1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * User interface for Resource Allocation in Resource Director Technology(RDT) 4 * 5 * Copyright (C) 2016 Intel Corporation 6 * 7 * Author: Fenghua Yu <fenghua.yu@intel.com> 8 * 9 * More information about RDT be found in the Intel (R) x86 Architecture 10 * Software Developer Manual. 11 */ 12 13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 14 15 #include <linux/cacheinfo.h> 16 #include <linux/cpu.h> 17 #include <linux/debugfs.h> 18 #include <linux/fs.h> 19 #include <linux/fs_parser.h> 20 #include <linux/sysfs.h> 21 #include <linux/kernfs.h> 22 #include <linux/seq_buf.h> 23 #include <linux/seq_file.h> 24 #include <linux/sched/signal.h> 25 #include <linux/sched/task.h> 26 #include <linux/slab.h> 27 #include <linux/task_work.h> 28 #include <linux/user_namespace.h> 29 30 #include <uapi/linux/magic.h> 31 32 #include <asm/resctrl.h> 33 #include "internal.h" 34 35 DEFINE_STATIC_KEY_FALSE(rdt_enable_key); 36 DEFINE_STATIC_KEY_FALSE(rdt_mon_enable_key); 37 DEFINE_STATIC_KEY_FALSE(rdt_alloc_enable_key); 38 static struct kernfs_root *rdt_root; 39 struct rdtgroup rdtgroup_default; 40 LIST_HEAD(rdt_all_groups); 41 42 /* list of entries for the schemata file */ 43 LIST_HEAD(resctrl_schema_all); 44 45 /* Kernel fs node for "info" directory under root */ 46 static struct kernfs_node *kn_info; 47 48 /* Kernel fs node for "mon_groups" directory under root */ 49 static struct kernfs_node *kn_mongrp; 50 51 /* Kernel fs node for "mon_data" directory under root */ 52 static struct kernfs_node *kn_mondata; 53 54 static struct seq_buf last_cmd_status; 55 static char last_cmd_status_buf[512]; 56 57 struct dentry *debugfs_resctrl; 58 59 void rdt_last_cmd_clear(void) 60 { 61 lockdep_assert_held(&rdtgroup_mutex); 62 seq_buf_clear(&last_cmd_status); 63 } 64 65 void rdt_last_cmd_puts(const char *s) 66 { 67 lockdep_assert_held(&rdtgroup_mutex); 68 seq_buf_puts(&last_cmd_status, s); 69 } 70 71 void rdt_last_cmd_printf(const char *fmt, ...) 72 { 73 va_list ap; 74 75 va_start(ap, fmt); 76 lockdep_assert_held(&rdtgroup_mutex); 77 seq_buf_vprintf(&last_cmd_status, fmt, ap); 78 va_end(ap); 79 } 80 81 /* 82 * Trivial allocator for CLOSIDs. Since h/w only supports a small number, 83 * we can keep a bitmap of free CLOSIDs in a single integer. 84 * 85 * Using a global CLOSID across all resources has some advantages and 86 * some drawbacks: 87 * + We can simply set "current->closid" to assign a task to a resource 88 * group. 89 * + Context switch code can avoid extra memory references deciding which 90 * CLOSID to load into the PQR_ASSOC MSR 91 * - We give up some options in configuring resource groups across multi-socket 92 * systems. 93 * - Our choices on how to configure each resource become progressively more 94 * limited as the number of resources grows. 95 */ 96 static int closid_free_map; 97 static int closid_free_map_len; 98 99 int closids_supported(void) 100 { 101 return closid_free_map_len; 102 } 103 104 static void closid_init(void) 105 { 106 struct resctrl_schema *s; 107 u32 rdt_min_closid = 32; 108 109 /* Compute rdt_min_closid across all resources */ 110 list_for_each_entry(s, &resctrl_schema_all, list) 111 rdt_min_closid = min(rdt_min_closid, s->num_closid); 112 113 closid_free_map = BIT_MASK(rdt_min_closid) - 1; 114 115 /* CLOSID 0 is always reserved for the default group */ 116 closid_free_map &= ~1; 117 closid_free_map_len = rdt_min_closid; 118 } 119 120 static int closid_alloc(void) 121 { 122 u32 closid = ffs(closid_free_map); 123 124 if (closid == 0) 125 return -ENOSPC; 126 closid--; 127 closid_free_map &= ~(1 << closid); 128 129 return closid; 130 } 131 132 void closid_free(int closid) 133 { 134 closid_free_map |= 1 << closid; 135 } 136 137 /** 138 * closid_allocated - test if provided closid is in use 139 * @closid: closid to be tested 140 * 141 * Return: true if @closid is currently associated with a resource group, 142 * false if @closid is free 143 */ 144 static bool closid_allocated(unsigned int closid) 145 { 146 return (closid_free_map & (1 << closid)) == 0; 147 } 148 149 /** 150 * rdtgroup_mode_by_closid - Return mode of resource group with closid 151 * @closid: closid if the resource group 152 * 153 * Each resource group is associated with a @closid. Here the mode 154 * of a resource group can be queried by searching for it using its closid. 155 * 156 * Return: mode as &enum rdtgrp_mode of resource group with closid @closid 157 */ 158 enum rdtgrp_mode rdtgroup_mode_by_closid(int closid) 159 { 160 struct rdtgroup *rdtgrp; 161 162 list_for_each_entry(rdtgrp, &rdt_all_groups, rdtgroup_list) { 163 if (rdtgrp->closid == closid) 164 return rdtgrp->mode; 165 } 166 167 return RDT_NUM_MODES; 168 } 169 170 static const char * const rdt_mode_str[] = { 171 [RDT_MODE_SHAREABLE] = "shareable", 172 [RDT_MODE_EXCLUSIVE] = "exclusive", 173 [RDT_MODE_PSEUDO_LOCKSETUP] = "pseudo-locksetup", 174 [RDT_MODE_PSEUDO_LOCKED] = "pseudo-locked", 175 }; 176 177 /** 178 * rdtgroup_mode_str - Return the string representation of mode 179 * @mode: the resource group mode as &enum rdtgroup_mode 180 * 181 * Return: string representation of valid mode, "unknown" otherwise 182 */ 183 static const char *rdtgroup_mode_str(enum rdtgrp_mode mode) 184 { 185 if (mode < RDT_MODE_SHAREABLE || mode >= RDT_NUM_MODES) 186 return "unknown"; 187 188 return rdt_mode_str[mode]; 189 } 190 191 /* set uid and gid of rdtgroup dirs and files to that of the creator */ 192 static int rdtgroup_kn_set_ugid(struct kernfs_node *kn) 193 { 194 struct iattr iattr = { .ia_valid = ATTR_UID | ATTR_GID, 195 .ia_uid = current_fsuid(), 196 .ia_gid = current_fsgid(), }; 197 198 if (uid_eq(iattr.ia_uid, GLOBAL_ROOT_UID) && 199 gid_eq(iattr.ia_gid, GLOBAL_ROOT_GID)) 200 return 0; 201 202 return kernfs_setattr(kn, &iattr); 203 } 204 205 static int rdtgroup_add_file(struct kernfs_node *parent_kn, struct rftype *rft) 206 { 207 struct kernfs_node *kn; 208 int ret; 209 210 kn = __kernfs_create_file(parent_kn, rft->name, rft->mode, 211 GLOBAL_ROOT_UID, GLOBAL_ROOT_GID, 212 0, rft->kf_ops, rft, NULL, NULL); 213 if (IS_ERR(kn)) 214 return PTR_ERR(kn); 215 216 ret = rdtgroup_kn_set_ugid(kn); 217 if (ret) { 218 kernfs_remove(kn); 219 return ret; 220 } 221 222 return 0; 223 } 224 225 static int rdtgroup_seqfile_show(struct seq_file *m, void *arg) 226 { 227 struct kernfs_open_file *of = m->private; 228 struct rftype *rft = of->kn->priv; 229 230 if (rft->seq_show) 231 return rft->seq_show(of, m, arg); 232 return 0; 233 } 234 235 static ssize_t rdtgroup_file_write(struct kernfs_open_file *of, char *buf, 236 size_t nbytes, loff_t off) 237 { 238 struct rftype *rft = of->kn->priv; 239 240 if (rft->write) 241 return rft->write(of, buf, nbytes, off); 242 243 return -EINVAL; 244 } 245 246 static const struct kernfs_ops rdtgroup_kf_single_ops = { 247 .atomic_write_len = PAGE_SIZE, 248 .write = rdtgroup_file_write, 249 .seq_show = rdtgroup_seqfile_show, 250 }; 251 252 static const struct kernfs_ops kf_mondata_ops = { 253 .atomic_write_len = PAGE_SIZE, 254 .seq_show = rdtgroup_mondata_show, 255 }; 256 257 static bool is_cpu_list(struct kernfs_open_file *of) 258 { 259 struct rftype *rft = of->kn->priv; 260 261 return rft->flags & RFTYPE_FLAGS_CPUS_LIST; 262 } 263 264 static int rdtgroup_cpus_show(struct kernfs_open_file *of, 265 struct seq_file *s, void *v) 266 { 267 struct rdtgroup *rdtgrp; 268 struct cpumask *mask; 269 int ret = 0; 270 271 rdtgrp = rdtgroup_kn_lock_live(of->kn); 272 273 if (rdtgrp) { 274 if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED) { 275 if (!rdtgrp->plr->d) { 276 rdt_last_cmd_clear(); 277 rdt_last_cmd_puts("Cache domain offline\n"); 278 ret = -ENODEV; 279 } else { 280 mask = &rdtgrp->plr->d->cpu_mask; 281 seq_printf(s, is_cpu_list(of) ? 282 "%*pbl\n" : "%*pb\n", 283 cpumask_pr_args(mask)); 284 } 285 } else { 286 seq_printf(s, is_cpu_list(of) ? "%*pbl\n" : "%*pb\n", 287 cpumask_pr_args(&rdtgrp->cpu_mask)); 288 } 289 } else { 290 ret = -ENOENT; 291 } 292 rdtgroup_kn_unlock(of->kn); 293 294 return ret; 295 } 296 297 /* 298 * This is safe against resctrl_sched_in() called from __switch_to() 299 * because __switch_to() is executed with interrupts disabled. A local call 300 * from update_closid_rmid() is protected against __switch_to() because 301 * preemption is disabled. 302 */ 303 static void update_cpu_closid_rmid(void *info) 304 { 305 struct rdtgroup *r = info; 306 307 if (r) { 308 this_cpu_write(pqr_state.default_closid, r->closid); 309 this_cpu_write(pqr_state.default_rmid, r->mon.rmid); 310 } 311 312 /* 313 * We cannot unconditionally write the MSR because the current 314 * executing task might have its own closid selected. Just reuse 315 * the context switch code. 316 */ 317 resctrl_sched_in(); 318 } 319 320 /* 321 * Update the PGR_ASSOC MSR on all cpus in @cpu_mask, 322 * 323 * Per task closids/rmids must have been set up before calling this function. 324 */ 325 static void 326 update_closid_rmid(const struct cpumask *cpu_mask, struct rdtgroup *r) 327 { 328 int cpu = get_cpu(); 329 330 if (cpumask_test_cpu(cpu, cpu_mask)) 331 update_cpu_closid_rmid(r); 332 smp_call_function_many(cpu_mask, update_cpu_closid_rmid, r, 1); 333 put_cpu(); 334 } 335 336 static int cpus_mon_write(struct rdtgroup *rdtgrp, cpumask_var_t newmask, 337 cpumask_var_t tmpmask) 338 { 339 struct rdtgroup *prgrp = rdtgrp->mon.parent, *crgrp; 340 struct list_head *head; 341 342 /* Check whether cpus belong to parent ctrl group */ 343 cpumask_andnot(tmpmask, newmask, &prgrp->cpu_mask); 344 if (!cpumask_empty(tmpmask)) { 345 rdt_last_cmd_puts("Can only add CPUs to mongroup that belong to parent\n"); 346 return -EINVAL; 347 } 348 349 /* Check whether cpus are dropped from this group */ 350 cpumask_andnot(tmpmask, &rdtgrp->cpu_mask, newmask); 351 if (!cpumask_empty(tmpmask)) { 352 /* Give any dropped cpus to parent rdtgroup */ 353 cpumask_or(&prgrp->cpu_mask, &prgrp->cpu_mask, tmpmask); 354 update_closid_rmid(tmpmask, prgrp); 355 } 356 357 /* 358 * If we added cpus, remove them from previous group that owned them 359 * and update per-cpu rmid 360 */ 361 cpumask_andnot(tmpmask, newmask, &rdtgrp->cpu_mask); 362 if (!cpumask_empty(tmpmask)) { 363 head = &prgrp->mon.crdtgrp_list; 364 list_for_each_entry(crgrp, head, mon.crdtgrp_list) { 365 if (crgrp == rdtgrp) 366 continue; 367 cpumask_andnot(&crgrp->cpu_mask, &crgrp->cpu_mask, 368 tmpmask); 369 } 370 update_closid_rmid(tmpmask, rdtgrp); 371 } 372 373 /* Done pushing/pulling - update this group with new mask */ 374 cpumask_copy(&rdtgrp->cpu_mask, newmask); 375 376 return 0; 377 } 378 379 static void cpumask_rdtgrp_clear(struct rdtgroup *r, struct cpumask *m) 380 { 381 struct rdtgroup *crgrp; 382 383 cpumask_andnot(&r->cpu_mask, &r->cpu_mask, m); 384 /* update the child mon group masks as well*/ 385 list_for_each_entry(crgrp, &r->mon.crdtgrp_list, mon.crdtgrp_list) 386 cpumask_and(&crgrp->cpu_mask, &r->cpu_mask, &crgrp->cpu_mask); 387 } 388 389 static int cpus_ctrl_write(struct rdtgroup *rdtgrp, cpumask_var_t newmask, 390 cpumask_var_t tmpmask, cpumask_var_t tmpmask1) 391 { 392 struct rdtgroup *r, *crgrp; 393 struct list_head *head; 394 395 /* Check whether cpus are dropped from this group */ 396 cpumask_andnot(tmpmask, &rdtgrp->cpu_mask, newmask); 397 if (!cpumask_empty(tmpmask)) { 398 /* Can't drop from default group */ 399 if (rdtgrp == &rdtgroup_default) { 400 rdt_last_cmd_puts("Can't drop CPUs from default group\n"); 401 return -EINVAL; 402 } 403 404 /* Give any dropped cpus to rdtgroup_default */ 405 cpumask_or(&rdtgroup_default.cpu_mask, 406 &rdtgroup_default.cpu_mask, tmpmask); 407 update_closid_rmid(tmpmask, &rdtgroup_default); 408 } 409 410 /* 411 * If we added cpus, remove them from previous group and 412 * the prev group's child groups that owned them 413 * and update per-cpu closid/rmid. 414 */ 415 cpumask_andnot(tmpmask, newmask, &rdtgrp->cpu_mask); 416 if (!cpumask_empty(tmpmask)) { 417 list_for_each_entry(r, &rdt_all_groups, rdtgroup_list) { 418 if (r == rdtgrp) 419 continue; 420 cpumask_and(tmpmask1, &r->cpu_mask, tmpmask); 421 if (!cpumask_empty(tmpmask1)) 422 cpumask_rdtgrp_clear(r, tmpmask1); 423 } 424 update_closid_rmid(tmpmask, rdtgrp); 425 } 426 427 /* Done pushing/pulling - update this group with new mask */ 428 cpumask_copy(&rdtgrp->cpu_mask, newmask); 429 430 /* 431 * Clear child mon group masks since there is a new parent mask 432 * now and update the rmid for the cpus the child lost. 433 */ 434 head = &rdtgrp->mon.crdtgrp_list; 435 list_for_each_entry(crgrp, head, mon.crdtgrp_list) { 436 cpumask_and(tmpmask, &rdtgrp->cpu_mask, &crgrp->cpu_mask); 437 update_closid_rmid(tmpmask, rdtgrp); 438 cpumask_clear(&crgrp->cpu_mask); 439 } 440 441 return 0; 442 } 443 444 static ssize_t rdtgroup_cpus_write(struct kernfs_open_file *of, 445 char *buf, size_t nbytes, loff_t off) 446 { 447 cpumask_var_t tmpmask, newmask, tmpmask1; 448 struct rdtgroup *rdtgrp; 449 int ret; 450 451 if (!buf) 452 return -EINVAL; 453 454 if (!zalloc_cpumask_var(&tmpmask, GFP_KERNEL)) 455 return -ENOMEM; 456 if (!zalloc_cpumask_var(&newmask, GFP_KERNEL)) { 457 free_cpumask_var(tmpmask); 458 return -ENOMEM; 459 } 460 if (!zalloc_cpumask_var(&tmpmask1, GFP_KERNEL)) { 461 free_cpumask_var(tmpmask); 462 free_cpumask_var(newmask); 463 return -ENOMEM; 464 } 465 466 rdtgrp = rdtgroup_kn_lock_live(of->kn); 467 if (!rdtgrp) { 468 ret = -ENOENT; 469 goto unlock; 470 } 471 472 if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED || 473 rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP) { 474 ret = -EINVAL; 475 rdt_last_cmd_puts("Pseudo-locking in progress\n"); 476 goto unlock; 477 } 478 479 if (is_cpu_list(of)) 480 ret = cpulist_parse(buf, newmask); 481 else 482 ret = cpumask_parse(buf, newmask); 483 484 if (ret) { 485 rdt_last_cmd_puts("Bad CPU list/mask\n"); 486 goto unlock; 487 } 488 489 /* check that user didn't specify any offline cpus */ 490 cpumask_andnot(tmpmask, newmask, cpu_online_mask); 491 if (!cpumask_empty(tmpmask)) { 492 ret = -EINVAL; 493 rdt_last_cmd_puts("Can only assign online CPUs\n"); 494 goto unlock; 495 } 496 497 if (rdtgrp->type == RDTCTRL_GROUP) 498 ret = cpus_ctrl_write(rdtgrp, newmask, tmpmask, tmpmask1); 499 else if (rdtgrp->type == RDTMON_GROUP) 500 ret = cpus_mon_write(rdtgrp, newmask, tmpmask); 501 else 502 ret = -EINVAL; 503 504 unlock: 505 rdtgroup_kn_unlock(of->kn); 506 free_cpumask_var(tmpmask); 507 free_cpumask_var(newmask); 508 free_cpumask_var(tmpmask1); 509 510 return ret ?: nbytes; 511 } 512 513 /** 514 * rdtgroup_remove - the helper to remove resource group safely 515 * @rdtgrp: resource group to remove 516 * 517 * On resource group creation via a mkdir, an extra kernfs_node reference is 518 * taken to ensure that the rdtgroup structure remains accessible for the 519 * rdtgroup_kn_unlock() calls where it is removed. 520 * 521 * Drop the extra reference here, then free the rdtgroup structure. 522 * 523 * Return: void 524 */ 525 static void rdtgroup_remove(struct rdtgroup *rdtgrp) 526 { 527 kernfs_put(rdtgrp->kn); 528 kfree(rdtgrp); 529 } 530 531 static void _update_task_closid_rmid(void *task) 532 { 533 /* 534 * If the task is still current on this CPU, update PQR_ASSOC MSR. 535 * Otherwise, the MSR is updated when the task is scheduled in. 536 */ 537 if (task == current) 538 resctrl_sched_in(); 539 } 540 541 static void update_task_closid_rmid(struct task_struct *t) 542 { 543 if (IS_ENABLED(CONFIG_SMP) && task_curr(t)) 544 smp_call_function_single(task_cpu(t), _update_task_closid_rmid, t, 1); 545 else 546 _update_task_closid_rmid(t); 547 } 548 549 static int __rdtgroup_move_task(struct task_struct *tsk, 550 struct rdtgroup *rdtgrp) 551 { 552 /* If the task is already in rdtgrp, no need to move the task. */ 553 if ((rdtgrp->type == RDTCTRL_GROUP && tsk->closid == rdtgrp->closid && 554 tsk->rmid == rdtgrp->mon.rmid) || 555 (rdtgrp->type == RDTMON_GROUP && tsk->rmid == rdtgrp->mon.rmid && 556 tsk->closid == rdtgrp->mon.parent->closid)) 557 return 0; 558 559 /* 560 * Set the task's closid/rmid before the PQR_ASSOC MSR can be 561 * updated by them. 562 * 563 * For ctrl_mon groups, move both closid and rmid. 564 * For monitor groups, can move the tasks only from 565 * their parent CTRL group. 566 */ 567 568 if (rdtgrp->type == RDTCTRL_GROUP) { 569 WRITE_ONCE(tsk->closid, rdtgrp->closid); 570 WRITE_ONCE(tsk->rmid, rdtgrp->mon.rmid); 571 } else if (rdtgrp->type == RDTMON_GROUP) { 572 if (rdtgrp->mon.parent->closid == tsk->closid) { 573 WRITE_ONCE(tsk->rmid, rdtgrp->mon.rmid); 574 } else { 575 rdt_last_cmd_puts("Can't move task to different control group\n"); 576 return -EINVAL; 577 } 578 } 579 580 /* 581 * Ensure the task's closid and rmid are written before determining if 582 * the task is current that will decide if it will be interrupted. 583 */ 584 barrier(); 585 586 /* 587 * By now, the task's closid and rmid are set. If the task is current 588 * on a CPU, the PQR_ASSOC MSR needs to be updated to make the resource 589 * group go into effect. If the task is not current, the MSR will be 590 * updated when the task is scheduled in. 591 */ 592 update_task_closid_rmid(tsk); 593 594 return 0; 595 } 596 597 static bool is_closid_match(struct task_struct *t, struct rdtgroup *r) 598 { 599 return (rdt_alloc_capable && 600 (r->type == RDTCTRL_GROUP) && (t->closid == r->closid)); 601 } 602 603 static bool is_rmid_match(struct task_struct *t, struct rdtgroup *r) 604 { 605 return (rdt_mon_capable && 606 (r->type == RDTMON_GROUP) && (t->rmid == r->mon.rmid)); 607 } 608 609 /** 610 * rdtgroup_tasks_assigned - Test if tasks have been assigned to resource group 611 * @r: Resource group 612 * 613 * Return: 1 if tasks have been assigned to @r, 0 otherwise 614 */ 615 int rdtgroup_tasks_assigned(struct rdtgroup *r) 616 { 617 struct task_struct *p, *t; 618 int ret = 0; 619 620 lockdep_assert_held(&rdtgroup_mutex); 621 622 rcu_read_lock(); 623 for_each_process_thread(p, t) { 624 if (is_closid_match(t, r) || is_rmid_match(t, r)) { 625 ret = 1; 626 break; 627 } 628 } 629 rcu_read_unlock(); 630 631 return ret; 632 } 633 634 static int rdtgroup_task_write_permission(struct task_struct *task, 635 struct kernfs_open_file *of) 636 { 637 const struct cred *tcred = get_task_cred(task); 638 const struct cred *cred = current_cred(); 639 int ret = 0; 640 641 /* 642 * Even if we're attaching all tasks in the thread group, we only 643 * need to check permissions on one of them. 644 */ 645 if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) && 646 !uid_eq(cred->euid, tcred->uid) && 647 !uid_eq(cred->euid, tcred->suid)) { 648 rdt_last_cmd_printf("No permission to move task %d\n", task->pid); 649 ret = -EPERM; 650 } 651 652 put_cred(tcred); 653 return ret; 654 } 655 656 static int rdtgroup_move_task(pid_t pid, struct rdtgroup *rdtgrp, 657 struct kernfs_open_file *of) 658 { 659 struct task_struct *tsk; 660 int ret; 661 662 rcu_read_lock(); 663 if (pid) { 664 tsk = find_task_by_vpid(pid); 665 if (!tsk) { 666 rcu_read_unlock(); 667 rdt_last_cmd_printf("No task %d\n", pid); 668 return -ESRCH; 669 } 670 } else { 671 tsk = current; 672 } 673 674 get_task_struct(tsk); 675 rcu_read_unlock(); 676 677 ret = rdtgroup_task_write_permission(tsk, of); 678 if (!ret) 679 ret = __rdtgroup_move_task(tsk, rdtgrp); 680 681 put_task_struct(tsk); 682 return ret; 683 } 684 685 static ssize_t rdtgroup_tasks_write(struct kernfs_open_file *of, 686 char *buf, size_t nbytes, loff_t off) 687 { 688 struct rdtgroup *rdtgrp; 689 int ret = 0; 690 pid_t pid; 691 692 if (kstrtoint(strstrip(buf), 0, &pid) || pid < 0) 693 return -EINVAL; 694 rdtgrp = rdtgroup_kn_lock_live(of->kn); 695 if (!rdtgrp) { 696 rdtgroup_kn_unlock(of->kn); 697 return -ENOENT; 698 } 699 rdt_last_cmd_clear(); 700 701 if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED || 702 rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP) { 703 ret = -EINVAL; 704 rdt_last_cmd_puts("Pseudo-locking in progress\n"); 705 goto unlock; 706 } 707 708 ret = rdtgroup_move_task(pid, rdtgrp, of); 709 710 unlock: 711 rdtgroup_kn_unlock(of->kn); 712 713 return ret ?: nbytes; 714 } 715 716 static void show_rdt_tasks(struct rdtgroup *r, struct seq_file *s) 717 { 718 struct task_struct *p, *t; 719 720 rcu_read_lock(); 721 for_each_process_thread(p, t) { 722 if (is_closid_match(t, r) || is_rmid_match(t, r)) 723 seq_printf(s, "%d\n", t->pid); 724 } 725 rcu_read_unlock(); 726 } 727 728 static int rdtgroup_tasks_show(struct kernfs_open_file *of, 729 struct seq_file *s, void *v) 730 { 731 struct rdtgroup *rdtgrp; 732 int ret = 0; 733 734 rdtgrp = rdtgroup_kn_lock_live(of->kn); 735 if (rdtgrp) 736 show_rdt_tasks(rdtgrp, s); 737 else 738 ret = -ENOENT; 739 rdtgroup_kn_unlock(of->kn); 740 741 return ret; 742 } 743 744 #ifdef CONFIG_PROC_CPU_RESCTRL 745 746 /* 747 * A task can only be part of one resctrl control group and of one monitor 748 * group which is associated to that control group. 749 * 750 * 1) res: 751 * mon: 752 * 753 * resctrl is not available. 754 * 755 * 2) res:/ 756 * mon: 757 * 758 * Task is part of the root resctrl control group, and it is not associated 759 * to any monitor group. 760 * 761 * 3) res:/ 762 * mon:mon0 763 * 764 * Task is part of the root resctrl control group and monitor group mon0. 765 * 766 * 4) res:group0 767 * mon: 768 * 769 * Task is part of resctrl control group group0, and it is not associated 770 * to any monitor group. 771 * 772 * 5) res:group0 773 * mon:mon1 774 * 775 * Task is part of resctrl control group group0 and monitor group mon1. 776 */ 777 int proc_resctrl_show(struct seq_file *s, struct pid_namespace *ns, 778 struct pid *pid, struct task_struct *tsk) 779 { 780 struct rdtgroup *rdtg; 781 int ret = 0; 782 783 mutex_lock(&rdtgroup_mutex); 784 785 /* Return empty if resctrl has not been mounted. */ 786 if (!static_branch_unlikely(&rdt_enable_key)) { 787 seq_puts(s, "res:\nmon:\n"); 788 goto unlock; 789 } 790 791 list_for_each_entry(rdtg, &rdt_all_groups, rdtgroup_list) { 792 struct rdtgroup *crg; 793 794 /* 795 * Task information is only relevant for shareable 796 * and exclusive groups. 797 */ 798 if (rdtg->mode != RDT_MODE_SHAREABLE && 799 rdtg->mode != RDT_MODE_EXCLUSIVE) 800 continue; 801 802 if (rdtg->closid != tsk->closid) 803 continue; 804 805 seq_printf(s, "res:%s%s\n", (rdtg == &rdtgroup_default) ? "/" : "", 806 rdtg->kn->name); 807 seq_puts(s, "mon:"); 808 list_for_each_entry(crg, &rdtg->mon.crdtgrp_list, 809 mon.crdtgrp_list) { 810 if (tsk->rmid != crg->mon.rmid) 811 continue; 812 seq_printf(s, "%s", crg->kn->name); 813 break; 814 } 815 seq_putc(s, '\n'); 816 goto unlock; 817 } 818 /* 819 * The above search should succeed. Otherwise return 820 * with an error. 821 */ 822 ret = -ENOENT; 823 unlock: 824 mutex_unlock(&rdtgroup_mutex); 825 826 return ret; 827 } 828 #endif 829 830 static int rdt_last_cmd_status_show(struct kernfs_open_file *of, 831 struct seq_file *seq, void *v) 832 { 833 int len; 834 835 mutex_lock(&rdtgroup_mutex); 836 len = seq_buf_used(&last_cmd_status); 837 if (len) 838 seq_printf(seq, "%.*s", len, last_cmd_status_buf); 839 else 840 seq_puts(seq, "ok\n"); 841 mutex_unlock(&rdtgroup_mutex); 842 return 0; 843 } 844 845 static int rdt_num_closids_show(struct kernfs_open_file *of, 846 struct seq_file *seq, void *v) 847 { 848 struct resctrl_schema *s = of->kn->parent->priv; 849 850 seq_printf(seq, "%u\n", s->num_closid); 851 return 0; 852 } 853 854 static int rdt_default_ctrl_show(struct kernfs_open_file *of, 855 struct seq_file *seq, void *v) 856 { 857 struct resctrl_schema *s = of->kn->parent->priv; 858 struct rdt_resource *r = s->res; 859 860 seq_printf(seq, "%x\n", r->default_ctrl); 861 return 0; 862 } 863 864 static int rdt_min_cbm_bits_show(struct kernfs_open_file *of, 865 struct seq_file *seq, void *v) 866 { 867 struct resctrl_schema *s = of->kn->parent->priv; 868 struct rdt_resource *r = s->res; 869 870 seq_printf(seq, "%u\n", r->cache.min_cbm_bits); 871 return 0; 872 } 873 874 static int rdt_shareable_bits_show(struct kernfs_open_file *of, 875 struct seq_file *seq, void *v) 876 { 877 struct resctrl_schema *s = of->kn->parent->priv; 878 struct rdt_resource *r = s->res; 879 880 seq_printf(seq, "%x\n", r->cache.shareable_bits); 881 return 0; 882 } 883 884 /** 885 * rdt_bit_usage_show - Display current usage of resources 886 * 887 * A domain is a shared resource that can now be allocated differently. Here 888 * we display the current regions of the domain as an annotated bitmask. 889 * For each domain of this resource its allocation bitmask 890 * is annotated as below to indicate the current usage of the corresponding bit: 891 * 0 - currently unused 892 * X - currently available for sharing and used by software and hardware 893 * H - currently used by hardware only but available for software use 894 * S - currently used and shareable by software only 895 * E - currently used exclusively by one resource group 896 * P - currently pseudo-locked by one resource group 897 */ 898 static int rdt_bit_usage_show(struct kernfs_open_file *of, 899 struct seq_file *seq, void *v) 900 { 901 struct resctrl_schema *s = of->kn->parent->priv; 902 /* 903 * Use unsigned long even though only 32 bits are used to ensure 904 * test_bit() is used safely. 905 */ 906 unsigned long sw_shareable = 0, hw_shareable = 0; 907 unsigned long exclusive = 0, pseudo_locked = 0; 908 struct rdt_resource *r = s->res; 909 struct rdt_domain *dom; 910 int i, hwb, swb, excl, psl; 911 enum rdtgrp_mode mode; 912 bool sep = false; 913 u32 ctrl_val; 914 915 mutex_lock(&rdtgroup_mutex); 916 hw_shareable = r->cache.shareable_bits; 917 list_for_each_entry(dom, &r->domains, list) { 918 if (sep) 919 seq_putc(seq, ';'); 920 sw_shareable = 0; 921 exclusive = 0; 922 seq_printf(seq, "%d=", dom->id); 923 for (i = 0; i < closids_supported(); i++) { 924 if (!closid_allocated(i)) 925 continue; 926 ctrl_val = resctrl_arch_get_config(r, dom, i, 927 s->conf_type); 928 mode = rdtgroup_mode_by_closid(i); 929 switch (mode) { 930 case RDT_MODE_SHAREABLE: 931 sw_shareable |= ctrl_val; 932 break; 933 case RDT_MODE_EXCLUSIVE: 934 exclusive |= ctrl_val; 935 break; 936 case RDT_MODE_PSEUDO_LOCKSETUP: 937 /* 938 * RDT_MODE_PSEUDO_LOCKSETUP is possible 939 * here but not included since the CBM 940 * associated with this CLOSID in this mode 941 * is not initialized and no task or cpu can be 942 * assigned this CLOSID. 943 */ 944 break; 945 case RDT_MODE_PSEUDO_LOCKED: 946 case RDT_NUM_MODES: 947 WARN(1, 948 "invalid mode for closid %d\n", i); 949 break; 950 } 951 } 952 for (i = r->cache.cbm_len - 1; i >= 0; i--) { 953 pseudo_locked = dom->plr ? dom->plr->cbm : 0; 954 hwb = test_bit(i, &hw_shareable); 955 swb = test_bit(i, &sw_shareable); 956 excl = test_bit(i, &exclusive); 957 psl = test_bit(i, &pseudo_locked); 958 if (hwb && swb) 959 seq_putc(seq, 'X'); 960 else if (hwb && !swb) 961 seq_putc(seq, 'H'); 962 else if (!hwb && swb) 963 seq_putc(seq, 'S'); 964 else if (excl) 965 seq_putc(seq, 'E'); 966 else if (psl) 967 seq_putc(seq, 'P'); 968 else /* Unused bits remain */ 969 seq_putc(seq, '0'); 970 } 971 sep = true; 972 } 973 seq_putc(seq, '\n'); 974 mutex_unlock(&rdtgroup_mutex); 975 return 0; 976 } 977 978 static int rdt_min_bw_show(struct kernfs_open_file *of, 979 struct seq_file *seq, void *v) 980 { 981 struct resctrl_schema *s = of->kn->parent->priv; 982 struct rdt_resource *r = s->res; 983 984 seq_printf(seq, "%u\n", r->membw.min_bw); 985 return 0; 986 } 987 988 static int rdt_num_rmids_show(struct kernfs_open_file *of, 989 struct seq_file *seq, void *v) 990 { 991 struct rdt_resource *r = of->kn->parent->priv; 992 993 seq_printf(seq, "%d\n", r->num_rmid); 994 995 return 0; 996 } 997 998 static int rdt_mon_features_show(struct kernfs_open_file *of, 999 struct seq_file *seq, void *v) 1000 { 1001 struct rdt_resource *r = of->kn->parent->priv; 1002 struct mon_evt *mevt; 1003 1004 list_for_each_entry(mevt, &r->evt_list, list) 1005 seq_printf(seq, "%s\n", mevt->name); 1006 1007 return 0; 1008 } 1009 1010 static int rdt_bw_gran_show(struct kernfs_open_file *of, 1011 struct seq_file *seq, void *v) 1012 { 1013 struct resctrl_schema *s = of->kn->parent->priv; 1014 struct rdt_resource *r = s->res; 1015 1016 seq_printf(seq, "%u\n", r->membw.bw_gran); 1017 return 0; 1018 } 1019 1020 static int rdt_delay_linear_show(struct kernfs_open_file *of, 1021 struct seq_file *seq, void *v) 1022 { 1023 struct resctrl_schema *s = of->kn->parent->priv; 1024 struct rdt_resource *r = s->res; 1025 1026 seq_printf(seq, "%u\n", r->membw.delay_linear); 1027 return 0; 1028 } 1029 1030 static int max_threshold_occ_show(struct kernfs_open_file *of, 1031 struct seq_file *seq, void *v) 1032 { 1033 struct rdt_resource *r = of->kn->parent->priv; 1034 struct rdt_hw_resource *hw_res = resctrl_to_arch_res(r); 1035 1036 seq_printf(seq, "%u\n", resctrl_cqm_threshold * hw_res->mon_scale); 1037 1038 return 0; 1039 } 1040 1041 static int rdt_thread_throttle_mode_show(struct kernfs_open_file *of, 1042 struct seq_file *seq, void *v) 1043 { 1044 struct resctrl_schema *s = of->kn->parent->priv; 1045 struct rdt_resource *r = s->res; 1046 1047 if (r->membw.throttle_mode == THREAD_THROTTLE_PER_THREAD) 1048 seq_puts(seq, "per-thread\n"); 1049 else 1050 seq_puts(seq, "max\n"); 1051 1052 return 0; 1053 } 1054 1055 static ssize_t max_threshold_occ_write(struct kernfs_open_file *of, 1056 char *buf, size_t nbytes, loff_t off) 1057 { 1058 struct rdt_hw_resource *hw_res; 1059 unsigned int bytes; 1060 int ret; 1061 1062 ret = kstrtouint(buf, 0, &bytes); 1063 if (ret) 1064 return ret; 1065 1066 if (bytes > (boot_cpu_data.x86_cache_size * 1024)) 1067 return -EINVAL; 1068 1069 hw_res = resctrl_to_arch_res(of->kn->parent->priv); 1070 resctrl_cqm_threshold = bytes / hw_res->mon_scale; 1071 1072 return nbytes; 1073 } 1074 1075 /* 1076 * rdtgroup_mode_show - Display mode of this resource group 1077 */ 1078 static int rdtgroup_mode_show(struct kernfs_open_file *of, 1079 struct seq_file *s, void *v) 1080 { 1081 struct rdtgroup *rdtgrp; 1082 1083 rdtgrp = rdtgroup_kn_lock_live(of->kn); 1084 if (!rdtgrp) { 1085 rdtgroup_kn_unlock(of->kn); 1086 return -ENOENT; 1087 } 1088 1089 seq_printf(s, "%s\n", rdtgroup_mode_str(rdtgrp->mode)); 1090 1091 rdtgroup_kn_unlock(of->kn); 1092 return 0; 1093 } 1094 1095 static enum resctrl_conf_type resctrl_peer_type(enum resctrl_conf_type my_type) 1096 { 1097 switch (my_type) { 1098 case CDP_CODE: 1099 return CDP_DATA; 1100 case CDP_DATA: 1101 return CDP_CODE; 1102 default: 1103 case CDP_NONE: 1104 return CDP_NONE; 1105 } 1106 } 1107 1108 /** 1109 * __rdtgroup_cbm_overlaps - Does CBM for intended closid overlap with other 1110 * @r: Resource to which domain instance @d belongs. 1111 * @d: The domain instance for which @closid is being tested. 1112 * @cbm: Capacity bitmask being tested. 1113 * @closid: Intended closid for @cbm. 1114 * @exclusive: Only check if overlaps with exclusive resource groups 1115 * 1116 * Checks if provided @cbm intended to be used for @closid on domain 1117 * @d overlaps with any other closids or other hardware usage associated 1118 * with this domain. If @exclusive is true then only overlaps with 1119 * resource groups in exclusive mode will be considered. If @exclusive 1120 * is false then overlaps with any resource group or hardware entities 1121 * will be considered. 1122 * 1123 * @cbm is unsigned long, even if only 32 bits are used, to make the 1124 * bitmap functions work correctly. 1125 * 1126 * Return: false if CBM does not overlap, true if it does. 1127 */ 1128 static bool __rdtgroup_cbm_overlaps(struct rdt_resource *r, struct rdt_domain *d, 1129 unsigned long cbm, int closid, 1130 enum resctrl_conf_type type, bool exclusive) 1131 { 1132 enum rdtgrp_mode mode; 1133 unsigned long ctrl_b; 1134 int i; 1135 1136 /* Check for any overlap with regions used by hardware directly */ 1137 if (!exclusive) { 1138 ctrl_b = r->cache.shareable_bits; 1139 if (bitmap_intersects(&cbm, &ctrl_b, r->cache.cbm_len)) 1140 return true; 1141 } 1142 1143 /* Check for overlap with other resource groups */ 1144 for (i = 0; i < closids_supported(); i++) { 1145 ctrl_b = resctrl_arch_get_config(r, d, i, type); 1146 mode = rdtgroup_mode_by_closid(i); 1147 if (closid_allocated(i) && i != closid && 1148 mode != RDT_MODE_PSEUDO_LOCKSETUP) { 1149 if (bitmap_intersects(&cbm, &ctrl_b, r->cache.cbm_len)) { 1150 if (exclusive) { 1151 if (mode == RDT_MODE_EXCLUSIVE) 1152 return true; 1153 continue; 1154 } 1155 return true; 1156 } 1157 } 1158 } 1159 1160 return false; 1161 } 1162 1163 /** 1164 * rdtgroup_cbm_overlaps - Does CBM overlap with other use of hardware 1165 * @s: Schema for the resource to which domain instance @d belongs. 1166 * @d: The domain instance for which @closid is being tested. 1167 * @cbm: Capacity bitmask being tested. 1168 * @closid: Intended closid for @cbm. 1169 * @exclusive: Only check if overlaps with exclusive resource groups 1170 * 1171 * Resources that can be allocated using a CBM can use the CBM to control 1172 * the overlap of these allocations. rdtgroup_cmb_overlaps() is the test 1173 * for overlap. Overlap test is not limited to the specific resource for 1174 * which the CBM is intended though - when dealing with CDP resources that 1175 * share the underlying hardware the overlap check should be performed on 1176 * the CDP resource sharing the hardware also. 1177 * 1178 * Refer to description of __rdtgroup_cbm_overlaps() for the details of the 1179 * overlap test. 1180 * 1181 * Return: true if CBM overlap detected, false if there is no overlap 1182 */ 1183 bool rdtgroup_cbm_overlaps(struct resctrl_schema *s, struct rdt_domain *d, 1184 unsigned long cbm, int closid, bool exclusive) 1185 { 1186 enum resctrl_conf_type peer_type = resctrl_peer_type(s->conf_type); 1187 struct rdt_resource *r = s->res; 1188 1189 if (__rdtgroup_cbm_overlaps(r, d, cbm, closid, s->conf_type, 1190 exclusive)) 1191 return true; 1192 1193 if (!resctrl_arch_get_cdp_enabled(r->rid)) 1194 return false; 1195 return __rdtgroup_cbm_overlaps(r, d, cbm, closid, peer_type, exclusive); 1196 } 1197 1198 /** 1199 * rdtgroup_mode_test_exclusive - Test if this resource group can be exclusive 1200 * 1201 * An exclusive resource group implies that there should be no sharing of 1202 * its allocated resources. At the time this group is considered to be 1203 * exclusive this test can determine if its current schemata supports this 1204 * setting by testing for overlap with all other resource groups. 1205 * 1206 * Return: true if resource group can be exclusive, false if there is overlap 1207 * with allocations of other resource groups and thus this resource group 1208 * cannot be exclusive. 1209 */ 1210 static bool rdtgroup_mode_test_exclusive(struct rdtgroup *rdtgrp) 1211 { 1212 int closid = rdtgrp->closid; 1213 struct resctrl_schema *s; 1214 struct rdt_resource *r; 1215 bool has_cache = false; 1216 struct rdt_domain *d; 1217 u32 ctrl; 1218 1219 list_for_each_entry(s, &resctrl_schema_all, list) { 1220 r = s->res; 1221 if (r->rid == RDT_RESOURCE_MBA) 1222 continue; 1223 has_cache = true; 1224 list_for_each_entry(d, &r->domains, list) { 1225 ctrl = resctrl_arch_get_config(r, d, closid, 1226 s->conf_type); 1227 if (rdtgroup_cbm_overlaps(s, d, ctrl, closid, false)) { 1228 rdt_last_cmd_puts("Schemata overlaps\n"); 1229 return false; 1230 } 1231 } 1232 } 1233 1234 if (!has_cache) { 1235 rdt_last_cmd_puts("Cannot be exclusive without CAT/CDP\n"); 1236 return false; 1237 } 1238 1239 return true; 1240 } 1241 1242 /** 1243 * rdtgroup_mode_write - Modify the resource group's mode 1244 * 1245 */ 1246 static ssize_t rdtgroup_mode_write(struct kernfs_open_file *of, 1247 char *buf, size_t nbytes, loff_t off) 1248 { 1249 struct rdtgroup *rdtgrp; 1250 enum rdtgrp_mode mode; 1251 int ret = 0; 1252 1253 /* Valid input requires a trailing newline */ 1254 if (nbytes == 0 || buf[nbytes - 1] != '\n') 1255 return -EINVAL; 1256 buf[nbytes - 1] = '\0'; 1257 1258 rdtgrp = rdtgroup_kn_lock_live(of->kn); 1259 if (!rdtgrp) { 1260 rdtgroup_kn_unlock(of->kn); 1261 return -ENOENT; 1262 } 1263 1264 rdt_last_cmd_clear(); 1265 1266 mode = rdtgrp->mode; 1267 1268 if ((!strcmp(buf, "shareable") && mode == RDT_MODE_SHAREABLE) || 1269 (!strcmp(buf, "exclusive") && mode == RDT_MODE_EXCLUSIVE) || 1270 (!strcmp(buf, "pseudo-locksetup") && 1271 mode == RDT_MODE_PSEUDO_LOCKSETUP) || 1272 (!strcmp(buf, "pseudo-locked") && mode == RDT_MODE_PSEUDO_LOCKED)) 1273 goto out; 1274 1275 if (mode == RDT_MODE_PSEUDO_LOCKED) { 1276 rdt_last_cmd_puts("Cannot change pseudo-locked group\n"); 1277 ret = -EINVAL; 1278 goto out; 1279 } 1280 1281 if (!strcmp(buf, "shareable")) { 1282 if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP) { 1283 ret = rdtgroup_locksetup_exit(rdtgrp); 1284 if (ret) 1285 goto out; 1286 } 1287 rdtgrp->mode = RDT_MODE_SHAREABLE; 1288 } else if (!strcmp(buf, "exclusive")) { 1289 if (!rdtgroup_mode_test_exclusive(rdtgrp)) { 1290 ret = -EINVAL; 1291 goto out; 1292 } 1293 if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP) { 1294 ret = rdtgroup_locksetup_exit(rdtgrp); 1295 if (ret) 1296 goto out; 1297 } 1298 rdtgrp->mode = RDT_MODE_EXCLUSIVE; 1299 } else if (!strcmp(buf, "pseudo-locksetup")) { 1300 ret = rdtgroup_locksetup_enter(rdtgrp); 1301 if (ret) 1302 goto out; 1303 rdtgrp->mode = RDT_MODE_PSEUDO_LOCKSETUP; 1304 } else { 1305 rdt_last_cmd_puts("Unknown or unsupported mode\n"); 1306 ret = -EINVAL; 1307 } 1308 1309 out: 1310 rdtgroup_kn_unlock(of->kn); 1311 return ret ?: nbytes; 1312 } 1313 1314 /** 1315 * rdtgroup_cbm_to_size - Translate CBM to size in bytes 1316 * @r: RDT resource to which @d belongs. 1317 * @d: RDT domain instance. 1318 * @cbm: bitmask for which the size should be computed. 1319 * 1320 * The bitmask provided associated with the RDT domain instance @d will be 1321 * translated into how many bytes it represents. The size in bytes is 1322 * computed by first dividing the total cache size by the CBM length to 1323 * determine how many bytes each bit in the bitmask represents. The result 1324 * is multiplied with the number of bits set in the bitmask. 1325 * 1326 * @cbm is unsigned long, even if only 32 bits are used to make the 1327 * bitmap functions work correctly. 1328 */ 1329 unsigned int rdtgroup_cbm_to_size(struct rdt_resource *r, 1330 struct rdt_domain *d, unsigned long cbm) 1331 { 1332 struct cpu_cacheinfo *ci; 1333 unsigned int size = 0; 1334 int num_b, i; 1335 1336 num_b = bitmap_weight(&cbm, r->cache.cbm_len); 1337 ci = get_cpu_cacheinfo(cpumask_any(&d->cpu_mask)); 1338 for (i = 0; i < ci->num_leaves; i++) { 1339 if (ci->info_list[i].level == r->cache_level) { 1340 size = ci->info_list[i].size / r->cache.cbm_len * num_b; 1341 break; 1342 } 1343 } 1344 1345 return size; 1346 } 1347 1348 /** 1349 * rdtgroup_size_show - Display size in bytes of allocated regions 1350 * 1351 * The "size" file mirrors the layout of the "schemata" file, printing the 1352 * size in bytes of each region instead of the capacity bitmask. 1353 * 1354 */ 1355 static int rdtgroup_size_show(struct kernfs_open_file *of, 1356 struct seq_file *s, void *v) 1357 { 1358 struct resctrl_schema *schema; 1359 struct rdtgroup *rdtgrp; 1360 struct rdt_resource *r; 1361 struct rdt_domain *d; 1362 unsigned int size; 1363 int ret = 0; 1364 bool sep; 1365 u32 ctrl; 1366 1367 rdtgrp = rdtgroup_kn_lock_live(of->kn); 1368 if (!rdtgrp) { 1369 rdtgroup_kn_unlock(of->kn); 1370 return -ENOENT; 1371 } 1372 1373 if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED) { 1374 if (!rdtgrp->plr->d) { 1375 rdt_last_cmd_clear(); 1376 rdt_last_cmd_puts("Cache domain offline\n"); 1377 ret = -ENODEV; 1378 } else { 1379 seq_printf(s, "%*s:", max_name_width, 1380 rdtgrp->plr->s->name); 1381 size = rdtgroup_cbm_to_size(rdtgrp->plr->s->res, 1382 rdtgrp->plr->d, 1383 rdtgrp->plr->cbm); 1384 seq_printf(s, "%d=%u\n", rdtgrp->plr->d->id, size); 1385 } 1386 goto out; 1387 } 1388 1389 list_for_each_entry(schema, &resctrl_schema_all, list) { 1390 r = schema->res; 1391 sep = false; 1392 seq_printf(s, "%*s:", max_name_width, schema->name); 1393 list_for_each_entry(d, &r->domains, list) { 1394 if (sep) 1395 seq_putc(s, ';'); 1396 if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP) { 1397 size = 0; 1398 } else { 1399 ctrl = resctrl_arch_get_config(r, d, 1400 rdtgrp->closid, 1401 schema->conf_type); 1402 if (r->rid == RDT_RESOURCE_MBA) 1403 size = ctrl; 1404 else 1405 size = rdtgroup_cbm_to_size(r, d, ctrl); 1406 } 1407 seq_printf(s, "%d=%u", d->id, size); 1408 sep = true; 1409 } 1410 seq_putc(s, '\n'); 1411 } 1412 1413 out: 1414 rdtgroup_kn_unlock(of->kn); 1415 1416 return ret; 1417 } 1418 1419 /* rdtgroup information files for one cache resource. */ 1420 static struct rftype res_common_files[] = { 1421 { 1422 .name = "last_cmd_status", 1423 .mode = 0444, 1424 .kf_ops = &rdtgroup_kf_single_ops, 1425 .seq_show = rdt_last_cmd_status_show, 1426 .fflags = RF_TOP_INFO, 1427 }, 1428 { 1429 .name = "num_closids", 1430 .mode = 0444, 1431 .kf_ops = &rdtgroup_kf_single_ops, 1432 .seq_show = rdt_num_closids_show, 1433 .fflags = RF_CTRL_INFO, 1434 }, 1435 { 1436 .name = "mon_features", 1437 .mode = 0444, 1438 .kf_ops = &rdtgroup_kf_single_ops, 1439 .seq_show = rdt_mon_features_show, 1440 .fflags = RF_MON_INFO, 1441 }, 1442 { 1443 .name = "num_rmids", 1444 .mode = 0444, 1445 .kf_ops = &rdtgroup_kf_single_ops, 1446 .seq_show = rdt_num_rmids_show, 1447 .fflags = RF_MON_INFO, 1448 }, 1449 { 1450 .name = "cbm_mask", 1451 .mode = 0444, 1452 .kf_ops = &rdtgroup_kf_single_ops, 1453 .seq_show = rdt_default_ctrl_show, 1454 .fflags = RF_CTRL_INFO | RFTYPE_RES_CACHE, 1455 }, 1456 { 1457 .name = "min_cbm_bits", 1458 .mode = 0444, 1459 .kf_ops = &rdtgroup_kf_single_ops, 1460 .seq_show = rdt_min_cbm_bits_show, 1461 .fflags = RF_CTRL_INFO | RFTYPE_RES_CACHE, 1462 }, 1463 { 1464 .name = "shareable_bits", 1465 .mode = 0444, 1466 .kf_ops = &rdtgroup_kf_single_ops, 1467 .seq_show = rdt_shareable_bits_show, 1468 .fflags = RF_CTRL_INFO | RFTYPE_RES_CACHE, 1469 }, 1470 { 1471 .name = "bit_usage", 1472 .mode = 0444, 1473 .kf_ops = &rdtgroup_kf_single_ops, 1474 .seq_show = rdt_bit_usage_show, 1475 .fflags = RF_CTRL_INFO | RFTYPE_RES_CACHE, 1476 }, 1477 { 1478 .name = "min_bandwidth", 1479 .mode = 0444, 1480 .kf_ops = &rdtgroup_kf_single_ops, 1481 .seq_show = rdt_min_bw_show, 1482 .fflags = RF_CTRL_INFO | RFTYPE_RES_MB, 1483 }, 1484 { 1485 .name = "bandwidth_gran", 1486 .mode = 0444, 1487 .kf_ops = &rdtgroup_kf_single_ops, 1488 .seq_show = rdt_bw_gran_show, 1489 .fflags = RF_CTRL_INFO | RFTYPE_RES_MB, 1490 }, 1491 { 1492 .name = "delay_linear", 1493 .mode = 0444, 1494 .kf_ops = &rdtgroup_kf_single_ops, 1495 .seq_show = rdt_delay_linear_show, 1496 .fflags = RF_CTRL_INFO | RFTYPE_RES_MB, 1497 }, 1498 /* 1499 * Platform specific which (if any) capabilities are provided by 1500 * thread_throttle_mode. Defer "fflags" initialization to platform 1501 * discovery. 1502 */ 1503 { 1504 .name = "thread_throttle_mode", 1505 .mode = 0444, 1506 .kf_ops = &rdtgroup_kf_single_ops, 1507 .seq_show = rdt_thread_throttle_mode_show, 1508 }, 1509 { 1510 .name = "max_threshold_occupancy", 1511 .mode = 0644, 1512 .kf_ops = &rdtgroup_kf_single_ops, 1513 .write = max_threshold_occ_write, 1514 .seq_show = max_threshold_occ_show, 1515 .fflags = RF_MON_INFO | RFTYPE_RES_CACHE, 1516 }, 1517 { 1518 .name = "cpus", 1519 .mode = 0644, 1520 .kf_ops = &rdtgroup_kf_single_ops, 1521 .write = rdtgroup_cpus_write, 1522 .seq_show = rdtgroup_cpus_show, 1523 .fflags = RFTYPE_BASE, 1524 }, 1525 { 1526 .name = "cpus_list", 1527 .mode = 0644, 1528 .kf_ops = &rdtgroup_kf_single_ops, 1529 .write = rdtgroup_cpus_write, 1530 .seq_show = rdtgroup_cpus_show, 1531 .flags = RFTYPE_FLAGS_CPUS_LIST, 1532 .fflags = RFTYPE_BASE, 1533 }, 1534 { 1535 .name = "tasks", 1536 .mode = 0644, 1537 .kf_ops = &rdtgroup_kf_single_ops, 1538 .write = rdtgroup_tasks_write, 1539 .seq_show = rdtgroup_tasks_show, 1540 .fflags = RFTYPE_BASE, 1541 }, 1542 { 1543 .name = "schemata", 1544 .mode = 0644, 1545 .kf_ops = &rdtgroup_kf_single_ops, 1546 .write = rdtgroup_schemata_write, 1547 .seq_show = rdtgroup_schemata_show, 1548 .fflags = RF_CTRL_BASE, 1549 }, 1550 { 1551 .name = "mode", 1552 .mode = 0644, 1553 .kf_ops = &rdtgroup_kf_single_ops, 1554 .write = rdtgroup_mode_write, 1555 .seq_show = rdtgroup_mode_show, 1556 .fflags = RF_CTRL_BASE, 1557 }, 1558 { 1559 .name = "size", 1560 .mode = 0444, 1561 .kf_ops = &rdtgroup_kf_single_ops, 1562 .seq_show = rdtgroup_size_show, 1563 .fflags = RF_CTRL_BASE, 1564 }, 1565 1566 }; 1567 1568 static int rdtgroup_add_files(struct kernfs_node *kn, unsigned long fflags) 1569 { 1570 struct rftype *rfts, *rft; 1571 int ret, len; 1572 1573 rfts = res_common_files; 1574 len = ARRAY_SIZE(res_common_files); 1575 1576 lockdep_assert_held(&rdtgroup_mutex); 1577 1578 for (rft = rfts; rft < rfts + len; rft++) { 1579 if (rft->fflags && ((fflags & rft->fflags) == rft->fflags)) { 1580 ret = rdtgroup_add_file(kn, rft); 1581 if (ret) 1582 goto error; 1583 } 1584 } 1585 1586 return 0; 1587 error: 1588 pr_warn("Failed to add %s, err=%d\n", rft->name, ret); 1589 while (--rft >= rfts) { 1590 if ((fflags & rft->fflags) == rft->fflags) 1591 kernfs_remove_by_name(kn, rft->name); 1592 } 1593 return ret; 1594 } 1595 1596 static struct rftype *rdtgroup_get_rftype_by_name(const char *name) 1597 { 1598 struct rftype *rfts, *rft; 1599 int len; 1600 1601 rfts = res_common_files; 1602 len = ARRAY_SIZE(res_common_files); 1603 1604 for (rft = rfts; rft < rfts + len; rft++) { 1605 if (!strcmp(rft->name, name)) 1606 return rft; 1607 } 1608 1609 return NULL; 1610 } 1611 1612 void __init thread_throttle_mode_init(void) 1613 { 1614 struct rftype *rft; 1615 1616 rft = rdtgroup_get_rftype_by_name("thread_throttle_mode"); 1617 if (!rft) 1618 return; 1619 1620 rft->fflags = RF_CTRL_INFO | RFTYPE_RES_MB; 1621 } 1622 1623 /** 1624 * rdtgroup_kn_mode_restrict - Restrict user access to named resctrl file 1625 * @r: The resource group with which the file is associated. 1626 * @name: Name of the file 1627 * 1628 * The permissions of named resctrl file, directory, or link are modified 1629 * to not allow read, write, or execute by any user. 1630 * 1631 * WARNING: This function is intended to communicate to the user that the 1632 * resctrl file has been locked down - that it is not relevant to the 1633 * particular state the system finds itself in. It should not be relied 1634 * on to protect from user access because after the file's permissions 1635 * are restricted the user can still change the permissions using chmod 1636 * from the command line. 1637 * 1638 * Return: 0 on success, <0 on failure. 1639 */ 1640 int rdtgroup_kn_mode_restrict(struct rdtgroup *r, const char *name) 1641 { 1642 struct iattr iattr = {.ia_valid = ATTR_MODE,}; 1643 struct kernfs_node *kn; 1644 int ret = 0; 1645 1646 kn = kernfs_find_and_get_ns(r->kn, name, NULL); 1647 if (!kn) 1648 return -ENOENT; 1649 1650 switch (kernfs_type(kn)) { 1651 case KERNFS_DIR: 1652 iattr.ia_mode = S_IFDIR; 1653 break; 1654 case KERNFS_FILE: 1655 iattr.ia_mode = S_IFREG; 1656 break; 1657 case KERNFS_LINK: 1658 iattr.ia_mode = S_IFLNK; 1659 break; 1660 } 1661 1662 ret = kernfs_setattr(kn, &iattr); 1663 kernfs_put(kn); 1664 return ret; 1665 } 1666 1667 /** 1668 * rdtgroup_kn_mode_restore - Restore user access to named resctrl file 1669 * @r: The resource group with which the file is associated. 1670 * @name: Name of the file 1671 * @mask: Mask of permissions that should be restored 1672 * 1673 * Restore the permissions of the named file. If @name is a directory the 1674 * permissions of its parent will be used. 1675 * 1676 * Return: 0 on success, <0 on failure. 1677 */ 1678 int rdtgroup_kn_mode_restore(struct rdtgroup *r, const char *name, 1679 umode_t mask) 1680 { 1681 struct iattr iattr = {.ia_valid = ATTR_MODE,}; 1682 struct kernfs_node *kn, *parent; 1683 struct rftype *rfts, *rft; 1684 int ret, len; 1685 1686 rfts = res_common_files; 1687 len = ARRAY_SIZE(res_common_files); 1688 1689 for (rft = rfts; rft < rfts + len; rft++) { 1690 if (!strcmp(rft->name, name)) 1691 iattr.ia_mode = rft->mode & mask; 1692 } 1693 1694 kn = kernfs_find_and_get_ns(r->kn, name, NULL); 1695 if (!kn) 1696 return -ENOENT; 1697 1698 switch (kernfs_type(kn)) { 1699 case KERNFS_DIR: 1700 parent = kernfs_get_parent(kn); 1701 if (parent) { 1702 iattr.ia_mode |= parent->mode; 1703 kernfs_put(parent); 1704 } 1705 iattr.ia_mode |= S_IFDIR; 1706 break; 1707 case KERNFS_FILE: 1708 iattr.ia_mode |= S_IFREG; 1709 break; 1710 case KERNFS_LINK: 1711 iattr.ia_mode |= S_IFLNK; 1712 break; 1713 } 1714 1715 ret = kernfs_setattr(kn, &iattr); 1716 kernfs_put(kn); 1717 return ret; 1718 } 1719 1720 static int rdtgroup_mkdir_info_resdir(void *priv, char *name, 1721 unsigned long fflags) 1722 { 1723 struct kernfs_node *kn_subdir; 1724 int ret; 1725 1726 kn_subdir = kernfs_create_dir(kn_info, name, 1727 kn_info->mode, priv); 1728 if (IS_ERR(kn_subdir)) 1729 return PTR_ERR(kn_subdir); 1730 1731 ret = rdtgroup_kn_set_ugid(kn_subdir); 1732 if (ret) 1733 return ret; 1734 1735 ret = rdtgroup_add_files(kn_subdir, fflags); 1736 if (!ret) 1737 kernfs_activate(kn_subdir); 1738 1739 return ret; 1740 } 1741 1742 static int rdtgroup_create_info_dir(struct kernfs_node *parent_kn) 1743 { 1744 struct resctrl_schema *s; 1745 struct rdt_resource *r; 1746 unsigned long fflags; 1747 char name[32]; 1748 int ret; 1749 1750 /* create the directory */ 1751 kn_info = kernfs_create_dir(parent_kn, "info", parent_kn->mode, NULL); 1752 if (IS_ERR(kn_info)) 1753 return PTR_ERR(kn_info); 1754 1755 ret = rdtgroup_add_files(kn_info, RF_TOP_INFO); 1756 if (ret) 1757 goto out_destroy; 1758 1759 /* loop over enabled controls, these are all alloc_enabled */ 1760 list_for_each_entry(s, &resctrl_schema_all, list) { 1761 r = s->res; 1762 fflags = r->fflags | RF_CTRL_INFO; 1763 ret = rdtgroup_mkdir_info_resdir(s, s->name, fflags); 1764 if (ret) 1765 goto out_destroy; 1766 } 1767 1768 for_each_mon_enabled_rdt_resource(r) { 1769 fflags = r->fflags | RF_MON_INFO; 1770 sprintf(name, "%s_MON", r->name); 1771 ret = rdtgroup_mkdir_info_resdir(r, name, fflags); 1772 if (ret) 1773 goto out_destroy; 1774 } 1775 1776 ret = rdtgroup_kn_set_ugid(kn_info); 1777 if (ret) 1778 goto out_destroy; 1779 1780 kernfs_activate(kn_info); 1781 1782 return 0; 1783 1784 out_destroy: 1785 kernfs_remove(kn_info); 1786 return ret; 1787 } 1788 1789 static int 1790 mongroup_create_dir(struct kernfs_node *parent_kn, struct rdtgroup *prgrp, 1791 char *name, struct kernfs_node **dest_kn) 1792 { 1793 struct kernfs_node *kn; 1794 int ret; 1795 1796 /* create the directory */ 1797 kn = kernfs_create_dir(parent_kn, name, parent_kn->mode, prgrp); 1798 if (IS_ERR(kn)) 1799 return PTR_ERR(kn); 1800 1801 if (dest_kn) 1802 *dest_kn = kn; 1803 1804 ret = rdtgroup_kn_set_ugid(kn); 1805 if (ret) 1806 goto out_destroy; 1807 1808 kernfs_activate(kn); 1809 1810 return 0; 1811 1812 out_destroy: 1813 kernfs_remove(kn); 1814 return ret; 1815 } 1816 1817 static void l3_qos_cfg_update(void *arg) 1818 { 1819 bool *enable = arg; 1820 1821 wrmsrl(MSR_IA32_L3_QOS_CFG, *enable ? L3_QOS_CDP_ENABLE : 0ULL); 1822 } 1823 1824 static void l2_qos_cfg_update(void *arg) 1825 { 1826 bool *enable = arg; 1827 1828 wrmsrl(MSR_IA32_L2_QOS_CFG, *enable ? L2_QOS_CDP_ENABLE : 0ULL); 1829 } 1830 1831 static inline bool is_mba_linear(void) 1832 { 1833 return rdt_resources_all[RDT_RESOURCE_MBA].r_resctrl.membw.delay_linear; 1834 } 1835 1836 static int set_cache_qos_cfg(int level, bool enable) 1837 { 1838 void (*update)(void *arg); 1839 struct rdt_resource *r_l; 1840 cpumask_var_t cpu_mask; 1841 struct rdt_domain *d; 1842 int cpu; 1843 1844 if (level == RDT_RESOURCE_L3) 1845 update = l3_qos_cfg_update; 1846 else if (level == RDT_RESOURCE_L2) 1847 update = l2_qos_cfg_update; 1848 else 1849 return -EINVAL; 1850 1851 if (!zalloc_cpumask_var(&cpu_mask, GFP_KERNEL)) 1852 return -ENOMEM; 1853 1854 r_l = &rdt_resources_all[level].r_resctrl; 1855 list_for_each_entry(d, &r_l->domains, list) { 1856 if (r_l->cache.arch_has_per_cpu_cfg) 1857 /* Pick all the CPUs in the domain instance */ 1858 for_each_cpu(cpu, &d->cpu_mask) 1859 cpumask_set_cpu(cpu, cpu_mask); 1860 else 1861 /* Pick one CPU from each domain instance to update MSR */ 1862 cpumask_set_cpu(cpumask_any(&d->cpu_mask), cpu_mask); 1863 } 1864 cpu = get_cpu(); 1865 /* Update QOS_CFG MSR on this cpu if it's in cpu_mask. */ 1866 if (cpumask_test_cpu(cpu, cpu_mask)) 1867 update(&enable); 1868 /* Update QOS_CFG MSR on all other cpus in cpu_mask. */ 1869 smp_call_function_many(cpu_mask, update, &enable, 1); 1870 put_cpu(); 1871 1872 free_cpumask_var(cpu_mask); 1873 1874 return 0; 1875 } 1876 1877 /* Restore the qos cfg state when a domain comes online */ 1878 void rdt_domain_reconfigure_cdp(struct rdt_resource *r) 1879 { 1880 struct rdt_hw_resource *hw_res = resctrl_to_arch_res(r); 1881 1882 if (!r->cdp_capable) 1883 return; 1884 1885 if (r->rid == RDT_RESOURCE_L2) 1886 l2_qos_cfg_update(&hw_res->cdp_enabled); 1887 1888 if (r->rid == RDT_RESOURCE_L3) 1889 l3_qos_cfg_update(&hw_res->cdp_enabled); 1890 } 1891 1892 /* 1893 * Enable or disable the MBA software controller 1894 * which helps user specify bandwidth in MBps. 1895 * MBA software controller is supported only if 1896 * MBM is supported and MBA is in linear scale. 1897 */ 1898 static int set_mba_sc(bool mba_sc) 1899 { 1900 struct rdt_resource *r = &rdt_resources_all[RDT_RESOURCE_MBA].r_resctrl; 1901 struct rdt_hw_domain *hw_dom; 1902 struct rdt_domain *d; 1903 1904 if (!is_mbm_enabled() || !is_mba_linear() || 1905 mba_sc == is_mba_sc(r)) 1906 return -EINVAL; 1907 1908 r->membw.mba_sc = mba_sc; 1909 list_for_each_entry(d, &r->domains, list) { 1910 hw_dom = resctrl_to_arch_dom(d); 1911 setup_default_ctrlval(r, hw_dom->ctrl_val, hw_dom->mbps_val); 1912 } 1913 1914 return 0; 1915 } 1916 1917 static int cdp_enable(int level) 1918 { 1919 struct rdt_resource *r_l = &rdt_resources_all[level].r_resctrl; 1920 int ret; 1921 1922 if (!r_l->alloc_capable) 1923 return -EINVAL; 1924 1925 ret = set_cache_qos_cfg(level, true); 1926 if (!ret) 1927 rdt_resources_all[level].cdp_enabled = true; 1928 1929 return ret; 1930 } 1931 1932 static void cdp_disable(int level) 1933 { 1934 struct rdt_hw_resource *r_hw = &rdt_resources_all[level]; 1935 1936 if (r_hw->cdp_enabled) { 1937 set_cache_qos_cfg(level, false); 1938 r_hw->cdp_enabled = false; 1939 } 1940 } 1941 1942 int resctrl_arch_set_cdp_enabled(enum resctrl_res_level l, bool enable) 1943 { 1944 struct rdt_hw_resource *hw_res = &rdt_resources_all[l]; 1945 1946 if (!hw_res->r_resctrl.cdp_capable) 1947 return -EINVAL; 1948 1949 if (enable) 1950 return cdp_enable(l); 1951 1952 cdp_disable(l); 1953 1954 return 0; 1955 } 1956 1957 static void cdp_disable_all(void) 1958 { 1959 if (resctrl_arch_get_cdp_enabled(RDT_RESOURCE_L3)) 1960 resctrl_arch_set_cdp_enabled(RDT_RESOURCE_L3, false); 1961 if (resctrl_arch_get_cdp_enabled(RDT_RESOURCE_L2)) 1962 resctrl_arch_set_cdp_enabled(RDT_RESOURCE_L2, false); 1963 } 1964 1965 /* 1966 * We don't allow rdtgroup directories to be created anywhere 1967 * except the root directory. Thus when looking for the rdtgroup 1968 * structure for a kernfs node we are either looking at a directory, 1969 * in which case the rdtgroup structure is pointed at by the "priv" 1970 * field, otherwise we have a file, and need only look to the parent 1971 * to find the rdtgroup. 1972 */ 1973 static struct rdtgroup *kernfs_to_rdtgroup(struct kernfs_node *kn) 1974 { 1975 if (kernfs_type(kn) == KERNFS_DIR) { 1976 /* 1977 * All the resource directories use "kn->priv" 1978 * to point to the "struct rdtgroup" for the 1979 * resource. "info" and its subdirectories don't 1980 * have rdtgroup structures, so return NULL here. 1981 */ 1982 if (kn == kn_info || kn->parent == kn_info) 1983 return NULL; 1984 else 1985 return kn->priv; 1986 } else { 1987 return kn->parent->priv; 1988 } 1989 } 1990 1991 struct rdtgroup *rdtgroup_kn_lock_live(struct kernfs_node *kn) 1992 { 1993 struct rdtgroup *rdtgrp = kernfs_to_rdtgroup(kn); 1994 1995 if (!rdtgrp) 1996 return NULL; 1997 1998 atomic_inc(&rdtgrp->waitcount); 1999 kernfs_break_active_protection(kn); 2000 2001 mutex_lock(&rdtgroup_mutex); 2002 2003 /* Was this group deleted while we waited? */ 2004 if (rdtgrp->flags & RDT_DELETED) 2005 return NULL; 2006 2007 return rdtgrp; 2008 } 2009 2010 void rdtgroup_kn_unlock(struct kernfs_node *kn) 2011 { 2012 struct rdtgroup *rdtgrp = kernfs_to_rdtgroup(kn); 2013 2014 if (!rdtgrp) 2015 return; 2016 2017 mutex_unlock(&rdtgroup_mutex); 2018 2019 if (atomic_dec_and_test(&rdtgrp->waitcount) && 2020 (rdtgrp->flags & RDT_DELETED)) { 2021 if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP || 2022 rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED) 2023 rdtgroup_pseudo_lock_remove(rdtgrp); 2024 kernfs_unbreak_active_protection(kn); 2025 rdtgroup_remove(rdtgrp); 2026 } else { 2027 kernfs_unbreak_active_protection(kn); 2028 } 2029 } 2030 2031 static int mkdir_mondata_all(struct kernfs_node *parent_kn, 2032 struct rdtgroup *prgrp, 2033 struct kernfs_node **mon_data_kn); 2034 2035 static int rdt_enable_ctx(struct rdt_fs_context *ctx) 2036 { 2037 int ret = 0; 2038 2039 if (ctx->enable_cdpl2) 2040 ret = resctrl_arch_set_cdp_enabled(RDT_RESOURCE_L2, true); 2041 2042 if (!ret && ctx->enable_cdpl3) 2043 ret = resctrl_arch_set_cdp_enabled(RDT_RESOURCE_L3, true); 2044 2045 if (!ret && ctx->enable_mba_mbps) 2046 ret = set_mba_sc(true); 2047 2048 return ret; 2049 } 2050 2051 static int schemata_list_add(struct rdt_resource *r, enum resctrl_conf_type type) 2052 { 2053 struct resctrl_schema *s; 2054 const char *suffix = ""; 2055 int ret, cl; 2056 2057 s = kzalloc(sizeof(*s), GFP_KERNEL); 2058 if (!s) 2059 return -ENOMEM; 2060 2061 s->res = r; 2062 s->num_closid = resctrl_arch_get_num_closid(r); 2063 if (resctrl_arch_get_cdp_enabled(r->rid)) 2064 s->num_closid /= 2; 2065 2066 s->conf_type = type; 2067 switch (type) { 2068 case CDP_CODE: 2069 suffix = "CODE"; 2070 break; 2071 case CDP_DATA: 2072 suffix = "DATA"; 2073 break; 2074 case CDP_NONE: 2075 suffix = ""; 2076 break; 2077 } 2078 2079 ret = snprintf(s->name, sizeof(s->name), "%s%s", r->name, suffix); 2080 if (ret >= sizeof(s->name)) { 2081 kfree(s); 2082 return -EINVAL; 2083 } 2084 2085 cl = strlen(s->name); 2086 2087 /* 2088 * If CDP is supported by this resource, but not enabled, 2089 * include the suffix. This ensures the tabular format of the 2090 * schemata file does not change between mounts of the filesystem. 2091 */ 2092 if (r->cdp_capable && !resctrl_arch_get_cdp_enabled(r->rid)) 2093 cl += 4; 2094 2095 if (cl > max_name_width) 2096 max_name_width = cl; 2097 2098 INIT_LIST_HEAD(&s->list); 2099 list_add(&s->list, &resctrl_schema_all); 2100 2101 return 0; 2102 } 2103 2104 static int schemata_list_create(void) 2105 { 2106 struct rdt_resource *r; 2107 int ret = 0; 2108 2109 for_each_alloc_enabled_rdt_resource(r) { 2110 if (resctrl_arch_get_cdp_enabled(r->rid)) { 2111 ret = schemata_list_add(r, CDP_CODE); 2112 if (ret) 2113 break; 2114 2115 ret = schemata_list_add(r, CDP_DATA); 2116 } else { 2117 ret = schemata_list_add(r, CDP_NONE); 2118 } 2119 2120 if (ret) 2121 break; 2122 } 2123 2124 return ret; 2125 } 2126 2127 static void schemata_list_destroy(void) 2128 { 2129 struct resctrl_schema *s, *tmp; 2130 2131 list_for_each_entry_safe(s, tmp, &resctrl_schema_all, list) { 2132 list_del(&s->list); 2133 kfree(s); 2134 } 2135 } 2136 2137 static int rdt_get_tree(struct fs_context *fc) 2138 { 2139 struct rdt_fs_context *ctx = rdt_fc2context(fc); 2140 struct rdt_domain *dom; 2141 struct rdt_resource *r; 2142 int ret; 2143 2144 cpus_read_lock(); 2145 mutex_lock(&rdtgroup_mutex); 2146 /* 2147 * resctrl file system can only be mounted once. 2148 */ 2149 if (static_branch_unlikely(&rdt_enable_key)) { 2150 ret = -EBUSY; 2151 goto out; 2152 } 2153 2154 ret = rdt_enable_ctx(ctx); 2155 if (ret < 0) 2156 goto out_cdp; 2157 2158 ret = schemata_list_create(); 2159 if (ret) { 2160 schemata_list_destroy(); 2161 goto out_mba; 2162 } 2163 2164 closid_init(); 2165 2166 ret = rdtgroup_create_info_dir(rdtgroup_default.kn); 2167 if (ret < 0) 2168 goto out_schemata_free; 2169 2170 if (rdt_mon_capable) { 2171 ret = mongroup_create_dir(rdtgroup_default.kn, 2172 &rdtgroup_default, "mon_groups", 2173 &kn_mongrp); 2174 if (ret < 0) 2175 goto out_info; 2176 2177 ret = mkdir_mondata_all(rdtgroup_default.kn, 2178 &rdtgroup_default, &kn_mondata); 2179 if (ret < 0) 2180 goto out_mongrp; 2181 rdtgroup_default.mon.mon_data_kn = kn_mondata; 2182 } 2183 2184 ret = rdt_pseudo_lock_init(); 2185 if (ret) 2186 goto out_mondata; 2187 2188 ret = kernfs_get_tree(fc); 2189 if (ret < 0) 2190 goto out_psl; 2191 2192 if (rdt_alloc_capable) 2193 static_branch_enable_cpuslocked(&rdt_alloc_enable_key); 2194 if (rdt_mon_capable) 2195 static_branch_enable_cpuslocked(&rdt_mon_enable_key); 2196 2197 if (rdt_alloc_capable || rdt_mon_capable) 2198 static_branch_enable_cpuslocked(&rdt_enable_key); 2199 2200 if (is_mbm_enabled()) { 2201 r = &rdt_resources_all[RDT_RESOURCE_L3].r_resctrl; 2202 list_for_each_entry(dom, &r->domains, list) 2203 mbm_setup_overflow_handler(dom, MBM_OVERFLOW_INTERVAL); 2204 } 2205 2206 goto out; 2207 2208 out_psl: 2209 rdt_pseudo_lock_release(); 2210 out_mondata: 2211 if (rdt_mon_capable) 2212 kernfs_remove(kn_mondata); 2213 out_mongrp: 2214 if (rdt_mon_capable) 2215 kernfs_remove(kn_mongrp); 2216 out_info: 2217 kernfs_remove(kn_info); 2218 out_schemata_free: 2219 schemata_list_destroy(); 2220 out_mba: 2221 if (ctx->enable_mba_mbps) 2222 set_mba_sc(false); 2223 out_cdp: 2224 cdp_disable_all(); 2225 out: 2226 rdt_last_cmd_clear(); 2227 mutex_unlock(&rdtgroup_mutex); 2228 cpus_read_unlock(); 2229 return ret; 2230 } 2231 2232 enum rdt_param { 2233 Opt_cdp, 2234 Opt_cdpl2, 2235 Opt_mba_mbps, 2236 nr__rdt_params 2237 }; 2238 2239 static const struct fs_parameter_spec rdt_fs_parameters[] = { 2240 fsparam_flag("cdp", Opt_cdp), 2241 fsparam_flag("cdpl2", Opt_cdpl2), 2242 fsparam_flag("mba_MBps", Opt_mba_mbps), 2243 {} 2244 }; 2245 2246 static int rdt_parse_param(struct fs_context *fc, struct fs_parameter *param) 2247 { 2248 struct rdt_fs_context *ctx = rdt_fc2context(fc); 2249 struct fs_parse_result result; 2250 int opt; 2251 2252 opt = fs_parse(fc, rdt_fs_parameters, param, &result); 2253 if (opt < 0) 2254 return opt; 2255 2256 switch (opt) { 2257 case Opt_cdp: 2258 ctx->enable_cdpl3 = true; 2259 return 0; 2260 case Opt_cdpl2: 2261 ctx->enable_cdpl2 = true; 2262 return 0; 2263 case Opt_mba_mbps: 2264 if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) 2265 return -EINVAL; 2266 ctx->enable_mba_mbps = true; 2267 return 0; 2268 } 2269 2270 return -EINVAL; 2271 } 2272 2273 static void rdt_fs_context_free(struct fs_context *fc) 2274 { 2275 struct rdt_fs_context *ctx = rdt_fc2context(fc); 2276 2277 kernfs_free_fs_context(fc); 2278 kfree(ctx); 2279 } 2280 2281 static const struct fs_context_operations rdt_fs_context_ops = { 2282 .free = rdt_fs_context_free, 2283 .parse_param = rdt_parse_param, 2284 .get_tree = rdt_get_tree, 2285 }; 2286 2287 static int rdt_init_fs_context(struct fs_context *fc) 2288 { 2289 struct rdt_fs_context *ctx; 2290 2291 ctx = kzalloc(sizeof(struct rdt_fs_context), GFP_KERNEL); 2292 if (!ctx) 2293 return -ENOMEM; 2294 2295 ctx->kfc.root = rdt_root; 2296 ctx->kfc.magic = RDTGROUP_SUPER_MAGIC; 2297 fc->fs_private = &ctx->kfc; 2298 fc->ops = &rdt_fs_context_ops; 2299 put_user_ns(fc->user_ns); 2300 fc->user_ns = get_user_ns(&init_user_ns); 2301 fc->global = true; 2302 return 0; 2303 } 2304 2305 static int reset_all_ctrls(struct rdt_resource *r) 2306 { 2307 struct rdt_hw_resource *hw_res = resctrl_to_arch_res(r); 2308 struct rdt_hw_domain *hw_dom; 2309 struct msr_param msr_param; 2310 cpumask_var_t cpu_mask; 2311 struct rdt_domain *d; 2312 int i, cpu; 2313 2314 if (!zalloc_cpumask_var(&cpu_mask, GFP_KERNEL)) 2315 return -ENOMEM; 2316 2317 msr_param.res = r; 2318 msr_param.low = 0; 2319 msr_param.high = hw_res->num_closid; 2320 2321 /* 2322 * Disable resource control for this resource by setting all 2323 * CBMs in all domains to the maximum mask value. Pick one CPU 2324 * from each domain to update the MSRs below. 2325 */ 2326 list_for_each_entry(d, &r->domains, list) { 2327 hw_dom = resctrl_to_arch_dom(d); 2328 cpumask_set_cpu(cpumask_any(&d->cpu_mask), cpu_mask); 2329 2330 for (i = 0; i < hw_res->num_closid; i++) 2331 hw_dom->ctrl_val[i] = r->default_ctrl; 2332 } 2333 cpu = get_cpu(); 2334 /* Update CBM on this cpu if it's in cpu_mask. */ 2335 if (cpumask_test_cpu(cpu, cpu_mask)) 2336 rdt_ctrl_update(&msr_param); 2337 /* Update CBM on all other cpus in cpu_mask. */ 2338 smp_call_function_many(cpu_mask, rdt_ctrl_update, &msr_param, 1); 2339 put_cpu(); 2340 2341 free_cpumask_var(cpu_mask); 2342 2343 return 0; 2344 } 2345 2346 /* 2347 * Move tasks from one to the other group. If @from is NULL, then all tasks 2348 * in the systems are moved unconditionally (used for teardown). 2349 * 2350 * If @mask is not NULL the cpus on which moved tasks are running are set 2351 * in that mask so the update smp function call is restricted to affected 2352 * cpus. 2353 */ 2354 static void rdt_move_group_tasks(struct rdtgroup *from, struct rdtgroup *to, 2355 struct cpumask *mask) 2356 { 2357 struct task_struct *p, *t; 2358 2359 read_lock(&tasklist_lock); 2360 for_each_process_thread(p, t) { 2361 if (!from || is_closid_match(t, from) || 2362 is_rmid_match(t, from)) { 2363 WRITE_ONCE(t->closid, to->closid); 2364 WRITE_ONCE(t->rmid, to->mon.rmid); 2365 2366 /* 2367 * If the task is on a CPU, set the CPU in the mask. 2368 * The detection is inaccurate as tasks might move or 2369 * schedule before the smp function call takes place. 2370 * In such a case the function call is pointless, but 2371 * there is no other side effect. 2372 */ 2373 if (IS_ENABLED(CONFIG_SMP) && mask && task_curr(t)) 2374 cpumask_set_cpu(task_cpu(t), mask); 2375 } 2376 } 2377 read_unlock(&tasklist_lock); 2378 } 2379 2380 static void free_all_child_rdtgrp(struct rdtgroup *rdtgrp) 2381 { 2382 struct rdtgroup *sentry, *stmp; 2383 struct list_head *head; 2384 2385 head = &rdtgrp->mon.crdtgrp_list; 2386 list_for_each_entry_safe(sentry, stmp, head, mon.crdtgrp_list) { 2387 free_rmid(sentry->mon.rmid); 2388 list_del(&sentry->mon.crdtgrp_list); 2389 2390 if (atomic_read(&sentry->waitcount) != 0) 2391 sentry->flags = RDT_DELETED; 2392 else 2393 rdtgroup_remove(sentry); 2394 } 2395 } 2396 2397 /* 2398 * Forcibly remove all of subdirectories under root. 2399 */ 2400 static void rmdir_all_sub(void) 2401 { 2402 struct rdtgroup *rdtgrp, *tmp; 2403 2404 /* Move all tasks to the default resource group */ 2405 rdt_move_group_tasks(NULL, &rdtgroup_default, NULL); 2406 2407 list_for_each_entry_safe(rdtgrp, tmp, &rdt_all_groups, rdtgroup_list) { 2408 /* Free any child rmids */ 2409 free_all_child_rdtgrp(rdtgrp); 2410 2411 /* Remove each rdtgroup other than root */ 2412 if (rdtgrp == &rdtgroup_default) 2413 continue; 2414 2415 if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP || 2416 rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED) 2417 rdtgroup_pseudo_lock_remove(rdtgrp); 2418 2419 /* 2420 * Give any CPUs back to the default group. We cannot copy 2421 * cpu_online_mask because a CPU might have executed the 2422 * offline callback already, but is still marked online. 2423 */ 2424 cpumask_or(&rdtgroup_default.cpu_mask, 2425 &rdtgroup_default.cpu_mask, &rdtgrp->cpu_mask); 2426 2427 free_rmid(rdtgrp->mon.rmid); 2428 2429 kernfs_remove(rdtgrp->kn); 2430 list_del(&rdtgrp->rdtgroup_list); 2431 2432 if (atomic_read(&rdtgrp->waitcount) != 0) 2433 rdtgrp->flags = RDT_DELETED; 2434 else 2435 rdtgroup_remove(rdtgrp); 2436 } 2437 /* Notify online CPUs to update per cpu storage and PQR_ASSOC MSR */ 2438 update_closid_rmid(cpu_online_mask, &rdtgroup_default); 2439 2440 kernfs_remove(kn_info); 2441 kernfs_remove(kn_mongrp); 2442 kernfs_remove(kn_mondata); 2443 } 2444 2445 static void rdt_kill_sb(struct super_block *sb) 2446 { 2447 struct rdt_resource *r; 2448 2449 cpus_read_lock(); 2450 mutex_lock(&rdtgroup_mutex); 2451 2452 set_mba_sc(false); 2453 2454 /*Put everything back to default values. */ 2455 for_each_alloc_enabled_rdt_resource(r) 2456 reset_all_ctrls(r); 2457 cdp_disable_all(); 2458 rmdir_all_sub(); 2459 rdt_pseudo_lock_release(); 2460 rdtgroup_default.mode = RDT_MODE_SHAREABLE; 2461 schemata_list_destroy(); 2462 static_branch_disable_cpuslocked(&rdt_alloc_enable_key); 2463 static_branch_disable_cpuslocked(&rdt_mon_enable_key); 2464 static_branch_disable_cpuslocked(&rdt_enable_key); 2465 kernfs_kill_sb(sb); 2466 mutex_unlock(&rdtgroup_mutex); 2467 cpus_read_unlock(); 2468 } 2469 2470 static struct file_system_type rdt_fs_type = { 2471 .name = "resctrl", 2472 .init_fs_context = rdt_init_fs_context, 2473 .parameters = rdt_fs_parameters, 2474 .kill_sb = rdt_kill_sb, 2475 }; 2476 2477 static int mon_addfile(struct kernfs_node *parent_kn, const char *name, 2478 void *priv) 2479 { 2480 struct kernfs_node *kn; 2481 int ret = 0; 2482 2483 kn = __kernfs_create_file(parent_kn, name, 0444, 2484 GLOBAL_ROOT_UID, GLOBAL_ROOT_GID, 0, 2485 &kf_mondata_ops, priv, NULL, NULL); 2486 if (IS_ERR(kn)) 2487 return PTR_ERR(kn); 2488 2489 ret = rdtgroup_kn_set_ugid(kn); 2490 if (ret) { 2491 kernfs_remove(kn); 2492 return ret; 2493 } 2494 2495 return ret; 2496 } 2497 2498 /* 2499 * Remove all subdirectories of mon_data of ctrl_mon groups 2500 * and monitor groups with given domain id. 2501 */ 2502 void rmdir_mondata_subdir_allrdtgrp(struct rdt_resource *r, unsigned int dom_id) 2503 { 2504 struct rdtgroup *prgrp, *crgrp; 2505 char name[32]; 2506 2507 if (!r->mon_enabled) 2508 return; 2509 2510 list_for_each_entry(prgrp, &rdt_all_groups, rdtgroup_list) { 2511 sprintf(name, "mon_%s_%02d", r->name, dom_id); 2512 kernfs_remove_by_name(prgrp->mon.mon_data_kn, name); 2513 2514 list_for_each_entry(crgrp, &prgrp->mon.crdtgrp_list, mon.crdtgrp_list) 2515 kernfs_remove_by_name(crgrp->mon.mon_data_kn, name); 2516 } 2517 } 2518 2519 static int mkdir_mondata_subdir(struct kernfs_node *parent_kn, 2520 struct rdt_domain *d, 2521 struct rdt_resource *r, struct rdtgroup *prgrp) 2522 { 2523 union mon_data_bits priv; 2524 struct kernfs_node *kn; 2525 struct mon_evt *mevt; 2526 struct rmid_read rr; 2527 char name[32]; 2528 int ret; 2529 2530 sprintf(name, "mon_%s_%02d", r->name, d->id); 2531 /* create the directory */ 2532 kn = kernfs_create_dir(parent_kn, name, parent_kn->mode, prgrp); 2533 if (IS_ERR(kn)) 2534 return PTR_ERR(kn); 2535 2536 ret = rdtgroup_kn_set_ugid(kn); 2537 if (ret) 2538 goto out_destroy; 2539 2540 if (WARN_ON(list_empty(&r->evt_list))) { 2541 ret = -EPERM; 2542 goto out_destroy; 2543 } 2544 2545 priv.u.rid = r->rid; 2546 priv.u.domid = d->id; 2547 list_for_each_entry(mevt, &r->evt_list, list) { 2548 priv.u.evtid = mevt->evtid; 2549 ret = mon_addfile(kn, mevt->name, priv.priv); 2550 if (ret) 2551 goto out_destroy; 2552 2553 if (is_mbm_event(mevt->evtid)) 2554 mon_event_read(&rr, r, d, prgrp, mevt->evtid, true); 2555 } 2556 kernfs_activate(kn); 2557 return 0; 2558 2559 out_destroy: 2560 kernfs_remove(kn); 2561 return ret; 2562 } 2563 2564 /* 2565 * Add all subdirectories of mon_data for "ctrl_mon" groups 2566 * and "monitor" groups with given domain id. 2567 */ 2568 void mkdir_mondata_subdir_allrdtgrp(struct rdt_resource *r, 2569 struct rdt_domain *d) 2570 { 2571 struct kernfs_node *parent_kn; 2572 struct rdtgroup *prgrp, *crgrp; 2573 struct list_head *head; 2574 2575 if (!r->mon_enabled) 2576 return; 2577 2578 list_for_each_entry(prgrp, &rdt_all_groups, rdtgroup_list) { 2579 parent_kn = prgrp->mon.mon_data_kn; 2580 mkdir_mondata_subdir(parent_kn, d, r, prgrp); 2581 2582 head = &prgrp->mon.crdtgrp_list; 2583 list_for_each_entry(crgrp, head, mon.crdtgrp_list) { 2584 parent_kn = crgrp->mon.mon_data_kn; 2585 mkdir_mondata_subdir(parent_kn, d, r, crgrp); 2586 } 2587 } 2588 } 2589 2590 static int mkdir_mondata_subdir_alldom(struct kernfs_node *parent_kn, 2591 struct rdt_resource *r, 2592 struct rdtgroup *prgrp) 2593 { 2594 struct rdt_domain *dom; 2595 int ret; 2596 2597 list_for_each_entry(dom, &r->domains, list) { 2598 ret = mkdir_mondata_subdir(parent_kn, dom, r, prgrp); 2599 if (ret) 2600 return ret; 2601 } 2602 2603 return 0; 2604 } 2605 2606 /* 2607 * This creates a directory mon_data which contains the monitored data. 2608 * 2609 * mon_data has one directory for each domain which are named 2610 * in the format mon_<domain_name>_<domain_id>. For ex: A mon_data 2611 * with L3 domain looks as below: 2612 * ./mon_data: 2613 * mon_L3_00 2614 * mon_L3_01 2615 * mon_L3_02 2616 * ... 2617 * 2618 * Each domain directory has one file per event: 2619 * ./mon_L3_00/: 2620 * llc_occupancy 2621 * 2622 */ 2623 static int mkdir_mondata_all(struct kernfs_node *parent_kn, 2624 struct rdtgroup *prgrp, 2625 struct kernfs_node **dest_kn) 2626 { 2627 struct rdt_resource *r; 2628 struct kernfs_node *kn; 2629 int ret; 2630 2631 /* 2632 * Create the mon_data directory first. 2633 */ 2634 ret = mongroup_create_dir(parent_kn, prgrp, "mon_data", &kn); 2635 if (ret) 2636 return ret; 2637 2638 if (dest_kn) 2639 *dest_kn = kn; 2640 2641 /* 2642 * Create the subdirectories for each domain. Note that all events 2643 * in a domain like L3 are grouped into a resource whose domain is L3 2644 */ 2645 for_each_mon_enabled_rdt_resource(r) { 2646 ret = mkdir_mondata_subdir_alldom(kn, r, prgrp); 2647 if (ret) 2648 goto out_destroy; 2649 } 2650 2651 return 0; 2652 2653 out_destroy: 2654 kernfs_remove(kn); 2655 return ret; 2656 } 2657 2658 /** 2659 * cbm_ensure_valid - Enforce validity on provided CBM 2660 * @_val: Candidate CBM 2661 * @r: RDT resource to which the CBM belongs 2662 * 2663 * The provided CBM represents all cache portions available for use. This 2664 * may be represented by a bitmap that does not consist of contiguous ones 2665 * and thus be an invalid CBM. 2666 * Here the provided CBM is forced to be a valid CBM by only considering 2667 * the first set of contiguous bits as valid and clearing all bits. 2668 * The intention here is to provide a valid default CBM with which a new 2669 * resource group is initialized. The user can follow this with a 2670 * modification to the CBM if the default does not satisfy the 2671 * requirements. 2672 */ 2673 static u32 cbm_ensure_valid(u32 _val, struct rdt_resource *r) 2674 { 2675 unsigned int cbm_len = r->cache.cbm_len; 2676 unsigned long first_bit, zero_bit; 2677 unsigned long val = _val; 2678 2679 if (!val) 2680 return 0; 2681 2682 first_bit = find_first_bit(&val, cbm_len); 2683 zero_bit = find_next_zero_bit(&val, cbm_len, first_bit); 2684 2685 /* Clear any remaining bits to ensure contiguous region */ 2686 bitmap_clear(&val, zero_bit, cbm_len - zero_bit); 2687 return (u32)val; 2688 } 2689 2690 /* 2691 * Initialize cache resources per RDT domain 2692 * 2693 * Set the RDT domain up to start off with all usable allocations. That is, 2694 * all shareable and unused bits. All-zero CBM is invalid. 2695 */ 2696 static int __init_one_rdt_domain(struct rdt_domain *d, struct resctrl_schema *s, 2697 u32 closid) 2698 { 2699 enum resctrl_conf_type peer_type = resctrl_peer_type(s->conf_type); 2700 enum resctrl_conf_type t = s->conf_type; 2701 struct resctrl_staged_config *cfg; 2702 struct rdt_resource *r = s->res; 2703 u32 used_b = 0, unused_b = 0; 2704 unsigned long tmp_cbm; 2705 enum rdtgrp_mode mode; 2706 u32 peer_ctl, ctrl_val; 2707 int i; 2708 2709 cfg = &d->staged_config[t]; 2710 cfg->have_new_ctrl = false; 2711 cfg->new_ctrl = r->cache.shareable_bits; 2712 used_b = r->cache.shareable_bits; 2713 for (i = 0; i < closids_supported(); i++) { 2714 if (closid_allocated(i) && i != closid) { 2715 mode = rdtgroup_mode_by_closid(i); 2716 if (mode == RDT_MODE_PSEUDO_LOCKSETUP) 2717 /* 2718 * ctrl values for locksetup aren't relevant 2719 * until the schemata is written, and the mode 2720 * becomes RDT_MODE_PSEUDO_LOCKED. 2721 */ 2722 continue; 2723 /* 2724 * If CDP is active include peer domain's 2725 * usage to ensure there is no overlap 2726 * with an exclusive group. 2727 */ 2728 if (resctrl_arch_get_cdp_enabled(r->rid)) 2729 peer_ctl = resctrl_arch_get_config(r, d, i, 2730 peer_type); 2731 else 2732 peer_ctl = 0; 2733 ctrl_val = resctrl_arch_get_config(r, d, i, 2734 s->conf_type); 2735 used_b |= ctrl_val | peer_ctl; 2736 if (mode == RDT_MODE_SHAREABLE) 2737 cfg->new_ctrl |= ctrl_val | peer_ctl; 2738 } 2739 } 2740 if (d->plr && d->plr->cbm > 0) 2741 used_b |= d->plr->cbm; 2742 unused_b = used_b ^ (BIT_MASK(r->cache.cbm_len) - 1); 2743 unused_b &= BIT_MASK(r->cache.cbm_len) - 1; 2744 cfg->new_ctrl |= unused_b; 2745 /* 2746 * Force the initial CBM to be valid, user can 2747 * modify the CBM based on system availability. 2748 */ 2749 cfg->new_ctrl = cbm_ensure_valid(cfg->new_ctrl, r); 2750 /* 2751 * Assign the u32 CBM to an unsigned long to ensure that 2752 * bitmap_weight() does not access out-of-bound memory. 2753 */ 2754 tmp_cbm = cfg->new_ctrl; 2755 if (bitmap_weight(&tmp_cbm, r->cache.cbm_len) < r->cache.min_cbm_bits) { 2756 rdt_last_cmd_printf("No space on %s:%d\n", s->name, d->id); 2757 return -ENOSPC; 2758 } 2759 cfg->have_new_ctrl = true; 2760 2761 return 0; 2762 } 2763 2764 /* 2765 * Initialize cache resources with default values. 2766 * 2767 * A new RDT group is being created on an allocation capable (CAT) 2768 * supporting system. Set this group up to start off with all usable 2769 * allocations. 2770 * 2771 * If there are no more shareable bits available on any domain then 2772 * the entire allocation will fail. 2773 */ 2774 static int rdtgroup_init_cat(struct resctrl_schema *s, u32 closid) 2775 { 2776 struct rdt_domain *d; 2777 int ret; 2778 2779 list_for_each_entry(d, &s->res->domains, list) { 2780 ret = __init_one_rdt_domain(d, s, closid); 2781 if (ret < 0) 2782 return ret; 2783 } 2784 2785 return 0; 2786 } 2787 2788 /* Initialize MBA resource with default values. */ 2789 static void rdtgroup_init_mba(struct rdt_resource *r) 2790 { 2791 struct resctrl_staged_config *cfg; 2792 struct rdt_domain *d; 2793 2794 list_for_each_entry(d, &r->domains, list) { 2795 cfg = &d->staged_config[CDP_NONE]; 2796 cfg->new_ctrl = is_mba_sc(r) ? MBA_MAX_MBPS : r->default_ctrl; 2797 cfg->have_new_ctrl = true; 2798 } 2799 } 2800 2801 /* Initialize the RDT group's allocations. */ 2802 static int rdtgroup_init_alloc(struct rdtgroup *rdtgrp) 2803 { 2804 struct resctrl_schema *s; 2805 struct rdt_resource *r; 2806 int ret; 2807 2808 list_for_each_entry(s, &resctrl_schema_all, list) { 2809 r = s->res; 2810 if (r->rid == RDT_RESOURCE_MBA) { 2811 rdtgroup_init_mba(r); 2812 } else { 2813 ret = rdtgroup_init_cat(s, rdtgrp->closid); 2814 if (ret < 0) 2815 return ret; 2816 } 2817 2818 ret = resctrl_arch_update_domains(r, rdtgrp->closid); 2819 if (ret < 0) { 2820 rdt_last_cmd_puts("Failed to initialize allocations\n"); 2821 return ret; 2822 } 2823 2824 } 2825 2826 rdtgrp->mode = RDT_MODE_SHAREABLE; 2827 2828 return 0; 2829 } 2830 2831 static int mkdir_rdt_prepare(struct kernfs_node *parent_kn, 2832 const char *name, umode_t mode, 2833 enum rdt_group_type rtype, struct rdtgroup **r) 2834 { 2835 struct rdtgroup *prdtgrp, *rdtgrp; 2836 struct kernfs_node *kn; 2837 uint files = 0; 2838 int ret; 2839 2840 prdtgrp = rdtgroup_kn_lock_live(parent_kn); 2841 if (!prdtgrp) { 2842 ret = -ENODEV; 2843 goto out_unlock; 2844 } 2845 2846 if (rtype == RDTMON_GROUP && 2847 (prdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP || 2848 prdtgrp->mode == RDT_MODE_PSEUDO_LOCKED)) { 2849 ret = -EINVAL; 2850 rdt_last_cmd_puts("Pseudo-locking in progress\n"); 2851 goto out_unlock; 2852 } 2853 2854 /* allocate the rdtgroup. */ 2855 rdtgrp = kzalloc(sizeof(*rdtgrp), GFP_KERNEL); 2856 if (!rdtgrp) { 2857 ret = -ENOSPC; 2858 rdt_last_cmd_puts("Kernel out of memory\n"); 2859 goto out_unlock; 2860 } 2861 *r = rdtgrp; 2862 rdtgrp->mon.parent = prdtgrp; 2863 rdtgrp->type = rtype; 2864 INIT_LIST_HEAD(&rdtgrp->mon.crdtgrp_list); 2865 2866 /* kernfs creates the directory for rdtgrp */ 2867 kn = kernfs_create_dir(parent_kn, name, mode, rdtgrp); 2868 if (IS_ERR(kn)) { 2869 ret = PTR_ERR(kn); 2870 rdt_last_cmd_puts("kernfs create error\n"); 2871 goto out_free_rgrp; 2872 } 2873 rdtgrp->kn = kn; 2874 2875 /* 2876 * kernfs_remove() will drop the reference count on "kn" which 2877 * will free it. But we still need it to stick around for the 2878 * rdtgroup_kn_unlock(kn) call. Take one extra reference here, 2879 * which will be dropped by kernfs_put() in rdtgroup_remove(). 2880 */ 2881 kernfs_get(kn); 2882 2883 ret = rdtgroup_kn_set_ugid(kn); 2884 if (ret) { 2885 rdt_last_cmd_puts("kernfs perm error\n"); 2886 goto out_destroy; 2887 } 2888 2889 files = RFTYPE_BASE | BIT(RF_CTRLSHIFT + rtype); 2890 ret = rdtgroup_add_files(kn, files); 2891 if (ret) { 2892 rdt_last_cmd_puts("kernfs fill error\n"); 2893 goto out_destroy; 2894 } 2895 2896 if (rdt_mon_capable) { 2897 ret = alloc_rmid(); 2898 if (ret < 0) { 2899 rdt_last_cmd_puts("Out of RMIDs\n"); 2900 goto out_destroy; 2901 } 2902 rdtgrp->mon.rmid = ret; 2903 2904 ret = mkdir_mondata_all(kn, rdtgrp, &rdtgrp->mon.mon_data_kn); 2905 if (ret) { 2906 rdt_last_cmd_puts("kernfs subdir error\n"); 2907 goto out_idfree; 2908 } 2909 } 2910 kernfs_activate(kn); 2911 2912 /* 2913 * The caller unlocks the parent_kn upon success. 2914 */ 2915 return 0; 2916 2917 out_idfree: 2918 free_rmid(rdtgrp->mon.rmid); 2919 out_destroy: 2920 kernfs_put(rdtgrp->kn); 2921 kernfs_remove(rdtgrp->kn); 2922 out_free_rgrp: 2923 kfree(rdtgrp); 2924 out_unlock: 2925 rdtgroup_kn_unlock(parent_kn); 2926 return ret; 2927 } 2928 2929 static void mkdir_rdt_prepare_clean(struct rdtgroup *rgrp) 2930 { 2931 kernfs_remove(rgrp->kn); 2932 free_rmid(rgrp->mon.rmid); 2933 rdtgroup_remove(rgrp); 2934 } 2935 2936 /* 2937 * Create a monitor group under "mon_groups" directory of a control 2938 * and monitor group(ctrl_mon). This is a resource group 2939 * to monitor a subset of tasks and cpus in its parent ctrl_mon group. 2940 */ 2941 static int rdtgroup_mkdir_mon(struct kernfs_node *parent_kn, 2942 const char *name, umode_t mode) 2943 { 2944 struct rdtgroup *rdtgrp, *prgrp; 2945 int ret; 2946 2947 ret = mkdir_rdt_prepare(parent_kn, name, mode, RDTMON_GROUP, &rdtgrp); 2948 if (ret) 2949 return ret; 2950 2951 prgrp = rdtgrp->mon.parent; 2952 rdtgrp->closid = prgrp->closid; 2953 2954 /* 2955 * Add the rdtgrp to the list of rdtgrps the parent 2956 * ctrl_mon group has to track. 2957 */ 2958 list_add_tail(&rdtgrp->mon.crdtgrp_list, &prgrp->mon.crdtgrp_list); 2959 2960 rdtgroup_kn_unlock(parent_kn); 2961 return ret; 2962 } 2963 2964 /* 2965 * These are rdtgroups created under the root directory. Can be used 2966 * to allocate and monitor resources. 2967 */ 2968 static int rdtgroup_mkdir_ctrl_mon(struct kernfs_node *parent_kn, 2969 const char *name, umode_t mode) 2970 { 2971 struct rdtgroup *rdtgrp; 2972 struct kernfs_node *kn; 2973 u32 closid; 2974 int ret; 2975 2976 ret = mkdir_rdt_prepare(parent_kn, name, mode, RDTCTRL_GROUP, &rdtgrp); 2977 if (ret) 2978 return ret; 2979 2980 kn = rdtgrp->kn; 2981 ret = closid_alloc(); 2982 if (ret < 0) { 2983 rdt_last_cmd_puts("Out of CLOSIDs\n"); 2984 goto out_common_fail; 2985 } 2986 closid = ret; 2987 ret = 0; 2988 2989 rdtgrp->closid = closid; 2990 ret = rdtgroup_init_alloc(rdtgrp); 2991 if (ret < 0) 2992 goto out_id_free; 2993 2994 list_add(&rdtgrp->rdtgroup_list, &rdt_all_groups); 2995 2996 if (rdt_mon_capable) { 2997 /* 2998 * Create an empty mon_groups directory to hold the subset 2999 * of tasks and cpus to monitor. 3000 */ 3001 ret = mongroup_create_dir(kn, rdtgrp, "mon_groups", NULL); 3002 if (ret) { 3003 rdt_last_cmd_puts("kernfs subdir error\n"); 3004 goto out_del_list; 3005 } 3006 } 3007 3008 goto out_unlock; 3009 3010 out_del_list: 3011 list_del(&rdtgrp->rdtgroup_list); 3012 out_id_free: 3013 closid_free(closid); 3014 out_common_fail: 3015 mkdir_rdt_prepare_clean(rdtgrp); 3016 out_unlock: 3017 rdtgroup_kn_unlock(parent_kn); 3018 return ret; 3019 } 3020 3021 /* 3022 * We allow creating mon groups only with in a directory called "mon_groups" 3023 * which is present in every ctrl_mon group. Check if this is a valid 3024 * "mon_groups" directory. 3025 * 3026 * 1. The directory should be named "mon_groups". 3027 * 2. The mon group itself should "not" be named "mon_groups". 3028 * This makes sure "mon_groups" directory always has a ctrl_mon group 3029 * as parent. 3030 */ 3031 static bool is_mon_groups(struct kernfs_node *kn, const char *name) 3032 { 3033 return (!strcmp(kn->name, "mon_groups") && 3034 strcmp(name, "mon_groups")); 3035 } 3036 3037 static int rdtgroup_mkdir(struct kernfs_node *parent_kn, const char *name, 3038 umode_t mode) 3039 { 3040 /* Do not accept '\n' to avoid unparsable situation. */ 3041 if (strchr(name, '\n')) 3042 return -EINVAL; 3043 3044 /* 3045 * If the parent directory is the root directory and RDT 3046 * allocation is supported, add a control and monitoring 3047 * subdirectory 3048 */ 3049 if (rdt_alloc_capable && parent_kn == rdtgroup_default.kn) 3050 return rdtgroup_mkdir_ctrl_mon(parent_kn, name, mode); 3051 3052 /* 3053 * If RDT monitoring is supported and the parent directory is a valid 3054 * "mon_groups" directory, add a monitoring subdirectory. 3055 */ 3056 if (rdt_mon_capable && is_mon_groups(parent_kn, name)) 3057 return rdtgroup_mkdir_mon(parent_kn, name, mode); 3058 3059 return -EPERM; 3060 } 3061 3062 static int rdtgroup_rmdir_mon(struct rdtgroup *rdtgrp, cpumask_var_t tmpmask) 3063 { 3064 struct rdtgroup *prdtgrp = rdtgrp->mon.parent; 3065 int cpu; 3066 3067 /* Give any tasks back to the parent group */ 3068 rdt_move_group_tasks(rdtgrp, prdtgrp, tmpmask); 3069 3070 /* Update per cpu rmid of the moved CPUs first */ 3071 for_each_cpu(cpu, &rdtgrp->cpu_mask) 3072 per_cpu(pqr_state.default_rmid, cpu) = prdtgrp->mon.rmid; 3073 /* 3074 * Update the MSR on moved CPUs and CPUs which have moved 3075 * task running on them. 3076 */ 3077 cpumask_or(tmpmask, tmpmask, &rdtgrp->cpu_mask); 3078 update_closid_rmid(tmpmask, NULL); 3079 3080 rdtgrp->flags = RDT_DELETED; 3081 free_rmid(rdtgrp->mon.rmid); 3082 3083 /* 3084 * Remove the rdtgrp from the parent ctrl_mon group's list 3085 */ 3086 WARN_ON(list_empty(&prdtgrp->mon.crdtgrp_list)); 3087 list_del(&rdtgrp->mon.crdtgrp_list); 3088 3089 kernfs_remove(rdtgrp->kn); 3090 3091 return 0; 3092 } 3093 3094 static int rdtgroup_ctrl_remove(struct rdtgroup *rdtgrp) 3095 { 3096 rdtgrp->flags = RDT_DELETED; 3097 list_del(&rdtgrp->rdtgroup_list); 3098 3099 kernfs_remove(rdtgrp->kn); 3100 return 0; 3101 } 3102 3103 static int rdtgroup_rmdir_ctrl(struct rdtgroup *rdtgrp, cpumask_var_t tmpmask) 3104 { 3105 int cpu; 3106 3107 /* Give any tasks back to the default group */ 3108 rdt_move_group_tasks(rdtgrp, &rdtgroup_default, tmpmask); 3109 3110 /* Give any CPUs back to the default group */ 3111 cpumask_or(&rdtgroup_default.cpu_mask, 3112 &rdtgroup_default.cpu_mask, &rdtgrp->cpu_mask); 3113 3114 /* Update per cpu closid and rmid of the moved CPUs first */ 3115 for_each_cpu(cpu, &rdtgrp->cpu_mask) { 3116 per_cpu(pqr_state.default_closid, cpu) = rdtgroup_default.closid; 3117 per_cpu(pqr_state.default_rmid, cpu) = rdtgroup_default.mon.rmid; 3118 } 3119 3120 /* 3121 * Update the MSR on moved CPUs and CPUs which have moved 3122 * task running on them. 3123 */ 3124 cpumask_or(tmpmask, tmpmask, &rdtgrp->cpu_mask); 3125 update_closid_rmid(tmpmask, NULL); 3126 3127 closid_free(rdtgrp->closid); 3128 free_rmid(rdtgrp->mon.rmid); 3129 3130 rdtgroup_ctrl_remove(rdtgrp); 3131 3132 /* 3133 * Free all the child monitor group rmids. 3134 */ 3135 free_all_child_rdtgrp(rdtgrp); 3136 3137 return 0; 3138 } 3139 3140 static int rdtgroup_rmdir(struct kernfs_node *kn) 3141 { 3142 struct kernfs_node *parent_kn = kn->parent; 3143 struct rdtgroup *rdtgrp; 3144 cpumask_var_t tmpmask; 3145 int ret = 0; 3146 3147 if (!zalloc_cpumask_var(&tmpmask, GFP_KERNEL)) 3148 return -ENOMEM; 3149 3150 rdtgrp = rdtgroup_kn_lock_live(kn); 3151 if (!rdtgrp) { 3152 ret = -EPERM; 3153 goto out; 3154 } 3155 3156 /* 3157 * If the rdtgroup is a ctrl_mon group and parent directory 3158 * is the root directory, remove the ctrl_mon group. 3159 * 3160 * If the rdtgroup is a mon group and parent directory 3161 * is a valid "mon_groups" directory, remove the mon group. 3162 */ 3163 if (rdtgrp->type == RDTCTRL_GROUP && parent_kn == rdtgroup_default.kn && 3164 rdtgrp != &rdtgroup_default) { 3165 if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP || 3166 rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED) { 3167 ret = rdtgroup_ctrl_remove(rdtgrp); 3168 } else { 3169 ret = rdtgroup_rmdir_ctrl(rdtgrp, tmpmask); 3170 } 3171 } else if (rdtgrp->type == RDTMON_GROUP && 3172 is_mon_groups(parent_kn, kn->name)) { 3173 ret = rdtgroup_rmdir_mon(rdtgrp, tmpmask); 3174 } else { 3175 ret = -EPERM; 3176 } 3177 3178 out: 3179 rdtgroup_kn_unlock(kn); 3180 free_cpumask_var(tmpmask); 3181 return ret; 3182 } 3183 3184 static int rdtgroup_show_options(struct seq_file *seq, struct kernfs_root *kf) 3185 { 3186 if (resctrl_arch_get_cdp_enabled(RDT_RESOURCE_L3)) 3187 seq_puts(seq, ",cdp"); 3188 3189 if (resctrl_arch_get_cdp_enabled(RDT_RESOURCE_L2)) 3190 seq_puts(seq, ",cdpl2"); 3191 3192 if (is_mba_sc(&rdt_resources_all[RDT_RESOURCE_MBA].r_resctrl)) 3193 seq_puts(seq, ",mba_MBps"); 3194 3195 return 0; 3196 } 3197 3198 static struct kernfs_syscall_ops rdtgroup_kf_syscall_ops = { 3199 .mkdir = rdtgroup_mkdir, 3200 .rmdir = rdtgroup_rmdir, 3201 .show_options = rdtgroup_show_options, 3202 }; 3203 3204 static int __init rdtgroup_setup_root(void) 3205 { 3206 int ret; 3207 3208 rdt_root = kernfs_create_root(&rdtgroup_kf_syscall_ops, 3209 KERNFS_ROOT_CREATE_DEACTIVATED | 3210 KERNFS_ROOT_EXTRA_OPEN_PERM_CHECK, 3211 &rdtgroup_default); 3212 if (IS_ERR(rdt_root)) 3213 return PTR_ERR(rdt_root); 3214 3215 mutex_lock(&rdtgroup_mutex); 3216 3217 rdtgroup_default.closid = 0; 3218 rdtgroup_default.mon.rmid = 0; 3219 rdtgroup_default.type = RDTCTRL_GROUP; 3220 INIT_LIST_HEAD(&rdtgroup_default.mon.crdtgrp_list); 3221 3222 list_add(&rdtgroup_default.rdtgroup_list, &rdt_all_groups); 3223 3224 ret = rdtgroup_add_files(kernfs_root_to_node(rdt_root), RF_CTRL_BASE); 3225 if (ret) { 3226 kernfs_destroy_root(rdt_root); 3227 goto out; 3228 } 3229 3230 rdtgroup_default.kn = kernfs_root_to_node(rdt_root); 3231 kernfs_activate(rdtgroup_default.kn); 3232 3233 out: 3234 mutex_unlock(&rdtgroup_mutex); 3235 3236 return ret; 3237 } 3238 3239 /* 3240 * rdtgroup_init - rdtgroup initialization 3241 * 3242 * Setup resctrl file system including set up root, create mount point, 3243 * register rdtgroup filesystem, and initialize files under root directory. 3244 * 3245 * Return: 0 on success or -errno 3246 */ 3247 int __init rdtgroup_init(void) 3248 { 3249 int ret = 0; 3250 3251 seq_buf_init(&last_cmd_status, last_cmd_status_buf, 3252 sizeof(last_cmd_status_buf)); 3253 3254 ret = rdtgroup_setup_root(); 3255 if (ret) 3256 return ret; 3257 3258 ret = sysfs_create_mount_point(fs_kobj, "resctrl"); 3259 if (ret) 3260 goto cleanup_root; 3261 3262 ret = register_filesystem(&rdt_fs_type); 3263 if (ret) 3264 goto cleanup_mountpoint; 3265 3266 /* 3267 * Adding the resctrl debugfs directory here may not be ideal since 3268 * it would let the resctrl debugfs directory appear on the debugfs 3269 * filesystem before the resctrl filesystem is mounted. 3270 * It may also be ok since that would enable debugging of RDT before 3271 * resctrl is mounted. 3272 * The reason why the debugfs directory is created here and not in 3273 * rdt_get_tree() is because rdt_get_tree() takes rdtgroup_mutex and 3274 * during the debugfs directory creation also &sb->s_type->i_mutex_key 3275 * (the lockdep class of inode->i_rwsem). Other filesystem 3276 * interactions (eg. SyS_getdents) have the lock ordering: 3277 * &sb->s_type->i_mutex_key --> &mm->mmap_lock 3278 * During mmap(), called with &mm->mmap_lock, the rdtgroup_mutex 3279 * is taken, thus creating dependency: 3280 * &mm->mmap_lock --> rdtgroup_mutex for the latter that can cause 3281 * issues considering the other two lock dependencies. 3282 * By creating the debugfs directory here we avoid a dependency 3283 * that may cause deadlock (even though file operations cannot 3284 * occur until the filesystem is mounted, but I do not know how to 3285 * tell lockdep that). 3286 */ 3287 debugfs_resctrl = debugfs_create_dir("resctrl", NULL); 3288 3289 return 0; 3290 3291 cleanup_mountpoint: 3292 sysfs_remove_mount_point(fs_kobj, "resctrl"); 3293 cleanup_root: 3294 kernfs_destroy_root(rdt_root); 3295 3296 return ret; 3297 } 3298 3299 void __exit rdtgroup_exit(void) 3300 { 3301 debugfs_remove_recursive(debugfs_resctrl); 3302 unregister_filesystem(&rdt_fs_type); 3303 sysfs_remove_mount_point(fs_kobj, "resctrl"); 3304 kernfs_destroy_root(rdt_root); 3305 } 3306