rdtgroup *r = info;
303 
304 	if (r) {
305 		this_cpu_write(pqr_state.default_closid, r->closid);
306 		this_cpu_write(pqr_state.default_rmid, r->mon.rmid);
307 	}
308 
309 	/*
310 	 * We cannot unconditionally write the MSR because the current
311 	 * executing task might have its own closid selected. Just reuse
312 	 * the context switch code.
313 	 */
314 	resctrl_sched_in();
315 }
316 
317 /*
318  * Update the PGR_ASSOC MSR on all cpus in @cpu_mask,
319  *
320  * Per task closids/rmids must have been set up before calling this function.
321  */
322 static void
323 update_closid_rmid(const struct cpumask *cpu_mask, struct rdtgroup *r)
324 {
325 	int cpu = get_cpu();
326 
327 	if (cpumask_test_cpu(cpu, cpu_mask))
328 		update_cpu_closid_rmid(r);
329 	smp_call_function_many(cpu_mask, update_cpu_closid_rmid, r, 1);
330 	put_cpu();
331 }
332 
333 static int cpus_mon_write(struct rdtgroup *rdtgrp, cpumask_var_t newmask,
334 			  cpumask_var_t tmpmask)
335 {
336 	struct rdtgroup *prgrp = rdtgrp->mon.parent, *crgrp;
337 	struct list_head *head;
338 
339 	/* Check whether cpus belong to parent ctrl group */
340 	cpumask_andnot(tmpmask, newmask, &prgrp->cpu_mask);
341 	if (cpumask_weight(tmpmask)) {
342 		rdt_last_cmd_puts("Can only add CPUs to mongroup that belong to parent\n");
343 		return -EINVAL;
344 	}
345 
346 	/* Check whether cpus are dropped from this group */
347 	cpumask_andnot(tmpmask, &rdtgrp->cpu_mask, newmask);
348 	if (cpumask_weight(tmpmask)) {
349 		/* Give any dropped cpus to parent rdtgroup */
350 		cpumask_or(&prgrp->cpu_mask, &prgrp->cpu_mask, tmpmask);
351 		update_closid_rmid(tmpmask, prgrp);
352 	}
353 
354 	/*
355 	 * If we added cpus, remove them from previous group that owned them
356 	 * and update per-cpu rmid
357 	 */
358 	cpumask_andnot(tmpmask, newmask, &rdtgrp->cpu_mask);
359 	if (cpumask_weight(tmpmask)) {
360 		head = &prgrp->mon.crdtgrp_list;
361 		list_for_each_entry(crgrp, head, mon.crdtgrp_list) {
362 			if (crgrp == rdtgrp)
363 				continue;
364 			cpumask_andnot(&crgrp->cpu_mask, &crgrp->cpu_mask,
365 				       tmpmask);
366 		}
367 		update_closid_rmid(tmpmask, rdtgrp);
368 	}
369 
370 	/* Done pushing/pulling - update this group with new mask */
371 	cpumask_copy(&rdtgrp->cpu_mask, newmask);
372 
373 	return 0;
374 }
375 
376 static void cpumask_rdtgrp_clear(struct rdtgroup *r, struct cpumask *m)
377 {
378 	struct rdtgroup *crgrp;
379 
380 	cpumask_andnot(&r->cpu_mask, &r->cpu_mask, m);
381 	/* update the child mon group masks as well*/
382 	list_for_each_entry(crgrp, &r->mon.crdtgrp_list, mon.crdtgrp_list)
383 		cpumask_and(&crgrp->cpu_mask, &r->cpu_mask, &crgrp->cpu_mask);
384 }
385 
386 static int cpus_ctrl_write(struct rdtgroup *rdtgrp, cpumask_var_t newmask,
387 			   cpumask_var_t tmpmask, cpumask_var_t tmpmask1)
388 {
389 	struct rdtgroup *r, *crgrp;
390 	struct list_head *head;
391 
392 	/* Check whether cpus are dropped from this group */
393 	cpumask_andnot(tmpmask, &rdtgrp->cpu_mask, newmask);
394 	if (cpumask_weight(tmpmask)) {
395 		/* Can't drop from default group */
396 		if (rdtgrp == &rdtgroup_default) {
397 			rdt_last_cmd_puts("Can't drop CPUs from default group\n");
398 			return -EINVAL;
399 		}
400 
401 		/* Give any dropped cpus to rdtgroup_default */
402 		cpumask_or(&rdtgroup_default.cpu_mask,
403 			   &rdtgroup_default.cpu_mask, tmpmask);
404 		update_closid_rmid(tmpmask, &rdtgroup_default);
405 	}
406 
407 	/*
408 	 * If we added cpus, remove them from previous group and
409 	 * the prev group's child groups that owned them
410 	 * and update per-cpu closid/rmid.
411 	 */
412 	cpumask_andnot(tmpmask, newmask, &rdtgrp->cpu_mask);
413 	if (cpumask_weight(tmpmask)) {
414 		list_for_each_entry(r, &rdt_all_groups, rdtgroup_list) {
415 			if (r == rdtgrp)
416 				continue;
417 			cpumask_and(tmpmask1, &r->cpu_mask, tmpmask);
418 			if (cpumask_weight(tmpmask1))
419 				cpumask_rdtgrp_clear(r, tmpmask1);
420 		}
421 		update_closid_rmid(tmpmask, rdtgrp);
422 	}
423 
424 	/* Done pushing/pulling - update this group with new mask */
425 	cpumask_copy(&rdtgrp->cpu_mask, newmask);
426 
427 	/*
428 	 * Clear child mon group masks since there is a new parent mask
429 	 * now and update the rmid for the cpus the child lost.
430 	 */
431 	head = &rdtgrp->mon.crdtgrp_list;
432 	list_for_each_entry(crgrp, head, mon.crdtgrp_list) {
433 		cpumask_and(tmpmask, &rdtgrp->cpu_mask, &crgrp->cpu_mask);
434 		update_closid_rmid(tmpmask, rdtgrp);
435 		cpumask_clear(&crgrp->cpu_mask);
436 	}
437 
438 	return 0;
439 }
440 
441 static ssize_t rdtgroup_cpus_write(struct kernfs_open_file *of,
442 				   char *buf, size_t nbytes, loff_t off)
443 {
444 	cpumask_var_t tmpmask, newmask, tmpmask1;
445 	struct rdtgroup *rdtgrp;
446 	int ret;
447 
448 	if (!buf)
449 		return -EINVAL;
450 
451 	if (!zalloc_cpumask_var(&tmpmask, GFP_KERNEL))
452 		return -ENOMEM;
453 	if (!zalloc_cpumask_var(&newmask, GFP_KERNEL)) {
454 		free_cpumask_var(tmpmask);
455 		return -ENOMEM;
456 	}
457 	if (!zalloc_cpumask_var(&tmpmask1, GFP_KERNEL)) {
458 		free_cpumask_var(tmpmask);
459 		free_cpumask_var(newmask);
460 		return -ENOMEM;
461 	}
462 
463 	rdtgrp = rdtgroup_kn_lock_live(of->kn);
464 	rdt_last_cmd_clear();
465 	if (!rdtgrp) {
466 		ret = -ENOENT;
467 		rdt_last_cmd_puts("Directory was removed\n");
468 		goto unlock;
469 	}
470 
471 	if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED ||
472 	    rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP) {
473 		ret = -EINVAL;
474 		rdt_last_cmd_puts("Pseudo-locking in progress\n");
475 		goto unlock;
476 	}
477 
478 	if (is_cpu_list(of))
479 		ret = cpulist_parse(buf, newmask);
480 	else
481 		ret = cpumask_parse(buf, newmask);
482 
483 	if (ret) {
484 		rdt_last_cmd_puts("Bad CPU list/mask\n");
485 		goto unlock;
486 	}
487 
488 	/* check that user didn't specify any offline cpus */
489 	cpumask_andnot(tmpmask, newmask, cpu_online_mask);
490 	if (cpumask_weight(tmpmask)) {
491 		ret = -EINVAL;
492 		rdt_last_cmd_puts("Can only assign online CPUs\n");
493 		goto unlock;
494 	}
495 
496 	if (rdtgrp->type == RDTCTRL_GROUP)
497 		ret = cpus_ctrl_write(rdtgrp, newmask, tmpmask, tmpmask1);
498 	else if (rdtgrp->type == RDTMON_GROUP)
499 		ret = cpus_mon_write(rdtgrp, newmask, tmpmask);
500 	else
501 		ret = -EINVAL;
502 
503 unlock:
504 	rdtgroup_kn_unlock(of->kn);
505 	free_cpumask_var(tmpmask);
506 	free_cpumask_var(newmask);
507 	free_cpumask_var(tmpmask1);
508 
509 	return ret ?: nbytes;
510 }
511 
512 struct task_move_callback {
513 	struct callback_head	work;
514 	struct rdtgroup		*rdtgrp;
515 };
516 
517 static void move_myself(struct callback_head *head)
518 {
519 	struct task_move_callback *callback;
520 	struct rdtgroup *rdtgrp;
521 
522 	callback = container_of(head, struct task_move_callback, work);
523 	rdtgrp = callback->rdtgrp;
524 
525 	/*
526 	 * If resource group was deleted before this task work callback
527 	 * was invoked, then assign the task to root group and free the
528 	 * resource group.
529 	 */
530 	if (atomic_dec_and_test(&rdtgrp->waitcount) &&
531 	    (rdtgrp->flags & RDT_DELETED)) {
532 		current->closid = 0;
533 		current->rmid = 0;
534 		kfree(rdtgrp);
535 	}
536 
537 	preempt_disable();
538 	/* update PQR_ASSOC MSR to make resource group go into effect */
539 	resctrl_sched_in();
540 	preempt_enable();
541 
542 	kfree(callback);
543 }
544 
545 static int __rdtgroup_move_task(struct task_struct *tsk,
546 				struct rdtgroup *rdtgrp)
547 {
548 	struct task_move_callback *callback;
549 	int ret;
550 
551 	callback = kzalloc(sizeof(*callback), GFP_KERNEL);
552 	if (!callback)
553 		return -ENOMEM;
554 	callback->work.func = move_myself;
555 	callback->rdtgrp = rdtgrp;
556 
557 	/*
558 	 * Take a refcount, so rdtgrp cannot be freed before the
559 	 * callback has been invoked.
560 	 */
561 	atomic_inc(&rdtgrp->waitcount);
562 	ret = task_work_add(tsk, &callback->work, true);
563 	if (ret) {
564 		/*
565 		 * Task is exiting. Drop the refcount and free the callback.
566 		 * No need to check the refcount as the group cannot be
567 		 * deleted before the write function unlocks rdtgroup_mutex.
568 		 */
569 		atomic_dec(&rdtgrp->waitcount);
570 		kfree(callback);
571 		rdt_last_cmd_puts("Task exited\n");
572 	} else {
573 		/*
574 		 * For ctrl_mon groups move both closid and rmid.
575 		 * For monitor groups, can move the tasks only from
576 		 * their parent CTRL group.
577 		 */
578 		if (rdtgrp->type == RDTCTRL_GROUP) {
579 			tsk->closid = rdtgrp->closid;
580 			tsk->rmid = rdtgrp->mon.rmid;
581 		} else if (rdtgrp->type == RDTMON_GROUP) {
582 			if (rdtgrp->mon.parent->closid == tsk->closid) {
583 				tsk->rmid = rdtgrp->mon.rmid;
584 			} else {
585 				rdt_last_cmd_puts("Can't move task to different control group\n");
586 				ret = -EINVAL;
587 			}
588 		}
589 	}
590 	return ret;
591 }
592 
593 /**
594  * rdtgroup_tasks_assigned - Test if tasks have been assigned to resource group
595  * @r: Resource group
596  *
597  * Return: 1 if tasks have been assigned to @r, 0 otherwise
598  */
599 int rdtgroup_tasks_assigned(struct rdtgroup *r)
600 {
601 	struct task_struct *p, *t;
602 	int ret = 0;
603 
604 	lockdep_assert_held(&rdtgroup_mutex);
605 
606 	rcu_read_lock();
607 	for_each_process_thread(p, t) {
608 		if ((r->type == RDTCTRL_GROUP && t->closid == r->closid) ||
609 		    (r->type == RDTMON_GROUP && t->rmid == r->mon.rmid)) {
610 			ret = 1;
611 			break;
612 		}
613 	}
614 	rcu_read_unlock();
615 
616 	return ret;
617 }
618 
619 static int rdtgroup_task_write_permission(struct task_struct *task,
620 					  struct kernfs_open_file *of)
621 {
622 	const struct cred *tcred = get_task_cred(task);
623 	const struct cred *cred = current_cred();
624 	int ret = 0;
625 
626 	/*
627 	 * Even if we're attaching all tasks in the thread group, we only
628 	 * need to check permissions on one of them.
629 	 */
630 	if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) &&
631 	    !uid_eq(cred->euid, tcred->uid) &&
632 	    !uid_eq(cred->euid, tcred->suid)) {
633 		rdt_last_cmd_printf("No permission to move task %d\n", task->pid);
634 		ret = -EPERM;
635 	}
636 
637 	put_cred(tcred);
638 	return ret;
639 }
640 
641 static int rdtgroup_move_task(pid_t pid, struct rdtgroup *rdtgrp,
642 			      struct kernfs_open_file *of)
643 {
644 	struct task_struct *tsk;
645 	int ret;
646 
647 	rcu_read_lock();
648 	if (pid) {
649 		tsk = find_task_by_vpid(pid);
650 		if (!tsk) {
651 			rcu_read_unlock();
652 			rdt_last_cmd_printf("No task %d\n", pid);
653 			return -ESRCH;
654 		}
655 	} else {
656 		tsk = current;
657 	}
658 
659 	get_task_struct(tsk);
660 	rcu_read_unlock();
661 
662 	ret = rdtgroup_task_write_permission(tsk, of);
663 	if (!ret)
664 		ret = __rdtgroup_move_task(tsk, rdtgrp);
665 
666 	put_task_struct(tsk);
667 	return ret;
668 }
669 
670 static ssize_t rdtgroup_tasks_write(struct kernfs_open_file *of,
671 				    char *buf, size_t nbytes, loff_t off)
672 {
673 	struct rdtgroup *rdtgrp;
674 	int ret = 0;
675 	pid_t pid;
676 
677 	if (kstrtoint(strstrip(buf), 0, &pid) || pid < 0)
678 		return -EINVAL;
679 	rdtgrp = rdtgroup_kn_lock_live(of->kn);
680 	if (!rdtgrp) {
681 		rdtgroup_kn_unlock(of->kn);
682 		return -ENOENT;
683 	}
684 	rdt_last_cmd_clear();
685 
686 	if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED ||
687 	    rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP) {
688 		ret = -EINVAL;
689 		rdt_last_cmd_puts("Pseudo-locking in progress\n");
690 		goto unlock;
691 	}
692 
693 	ret = rdtgroup_move_task(pid, rdtgrp, of);
694 
695 unlock:
696 	rdtgroup_kn_unlock(of->kn);
697 
698 	return ret ?: nbytes;
699 }
700 
701 static void show_rdt_tasks(struct rdtgroup *r, struct seq_file *s)
702 {
703 	struct task_struct *p, *t;
704 
705 	rcu_read_lock();
706 	for_each_process_thread(p, t) {
707 		if ((r->type == RDTCTRL_GROUP && t->closid == r->closid) ||
708 		    (r->type == RDTMON_GROUP && t->rmid == r->mon.rmid))
709 			seq_printf(s, "%d\n", t->pid);
710 	}
711 	rcu_read_unlock();
712 }
713 
714 static int rdtgroup_tasks_show(struct kernfs_open_file *of,
715 			       struct seq_file *s, void *v)
716 {
717 	struct rdtgroup *rdtgrp;
718 	int ret = 0;
719 
720 	rdtgrp = rdtgroup_kn_lock_live(of->kn);
721 	if (rdtgrp)
722 		show_rdt_tasks(rdtgrp, s);
723 	else
724 		ret = -ENOENT;
725 	rdtgroup_kn_unlock(of->kn);
726 
727 	return ret;
728 }
729 
730 static int rdt_last_cmd_status_show(struct kernfs_open_file *of,
731 				    struct seq_file *seq, void *v)
732 {
733 	int len;
734 
735 	mutex_lock(&rdtgroup_mutex);
736 	len = seq_buf_used(&last_cmd_status);
737 	if (len)
738 		seq_printf(seq, "%.*s", len, last_cmd_status_buf);
739 	else
740 		seq_puts(seq, "ok\n");
741 	mutex_unlock(&rdtgroup_mutex);
742 	return 0;
743 }
744 
745 static int rdt_num_closids_show(struct kernfs_open_file *of,
746 				struct seq_file *seq, void *v)
747 {
748 	struct rdt_resource *r = of->kn->parent->priv;
749 
750 	seq_printf(seq, "%d\n", r->num_closid);
751 	return 0;
752 }
753 
754 static int rdt_default_ctrl_show(struct kernfs_open_file *of,
755 			     struct seq_file *seq, void *v)
756 {
757 	struct rdt_resource *r = of->kn->parent->priv;
758 
759 	seq_printf(seq, "%x\n", r->default_ctrl);
760 	return 0;
761 }
762 
763 static int rdt_min_cbm_bits_show(struct kernfs_open_file *of,
764 			     struct seq_file *seq, void *v)
765 {
766 	struct rdt_resource *r = of->kn->parent->priv;
767 
768 	seq_printf(seq, "%u\n", r->cache.min_cbm_bits);
769 	return 0;
770 }
771 
772 static int rdt_shareable_bits_show(struct kernfs_open_file *of,
773 				   struct seq_file *seq, void *v)
774 {
775 	struct rdt_resource *r = of->kn->parent->priv;
776 
777 	seq_printf(seq, "%x\n", r->cache.shareable_bits);
778 	return 0;
779 }
780 
781 /**
782  * rdt_bit_usage_show - Display current usage of resources
783  *
784  * A domain is a shared resource that can now be allocated differently. Here
785  * we display the current regions of the domain as an annotated bitmask.
786  * For each domain of this resource its allocation bitmask
787  * is annotated as below to indicate the current usage of the corresponding bit:
788  *   0 - currently unused
789  *   X - currently available for sharing and used by software and hardware
790  *   H - currently used by hardware only but available for software use
791  *   S - currently used and shareable by software only
792  *   E - currently used exclusively by one resource group
793  *   P - currently pseudo-locked by one resource group
794  */
795 static int rdt_bit_usage_show(struct kernfs_open_file *of,
796 			      struct seq_file *seq, void *v)
797 {
798 	struct rdt_resource *r = of->kn->parent->priv;
799 	u32 sw_shareable = 0, hw_shareable = 0;
800 	u32 exclusive = 0, pseudo_locked = 0;
801 	struct rdt_domain *dom;
802 	int i, hwb, swb, excl, psl;
803 	enum rdtgrp_mode mode;
804 	bool sep = false;
805 	u32 *ctrl;
806 
807 	mutex_lock(&rdtgroup_mutex);
808 	hw_shareable = r->cache.shareable_bits;
809 	list_for_each_entry(dom, &r->domains, list) {
810 		if (sep)
811 			seq_putc(seq, ';');
812 		ctrl = dom->ctrl_val;
813 		sw_shareable = 0;
814 		exclusive = 0;
815 		seq_printf(seq, "%d=", dom->id);
816 		for (i = 0; i < closids_supported(); i++, ctrl++) {
817 			if (!closid_allocated(i))
818 				continue;
819 			mode = rdtgroup_mode_by_closid(i);
820 			switch (mode) {
821 			case RDT_MODE_SHAREABLE:
822 				sw_shareable |= *ctrl;
823 				break;
824 			case RDT_MODE_EXCLUSIVE:
825 				exclusive |= *ctrl;
826 				break;
827 			case RDT_MODE_PSEUDO_LOCKSETUP:
828 			/*
829 			 * RDT_MODE_PSEUDO_LOCKSETUP is possible
830 			 * here but not included since the CBM
831 			 * associated with this CLOSID in this mode
832 			 * is not initialized and no task or cpu can be
833 			 * assigned this CLOSID.
834 			 */
835 				break;
836 			case RDT_MODE_PSEUDO_LOCKED:
837 			case RDT_NUM_MODES:
838 				WARN(1,
839 				     "invalid mode for closid %d\n", i);
840 				break;
841 			}
842 		}
843 		for (i = r->cache.cbm_len - 1; i >= 0; i--) {
844 			pseudo_locked = dom->plr ? dom->plr->cbm : 0;
845 			hwb = test_bit(i, (unsigned long *)&hw_shareable);
846 			swb = test_bit(i, (unsigned long *)&sw_shareable);
847 			excl = test_bit(i, (unsigned long *)&exclusive);
848 			psl = test_bit(i, (unsigned long *)&pseudo_locked);
849 			if (hwb && swb)
850 				seq_putc(seq, 'X');
851 			else if (hwb && !swb)
852 				seq_putc(seq, 'H');
853 			else if (!hwb && swb)
854 				seq_putc(seq, 'S');
855 			else if (excl)
856 				seq_putc(seq, 'E');
857 			else if (psl)
858 				seq_putc(seq, 'P');
859 			else /* Unused bits remain */
860 				seq_putc(seq, '0');
861 		}
862 		sep = true;
863 	}
864 	seq_putc(seq, '\n');
865 	mutex_unlock(&rdtgroup_mutex);
866 	return 0;
867 }
868 
869 static int rdt_min_bw_show(struct kernfs_open_file *of,
870 			     struct seq_file *seq, void *v)
871 {
872 	struct rdt_resource *r = of->kn->parent->priv;
873 
874 	seq_printf(seq, "%u\n", r->membw.min_bw);
875 	return 0;
876 }
877 
878 static int rdt_num_rmids_show(struct kernfs_open_file *of,
879 			      struct seq_file *seq, void *v)
880 {
881 	struct rdt_resource *r = of->kn->parent->priv;
882 
883 	seq_printf(seq, "%d\n", r->num_rmid);
884 
885 	return 0;
886 }
887 
888 static int rdt_mon_features_show(struct kernfs_open_file *of,
889 				 struct seq_file *seq, void *v)
890 {
891 	struct rdt_resource *r = of->kn->parent->priv;
892 	struct mon_evt *mevt;
893 
894 	list_for_each_entry(mevt, &r->evt_list, list)
895 		seq_printf(seq, "%s\n", mevt->name);
896 
897 	return 0;
898 }
899 
900 static int rdt_bw_gran_show(struct kernfs_open_file *of,
901 			     struct seq_file *seq, void *v)
902 {
903 	struct rdt_resource *r = of->kn->parent->priv;
904 
905 	seq_printf(seq, "%u\n", r->membw.bw_gran);
906 	return 0;
907 }
908 
909 static int rdt_delay_linear_show(struct kernfs_open_file *of,
910 			     struct seq_file *seq, void *v)
911 {
912 	struct rdt_resource *r = of->kn->parent->priv;
913 
914 	seq_printf(seq, "%u\n", r->membw.delay_linear);
915 	return 0;
916 }
917 
918 static int max_threshold_occ_show(struct kernfs_open_file *of,
919 				  struct seq_file *seq, void *v)
920 {
921 	struct rdt_resource *r = of->kn->parent->priv;
922 
923 	seq_printf(seq, "%u\n", resctrl_cqm_threshold * r->mon_scale);
924 
925 	return 0;
926 }
927 
928 static ssize_t max_threshold_occ_write(struct kernfs_open_file *of,
929 				       char *buf, size_t nbytes, loff_t off)
930 {
931 	struct rdt_resource *r = of->kn->parent->priv;
932 	unsigned int bytes;
933 	int ret;
934 
935 	ret = kstrtouint(buf, 0, &bytes);
936 	if (ret)
937 		return ret;
938 
939 	if (bytes > (boot_cpu_data.x86_cache_size * 1024))
940 		return -EINVAL;
941 
942 	resctrl_cqm_threshold = bytes / r->mon_scale;
943 
944 	return nbytes;
945 }
946 
947 /*
948  * rdtgroup_mode_show - Display mode of this resource group
949  */
950 static int rdtgroup_mode_show(struct kernfs_open_file *of,
951 			      struct seq_file *s, void *v)
952 {
953 	struct rdtgroup *rdtgrp;
954 
955 	rdtgrp = rdtgroup_kn_lock_live(of->kn);
956 	if (!rdtgrp) {
957 		rdtgroup_kn_unlock(of->kn);
958 		return -ENOENT;
959 	}
960 
961 	seq_printf(s, "%s\n", rdtgroup_mode_str(rdtgrp->mode));
962 
963 	rdtgroup_kn_unlock(of->kn);
964 	return 0;
965 }
966 
967 /**
968  * rdt_cdp_peer_get - Retrieve CDP peer if it exists
969  * @r: RDT resource to which RDT domain @d belongs
970  * @d: Cache instance for which a CDP peer is requested
971  * @r_cdp: RDT resource that shares hardware with @r (RDT resource peer)
972  *         Used to return the result.
973  * @d_cdp: RDT domain that shares hardware with @d (RDT domain peer)
974  *         Used to return the result.
975  *
976  * RDT resources are managed independently and by extension the RDT domains
977  * (RDT resource instances) are managed independently also. The Code and
978  * Data Prioritization (CDP) RDT resources, while managed independently,
979  * could refer to the same underlying hardware. For example,
980  * RDT_RESOURCE_L2CODE and RDT_RESOURCE_L2DATA both refer to the L2 cache.
981  *
982  * When provided with an RDT resource @r and an instance of that RDT
983  * resource @d rdt_cdp_peer_get() will return if there is a peer RDT
984  * resource and the exact instance that shares the same hardware.
985  *
986  * Return: 0 if a CDP peer was found, <0 on error or if no CDP peer exists.
987  *         If a CDP peer was found, @r_cdp will point to the peer RDT resource
988  *         and @d_cdp will point to the peer RDT domain.
989  */
990 static int rdt_cdp_peer_get(struct rdt_resource *r, struct rdt_domain *d,
991 			    struct rdt_resource **r_cdp,
992 			    struct rdt_domain **d_cdp)
993 {
994 	struct rdt_resource *_r_cdp = NULL;
995 	struct rdt_domain *_d_cdp = NULL;
996 	int ret = 0;
997 
998 	switch (r->rid) {
999 	case RDT_RESOURCE_L3DATA:
1000 		_r_cdp = &rdt_resources_all[RDT_RESOURCE_L3CODE];
1001 		break;
1002 	case RDT_RESOURCE_L3CODE:
1003 		_r_cdp =  &rdt_resources_all[RDT_RESOURCE_L3DATA];
1004 		break;
1005 	case RDT_RESOURCE_L2DATA:
1006 		_r_cdp =  &rdt_resources_all[RDT_RESOURCE_L2CODE];
1007 		break;
1008 	case RDT_RESOURCE_L2CODE:
1009 		_r_cdp =  &rdt_resources_all[RDT_RESOURCE_L2DATA];
1010 		break;
1011 	default:
1012 		ret = -ENOENT;
1013 		goto out;
1014 	}
1015 
1016 	/*
1017 	 * When a new CPU comes online and CDP is enabled then the new
1018 	 * RDT domains (if any) associated with both CDP RDT resources
1019 	 * are added in the same CPU online routine while the
1020 	 * rdtgroup_mutex is held. It should thus not happen for one
1021 	 * RDT domain to exist and be associated with its RDT CDP
1022 	 * resource but there is no RDT domain associated with the
1023 	 * peer RDT CDP resource. Hence the WARN.
1024 	 */
1025 	_d_cdp = rdt_find_domain(_r_cdp, d->id, NULL);
1026 	if (WARN_ON(IS_ERR_OR_NULL(_d_cdp))) {
1027 		_r_cdp = NULL;
1028 		ret = -EINVAL;
1029 	}
1030 
1031 out:
1032 	*r_cdp = _r_cdp;
1033 	*d_cdp = _d_cdp;
1034 
1035 	return ret;
1036 }
1037 
1038 /**
1039  * __rdtgroup_cbm_overlaps - Does CBM for intended closid overlap with other
1040  * @r: Resource to which domain instance @d belongs.
1041  * @d: The domain instance for which @closid is being tested.
1042  * @cbm: Capacity bitmask being tested.
1043  * @closid: Intended closid for @cbm.
1044  * @exclusive: Only check if overlaps with exclusive resource groups
1045  *
1046  * Checks if provided @cbm intended to be used for @closid on domain
1047  * @d overlaps with any other closids or other hardware usage associated
1048  * with this domain. If @exclusive is true then only overlaps with
1049  * resource groups in exclusive mode will be considered. If @exclusive
1050  * is false then overlaps with any resource group or hardware entities
1051  * will be considered.
1052  *
1053  * @cbm is unsigned long, even if only 32 bits are used, to make the
1054  * bitmap functions work correctly.
1055  *
1056  * Return: false if CBM does not overlap, true if it does.
1057  */
1058 static bool __rdtgroup_cbm_overlaps(struct rdt_resource *r, struct rdt_domain *d,
1059 				    unsigned long cbm, int closid, bool exclusive)
1060 {
1061 	enum rdtgrp_mode mode;
1062 	unsigned long ctrl_b;
1063 	u32 *ctrl;
1064 	int i;
1065 
1066 	/* Check for any overlap with regions used by hardware directly */
1067 	if (!exclusive) {
1068 		ctrl_b = r->cache.shareable_bits;
1069 		if (bitmap_intersects(&cbm, &ctrl_b, r->cache.cbm_len))
1070 			return true;
1071 	}
1072 
1073 	/* Check for overlap with other resource groups */
1074 	ctrl = d->ctrl_val;
1075 	for (i = 0; i < closids_supported(); i++, ctrl++) {
1076 		ctrl_b = *ctrl;
1077 		mode = rdtgroup_mode_by_closid(i);
1078 		if (closid_allocated(i) && i != closid &&
1079 		    mode != RDT_MODE_PSEUDO_LOCKSETUP) {
1080 			if (bitmap_intersects(&cbm, &ctrl_b, r->cache.cbm_len)) {
1081 				if (exclusive) {
1082 					if (mode == RDT_MODE_EXCLUSIVE)
1083 						return true;
1084 					continue;
1085 				}
1086 				return true;
1087 			}
1088 		}
1089 	}
1090 
1091 	return false;
1092 }
1093 
1094 /**
1095  * rdtgroup_cbm_overlaps - Does CBM overlap with other use of hardware
1096  * @r: Resource to which domain instance @d belongs.
1097  * @d: The domain instance for which @closid is being tested.
1098  * @cbm: Capacity bitmask being tested.
1099  * @closid: Intended closid for @cbm.
1100  * @exclusive: Only check if overlaps with exclusive resource groups
1101  *
1102  * Resources that can be allocated using a CBM can use the CBM to control
1103  * the overlap of these allocations. rdtgroup_cmb_overlaps() is the test
1104  * for overlap. Overlap test is not limited to the specific resource for
1105  * which the CBM is intended though - when dealing with CDP resources that
1106  * share the underlying hardware the overlap check should be performed on
1107  * the CDP resource sharing the hardware also.
1108  *
1109  * Refer to description of __rdtgroup_cbm_overlaps() for the details of the
1110  * overlap test.
1111  *
1112  * Return: true if CBM overlap detected, false if there is no overlap
1113  */
1114 bool rdtgroup_cbm_overlaps(struct rdt_resource *r, struct rdt_domain *d,
1115 			   unsigned long cbm, int closid, bool exclusive)
1116 {
1117 	struct rdt_resource *r_cdp;
1118 	struct rdt_domain *d_cdp;
1119 
1120 	if (__rdtgroup_cbm_overlaps(r, d, cbm, closid, exclusive))
1121 		return true;
1122 
1123 	if (rdt_cdp_peer_get(r, d, &r_cdp, &d_cdp) < 0)
1124 		return false;
1125 
1126 	return  __rdtgroup_cbm_overlaps(r_cdp, d_cdp, cbm, closid, exclusive);
1127 }
1128 
1129 /**
1130  * rdtgroup_mode_test_exclusive - Test if this resource group can be exclusive
1131  *
1132  * An exclusive resource group implies that there should be no sharing of
1133  * its allocated resources. At the time this group is considered to be
1134  * exclusive this test can determine if its current schemata supports this
1135  * setting by testing for overlap with all other resource groups.
1136  *
1137  * Return: true if resource group can be exclusive, false if there is overlap
1138  * with allocations of other resource groups and thus this resource group
1139  * cannot be exclusive.
1140  */
1141 static bool rdtgroup_mode_test_exclusive(struct rdtgroup *rdtgrp)
1142 {
1143 	int closid = rdtgrp->closid;
1144 	struct rdt_resource *r;
1145 	bool has_cache = false;
1146 	struct rdt_domain *d;
1147 
1148 	for_each_alloc_enabled_rdt_resource(r) {
1149 		if (r->rid == RDT_RESOURCE_MBA)
1150 			continue;
1151 		has_cache = true;
1152 		list_for_each_entry(d, &r->domains, list) {
1153 			if (rdtgroup_cbm_overlaps(r, d, d->ctrl_val[closid],
1154 						  rdtgrp->closid, false)) {
1155 				rdt_last_cmd_puts("Schemata overlaps\n");
1156 				return false;
1157 			}
1158 		}
1159 	}
1160 
1161 	if (!has_cache) {
1162 		rdt_last_cmd_puts("Cannot be exclusive without CAT/CDP\n");
1163 		return false;
1164 	}
1165 
1166 	return true;
1167 }
1168 
1169 /**
1170  * rdtgroup_mode_write - Modify the resource group's mode
1171  *
1172  */
1173 static ssize_t rdtgroup_mode_write(struct kernfs_open_file *of,
1174 				   char *buf, size_t nbytes, loff_t off)
1175 {
1176 	struct rdtgroup *rdtgrp;
1177 	enum rdtgrp_mode mode;
1178 	int ret = 0;
1179 
1180 	/* Valid input requires a trailing newline */
1181 	if (nbytes == 0 || buf[nbytes - 1] != '\n')
1182 		return -EINVAL;
1183 	buf[nbytes - 1] = '\0';
1184 
1185 	rdtgrp = rdtgroup_kn_lock_live(of->kn);
1186 	if (!rdtgrp) {
1187 		rdtgroup_kn_unlock(of->kn);
1188 		return -ENOENT;
1189 	}
1190 
1191 	rdt_last_cmd_clear();
1192 
1193 	mode = rdtgrp->mode;
1194 
1195 	if ((!strcmp(buf, "shareable") && mode == RDT_MODE_SHAREABLE) ||
1196 	    (!strcmp(buf, "exclusive") && mode == RDT_MODE_EXCLUSIVE) ||
1197 	    (!strcmp(buf, "pseudo-locksetup") &&
1198 	     mode == RDT_MODE_PSEUDO_LOCKSETUP) ||
1199 	    (!strcmp(buf, "pseudo-locked") && mode == RDT_MODE_PSEUDO_LOCKED))
1200 		goto out;
1201 
1202 	if (mode == RDT_MODE_PSEUDO_LOCKED) {
1203 		rdt_last_cmd_puts("Cannot change pseudo-locked group\n");
1204 		ret = -EINVAL;
1205 		goto out;
1206 	}
1207 
1208 	if (!strcmp(buf, "shareable")) {
1209 		if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP) {
1210 			ret = rdtgroup_locksetup_exit(rdtgrp);
1211 			if (ret)
1212 				goto out;
1213 		}
1214 		rdtgrp->mode = RDT_MODE_SHAREABLE;
1215 	} else if (!strcmp(buf, "exclusive")) {
1216 		if (!rdtgroup_mode_test_exclusive(rdtgrp)) {
1217 			ret = -EINVAL;
1218 			goto out;
1219 		}
1220 		if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP) {
1221 			ret = rdtgroup_locksetup_exit(rdtgrp);
1222 			if (ret)
1223 				goto out;
1224 		}
1225 		rdtgrp->mode = RDT_MODE_EXCLUSIVE;
1226 	} else if (!strcmp(buf, "pseudo-locksetup")) {
1227 		ret = rdtgroup_locksetup_enter(rdtgrp);
1228 		if (ret)
1229 			goto out;
1230 		rdtgrp->mode = RDT_MODE_PSEUDO_LOCKSETUP;
1231 	} else {
1232 		rdt_last_cmd_puts("Unknown or unsupported mode\n");
1233 		ret = -EINVAL;
1234 	}
1235 
1236 out:
1237 	rdtgroup_kn_unlock(of->kn);
1238 	return ret ?: nbytes;
1239 }
1240 
1241 /**
1242  * rdtgroup_cbm_to_size - Translate CBM to size in bytes
1243  * @r: RDT resource to which @d belongs.
1244  * @d: RDT domain instance.
1245  * @cbm: bitmask for which the size should be computed.
1246  *
1247  * The bitmask provided associated with the RDT domain instance @d will be
1248  * translated into how many bytes it represents. The size in bytes is
1249  * computed by first dividing the total cache size by the CBM length to
1250  * determine how many bytes each bit in the bitmask represents. The result
1251  * is multiplied with the number of bits set in the bitmask.
1252  *
1253  * @cbm is unsigned long, even if only 32 bits are used to make the
1254  * bitmap functions work correctly.
1255  */
1256 unsigned int rdtgroup_cbm_to_size(struct rdt_resource *r,
1257 				  struct rdt_domain *d, unsigned long cbm)
1258 {
1259 	struct cpu_cacheinfo *ci;
1260 	unsigned int size = 0;
1261 	int num_b, i;
1262 
1263 	num_b = bitmap_weight(&cbm, r->cache.cbm_len);
1264 	ci = get_cpu_cacheinfo(cpumask_any(&d->cpu_mask));
1265 	for (i = 0; i < ci->num_leaves; i++) {
1266 		if (ci->info_list[i].level == r->cache_level) {
1267 			size = ci->info_list[i].size / r->cache.cbm_len * num_b;
1268 			break;
1269 		}
1270 	}
1271 
1272 	return size;
1273 }
1274 
1275 /**
1276  * rdtgroup_size_show - Display size in bytes of allocated regions
1277  *
1278  * The "size" file mirrors the layout of the "schemata" file, printing the
1279  * size in bytes of each region instead of the capacity bitmask.
1280  *
1281  */
1282 static int rdtgroup_size_show(struct kernfs_open_file *of,
1283 			      struct seq_file *s, void *v)
1284 {
1285 	struct rdtgroup *rdtgrp;
1286 	struct rdt_resource *r;
1287 	struct rdt_domain *d;
1288 	unsigned int size;
1289 	int ret = 0;
1290 	bool sep;
1291 	u32 ctrl;
1292 
1293 	rdtgrp = rdtgroup_kn_lock_live(of->kn);
1294 	if (!rdtgrp) {
1295 		rdtgroup_kn_unlock(of->kn);
1296 		return -ENOENT;
1297 	}
1298 
1299 	if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED) {
1300 		if (!rdtgrp->plr->d) {
1301 			rdt_last_cmd_clear();
1302 			rdt_last_cmd_puts("Cache domain offline\n");
1303 			ret = -ENODEV;
1304 		} else {
1305 			seq_printf(s, "%*s:", max_name_width,
1306 				   rdtgrp->plr->r->name);
1307 			size = rdtgroup_cbm_to_size(rdtgrp->plr->r,
1308 						    rdtgrp->plr->d,
1309 						    rdtgrp->plr->cbm);
1310 			seq_printf(s, "%d=%u\n", rdtgrp->plr->d->id, size);
1311 		}
1312 		goto out;
1313 	}
1314 
1315 	for_each_alloc_enabled_rdt_resource(r) {
1316 		sep = false;
1317 		seq_printf(s, "%*s:", max_name_width, r->name);
1318 		list_for_each_entry(d, &r->domains, list) {
1319 			if (sep)
1320 				seq_putc(s, ';');
1321 			if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP) {
1322 				size = 0;
1323 			} else {
1324 				ctrl = (!is_mba_sc(r) ?
1325 						d->ctrl_val[rdtgrp->closid] :
1326 						d->mbps_val[rdtgrp->closid]);
1327 				if (r->rid == RDT_RESOURCE_MBA)
1328 					size = ctrl;
1329 				else
1330 					size = rdtgroup_cbm_to_size(r, d, ctrl);
1331 			}
1332 			seq_printf(s, "%d=%u", d->id, size);
1333 			sep = true;
1334 		}
1335 		seq_putc(s, '\n');
1336 	}
1337 
1338 out:
1339 	rdtgroup_kn_unlock(of->kn);
1340 
1341 	return ret;
1342 }
1343 
1344 /* rdtgroup information files for one cache resource. */
1345 static struct rftype res_common_files[] = {
1346 	{
1347 		.name		= "last_cmd_status",
1348 		.mode		= 0444,
1349 		.kf_ops		= &rdtgroup_kf_single_ops,
1350 		.seq_show	= rdt_last_cmd_status_show,
1351 		.fflags		= RF_TOP_INFO,
1352 	},
1353 	{
1354 		.name		= "num_closids",
1355 		.mode		= 0444,
1356 		.kf_ops		= &rdtgroup_kf_single_ops,
1357 		.seq_show	= rdt_num_closids_show,
1358 		.fflags		= RF_CTRL_INFO,
1359 	},
1360 	{
1361 		.name		= "mon_features",
1362 		.mode		= 0444,
1363 		.kf_ops		= &rdtgroup_kf_single_ops,
1364 		.seq_show	= rdt_mon_features_show,
1365 		.fflags		= RF_MON_INFO,
1366 	},
1367 	{
1368 		.name		= "num_rmids",
1369 		.mode		= 0444,
1370 		.kf_ops		= &rdtgroup_kf_single_ops,
1371 		.seq_show	= rdt_num_rmids_show,
1372 		.fflags		= RF_MON_INFO,
1373 	},
1374 	{
1375 		.name		= "cbm_mask",
1376 		.mode		= 0444,
1377 		.kf_ops		= &rdtgroup_kf_single_ops,
1378 		.seq_show	= rdt_default_ctrl_show,
1379 		.fflags		= RF_CTRL_INFO | RFTYPE_RES_CACHE,
1380 	},
1381 	{
1382 		.name		= "min_cbm_bits",
1383 		.mode		= 0444,
1384 		.kf_ops		= &rdtgroup_kf_single_ops,
1385 		.seq_show	= rdt_min_cbm_bits_show,
1386 		.fflags		= RF_CTRL_INFO | RFTYPE_RES_CACHE,
1387 	},
1388 	{
1389 		.name		= "shareable_bits",
1390 		.mode		= 0444,
1391 		.kf_ops		= &rdtgroup_kf_single_ops,
1392 		.seq_show	= rdt_shareable_bits_show,
1393 		.fflags		= RF_CTRL_INFO | RFTYPE_RES_CACHE,
1394 	},
1395 	{
1396 		.name		= "bit_usage",
1397 		.mode		= 0444,
1398 		.kf_ops		= &rdtgroup_kf_single_ops,
1399 		.seq_show	= rdt_bit_usage_show,
1400 		.fflags		= RF_CTRL_INFO | RFTYPE_RES_CACHE,
1401 	},
1402 	{
1403 		.name		= "min_bandwidth",
1404 		.mode		= 0444,
1405 		.kf_ops		= &rdtgroup_kf_single_ops,
1406 		.seq_show	= rdt_min_bw_show,
1407 		.fflags		= RF_CTRL_INFO | RFTYPE_RES_MB,
1408 	},
1409 	{
1410 		.name		= "bandwidth_gran",
1411 		.mode		= 0444,
1412 		.kf_ops		= &rdtgroup_kf_single_ops,
1413 		.seq_show	= rdt_bw_gran_show,
1414 		.fflags		= RF_CTRL_INFO | RFTYPE_RES_MB,
1415 	},
1416 	{
1417 		.name		= "delay_linear",
1418 		.mode		= 0444,
1419 		.kf_ops		= &rdtgroup_kf_single_ops,
1420 		.seq_show	= rdt_delay_linear_show,
1421 		.fflags		= RF_CTRL_INFO | RFTYPE_RES_MB,
1422 	},
1423 	{
1424 		.name		= "max_threshold_occupancy",
1425 		.mode		= 0644,
1426 		.kf_ops		= &rdtgroup_kf_single_ops,
1427 		.write		= max_threshold_occ_write,
1428 		.seq_show	= max_threshold_occ_show,
1429 		.fflags		= RF_MON_INFO | RFTYPE_RES_CACHE,
1430 	},
1431 	{
1432 		.name		= "cpus",
1433 		.mode		= 0644,
1434 		.kf_ops		= &rdtgroup_kf_single_ops,
1435 		.write		= rdtgroup_cpus_write,
1436 		.seq_show	= rdtgroup_cpus_show,
1437 		.fflags		= RFTYPE_BASE,
1438 	},
1439 	{
1440 		.name		= "cpus_list",
1441 		.mode		= 0644,
1442 		.kf_ops		= &rdtgroup_kf_single_ops,
1443 		.write		= rdtgroup_cpus_write,
1444 		.seq_show	= rdtgroup_cpus_show,
1445 		.flags		= RFTYPE_FLAGS_CPUS_LIST,
1446 		.fflags		= RFTYPE_BASE,
1447 	},
1448 	{
1449 		.name		= "tasks",
1450 		.mode		= 0644,
1451 		.kf_ops		= &rdtgroup_kf_single_ops,
1452 		.write		= rdtgroup_tasks_write,
1453 		.seq_show	= rdtgroup_tasks_show,
1454 		.fflags		= RFTYPE_BASE,
1455 	},
1456 	{
1457 		.name		= "schemata",
1458 		.mode		= 0644,
1459 		.kf_ops		= &rdtgroup_kf_single_ops,
1460 		.write		= rdtgroup_schemata_write,
1461 		.seq_show	= rdtgroup_schemata_show,
1462 		.fflags		= RF_CTRL_BASE,
1463 	},
1464 	{
1465 		.name		= "mode",
1466 		.mode		= 0644,
1467 		.kf_ops		= &rdtgroup_kf_single_ops,
1468 		.write		= rdtgroup_mode_write,
1469 		.seq_show	= rdtgroup_mode_show,
1470 		.fflags		= RF_CTRL_BASE,
1471 	},
1472 	{
1473 		.name		= "size",
1474 		.mode		= 0444,
1475 		.kf_ops		= &rdtgroup_kf_single_ops,
1476 		.seq_show	= rdtgroup_size_show,
1477 		.fflags		= RF_CTRL_BASE,
1478 	},
1479 
1480 };
1481 
1482 static int rdtgroup_add_files(struct kernfs_node *kn, unsigned long fflags)
1483 {
1484 	struct rftype *rfts, *rft;
1485 	int ret, len;
1486 
1487 	rfts = res_common_files;
1488 	len = ARRAY_SIZE(res_common_files);
1489 
1490 	lockdep_assert_held(&rdtgroup_mutex);
1491 
1492 	for (rft = rfts; rft < rfts + len; rft++) {
1493 		if ((fflags & rft->fflags) == rft->fflags) {
1494 			ret = rdtgroup_add_file(kn, rft);
1495 			if (ret)
1496 				goto error;
1497 		}
1498 	}
1499 
1500 	return 0;
1501 error:
1502 	pr_warn("Failed to add %s, err=%d\n", rft->name, ret);
1503 	while (--rft >= rfts) {
1504 		if ((fflags & rft->fflags) == rft->fflags)
1505 			kernfs_remove_by_name(kn, rft->name);
1506 	}
1507 	return ret;
1508 }
1509 
1510 /**
1511  * rdtgroup_kn_mode_restrict - Restrict user access to named resctrl file
1512  * @r: The resource group with which the file is associated.
1513  * @name: Name of the file
1514  *
1515  * The permissions of named resctrl file, directory, or link are modified
1516  * to not allow read, write, or execute by any user.
1517  *
1518  * WARNING: This function is intended to communicate to the user that the
1519  * resctrl file has been locked down - that it is not relevant to the
1520  * particular state the system finds itself in. It should not be relied
1521  * on to protect from user access because after the file's permissions
1522  * are restricted the user can still change the permissions using chmod
1523  * from the command line.
1524  *
1525  * Return: 0 on success, <0 on failure.
1526  */
1527 int rdtgroup_kn_mode_restrict(struct rdtgroup *r, const char *name)
1528 {
1529 	struct iattr iattr = {.ia_valid = ATTR_MODE,};
1530 	struct kernfs_node *kn;
1531 	int ret = 0;
1532 
1533 	kn = kernfs_find_and_get_ns(r->kn, name, NULL);
1534 	if (!kn)
1535 		return -ENOENT;
1536 
1537 	switch (kernfs_type(kn)) {
1538 	case KERNFS_DIR:
1539 		iattr.ia_mode = S_IFDIR;
1540 		break;
1541 	case KERNFS_FILE:
1542 		iattr.ia_mode = S_IFREG;
1543 		break;
1544 	case KERNFS_LINK:
1545 		iattr.ia_mode = S_IFLNK;
1546 		break;
1547 	}
1548 
1549 	ret = kernfs_setattr(kn, &iattr);
1550 	kernfs_put(kn);
1551 	return ret;
1552 }
1553 
1554 /**
1555  * rdtgroup_kn_mode_restore - Restore user access to named resctrl file
1556  * @r: The resource group with which the file is associated.
1557  * @name: Name of the file
1558  * @mask: Mask of permissions that should be restored
1559  *
1560  * Restore the permissions of the named file. If @name is a directory the
1561  * permissions of its parent will be used.
1562  *
1563  * Return: 0 on success, <0 on failure.
1564  */
1565 int rdtgroup_kn_mode_restore(struct rdtgroup *r, const char *name,
1566 			     umode_t mask)
1567 {
1568 	struct iattr iattr = {.ia_valid = ATTR_MODE,};
1569 	struct kernfs_node *kn, *parent;
1570 	struct rftype *rfts, *rft;
1571 	int ret, len;
1572 
1573 	rfts = res_common_files;
1574 	len = ARRAY_SIZE(res_common_files);
1575 
1576 	for (rft = rfts; rft < rfts + len; rft++) {
1577 		if (!strcmp(rft->name, name))
1578 			iattr.ia_mode = rft->mode & mask;
1579 	}
1580 
1581 	kn = kernfs_find_and_get_ns(r->kn, name, NULL);
1582 	if (!kn)
1583 		return -ENOENT;
1584 
1585 	switch (kernfs_type(kn)) {
1586 	case KERNFS_DIR:
1587 		parent = kernfs_get_parent(kn);
1588 		if (parent) {
1589 			iattr.ia_mode |= parent->mode;
1590 			kernfs_put(parent);
1591 		}
1592 		iattr.ia_mode |= S_IFDIR;
1593 		break;
1594 	case KERNFS_FILE:
1595 		iattr.ia_mode |= S_IFREG;
1596 		break;
1597 	case KERNFS_LINK:
1598 		iattr.ia_mode |= S_IFLNK;
1599 		break;
1600 	}
1601 
1602 	ret = kernfs_setattr(kn, &iattr);
1603 	kernfs_put(kn);
1604 	return ret;
1605 }
1606 
1607 static int rdtgroup_mkdir_info_resdir(struct rdt_resource *r, char *name,
1608 				      unsigned long fflags)
1609 {
1610 	struct kernfs_node *kn_subdir;
1611 	int ret;
1612 
1613 	kn_subdir = kernfs_create_dir(kn_info, name,
1614 				      kn_info->mode, r);
1615 	if (IS_ERR(kn_subdir))
1616 		return PTR_ERR(kn_subdir);
1617 
1618 	kernfs_get(kn_subdir);
1619 	ret = rdtgroup_kn_set_ugid(kn_subdir);
1620 	if (ret)
1621 		return ret;
1622 
1623 	ret = rdtgroup_add_files(kn_subdir, fflags);
1624 	if (!ret)
1625 		kernfs_activate(kn_subdir);
1626 
1627 	return ret;
1628 }
1629 
1630 static int rdtgroup_create_info_dir(struct kernfs_node *parent_kn)
1631 {
1632 	struct rdt_resource *r;
1633 	unsigned long fflags;
1634 	char name[32];
1635 	int ret;
1636 
1637 	/* create the directory */
1638 	kn_info = kernfs_create_dir(parent_kn, "info", parent_kn->mode, NULL);
1639 	if (IS_ERR(kn_info))
1640 		return PTR_ERR(kn_info);
1641 	kernfs_get(kn_info);
1642 
1643 	ret = rdtgroup_add_files(kn_info, RF_TOP_INFO);
1644 	if (ret)
1645 		goto out_destroy;
1646 
1647 	for_each_alloc_enabled_rdt_resource(r) {
1648 		fflags =  r->fflags | RF_CTRL_INFO;
1649 		ret = rdtgroup_mkdir_info_resdir(r, r->name, fflags);
1650 		if (ret)
1651 			goto out_destroy;
1652 	}
1653 
1654 	for_each_mon_enabled_rdt_resource(r) {
1655 		fflags =  r->fflags | RF_MON_INFO;
1656 		sprintf(name, "%s_MON", r->name);
1657 		ret = rdtgroup_mkdir_info_resdir(r, name, fflags);
1658 		if (ret)
1659 			goto out_destroy;
1660 	}
1661 
1662 	/*
1663 	 * This extra ref will be put in kernfs_remove() and guarantees
1664 	 * that @rdtgrp->kn is always accessible.
1665 	 */
1666 	kernfs_get(kn_info);
1667 
1668 	ret = rdtgroup_kn_set_ugid(kn_info);
1669 	if (ret)
1670 		goto out_destroy;
1671 
1672 	kernfs_activate(kn_info);
1673 
1674 	return 0;
1675 
1676 out_destroy:
1677 	kernfs_remove(kn_info);
1678 	return ret;
1679 }
1680 
1681 static int
1682 mongroup_create_dir(struct kernfs_node *parent_kn, struct rdtgroup *prgrp,
1683 		    char *name, struct kernfs_node **dest_kn)
1684 {
1685 	struct kernfs_node *kn;
1686 	int ret;
1687 
1688 	/* create the directory */
1689 	kn = kernfs_create_dir(parent_kn, name, parent_kn->mode, prgrp);
1690 	if (IS_ERR(kn))
1691 		return PTR_ERR(kn);
1692 
1693 	if (dest_kn)
1694 		*dest_kn = kn;
1695 
1696 	/*
1697 	 * This extra ref will be put in kernfs_remove() and guarantees
1698 	 * that @rdtgrp->kn is always accessible.
1699 	 */
1700 	kernfs_get(kn);
1701 
1702 	ret = rdtgroup_kn_set_ugid(kn);
1703 	if (ret)
1704 		goto out_destroy;
1705 
1706 	kernfs_activate(kn);
1707 
1708 	return 0;
1709 
1710 out_destroy:
1711 	kernfs_remove(kn);
1712 	return ret;
1713 }
1714 
1715 static void l3_qos_cfg_update(void *arg)
1716 {
1717 	bool *enable = arg;
1718 
1719 	wrmsrl(MSR_IA32_L3_QOS_CFG, *enable ? L3_QOS_CDP_ENABLE : 0ULL);
1720 }
1721 
1722 static void l2_qos_cfg_update(void *arg)
1723 {
1724 	bool *enable = arg;
1725 
1726 	wrmsrl(MSR_IA32_L2_QOS_CFG, *enable ? L2_QOS_CDP_ENABLE : 0ULL);
1727 }
1728 
1729 static inline bool is_mba_linear(void)
1730 {
1731 	return rdt_resources_all[RDT_RESOURCE_MBA].membw.delay_linear;
1732 }
1733 
1734 static int set_cache_qos_cfg(int level, bool enable)
1735 {
1736 	void (*update)(void *arg);
1737 	struct rdt_resource *r_l;
1738 	cpumask_var_t cpu_mask;
1739 	struct rdt_domain *d;
1740 	int cpu;
1741 
1742 	if (!zalloc_cpumask_var(&cpu_mask, GFP_KERNEL))
1743 		return -ENOMEM;
1744 
1745 	if (level == RDT_RESOURCE_L3)
1746 		update = l3_qos_cfg_update;
1747 	else if (level == RDT_RESOURCE_L2)
1748 		update = l2_qos_cfg_update;
1749 	else
1750 		return -EINVAL;
1751 
1752 	r_l = &rdt_resources_all[level];
1753 	list_for_each_entry(d, &r_l->domains, list) {
1754 		/* Pick one CPU from each domain instance to update MSR */
1755 		cpumask_set_cpu(cpumask_any(&d->cpu_mask), cpu_mask);
1756 	}
1757 	cpu = get_cpu();
1758 	/* Update QOS_CFG MSR on this cpu if it's in cpu_mask. */
1759 	if (cpumask_test_cpu(cpu, cpu_mask))
1760 		update(&enable);
1761 	/* Update QOS_CFG MSR on all other cpus in cpu_mask. */
1762 	smp_call_function_many(cpu_mask, update, &enable, 1);
1763 	put_cpu();
1764 
1765 	free_cpumask_var(cpu_mask);
1766 
1767 	return 0;
1768 }
1769 
1770 /*
1771  * Enable or disable the MBA software controller
1772  * which helps user specify bandwidth in MBps.
1773  * MBA software controller is supported only if
1774  * MBM is supported and MBA is in linear scale.
1775  */
1776 static int set_mba_sc(bool mba_sc)
1777 {
1778 	struct rdt_resource *r = &rdt_resources_all[RDT_RESOURCE_MBA];
1779 	struct rdt_domain *d;
1780 
1781 	if (!is_mbm_enabled() || !is_mba_linear() ||
1782 	    mba_sc == is_mba_sc(r))
1783 		return -EINVAL;
1784 
1785 	r->membw.mba_sc = mba_sc;
1786 	list_for_each_entry(d, &r->domains, list)
1787 		setup_default_ctrlval(r, d->ctrl_val, d->mbps_val);
1788 
1789 	return 0;
1790 }
1791 
1792 static int cdp_enable(int level, int data_type, int code_type)
1793 {
1794 	struct rdt_resource *r_ldata = &rdt_resources_all[data_type];
1795 	struct rdt_resource *r_lcode = &rdt_resources_all[code_type];
1796 	struct rdt_resource *r_l = &rdt_resources_all[level];
1797 	int ret;
1798 
1799 	if (!r_l->alloc_capable || !r_ldata->alloc_capable ||
1800 	    !r_lcode->alloc_capable)
1801 		return -EINVAL;
1802 
1803 	ret = set_cache_qos_cfg(level, true);
1804 	if (!ret) {
1805 		r_l->alloc_enabled = false;
1806 		r_ldata->alloc_enabled = true;
1807 		r_lcode->alloc_enabled = true;
1808 	}
1809 	return ret;
1810 }
1811 
1812 static int cdpl3_enable(void)
1813 {
1814 	return cdp_enable(RDT_RESOURCE_L3, RDT_RESOURCE_L3DATA,
1815 			  RDT_RESOURCE_L3CODE);
1816 }
1817 
1818 static int cdpl2_enable(void)
1819 {
1820 	return cdp_enable(RDT_RESOURCE_L2, RDT_RESOURCE_L2DATA,
1821 			  RDT_RESOURCE_L2CODE);
1822 }
1823 
1824 static void cdp_disable(int level, int data_type, int code_type)
1825 {
1826 	struct rdt_resource *r = &rdt_resources_all[level];
1827 
1828 	r->alloc_enabled = r->alloc_capable;
1829 
1830 	if (rdt_resources_all[data_type].alloc_enabled) {
1831 		rdt_resources_all[data_type].alloc_enabled = false;
1832 		rdt_resources_all[code_type].alloc_enabled = false;
1833 		set_cache_qos_cfg(level, false);
1834 	}
1835 }
1836 
1837 static void cdpl3_disable(void)
1838 {
1839 	cdp_disable(RDT_RESOURCE_L3, RDT_RESOURCE_L3DATA, RDT_RESOURCE_L3CODE);
1840 }
1841 
1842 static void cdpl2_disable(void)
1843 {
1844 	cdp_disable(RDT_RESOURCE_L2, RDT_RESOURCE_L2DATA, RDT_RESOURCE_L2CODE);
1845 }
1846 
1847 static void cdp_disable_all(void)
1848 {
1849 	if (rdt_resources_all[RDT_RESOURCE_L3DATA].alloc_enabled)
1850 		cdpl3_disable();
1851 	if (rdt_resources_all[RDT_RESOURCE_L2DATA].alloc_enabled)
1852 		cdpl2_disable();
1853 }
1854 
1855 /*
1856  * We don't allow rdtgroup directories to be created anywhere
1857  * except the root directory. Thus when looking for the rdtgroup
1858  * structure for a kernfs node we are either looking at a directory,
1859  * in which case the rdtgroup structure is pointed at by the "priv"
1860  * field, otherwise we have a file, and need only look to the parent
1861  * to find the rdtgroup.
1862  */
1863 static struct rdtgroup *kernfs_to_rdtgroup(struct kernfs_node *kn)
1864 {
1865 	if (kernfs_type(kn) == KERNFS_DIR) {
1866 		/*
1867 		 * All the resource directories use "kn->priv"
1868 		 * to point to the "struct rdtgroup" for the
1869 		 * resource. "info" and its subdirectories don't
1870 		 * have rdtgroup structures, so return NULL here.
1871 		 */
1872 		if (kn == kn_info || kn->parent == kn_info)
1873 			return NULL;
1874 		else
1875 			return kn->priv;
1876 	} else {
1877 		return kn->parent->priv;
1878 	}
1879 }
1880 
1881 struct rdtgroup *rdtgroup_kn_lock_live(struct kernfs_node *kn)
1882 {
1883 	struct rdtgroup *rdtgrp = kernfs_to_rdtgroup(kn);
1884 
1885 	if (!rdtgrp)
1886 		return NULL;
1887 
1888 	atomic_inc(&rdtgrp->waitcount);
1889 	kernfs_break_active_protection(kn);
1890 
1891 	mutex_lock(&rdtgroup_mutex);
1892 
1893 	/* Was this group deleted while we waited? */
1894 	if (rdtgrp->flags & RDT_DELETED)
1895 		return NULL;
1896 
1897 	return rdtgrp;
1898 }
1899 
1900 void rdtgroup_kn_unlock(struct kernfs_node *kn)
1901 {
1902 	struct rdtgroup *rdtgrp = kernfs_to_rdtgroup(kn);
1903 
1904 	if (!rdtgrp)
1905 		return;
1906 
1907 	mutex_unlock(&rdtgroup_mutex);
1908 
1909 	if (atomic_dec_and_test(&rdtgrp->waitcount) &&
1910 	    (rdtgrp->flags & RDT_DELETED)) {
1911 		if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP ||
1912 		    rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED)
1913 			rdtgroup_pseudo_lock_remove(rdtgrp);
1914 		kernfs_unbreak_active_protection(kn);
1915 		kernfs_put(rdtgrp->kn);
1916 		kfree(rdtgrp);
1917 	} else {
1918 		kernfs_unbreak_active_protection(kn);
1919 	}
1920 }
1921 
1922 static int mkdir_mondata_all(struct kernfs_node *parent_kn,
1923 			     struct rdtgroup *prgrp,
1924 			     struct kernfs_node **mon_data_kn);
1925 
1926 static int rdt_enable_ctx(struct rdt_fs_context *ctx)
1927 {
1928 	int ret = 0;
1929 
1930 	if (ctx->enable_cdpl2)
1931 		ret = cdpl2_enable();
1932 
1933 	if (!ret && ctx->enable_cdpl3)
1934 		ret = cdpl3_enable();
1935 
1936 	if (!ret && ctx->enable_mba_mbps)
1937 		ret = set_mba_sc(true);
1938 
1939 	return ret;
1940 }
1941 
1942 static int rdt_get_tree(struct fs_context *fc)
1943 {
1944 	struct rdt_fs_context *ctx = rdt_fc2context(fc);
1945 	struct rdt_domain *dom;
1946 	struct rdt_resource *r;
1947 	int ret;
1948 
1949 	cpus_read_lock();
1950 	mutex_lock(&rdtgroup_mutex);
1951 	/*
1952 	 * resctrl file system can only be mounted once.
1953 	 */
1954 	if (static_branch_unlikely(&rdt_enable_key)) {
1955 		ret = -EBUSY;
1956 		goto out;
1957 	}
1958 
1959 	ret = rdt_enable_ctx(ctx);
1960 	if (ret < 0)
1961 		goto out_cdp;
1962 
1963 	closid_init();
1964 
1965 	ret = rdtgroup_create_info_dir(rdtgroup_default.kn);
1966 	if (ret < 0)
1967 		goto out_mba;
1968 
1969 	if (rdt_mon_capable) {
1970 		ret = mongroup_create_dir(rdtgroup_default.kn,
1971 					  NULL, "mon_groups",
1972 					  &kn_mongrp);
1973 		if (ret < 0)
1974 			goto out_info;
1975 		kernfs_get(kn_mongrp);
1976 
1977 		ret = mkdir_mondata_all(rdtgroup_default.kn,
1978 					&rdtgroup_default, &kn_mondata);
1979 		if (ret < 0)
1980 			goto out_mongrp;
1981 		kernfs_get(kn_mondata);
1982 		rdtgroup_default.mon.mon_data_kn = kn_mondata;
1983 	}
1984 
1985 	ret = rdt_pseudo_lock_init();
1986 	if (ret)
1987 		goto out_mondata;
1988 
1989 	ret = kernfs_get_tree(fc);
1990 	if (ret < 0)
1991 		goto out_psl;
1992 
1993 	if (rdt_alloc_capable)
1994 		static_branch_enable_cpuslocked(&rdt_alloc_enable_key);
1995 	if (rdt_mon_capable)
1996 		static_branch_enable_cpuslocked(&rdt_mon_enable_key);
1997 
1998 	if (rdt_alloc_capable || rdt_mon_capable)
1999 		static_branch_enable_cpuslocked(&rdt_enable_key);
2000 
2001 	if (is_mbm_enabled()) {
2002 		r = &rdt_resources_all[RDT_RESOURCE_L3];
2003 		list_for_each_entry(dom, &r->domains, list)
2004 			mbm_setup_overflow_handler(dom, MBM_OVERFLOW_INTERVAL);
2005 	}
2006 
2007 	goto out;
2008 
2009 out_psl:
2010 	rdt_pseudo_lock_release();
2011 out_mondata:
2012 	if (rdt_mon_capable)
2013 		kernfs_remove(kn_mondata);
2014 out_mongrp:
2015 	if (rdt_mon_capable)
2016 		kernfs_remove(kn_mongrp);
2017 out_info:
2018 	kernfs_remove(kn_info);
2019 out_mba:
2020 	if (ctx->enable_mba_mbps)
2021 		set_mba_sc(false);
2022 out_cdp:
2023 	cdp_disable_all();
2024 out:
2025 	rdt_last_cmd_clear();
2026 	mutex_unlock(&rdtgroup_mutex);
2027 	cpus_read_unlock();
2028 	return ret;
2029 }
2030 
2031 enum rdt_param {
2032 	Opt_cdp,
2033 	Opt_cdpl2,
2034 	Opt_mba_mbps,
2035 	nr__rdt_params
2036 };
2037 
2038 static const struct fs_parameter_spec rdt_param_specs[] = {
2039 	fsparam_flag("cdp",		Opt_cdp),
2040 	fsparam_flag("cdpl2",		Opt_cdpl2),
2041 	fsparam_flag("mba_MBps",	Opt_mba_mbps),
2042 	{}
2043 };
2044 
2045 static const struct fs_parameter_description rdt_fs_parameters = {
2046 	.name		= "rdt",
2047 	.specs		= rdt_param_specs,
2048 };
2049 
2050 static int rdt_parse_param(struct fs_context *fc, struct fs_parameter *param)
2051 {
2052 	struct rdt_fs_context *ctx = rdt_fc2context(fc);
2053 	struct fs_parse_result result;
2054 	int opt;
2055 
2056 	opt = fs_parse(fc, &rdt_fs_parameters, param, &result);
2057 	if (opt < 0)
2058 		return opt;
2059 
2060 	switch (opt) {
2061 	case Opt_cdp:
2062 		ctx->enable_cdpl3 = true;
2063 		return 0;
2064 	case Opt_cdpl2:
2065 		ctx->enable_cdpl2 = true;
2066 		return 0;
2067 	case Opt_mba_mbps:
2068 		if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
2069 			return -EINVAL;
2070 		ctx->enable_mba_mbps = true;
2071 		return 0;
2072 	}
2073 
2074 	return -EINVAL;
2075 }
2076 
2077 static void rdt_fs_context_free(struct fs_context *fc)
2078 {
2079 	struct rdt_fs_context *ctx = rdt_fc2context(fc);
2080 
2081 	kernfs_free_fs_context(fc);
2082 	kfree(ctx);
2083 }
2084 
2085 static const struct fs_context_operations rdt_fs_context_ops = {
2086 	.free		= rdt_fs_context_free,
2087 	.parse_param	= rdt_parse_param,
2088 	.get_tree	= rdt_get_tree,
2089 };
2090 
2091 static int rdt_init_fs_context(struct fs_context *fc)
2092 {
2093 	struct rdt_fs_context *ctx;
2094 
2095 	ctx = kzalloc(sizeof(struct rdt_fs_context), GFP_KERNEL);
2096 	if (!ctx)
2097 		return -ENOMEM;
2098 
2099 	ctx->kfc.root = rdt_root;
2100 	ctx->kfc.magic = RDTGROUP_SUPER_MAGIC;
2101 	fc->fs_private = &ctx->kfc;
2102 	fc->ops = &rdt_fs_context_ops;
2103 	if (fc->user_ns)
2104 		put_user_ns(fc->user_ns);
2105 	fc->user_ns = get_user_ns(&init_user_ns);
2106 	fc->global = true;
2107 	return 0;
2108 }
2109 
2110 static int reset_all_ctrls(struct rdt_resource *r)
2111 {
2112 	struct msr_param msr_param;
2113 	cpumask_var_t cpu_mask;
2114 	struct rdt_domain *d;
2115 	int i, cpu;
2116 
2117 	if (!zalloc_cpumask_var(&cpu_mask, GFP_KERNEL))
2118 		return -ENOMEM;
2119 
2120 	msr_param.res = r;
2121 	msr_param.low = 0;
2122 	msr_param.high = r->num_closid;
2123 
2124 	/*
2125 	 * Disable resource control for this resource by setting all
2126 	 * CBMs in all domains to the maximum mask value. Pick one CPU
2127 	 * from each domain to update the MSRs below.
2128 	 */
2129 	list_for_each_entry(d, &r->domains, list) {
2130 		cpumask_set_cpu(cpumask_any(&d->cpu_mask), cpu_mask);
2131 
2132 		for (i = 0; i < r->num_closid; i++)
2133 			d->ctrl_val[i] = r->default_ctrl;
2134 	}
2135 	cpu = get_cpu();
2136 	/* Update CBM on this cpu if it's in cpu_mask. */
2137 	if (cpumask_test_cpu(cpu, cpu_mask))
2138 		rdt_ctrl_update(&msr_param);
2139 	/* Update CBM on all other cpus in cpu_mask. */
2140 	smp_call_function_many(cpu_mask, rdt_ctrl_update, &msr_param, 1);
2141 	put_cpu();
2142 
2143 	free_cpumask_var(cpu_mask);
2144 
2145 	return 0;
2146 }
2147 
2148 static bool is_closid_match(struct task_struct *t, struct rdtgroup *r)
2149 {
2150 	return (rdt_alloc_capable &&
2151 		(r->type == RDTCTRL_GROUP) && (t->closid == r->closid));
2152 }
2153 
2154 static bool is_rmid_match(struct task_struct *t, struct rdtgroup *r)
2155 {
2156 	return (rdt_mon_capable &&
2157 		(r->type == RDTMON_GROUP) && (t->rmid == r->mon.rmid));
2158 }
2159 
2160 /*
2161  * Move tasks from one to the other group. If @from is NULL, then all tasks
2162  * in the systems are moved unconditionally (used for teardown).
2163  *
2164  * If @mask is not NULL the cpus on which moved tasks are running are set
2165  * in that mask so the update smp function call is restricted to affected
2166  * cpus.
2167  */
2168 static void rdt_move_group_tasks(struct rdtgroup *from, struct rdtgroup *to,
2169 				 struct cpumask *mask)
2170 {
2171 	struct task_struct *p, *t;
2172 
2173 	read_lock(&tasklist_lock);
2174 	for_each_process_thread(p, t) {
2175 		if (!from || is_closid_match(t, from) ||
2176 		    is_rmid_match(t, from)) {
2177 			t->closid = to->closid;
2178 			t->rmid = to->mon.rmid;
2179 
2180 #ifdef CONFIG_SMP
2181 			/*
2182 			 * This is safe on x86 w/o barriers as the ordering
2183 			 * of writing to task_cpu() and t->on_cpu is
2184 			 * reverse to the reading here. The detection is
2185 			 * inaccurate as tasks might move or schedule
2186 			 * before the smp function call takes place. In
2187 			 * such a case the function call is pointless, but
2188 			 * there is no other side effect.
2189 			 */
2190 			if (mask && t->on_cpu)
2191 				cpumask_set_cpu(task_cpu(t), mask);
2192 #endif
2193 		}
2194 	}
2195 	read_unlock(&tasklist_lock);
2196 }
2197 
2198 static void free_all_child_rdtgrp(struct rdtgroup *rdtgrp)
2199 {
2200 	struct rdtgroup *sentry, *stmp;
2201 	struct list_head *head;
2202 
2203 	head = &rdtgrp->mon.crdtgrp_list;
2204 	list_for_each_entry_safe(sentry, stmp, head, mon.crdtgrp_list) {
2205 		free_rmid(sentry->mon.rmid);
2206 		list_del(&sentry->mon.crdtgrp_list);
2207 		kfree(sentry);
2208 	}
2209 }
2210 
2211 /*
2212  * Forcibly remove all of subdirectories under root.
2213  */
2214 static void rmdir_all_sub(void)
2215 {
2216 	struct rdtgroup *rdtgrp, *tmp;
2217 
2218 	/* Move all tasks to the default resource group */
2219 	rdt_move_group_tasks(NULL, &rdtgroup_default, NULL);
2220 
2221 	list_for_each_entry_safe(rdtgrp, tmp, &rdt_all_groups, rdtgroup_list) {
2222 		/* Free any child rmids */
2223 		free_all_child_rdtgrp(rdtgrp);
2224 
2225 		/* Remove each rdtgroup other than root */
2226 		if (rdtgrp == &rdtgroup_default)
2227 			continue;
2228 
2229 		if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP ||
2230 		    rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED)
2231 			rdtgroup_pseudo_lock_remove(rdtgrp);
2232 
2233 		/*
2234 		 * Give any CPUs back to the default group. We cannot copy
2235 		 * cpu_online_mask because a CPU might have executed the
2236 		 * offline callback already, but is still marked online.
2237 		 */
2238 		cpumask_or(&rdtgroup_default.cpu_mask,
2239 			   &rdtgroup_default.cpu_mask, &rdtgrp->cpu_mask);
2240 
2241 		free_rmid(rdtgrp->mon.rmid);
2242 
2243 		kernfs_remove(rdtgrp->kn);
2244 		list_del(&rdtgrp->rdtgroup_list);
2245 		kfree(rdtgrp);
2246 	}
2247 	/* Notify online CPUs to update per cpu storage and PQR_ASSOC MSR */
2248 	update_closid_rmid(cpu_online_mask, &rdtgroup_default);
2249 
2250 	kernfs_remove(kn_info);
2251 	kernfs_remove(kn_mongrp);
2252 	kernfs_remove(kn_mondata);
2253 }
2254 
2255 static void rdt_kill_sb(struct super_block *sb)
2256 {
2257 	struct rdt_resource *r;
2258 
2259 	cpus_read_lock();
2260 	mutex_lock(&rdtgroup_mutex);
2261 
2262 	set_mba_sc(false);
2263 
2264 	/*Put everything back to default values. */
2265 	for_each_alloc_enabled_rdt_resource(r)
2266 		reset_all_ctrls(r);
2267 	cdp_disable_all();
2268 	rmdir_all_sub();
2269 	rdt_pseudo_lock_release();
2270 	rdtgroup_default.mode = RDT_MODE_SHAREABLE;
2271 	static_branch_disable_cpuslocked(&rdt_alloc_enable_key);
2272 	static_branch_disable_cpuslocked(&rdt_mon_enable_key);
2273 	static_branch_disable_cpuslocked(&rdt_enable_key);
2274 	kernfs_kill_sb(sb);
2275 	mutex_unlock(&rdtgroup_mutex);
2276 	cpus_read_unlock();
2277 }
2278 
2279 static struct file_system_type rdt_fs_type = {
2280 	.name			= "resctrl",
2281 	.init_fs_context	= rdt_init_fs_context,
2282 	.parameters		= &rdt_fs_parameters,
2283 	.kill_sb		= rdt_kill_sb,
2284 };
2285 
2286 static int mon_addfile(struct kernfs_node *parent_kn, const char *name,
2287 		       void *priv)
2288 {
2289 	struct kernfs_node *kn;
2290 	int ret = 0;
2291 
2292 	kn = __kernfs_create_file(parent_kn, name, 0444,
2293 				  GLOBAL_ROOT_UID, GLOBAL_ROOT_GID, 0,
2294 				  &kf_mondata_ops, priv, NULL, NULL);
2295 	if (IS_ERR(kn))
2296 		return PTR_ERR(kn);
2297 
2298 	ret = rdtgroup_kn_set_ugid(kn);
2299 	if (ret) {
2300 		kernfs_remove(kn);
2301 		return ret;
2302 	}
2303 
2304 	return ret;
2305 }
2306 
2307 /*
2308  * Remove all subdirectories of mon_data of ctrl_mon groups
2309  * and monitor groups with given domain id.
2310  */
2311 void rmdir_mondata_subdir_allrdtgrp(struct rdt_resource *r, unsigned int dom_id)
2312 {
2313 	struct rdtgroup *prgrp, *crgrp;
2314 	char name[32];
2315 
2316 	if (!r->mon_enabled)
2317 		return;
2318 
2319 	list_for_each_entry(prgrp, &rdt_all_groups, rdtgroup_list) {
2320 		sprintf(name, "mon_%s_%02d", r->name, dom_id);
2321 		kernfs_remove_by_name(prgrp->mon.mon_data_kn, name);
2322 
2323 		list_for_each_entry(crgrp, &prgrp->mon.crdtgrp_list, mon.crdtgrp_list)
2324 			kernfs_remove_by_name(crgrp->mon.mon_data_kn, name);
2325 	}
2326 }
2327 
2328 static int mkdir_mondata_subdir(struct kernfs_node *parent_kn,
2329 				struct rdt_domain *d,
2330 				struct rdt_resource *r, struct rdtgroup *prgrp)
2331 {
2332 	union mon_data_bits priv;
2333 	struct kernfs_node *kn;
2334 	struct mon_evt *mevt;
2335 	struct rmid_read rr;
2336 	char name[32];
2337 	int ret;
2338 
2339 	sprintf(name, "mon_%s_%02d", r->name, d->id);
2340 	/* create the directory */
2341 	kn = kernfs_create_dir(parent_kn, name, parent_kn->mode, prgrp);
2342 	if (IS_ERR(kn))
2343 		return PTR_ERR(kn);
2344 
2345 	/*
2346 	 * This extra ref will be put in kernfs_remove() and guarantees
2347 	 * that kn is always accessible.
2348 	 */
2349 	kernfs_get(kn);
2350 	ret = rdtgroup_kn_set_ugid(kn);
2351 	if (ret)
2352 		goto out_destroy;
2353 
2354 	if (WARN_ON(list_empty(&r->evt_list))) {
2355 		ret = -EPERM;
2356 		goto out_destroy;
2357 	}
2358 
2359 	priv.u.rid = r->rid;
2360 	priv.u.domid = d->id;
2361 	list_for_each_entry(mevt, &r->evt_list, list) {
2362 		priv.u.evtid = mevt->evtid;
2363 		ret = mon_addfile(kn, mevt->name, priv.priv);
2364 		if (ret)
2365 			goto out_destroy;
2366 
2367 		if (is_mbm_event(mevt->evtid))
2368 			mon_event_read(&rr, d, prgrp, mevt->evtid, true);
2369 	}
2370 	kernfs_activate(kn);
2371 	return 0;
2372 
2373 out_destroy:
2374 	kernfs_remove(kn);
2375 	return ret;
2376 }
2377 
2378 /*
2379  * Add all subdirectories of mon_data for "ctrl_mon" groups
2380  * and "monitor" groups with given domain id.
2381  */
2382 void mkdir_mondata_subdir_allrdtgrp(struct rdt_resource *r,
2383 				    struct rdt_domain *d)
2384 {
2385 	struct kernfs_node *parent_kn;
2386 	struct rdtgroup *prgrp, *crgrp;
2387 	struct list_head *head;
2388 
2389 	if (!r->mon_enabled)
2390 		return;
2391 
2392 	list_for_each_entry(prgrp, &rdt_all_groups, rdtgroup_list) {
2393 		parent_kn = prgrp->mon.mon_data_kn;
2394 		mkdir_mondata_subdir(parent_kn, d, r, prgrp);
2395 
2396 		head = &prgrp->mon.crdtgrp_list;
2397 		list_for_each_entry(crgrp, head, mon.crdtgrp_list) {
2398 			parent_kn = crgrp->mon.mon_data_kn;
2399 			mkdir_mondata_subdir(parent_kn, d, r, crgrp);
2400 		}
2401 	}
2402 }
2403 
2404 static int mkdir_mondata_subdir_alldom(struct kernfs_node *parent_kn,
2405 				       struct rdt_resource *r,
2406 				       struct rdtgroup *prgrp)
2407 {
2408 	struct rdt_domain *dom;
2409 	int ret;
2410 
2411 	list_for_each_entry(dom, &r->domains, list) {
2412 		ret = mkdir_mondata_subdir(parent_kn, dom, r, prgrp);
2413 		if (ret)
2414 			return ret;
2415 	}
2416 
2417 	return 0;
2418 }
2419 
2420 /*
2421  * This creates a directory mon_data which contains the monitored data.
2422  *
2423  * mon_data has one directory for each domain whic are named
2424  * in the format mon_<domain_name>_<domain_id>. For ex: A mon_data
2425  * with L3 domain looks as below:
2426  * ./mon_data:
2427  * mon_L3_00
2428  * mon_L3_01
2429  * mon_L3_02
2430  * ...
2431  *
2432  * Each domain directory has one file per event:
2433  * ./mon_L3_00/:
2434  * llc_occupancy
2435  *
2436  */
2437 static int mkdir_mondata_all(struct kernfs_node *parent_kn,
2438 			     struct rdtgroup *prgrp,
2439 			     struct kernfs_node **dest_kn)
2440 {
2441 	struct rdt_resource *r;
2442 	struct kernfs_node *kn;
2443 	int ret;
2444 
2445 	/*
2446 	 * Create the mon_data directory first.
2447 	 */
2448 	ret = mongroup_create_dir(parent_kn, NULL, "mon_data", &kn);
2449 	if (ret)
2450 		return ret;
2451 
2452 	if (dest_kn)
2453 		*dest_kn = kn;
2454 
2455 	/*
2456 	 * Create the subdirectories for each domain. Note that all events
2457 	 * in a domain like L3 are grouped into a resource whose domain is L3
2458 	 */
2459 	for_each_mon_enabled_rdt_resource(r) {
2460 		ret = mkdir_mondata_subdir_alldom(kn, r, prgrp);
2461 		if (ret)
2462 			goto out_destroy;
2463 	}
2464 
2465 	return 0;
2466 
2467 out_destroy:
2468 	kernfs_remove(kn);
2469 	return ret;
2470 }
2471 
2472 /**
2473  * cbm_ensure_valid - Enforce validity on provided CBM
2474  * @_val:	Candidate CBM
2475  * @r:		RDT resource to which the CBM belongs
2476  *
2477  * The provided CBM represents all cache portions available for use. This
2478  * may be represented by a bitmap that does not consist of contiguous ones
2479  * and thus be an invalid CBM.
2480  * Here the provided CBM is forced to be a valid CBM by only considering
2481  * the first set of contiguous bits as valid and clearing all bits.
2482  * The intention here is to provide a valid default CBM with which a new
2483  * resource group is initialized. The user can follow this with a
2484  * modification to the CBM if the default does not satisfy the
2485  * requirements.
2486  */
2487 static void cbm_ensure_valid(u32 *_val, struct rdt_resource *r)
2488 {
2489 	/*
2490 	 * Convert the u32 _val to an unsigned long required by all the bit
2491 	 * operations within this function. No more than 32 bits of this
2492 	 * converted value can be accessed because all bit operations are
2493 	 * additionally provided with cbm_len that is initialized during
2494 	 * hardware enumeration using five bits from the EAX register and
2495 	 * thus never can exceed 32 bits.
2496 	 */
2497 	unsigned long *val = (unsigned long *)_val;
2498 	unsigned int cbm_len = r->cache.cbm_len;
2499 	unsigned long first_bit, zero_bit;
2500 
2501 	if (*val == 0)
2502 		return;
2503 
2504 	first_bit = find_first_bit(val, cbm_len);
2505 	zero_bit = find_next_zero_bit(val, cbm_len, first_bit);
2506 
2507 	/* Clear any remaining bits to ensure contiguous region */
2508 	bitmap_clear(val, zero_bit, cbm_len - zero_bit);
2509 }
2510 
2511 /*
2512  * Initialize cache resources per RDT domain
2513  *
2514  * Set the RDT domain up to start off with all usable allocations. That is,
2515  * all shareable and unused bits. All-zero CBM is invalid.
2516  */
2517 static int __init_one_rdt_domain(struct rdt_domain *d, struct rdt_resource *r,
2518 				 u32 closid)
2519 {
2520 	struct rdt_resource *r_cdp = NULL;
2521 	struct rdt_domain *d_cdp = NULL;
2522 	u32 used_b = 0, unused_b = 0;
2523 	unsigned long tmp_cbm;
2524 	enum rdtgrp_mode mode;
2525 	u32 peer_ctl, *ctrl;
2526 	int i;
2527 
2528 	rdt_cdp_peer_get(r, d, &r_cdp, &d_cdp);
2529 	d->have_new_ctrl = false;
2530 	d->new_ctrl = r->cache.shareable_bits;
2531 	used_b = r->cache.shareable_bits;
2532 	ctrl = d->ctrl_val;
2533 	for (i = 0; i < closids_supported(); i++, ctrl++) {
2534 		if (closid_allocated(i) && i != closid) {
2535 			mode = rdtgroup_mode_by_closid(i);
2536 			if (mode == RDT_MODE_PSEUDO_LOCKSETUP)
2537 				/*
2538 				 * ctrl values for locksetup aren't relevant
2539 				 * until the schemata is written, and the mode
2540 				 * becomes RDT_MODE_PSEUDO_LOCKED.
2541 				 */
2542 				continue;
2543 			/*
2544 			 * If CDP is active include peer domain's
2545 			 * usage to ensure there is no overlap
2546 			 * with an exclusive group.
2547 			 */
2548 			if (d_cdp)
2549 				peer_ctl = d_cdp->ctrl_val[i];
2550 			else
2551 				peer_ctl = 0;
2552 			used_b |= *ctrl | peer_ctl;
2553 			if (mode == RDT_MODE_SHAREABLE)
2554 				d->new_ctrl |= *ctrl | peer_ctl;
2555 		}
2556 	}
2557 	if (d->plr && d->plr->cbm > 0)
2558 		used_b |= d->plr->cbm;
2559 	unused_b = used_b ^ (BIT_MASK(r->cache.cbm_len) - 1);
2560 	unused_b &= BIT_MASK(r->cache.cbm_len) - 1;
2561 	d->new_ctrl |= unused_b;
2562 	/*
2563 	 * Force the initial CBM to be valid, user can
2564 	 * modify the CBM based on system availability.
2565 	 */
2566 	cbm_ensure_valid(&d->new_ctrl, r);
2567 	/*
2568 	 * Assign the u32 CBM to an unsigned long to ensure that
2569 	 * bitmap_weight() does not access out-of-bound memory.
2570 	 */
2571 	tmp_cbm = d->new_ctrl;
2572 	if (bitmap_weight(&tmp_cbm, r->cache.cbm_len) < r->cache.min_cbm_bits) {
2573 		rdt_last_cmd_printf("No space on %s:%d\n", r->name, d->id);
2574 		return -ENOSPC;
2575 	}
2576 	d->have_new_ctrl = true;
2577 
2578 	return 0;
2579 }
2580 
2581 /*
2582  * Initialize cache resources with default values.
2583  *
2584  * A new RDT group is being created on an allocation capable (CAT)
2585  * supporting system. Set this group up to start off with all usable
2586  * allocations.
2587  *
2588  * If there are no more shareable bits available on any domain then
2589  * the entire allocation will fail.
2590  */
2591 static int rdtgroup_init_cat(struct rdt_resource *r, u32 closid)
2592 {
2593 	struct rdt_domain *d;
2594 	int ret;
2595 
2596 	list_for_each_entry(d, &r->domains, list) {
2597 		ret = __init_one_rdt_domain(d, r, closid);
2598 		if (ret < 0)
2599 			return ret;
2600 	}
2601 
2602 	return 0;
2603 }
2604 
2605 /* Initialize MBA resource with default values. */
2606 static void rdtgroup_init_mba(struct rdt_resource *r)
2607 {
2608 	struct rdt_domain *d;
2609 
2610 	list_for_each_entry(d, &r->domains, list) {
2611 		d->new_ctrl = is_mba_sc(r) ? MBA_MAX_MBPS : r->default_ctrl;
2612 		d->have_new_ctrl = true;
2613 	}
2614 }
2615 
2616 /* Initialize the RDT group's allocations. */
2617 static int rdtgroup_init_alloc(struct rdtgroup *rdtgrp)
2618 {
2619 	struct rdt_resource *r;
2620 	int ret;
2621 
2622 	for_each_alloc_enabled_rdt_resource(r) {
2623 		if (r->rid == RDT_RESOURCE_MBA) {
2624 			rdtgroup_init_mba(r);
2625 		} else {
2626 			ret = rdtgroup_init_cat(r, rdtgrp->closid);
2627 			if (ret < 0)
2628 				return ret;
2629 		}
2630 
2631 		ret = update_domains(r, rdtgrp->closid);
2632 		if (ret < 0) {
2633 			rdt_last_cmd_puts("Failed to initialize allocations\n");
2634 			return ret;
2635 		}
2636 
2637 	}
2638 
2639 	rdtgrp->mode = RDT_MODE_SHAREABLE;
2640 
2641 	return 0;
2642 }
2643 
2644 static int mkdir_rdt_prepare(struct kernfs_node *parent_kn,
2645 			     struct kernfs_node *prgrp_kn,
2646 			     const char *name, umode_t mode,
2647 			     enum rdt_group_type rtype, struct rdtgroup **r)
2648 {
2649 	struct rdtgroup *prdtgrp, *rdtgrp;
2650 	struct kernfs_node *kn;
2651 	uint files = 0;
2652 	int ret;
2653 
2654 	prdtgrp = rdtgroup_kn_lock_live(prgrp_kn);
2655 	rdt_last_cmd_clear();
2656 	if (!prdtgrp) {
2657 		ret = -ENODEV;
2658 		rdt_last_cmd_puts("Directory was removed\n");
2659 		goto out_unlock;
2660 	}
2661 
2662 	if (rtype == RDTMON_GROUP &&
2663 	    (prdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP ||
2664 	     prdtgrp->mode == RDT_MODE_PSEUDO_LOCKED)) {
2665 		ret = -EINVAL;
2666 		rdt_last_cmd_puts("Pseudo-locking in progress\n");
2667 		goto out_unlock;
2668 	}
2669 
2670 	/* allocate the rdtgroup. */
2671 	rdtgrp = kzalloc(sizeof(*rdtgrp), GFP_KERNEL);
2672 	if (!rdtgrp) {
2673 		ret = -ENOSPC;
2674 		rdt_last_cmd_puts("Kernel out of memory\n");
2675 		goto out_unlock;
2676 	}
2677 	*r = rdtgrp;
2678 	rdtgrp->mon.parent = prdtgrp;
2679 	rdtgrp->type = rtype;
2680 	INIT_LIST_HEAD(&rdtgrp->mon.crdtgrp_list);
2681 
2682 	/* kernfs creates the directory for rdtgrp */
2683 	kn = kernfs_create_dir(parent_kn, name, mode, rdtgrp);
2684 	if (IS_ERR(kn)) {
2685 		ret = PTR_ERR(kn);
2686 		rdt_last_cmd_puts("kernfs create error\n");
2687 		goto out_free_rgrp;
2688 	}
2689 	rdtgrp->kn = kn;
2690 
2691 	/*
2692 	 * kernfs_remove() will drop the reference count on "kn" which
2693 	 * will free it. But we still need it to stick around for the
2694 	 * rdtgroup_kn_unlock(kn} call below. Take one extra reference
2695 	 * here, which will be dropped inside rdtgroup_kn_unlock().
2696 	 */
2697 	kernfs_get(kn);
2698 
2699 	ret = rdtgroup_kn_set_ugid(kn);
2700 	if (ret) {
2701 		rdt_last_cmd_puts("kernfs perm error\n");
2702 		goto out_destroy;
2703 	}
2704 
2705 	files = RFTYPE_BASE | BIT(RF_CTRLSHIFT + rtype);
2706 	ret = rdtgroup_add_files(kn, files);
2707 	if (ret) {
2708 		rdt_last_cmd_puts("kernfs fill error\n");
2709 		goto out_destroy;
2710 	}
2711 
2712 	if (rdt_mon_capable) {
2713 		ret = alloc_rmid();
2714 		if (ret < 0) {
2715 			rdt_last_cmd_puts("Out of RMIDs\n");
2716 			goto out_destroy;
2717 		}
2718 		rdtgrp->mon.rmid = ret;
2719 
2720 		ret = mkdir_mondata_all(kn, rdtgrp, &rdtgrp->mon.mon_data_kn);
2721 		if (ret) {
2722 			rdt_last_cmd_puts("kernfs subdir error\n");
2723 			goto out_idfree;
2724 		}
2725 	}
2726 	kernfs_activate(kn);
2727 
2728 	/*
2729 	 * The caller unlocks the prgrp_kn upon success.
2730 	 */
2731 	return 0;
2732 
2733 out_idfree:
2734 	free_rmid(rdtgrp->mon.rmid);
2735 out_destroy:
2736 	kernfs_remove(rdtgrp->kn);
2737 out_free_rgrp:
2738 	kfree(rdtgrp);
2739 out_unlock:
2740 	rdtgroup_kn_unlock(prgrp_kn);
2741 	return ret;
2742 }
2743 
2744 static void mkdir_rdt_prepare_clean(struct rdtgroup *rgrp)
2745 {
2746 	kernfs_remove(rgrp->kn);
2747 	free_rmid(rgrp->mon.rmid);
2748 	kfree(rgrp);
2749 }
2750 
2751 /*
2752  * Create a monitor group under "mon_groups" directory of a control
2753  * and monitor group(ctrl_mon). This is a resource group
2754  * to monitor a subset of tasks and cpus in its parent ctrl_mon group.
2755  */
2756 static int rdtgroup_mkdir_mon(struct kernfs_node *parent_kn,
2757 			      struct kernfs_node *prgrp_kn,
2758 			      const char *name,
2759 			      umode_t mode)
2760 {
2761 	struct rdtgroup *rdtgrp, *prgrp;
2762 	int ret;
2763 
2764 	ret = mkdir_rdt_prepare(parent_kn, prgrp_kn, name, mode, RDTMON_GROUP,
2765 				&rdtgrp);
2766 	if (ret)
2767 		return ret;
2768 
2769 	prgrp = rdtgrp->mon.parent;
2770 	rdtgrp->closid = prgrp->closid;
2771 
2772 	/*
2773 	 * Add the rdtgrp to the list of rdtgrps the parent
2774 	 * ctrl_mon group has to track.
2775 	 */
2776 	list_add_tail(&rdtgrp->mon.crdtgrp_list, &prgrp->mon.crdtgrp_list);
2777 
2778 	rdtgroup_kn_unlock(prgrp_kn);
2779 	return ret;
2780 }
2781 
2782 /*
2783  * These are rdtgroups created under the root directory. Can be used
2784  * to allocate and monitor resources.
2785  */
2786 static int rdtgroup_mkdir_ctrl_mon(struct kernfs_node *parent_kn,
2787 				   struct kernfs_node *prgrp_kn,
2788 				   const char *name, umode_t mode)
2789 {
2790 	struct rdtgroup *rdtgrp;
2791 	struct kernfs_node *kn;
2792 	u32 closid;
2793 	int ret;
2794 
2795 	ret = mkdir_rdt_prepare(parent_kn, prgrp_kn, name, mode, RDTCTRL_GROUP,
2796 				&rdtgrp);
2797 	if (ret)
2798 		return ret;
2799 
2800 	kn = rdtgrp->kn;
2801 	ret = closid_alloc();
2802 	if (ret < 0) {
2803 		rdt_last_cmd_puts("Out of CLOSIDs\n");
2804 		goto out_common_fail;
2805 	}
2806 	closid = ret;
2807 	ret = 0;
2808 
2809 	rdtgrp->closid = closid;
2810 	ret = rdtgroup_init_alloc(rdtgrp);
2811 	if (ret < 0)
2812 		goto out_id_free;
2813 
2814 	list_add(&rdtgrp->rdtgroup_list, &rdt_all_groups);
2815 
2816 	if (rdt_mon_capable) {
2817 		/*
2818 		 * Create an empty mon_groups directory to hold the subset
2819 		 * of tasks and cpus to monitor.
2820 		 */
2821 		ret = mongroup_create_dir(kn, NULL, "mon_groups", NULL);
2822 		if (ret) {
2823 			rdt_last_cmd_puts("kernfs subdir error\n");
2824 			goto out_del_list;
2825 		}
2826 	}
2827 
2828 	goto out_unlock;
2829 
2830 out_del_list:
2831 	list_del(&rdtgrp->rdtgroup_list);
2832 out_id_free:
2833 	closid_free(closid);
2834 out_common_fail:
2835 	mkdir_rdt_prepare_clean(rdtgrp);
2836 out_unlock:
2837 	rdtgroup_kn_unlock(prgrp_kn);
2838 	return ret;
2839 }
2840 
2841 /*
2842  * We allow creating mon groups only with in a directory called "mon_groups"
2843  * which is present in every ctrl_mon group. Check if this is a valid
2844  * "mon_groups" directory.
2845  *
2846  * 1. The directory should be named "mon_groups".
2847  * 2. The mon group itself should "not" be named "mon_groups".
2848  *   This makes sure "mon_groups" directory always has a ctrl_mon group
2849  *   as parent.
2850  */
2851 static bool is_mon_groups(struct kernfs_node *kn, const char *name)
2852 {
2853 	return (!strcmp(kn->name, "mon_groups") &&
2854 		strcmp(name, "mon_groups"));
2855 }
2856 
2857 static int rdtgroup_mkdir(struct kernfs_node *parent_kn, const char *name,
2858 			  umode_t mode)
2859 {
2860 	/* Do not accept '\n' to avoid unparsable situation. */
2861 	if (strchr(name, '\n'))
2862 		return -EINVAL;
2863 
2864 	/*
2865 	 * If the parent directory is the root directory and RDT
2866 	 * allocation is supported, add a control and monitoring
2867 	 * subdirectory
2868 	 */
2869 	if (rdt_alloc_capable && parent_kn == rdtgroup_default.kn)
2870 		return rdtgroup_mkdir_ctrl_mon(parent_kn, parent_kn, name, mode);
2871 
2872 	/*
2873 	 * If RDT monitoring is supported and the parent directory is a valid
2874 	 * "mon_groups" directory, add a monitoring subdirectory.
2875 	 */
2876 	if (rdt_mon_capable && is_mon_groups(parent_kn, name))
2877 		return rdtgroup_mkdir_mon(parent_kn, parent_kn->parent, name, mode);
2878 
2879 	return -EPERM;
2880 }
2881 
2882 static int rdtgroup_rmdir_mon(struct kernfs_node *kn, struct rdtgroup *rdtgrp,
2883 			      cpumask_var_t tmpmask)
2884 {
2885 	struct rdtgroup *prdtgrp = rdtgrp->mon.parent;
2886 	int cpu;
2887 
2888 	/* Give any tasks back to the parent group */
2889 	rdt_move_group_tasks(rdtgrp, prdtgrp, tmpmask);
2890 
2891 	/* Update per cpu rmid of the moved CPUs first */
2892 	for_each_cpu(cpu, &rdtgrp->cpu_mask)
2893 		per_cpu(pqr_state.default_rmid, cpu) = prdtgrp->mon.rmid;
2894 	/*
2895 	 * Update the MSR on moved CPUs and CPUs which have moved
2896 	 * task running on them.
2897 	 */
2898 	cpumask_or(tmpmask, tmpmask, &rdtgrp->cpu_mask);
2899 	update_closid_rmid(tmpmask, NULL);
2900 
2901 	rdtgrp->flags = RDT_DELETED;
2902 	free_rmid(rdtgrp->mon.rmid);
2903 
2904 	/*
2905 	 * Remove the rdtgrp from the parent ctrl_mon group's list
2906 	 */
2907 	WARN_ON(list_empty(&prdtgrp->mon.crdtgrp_list));
2908 	list_del(&rdtgrp->mon.crdtgrp_list);
2909 
2910 	/*
2911 	 * one extra hold on this, will drop when we kfree(rdtgrp)
2912 	 * in rdtgroup_kn_unlock()
2913 	 */
2914 	kernfs_get(kn);
2915 	kernfs_remove(rdtgrp->kn);
2916 
2917 	return 0;
2918 }
2919 
2920 static int rdtgroup_ctrl_remove(struct kernfs_node *kn,
2921 				struct rdtgroup *rdtgrp)
2922 {
2923 	rdtgrp->flags = RDT_DELETED;
2924 	list_del(&rdtgrp->rdtgroup_list);
2925 
2926 	/*
2927 	 * one extra hold on this, will drop when we kfree(rdtgrp)
2928 	 * in rdtgroup_kn_unlock()
2929 	 */
2930 	kernfs_get(kn);
2931 	kernfs_remove(rdtgrp->kn);
2932 	return 0;
2933 }
2934 
2935 static int rdtgroup_rmdir_ctrl(struct kernfs_node *kn, struct rdtgroup *rdtgrp,
2936 			       cpumask_var_t tmpmask)
2937 {
2938 	int cpu;
2939 
2940 	/* Give any tasks back to the default group */
2941 	rdt_move_group_tasks(rdtgrp, &rdtgroup_default, tmpmask);
2942 
2943 	/* Give any CPUs back to the default group */
2944 	cpumask_or(&rdtgroup_default.cpu_mask,
2945 		   &rdtgroup_default.cpu_mask, &rdtgrp->cpu_mask);
2946 
2947 	/* Update per cpu closid and rmid of the moved CPUs first */
2948 	for_each_cpu(cpu, &rdtgrp->cpu_mask) {
2949 		per_cpu(pqr_state.default_closid, cpu) = rdtgroup_default.closid;
2950 		per_cpu(pqr_state.default_rmid, cpu) = rdtgroup_default.mon.rmid;
2951 	}
2952 
2953 	/*
2954 	 * Update the MSR on moved CPUs and CPUs which have moved
2955 	 * task running on them.
2956 	 */
2957 	cpumask_or(tmpmask, tmpmask, &rdtgrp->cpu_mask);
2958 	update_closid_rmid(tmpmask, NULL);
2959 
2960 	closid_free(rdtgrp->closid);
2961 	free_rmid(rdtgrp->mon.rmid);
2962 
2963 	/*
2964 	 * Free all the child monitor group rmids.
2965 	 */
2966 	free_all_child_rdtgrp(rdtgrp);
2967 
2968 	rdtgroup_ctrl_remove(kn, rdtgrp);
2969 
2970 	return 0;
2971 }
2972 
2973 static int rdtgroup_rmdir(struct kernfs_node *kn)
2974 {
2975 	struct kernfs_node *parent_kn = kn->parent;
2976 	struct rdtgroup *rdtgrp;
2977 	cpumask_var_t tmpmask;
2978 	int ret = 0;
2979 
2980 	if (!zalloc_cpumask_var(&tmpmask, GFP_KERNEL))
2981 		return -ENOMEM;
2982 
2983 	rdtgrp = rdtgroup_kn_lock_live(kn);
2984 	if (!rdtgrp) {
2985 		ret = -EPERM;
2986 		goto out;
2987 	}
2988 
2989 	/*
2990 	 * If the rdtgroup is a ctrl_mon group and parent directory
2991 	 * is the root directory, remove the ctrl_mon group.
2992 	 *
2993 	 * If the rdtgroup is a mon group and parent directory
2994 	 * is a valid "mon_groups" directory, remove the mon group.
2995 	 */
2996 	if (rdtgrp->type == RDTCTRL_GROUP && parent_kn == rdtgroup_default.kn) {
2997 		if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP ||
2998 		    rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED) {
2999 			ret = rdtgroup_ctrl_remove(kn, rdtgrp);
3000 		} else {
3001 			ret = rdtgroup_rmdir_ctrl(kn, rdtgrp, tmpmask);
3002 		}
3003 	} else if (rdtgrp->type == RDTMON_GROUP &&
3004 		 is_mon_groups(parent_kn, kn->name)) {
3005 		ret = rdtgroup_rmdir_mon(kn, rdtgrp, tmpmask);
3006 	} else {
3007 		ret = -EPERM;
3008 	}
3009 
3010 out:
3011 	rdtgroup_kn_unlock(kn);
3012 	free_cpumask_var(tmpmask);
3013 	return ret;
3014 }
3015 
3016 static int rdtgroup_show_options(struct seq_file *seq, struct kernfs_root *kf)
3017 {
3018 	if (rdt_resources_all[RDT_RESOURCE_L3DATA].alloc_enabled)
3019 		seq_puts(seq, ",cdp");
3020 
3021 	if (rdt_resources_all[RDT_RESOURCE_L2DATA].alloc_enabled)
3022 		seq_puts(seq, ",cdpl2");
3023 
3024 	if (is_mba_sc(&rdt_resources_all[RDT_RESOURCE_MBA]))
3025 		seq_puts(seq, ",mba_MBps");
3026 
3027 	return 0;
3028 }
3029 
3030 static struct kernfs_syscall_ops rdtgroup_kf_syscall_ops = {
3031 	.mkdir		= rdtgroup_mkdir,
3032 	.rmdir		= rdtgroup_rmdir,
3033 	.show_options	= rdtgroup_show_options,
3034 };
3035 
3036 static int __init rdtgroup_setup_root(void)
3037 {
3038 	int ret;
3039 
3040 	rdt_root = kernfs_create_root(&rdtgroup_kf_syscall_ops,
3041 				      KERNFS_ROOT_CREATE_DEACTIVATED |
3042 				      KERNFS_ROOT_EXTRA_OPEN_PERM_CHECK,
3043 				      &rdtgroup_default);
3044 	if (IS_ERR(rdt_root))
3045 		return PTR_ERR(rdt_root);
3046 
3047 	mutex_lock(&rdtgroup_mutex);
3048 
3049 	rdtgroup_default.closid = 0;
3050 	rdtgroup_default.mon.rmid = 0;
3051 	rdtgroup_default.type = RDTCTRL_GROUP;
3052 	INIT_LIST_HEAD(&rdtgroup_default.mon.crdtgrp_list);
3053 
3054 	list_add(&rdtgroup_default.rdtgroup_list, &rdt_all_groups);
3055 
3056 	ret = rdtgroup_add_files(rdt_root->kn, RF_CTRL_BASE);
3057 	if (ret) {
3058 		kernfs_destroy_root(rdt_root);
3059 		goto out;
3060 	}
3061 
3062 	rdtgroup_default.kn = rdt_root->kn;
3063 	kernfs_activate(rdtgroup_default.kn);
3064 
3065 out:
3066 	mutex_unlock(&rdtgroup_mutex);
3067 
3068 	return ret;
3069 }
3070 
3071 /*
3072  * rdtgroup_init - rdtgroup initialization
3073  *
3074  * Setup resctrl file system including set up root, create mount point,
3075  * register rdtgroup filesystem, and initialize files under root directory.
3076  *
3077  * Return: 0 on success or -errno
3078  */
3079 int __init rdtgroup_init(void)
3080 {
3081 	int ret = 0;
3082 
3083 	seq_buf_init(&last_cmd_status, last_cmd_status_buf,
3084 		     sizeof(last_cmd_status_buf));
3085 
3086 	ret = rdtgroup_setup_root();
3087 	if (ret)
3088 		return ret;
3089 
3090 	ret = sysfs_create_mount_point(fs_kobj, "resctrl");
3091 	if (ret)
3092 		goto cleanup_root;
3093 
3094 	ret = register_filesystem(&rdt_fs_type);
3095 	if (ret)
3096 		goto cleanup_mountpoint;
3097 
3098 	/*
3099 	 * Adding the resctrl debugfs directory here may not be ideal since
3100 	 * it would let the resctrl debugfs directory appear on the debugfs
3101 	 * filesystem before the resctrl filesystem is mounted.
3102 	 * It may also be ok since that would enable debugging of RDT before
3103 	 * resctrl is mounted.
3104 	 * The reason why the debugfs directory is created here and not in
3105 	 * rdt_mount() is because rdt_mount() takes rdtgroup_mutex and
3106 	 * during the debugfs directory creation also &sb->s_type->i_mutex_key
3107 	 * (the lockdep class of inode->i_rwsem). Other filesystem
3108 	 * interactions (eg. SyS_getdents) have the lock ordering:
3109 	 * &sb->s_type->i_mutex_key --> &mm->mmap_sem
3110 	 * During mmap(), called with &mm->mmap_sem, the rdtgroup_mutex
3111 	 * is taken, thus creating dependency:
3112 	 * &mm->mmap_sem --> rdtgroup_mutex for the latter that can cause
3113 	 * issues considering the other two lock dependencies.
3114 	 * By creating the debugfs directory here we avoid a dependency
3115 	 * that may cause deadlock (even though file operations cannot
3116 	 * occur until the filesystem is mounted, but I do not know how to
3117 	 * tell lockdep that).
3118 	 */
3119 	debugfs_resctrl = debugfs_create_dir("resctrl", NULL);
3120 
3121 	return 0;
3122 
3123 cleanup_mountpoint:
3124 	sysfs_remove_mount_point(fs_kobj, "resctrl");
3125 cleanup_root:
3126 	kernfs_destroy_root(rdt_root);
3127 
3128 	return ret;
3129 }
3130 
3131 void __exit rdtgroup_exit(void)
3132 {
3133 	debugfs_remove_recursive(debugfs_resctrl);
3134 	unregister_filesystem(&rdt_fs_type);
3135 	sysfs_remove_mount_point(fs_kobj, "resctrl");
3136 	kernfs_destroy_root(rdt_root);
3137 }
3138